CN113436162A - Method and device for identifying weld defects on surface of hydraulic oil pipeline of underwater robot - Google Patents
Method and device for identifying weld defects on surface of hydraulic oil pipeline of underwater robot Download PDFInfo
- Publication number
- CN113436162A CN113436162A CN202110697224.2A CN202110697224A CN113436162A CN 113436162 A CN113436162 A CN 113436162A CN 202110697224 A CN202110697224 A CN 202110697224A CN 113436162 A CN113436162 A CN 113436162A
- Authority
- CN
- China
- Prior art keywords
- image
- hydraulic oil
- oil pipeline
- gray level
- sub
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010720 hydraulic oil Substances 0.000 title claims abstract description 143
- 230000007547 defect Effects 0.000 title claims abstract description 86
- 238000000034 method Methods 0.000 title claims abstract description 45
- 239000011159 matrix material Substances 0.000 claims abstract description 52
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 35
- 238000012545 processing Methods 0.000 claims abstract description 31
- 238000003709 image segmentation Methods 0.000 claims abstract description 30
- 238000013527 convolutional neural network Methods 0.000 claims abstract description 27
- 238000000605 extraction Methods 0.000 claims abstract description 26
- 238000012937 correction Methods 0.000 claims description 21
- 230000011218 segmentation Effects 0.000 claims description 12
- 230000009466 transformation Effects 0.000 claims description 9
- 230000004913 activation Effects 0.000 claims description 7
- 230000001186 cumulative effect Effects 0.000 claims description 6
- 238000013507 mapping Methods 0.000 claims description 6
- 210000002569 neuron Anatomy 0.000 claims description 6
- 238000011176 pooling Methods 0.000 claims description 5
- 238000007781 pre-processing Methods 0.000 claims description 5
- 230000035945 sensitivity Effects 0.000 claims description 4
- 230000005540 biological transmission Effects 0.000 claims description 3
- 230000006835 compression Effects 0.000 claims description 3
- 238000007906 compression Methods 0.000 claims description 3
- 238000001914 filtration Methods 0.000 claims description 3
- 230000006870 function Effects 0.000 description 17
- 238000001514 detection method Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000000007 visual effect Effects 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 210000003462 vein Anatomy 0.000 description 3
- 238000013528 artificial neural network Methods 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000007637 random forest analysis Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/23—Clustering techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/40—Image enhancement or restoration using histogram techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/40—Analysis of texture
- G06T7/41—Analysis of texture based on statistical description of texture
- G06T7/45—Analysis of texture based on statistical description of texture using co-occurrence matrix computation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/90—Determination of colour characteristics
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Physics (AREA)
- Computing Systems (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Computational Linguistics (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Image Analysis (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Software Systems (AREA)
- Bioinformatics & Computational Biology (AREA)
- Evolutionary Biology (AREA)
- Quality & Reliability (AREA)
- Probability & Statistics with Applications (AREA)
- Biophysics (AREA)
Abstract
The invention relates to the technical field of defect identification, and discloses a method for identifying weld defects on the surface of a hydraulic oil pipeline of an underwater robot, which comprises the following steps: acquiring a hydraulic oil pipeline image, and performing image graying and grayscale stretching pretreatment on the hydraulic oil pipeline image to obtain a hydraulic oil pipeline grayscale image; carrying out image enhancement processing on the gray level image of the hydraulic oil pipeline by using an image enhancement strategy; segmenting the enhanced image by using an image segmentation network to obtain a plurality of sub-images; performing characteristic parameter extraction processing on the subimages by utilizing a characteristic parameter extraction algorithm based on the gray level co-occurrence matrix to obtain the image characteristics of the subimages; and (3) taking the image characteristics of the sub-images as the input of a convolutional neural network, and identifying the position of the weld defect point on the surface of the hydraulic oil pipeline by using the convolutional neural network. The invention also provides a device for identifying the weld defects on the surface of the hydraulic oil pipeline of the underwater robot. The invention realizes the defect identification of the hydraulic oil pipeline.
Description
Technical Field
The invention relates to the technical field of defect identification, in particular to a method and a device for identifying weld defects on the surface of a hydraulic oil pipeline of an underwater robot.
Background
In order to ensure safe operation and operation of the robot body after submergence, detection of weld defect identification on the surface of the hydraulic oil pipeline needs to be carried out. Common detection methods include visual methods and pressure testing methods. The visual method has low detection efficiency, is greatly influenced by subjective factors of detection personnel, and is easy to have missed detection or wrong detection; the pressure test method has long preparation period of test conditions, consumes time and labor and has high detection cost. If unstable factors exist in the weld joint on the surface of the hydraulic oil pipeline, serious accidents such as shutdown and sinking of the underwater robot body can be caused. The performance of the hydraulic pipeline is related to navigation and control of the underwater robot after launching.
In view of this, how to automatically extract characteristic parameters of weld surface defect representation and accurately identify the weld surface defects of the hydraulic oil pipeline becomes a problem to be solved by technical personnel in the field.
Disclosure of Invention
The invention provides a method for identifying weld defects on the surface of a hydraulic oil pipeline of an underwater robot, which comprises the steps of carrying out image enhancement processing on a collected hydraulic oil pipeline image by using an image enhancement strategy, and segmenting the enhanced image by using an image segmentation network to obtain a plurality of sub-images; and performing characteristic parameter extraction processing on the sub-images by using a characteristic parameter extraction algorithm based on the gray level co-occurrence matrix, processing the extracted characteristic parameters by using a convolutional neural network, and identifying and confirming the positions of the defect points.
In order to achieve the purpose, the invention provides a method for identifying the weld defects on the surface of the hydraulic oil pipeline of the underwater robot, which comprises the following steps:
acquiring a hydraulic oil pipeline image, and performing image graying and grayscale stretching pretreatment on the hydraulic oil pipeline image to obtain a hydraulic oil pipeline grayscale image;
carrying out image enhancement processing on the gray level image of the hydraulic oil pipeline by using an image enhancement strategy;
segmenting the enhanced image by using an image segmentation network to obtain a plurality of sub-images;
performing characteristic parameter extraction processing on the subimages by utilizing a characteristic parameter extraction algorithm based on the gray level co-occurrence matrix to obtain the image characteristics of the subimages;
and (3) taking the image characteristics of the sub-images as the input of a convolutional neural network, and identifying the position of the weld defect point on the surface of the hydraulic oil pipeline by using the convolutional neural network.
Optionally, the preprocessing of performing image graying and grayscale stretching on the hydraulic oil pipeline image includes:
solving the maximum value of three components of each pixel in the hydraulic oil pipeline image, setting the maximum value as the gray value of the pixel point, and obtaining the gray map of the hydraulic oil pipeline image, wherein the formula of the graying treatment is as follows:
G(i,j)=max{R(i,j),G(i,j),B(i,j)}
wherein:
(i, j) is a pixel point in the hydraulic oil pipeline image;
r (i, j), G (i, j) and B (i, j) are respectively the values of the pixel point (i, j) in R, G, B three color channels;
g (i, j) is the gray value of the pixel point (i, j);
for the gray level image of the hydraulic oil pipeline, stretching the gray level of the image in a piecewise linear transformation mode, wherein the formula of the gray level stretching is as follows:
wherein:
f (x, y) is a gray scale map;
MAXf(x,y),MINf(x,y)respectively the maximum and minimum grey values of the grey map.
Optionally, the image enhancement policy flow is:
1) constructing a Gaussian filter kernel function matrix, and performing convolution operation on the Gaussian filter kernel function matrix and the hydraulic oil pipeline gray level image to obtain the hydraulic oil pipeline gray level image after Gaussian filtering; in one embodiment of the present invention, the constructed gaussian filter kernel function matrix is:
2) the histogram equalization processing is carried out on the gray level image of the hydraulic oil pipeline, and the method comprises the following steps:
counting the number of pixels corresponding to each gray level of the gray level image of the hydraulic oil pipeline to obtain a histogram of the image:
wherein:
k is 0,1, …, L-1, representing the gray level of the image;
nkrepresents the number of pixels whose gray level is k;
n represents the total number of pixels of the hydraulic oil pipeline gray level image;
calculating a cumulative histogram of the gray level image of the hydraulic oil pipeline:
mapping the cumulative histogram to a gray scale range L0,Lk]:
S=L0+(Lk-L0)c(k)
Counting the number of pixels of each gray level in S after mapping transformation to obtain a new image histogram;
3) correcting the gray level image color of the hydraulic oil pipeline equalized by the histogram by adopting a self-adaptive underwater image color correction algorithm, wherein the formula of the self-adaptive underwater image color correction is as follows:
wherein:
i (R, G and B) represents the sum of the gray images of the hydraulic oil pipeline in three color channels of R, G and B;
μ represents the minkowski distance mean of the image color channel;
alpha represents the maximum value of the gray level image of the hydraulic oil pipeline in three color channels of R, G and B;
beta is a correction parameter, the closer the value is to 0, the higher the brightness of the corrected image is, and the value is set to 0.2;
4) carrying out image brightness enhancement processing on the gray level image of the hydraulic oil pipeline after color correction by using an underwater image brightness enhancement algorithm based on image gradient, wherein the formula of the image brightness enhancement is as follows:
wherein:
[Tmin,Tmax]representing a range of image brightness enhancement;
s (x, y) represents a luminance value of the image pixel (x, y);
e (x, y) represents the luminance value of the enhanced image pixel (x, y);
i represents a gradient direction;
qirepresenting the target gradient in different gradient directions;
wi(x, y) represents the influence weight of the gradient residual in different gradient directions, a represents the sensitivity of the gradient residual, and its value range is [ -0.8,2]In one embodiment of the invention, the value is 0.6;
g (x, y) is a luminance constraint function, limiting the enhanced luminance within the target range.
Optionally, the segmenting the enhanced image by using the image segmentation network includes:
the image segmentation network is MASK R-CNN, the neural network adopts an FPN pyramid structure, and Resnet-101 is used as a convolution network to output sub-images with different sizes;
the objective function of the image segmentation network is as follows:
wherein:
t' is the predicted image segmentation boundary;
t is a binarization result of the image segmentation boundary;
m is an input image;
r is a segmentation image;
d (t) represents the distance transformation of the segmentation frame, i.e. the distance map between different segmentation images;
and inputting the enhanced image into an image segmentation network, and performing image segmentation according to the segmentation boundary t' obtained by prediction to obtain a plurality of sub-images.
Optionally, the performing, by using a feature parameter extraction algorithm based on a gray level co-occurrence matrix, feature parameter extraction processing on the sub-image includes:
1) for a sub-image f (x, y) of size M × N, there are k gray levels, where the distance between any two pixels i and pixel j isAnd the included angle formed by the two pixel connecting lines and the same coordinate axis is theta, the gray level co-occurrence matrix value of the image pixel i and the image pixel j is Pij(d, θ), the gray level co-occurrence matrix of the sub-images is:
2) extracting angular second moment features in the gray level co-occurrence matrix:
the angle second moment feature represents the square sum of each element in the arrangement combination of texture elements in the co-occurrence matrix; when the ASM value is large, the texture presented by the image is rough and the energy is large; on the contrary, the image has fine texture and small energy;
3) extracting entropy characteristics in the gray level co-occurrence matrix:
the entropy characteristics are used for expressing the information quantity expressed by the two-dimensional gray level image and representing the complexity of the vein texture in the image; when Ent approaches 0, it represents that there is almost no texture information in the grayscale image; if Ent is larger, the presented image context tends to be more complex;
4) extracting contrast characteristics in the gray level co-occurrence matrix:
the contrast characteristic represents the definition of texture venation of the gray level image and the depth degree of the groove; when the contrast is high, the image is clearer, and the grooves are deeper; otherwise, the image is fuzzy;
5) extracting clustering shadow features in the gray level co-occurrence matrix:
and for each sub-image, taking the features extracted from the gray level co-occurrence matrix as the features of the sub-image.
Optionally, the identifying the position of the weld defect point on the surface of the hydraulic oil pipeline by using the convolutional neural network includes:
taking the image characteristics of the sub-images as the input of a convolutional neural network; the convolutional neural network model consists of an input layer, a convolutional layer, a pooling layer, a full-link layer and an activation function layer; the convolutional layer is used for feature extraction, and the formula is as follows:
wherein:
f () represents an activation function, which in one embodiment of the present invention is a ReLU activation function;
m represents a set of input sub-images;
representing a convolution kernel between the ith feature map of the nth layer and the jth feature map connection of the n-1 layer;
"+" represents the convolution operation;
the pooling layer performs feature compression on the input feature graph, so that the network complexity is simplified; and the full connection layer maps the acquired features to the original sample mark space and sends the output value to the classifier.
In the transmission process, input information is processed layer by layer from an input layer through a hidden unit layer and is transmitted to an output layer, and the output of each layer of neurons only influences the input of the next layer of neurons; if the output layer can not obtain the expected output, the reverse propagation is carried out, and the weight and the threshold of the network are learned and corrected through an error reverse propagation algorithm;
and when the mean square error of the network is smaller than a given value, entering NMS algorithm operation, and determining the position of the defect point, namely finishing the surface defect identification of the hydraulic oil pipeline.
In addition, in order to achieve the above object, the present invention also provides an underwater robot hydraulic oil pipeline surface weld defect recognition apparatus, including:
the image acquisition device is used for acquiring an image of the hydraulic oil pipeline;
the data processor is used for preprocessing the image graying and the gray stretching of the hydraulic oil pipeline image and carrying out image enhancement processing on the hydraulic oil pipeline gray image by utilizing an image enhancement strategy; segmenting the enhanced image by using an image segmentation network to obtain a plurality of sub-images;
the defect identification device is used for extracting the characteristic parameters of the sub-images by utilizing a characteristic parameter extraction algorithm based on the gray level co-occurrence matrix to obtain the image characteristics of the sub-images; and (3) taking the image characteristics of the sub-images as the input of a convolutional neural network, and identifying the position of the weld defect point on the surface of the hydraulic oil pipeline by using the convolutional neural network.
In addition, to achieve the above object, the present invention also provides a computer readable storage medium having stored thereon defect identification program instructions, which are executable by one or more processors to implement the steps of the method for implementing surface weld defect identification of a hydraulic oil pipeline of an underwater robot as described above.
Compared with the prior art, the invention provides a method for identifying the weld defects on the surface of the hydraulic oil pipeline of the underwater robot, which has the following advantages:
firstly, the invention provides an image enhancement strategy, aiming at the problem that the red tone of an underwater image is weakened and the blue-green tone is the main tone, therefore, the invention adopts a self-adaptive underwater image color correction algorithm to carry out color correction on the gray level image of a hydraulic oil pipeline, and the formula of the self-adaptive underwater image color correction is as follows:
wherein: i (R, G and B) represents the sum of the gray images of the hydraulic oil pipeline in three color channels of R, G and B; mu represents the minkowski distance mean of the image color channel, since the distance between the red channel and the other color channels is large, so for underwater images mu > 1,alpha represents the maximum value of the gray level image of the hydraulic oil pipeline in three color channels of R, G and B; beta is a correction parameter, the closer the value is to 0, the higher the brightness of the corrected image is, the set value is 0.2, and compared with the traditional algorithm, the algorithm disclosed by the invention has the advantages that the images are in three R, G and BThe sum of the color channels is used for color correction, the color values of other color channels are reduced under the condition that the distance between the red color channel and other color channels is large, and the correction parameters are used for carrying out integral color brightness enhancement on the image. Meanwhile, the invention utilizes an underwater image brightness enhancement algorithm based on image gradient to carry out image brightness enhancement processing on the gray level image of the hydraulic oil pipeline after color correction, and the formula of the image brightness enhancement is as follows:
wherein: [ T ]min,Tmax]Representing a range of image brightness enhancement; s (x, y) represents a luminance value of the image pixel (x, y); e (x, y) represents the luminance value of the enhanced image pixel (x, y); i represents a gradient direction;representing the partial derivatives in different gradient directions; q. q.siRepresenting the target gradient in different gradient directions; w is ai(x, y) represents the influence weight of the gradient residual in different gradient directions, a represents the sensitivity of the gradient residual, and its value range is [ -0.8,2]To (c) to (d); g (x, y) is a luminance constraint function, limiting the enhanced luminance within the target range.
Meanwhile, the invention utilizes a characteristic parameter extraction algorithm based on a gray level co-occurrence matrix to extract the characteristic parameters of the sub-images, and as for the sub-images f (x, y), the size of the sub-images is MxN, k gray levels exist, wherein the distance between any two pixels i and pixel j isAnd the included angle formed by the two pixel connecting lines and the same coordinate axis is theta, the gray level co-occurrence matrix value of the image pixel i and the image pixel j is Pij(d, θ), the gray level co-occurrence matrix of the sub-images is:
extracting angular second moment features in the gray level co-occurrence matrix:
the angle second moment feature represents the square sum of each element in the arrangement combination of texture elements in the co-occurrence matrix; when the ASM value is large, the texture presented by the image is rough and the energy is large; on the contrary, the image has fine texture and small energy; extracting entropy characteristics in the gray level co-occurrence matrix:
the entropy characteristics are used for expressing the information quantity expressed by the two-dimensional gray level image and representing the complexity of the vein texture in the image; when Ent approaches 0, it represents that there is almost no texture information in the grayscale image; if Ent is larger, the presented image context tends to be more complex; extracting contrast characteristics in the gray level co-occurrence matrix:
the contrast characteristic represents the definition of texture venation of the gray level image and the depth degree of the groove; when the contrast is high, the image is clearer, and the grooves are deeper; otherwise, the image is fuzzy; extracting clustering shadow features in the gray level co-occurrence matrix:
for each sub-image, taking the features extracted from the gray level co-occurrence matrix as the features of the sub-image; and according to the extracted characteristics representing the uniformity of the gray level distribution of the image and the thickness degree of the texture, utilizing a convolutional neural network to identify the defects of the weld joint on the surface of the hydraulic oil pipeline.
Drawings
Fig. 1 is a schematic flow chart of a method for identifying a weld defect on a surface of a hydraulic oil pipeline of an underwater robot according to an embodiment of the present invention;
fig. 2 is a schematic structural diagram of a device for identifying a weld defect on a surface of a hydraulic oil pipeline of an underwater robot according to an embodiment of the present invention;
fig. 3 is a schematic device diagram of a device for identifying weld defects on the surface of a hydraulic oil pipeline of an underwater robot according to an embodiment of the present invention;
the implementation, functional features and advantages of the objects of the present invention will be further explained with reference to the accompanying drawings.
Detailed Description
It should be understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
Carrying out image enhancement processing on the acquired hydraulic oil pipeline image by using an image enhancement strategy, and segmenting the enhanced image by using an image segmentation network to obtain a plurality of sub-images; and performing characteristic parameter extraction processing on the sub-images by using a characteristic parameter extraction algorithm based on the gray level co-occurrence matrix, processing the extracted characteristic parameters by using a convolutional neural network, and identifying and confirming the positions of the defect points. Referring to fig. 1, a schematic diagram of a method for identifying a weld defect on a surface of a hydraulic oil pipeline of an underwater robot according to an embodiment of the present invention is shown.
In this embodiment, the method for identifying the weld defects on the surface of the hydraulic oil pipeline of the underwater robot comprises the following steps:
and S1, acquiring the hydraulic oil pipeline image, and performing image graying and grayscale stretching pretreatment on the hydraulic oil pipeline image to obtain a hydraulic oil pipeline grayscale image.
Firstly, the invention uses a visual detection device of an underwater robot to obtain a hydraulic oil pipeline image, and carries out preprocessing of image graying and gray level stretching on the hydraulic oil pipeline image, wherein the flow of the image graying and gray level stretching is as follows:
solving the maximum value of three components of each pixel in the hydraulic oil pipeline image, setting the maximum value as the gray value of the pixel point, and obtaining the gray map of the hydraulic oil pipeline image, wherein the formula of the graying treatment is as follows:
G(i,j)=max{R(i,j),G(i,j),B(i,j)}
wherein:
(i, j) is a pixel point in the hydraulic oil pipeline image;
r (i, j), G (i, j) and B (i, j) are respectively the values of the pixel point (i, j) in R, G, B three color channels;
g (i, j) is the gray value of the pixel point (i, j);
for the gray level image of the hydraulic oil pipeline, stretching the gray level of the image in a piecewise linear transformation mode, wherein the formula of the gray level stretching is as follows:
wherein:
f (x, y) is a gray scale map;
MAXf(x,y),MINf(x,y)respectively the maximum and minimum grey values of the grey map.
And S2, performing image enhancement processing on the hydraulic oil pipeline gray level image by using an image enhancement strategy.
Further, the invention utilizes an image enhancement strategy to carry out image enhancement processing on the gray level image of the hydraulic oil pipeline, and the image enhancement strategy flow comprises the following steps:
1) constructing a Gaussian filter kernel function matrix, and performing convolution operation on the Gaussian filter kernel function matrix and the hydraulic oil pipeline gray level image to obtain the hydraulic oil pipeline gray level image after Gaussian filtering; in one embodiment of the present invention, the constructed gaussian filter kernel function matrix is:
2) the histogram equalization processing is carried out on the gray level image of the hydraulic oil pipeline, and the method comprises the following steps:
counting the number of pixels corresponding to each gray level of the gray level image of the hydraulic oil pipeline to obtain a histogram of the image:
wherein:
k is 0,1, …, L-1, representing the gray level of the image;
nkrepresents the number of pixels whose gray level is k;
n represents the total number of pixels of the hydraulic oil pipeline gray level image;
calculating a cumulative histogram of the gray level image of the hydraulic oil pipeline:
mapping the cumulative histogram to a gray scale range L0,Lk]:
S=L0+(Lk-L0)c(k)
Counting the number of pixels of each gray level in S after mapping transformation to obtain a new image histogram;
3) carrying out color correction on the gray level image of the hydraulic oil pipeline with the histogram equalization by adopting a self-adaptive underwater image color correction algorithm, wherein the formula of the self-adaptive underwater image color correction is as follows:
wherein:
i (R, G and B) represents the sum of the gray images of the hydraulic oil pipeline in three color channels of R, G and B;
μ represents the minkowski distance mean of the image color channel;
alpha represents the maximum value of the gray level image of the hydraulic oil pipeline in three color channels of R, G and B;
beta is a correction parameter, the closer the value is to 0, the higher the brightness of the corrected image is, and the value is set to 0.2;
4) carrying out image brightness enhancement processing on the gray level image of the hydraulic oil pipeline after color correction by using an underwater image brightness enhancement algorithm based on image gradient, wherein the formula of the image brightness enhancement is as follows:
wherein:
[Tmin,Tmax]representing a range of image brightness enhancement;
s (x, y) represents a luminance value of the image pixel (x, y);
e (x, y) represents the luminance value of the enhanced image pixel (x, y);
i represents a gradient direction;
qirepresenting the target gradient in different gradient directions;
wi(x, y) represents the influence weight of the gradient residual in different gradient directions, a represents the sensitivity of the gradient residual, and its value range is [ -0.8,2]In one embodiment of the invention, the value is 0.6;
g (x, y) is a luminance constraint function, limiting the enhanced luminance within the target range.
And S3, segmenting the enhanced image by using an image segmentation network to obtain a plurality of sub-images.
Further, the enhanced image is input into an image segmentation network, the enhanced image is segmented by the image segmentation network, the image segmentation network is MASK R-CNN, the neural network adopts an FPN pyramid structure, Resnet-101 is used as a convolution network, and sub-images with different sizes are output;
the objective function of the image segmentation network is as follows:
wherein:
t' is the predicted image segmentation boundary;
t is a binarization result of the image segmentation boundary;
m is an input image;
r is a segmentation image;
d (t) represents the distance transformation of the segmentation frame, i.e. the distance map between different segmentation images;
and inputting the enhanced image into an image segmentation network, and performing image segmentation according to the segmentation boundary t' obtained by prediction to obtain a plurality of sub-images.
And S4, performing characteristic parameter extraction processing on the sub-images by utilizing a characteristic parameter extraction algorithm based on the gray level co-occurrence matrix to obtain the image characteristics of the sub-images.
Further, the invention utilizes a characteristic parameter extraction algorithm based on a gray level co-occurrence matrix to extract and process the characteristic parameters of the sub-images, and the characteristic parameter extraction process comprises the following steps:
1) for a sub-image f (x, y) of size M × N, there are k gray levels, where the distance between any two pixels i and pixel j isAnd the included angle formed by the two pixel connecting lines and the same coordinate axis is theta, the gray level co-occurrence matrix value of the image pixel i and the image pixel j is Pij(d, θ), the gray level co-occurrence matrix of the sub-images is:
2) extracting angular second moment features in the gray level co-occurrence matrix:
the angle second moment feature represents the square sum of each element in the arrangement combination of texture elements in the co-occurrence matrix; when the ASM value is large, the texture presented by the image is rough and the energy is large; on the contrary, the image has fine texture and small energy;
3) extracting entropy characteristics in the gray level co-occurrence matrix:
the entropy characteristics are used for expressing the information quantity expressed by the two-dimensional gray level image and representing the complexity of the vein texture in the image; when Ent approaches 0, it represents that there is almost no texture information in the grayscale image; if Ent is larger, the presented image context tends to be more complex;
4) extracting contrast characteristics in the gray level co-occurrence matrix:
the contrast characteristic represents the definition of texture venation of the gray level image and the depth degree of the groove; when the contrast is high, the image is clearer, and the grooves are deeper; otherwise, the image is fuzzy;
5) extracting clustering shadow features in the gray level co-occurrence matrix:
and for each sub-image, taking the features extracted from the gray level co-occurrence matrix as the features of the sub-image.
And S5, taking the image characteristics of the sub-images as the input of a convolutional neural network, and identifying the position of the weld defect point on the surface of the hydraulic oil pipeline by using the convolutional neural network.
Further, the invention takes the image characteristics of the sub-images as the input of the convolutional neural network; the convolutional neural network model consists of an input layer, a convolutional layer, a pooling layer, a full-link layer and an activation function layer; the convolutional layer is used for feature extraction, and the formula is as follows:
wherein:
f () represents an activation function, which in one embodiment of the present invention is a ReLU activation function;
m represents a set of input sub-images;
representing a convolution kernel between the ith feature map of the nth layer and the jth feature map connection of the n-1 layer;
"+" represents the convolution operation;
the pooling layer performs feature compression on the input feature graph, so that the network complexity is simplified; and the full connection layer maps the acquired features to the original sample mark space and sends the output value to the classifier.
In the transmission process, input information is processed layer by layer from an input layer through a hidden unit layer and is transmitted to an output layer, and the output of each layer of neurons only influences the input of the next layer of neurons; if the output layer can not obtain the expected output, the reverse propagation is carried out, and the weight and the threshold of the network are learned and corrected through an error reverse propagation algorithm;
and when the mean square error of the network is smaller than a given value, entering NMS algorithm operation, and determining the position of the defect point, namely finishing the surface defect identification of the hydraulic oil pipeline.
The following describes embodiments of the present invention through an algorithmic experiment and tests of the inventive treatment method. The hardware test environment of the algorithm of the invention is as follows: inter (R) core (TM) i7-6700K CPU with software Matlab2018 b; the comparison method is a hydraulic oil pipeline surface weld defect identification method based on LSTM and a hydraulic oil pipeline surface weld defect identification method based on random forest.
In the algorithm experiment, the data set is 10G of hydraulic oil pipeline images. In the experiment, the image data of the hydraulic oil pipeline is input into the algorithm model, and the accuracy of defect identification is used as an evaluation index of algorithm feasibility, wherein the higher the accuracy of defect identification is, the higher the effectiveness and the feasibility of the algorithm are.
According to experimental results, the defect identification accuracy of the LSTM-based hydraulic oil pipeline surface weld defect identification method is 81.31%, the defect identification accuracy of the random forest-based hydraulic oil pipeline surface weld defect identification method is 83.22%, the defect identification accuracy of the method is 86.95%, and compared with a comparison algorithm, the method for identifying the underwater robot hydraulic oil pipeline surface weld defect can achieve higher defect identification accuracy.
The invention further provides a device for identifying the weld defects on the surface of the hydraulic oil pipeline of the underwater robot. Referring to fig. 2, a schematic diagram of an internal structure of a device for identifying a weld defect on a surface of a hydraulic oil pipeline of an underwater robot according to an embodiment of the present invention is shown; referring to fig. 3, a schematic device diagram of a device for identifying a weld defect on a surface of a hydraulic oil pipeline of an underwater robot according to an embodiment of the present invention is shown;
in the embodiment, the underwater robot hydraulic oil pipeline surface weld defect identification device 1 at least comprises an image acquisition device 11, a data processor 12, a defect identification device 13, a communication bus 14 and a network interface 15.
The image acquiring device 11 includes a mobile light source, an industrial endoscope, an industrial camera, and the like.
The data processor 12 includes at least one type of readable storage medium including flash memory, hard disks, multi-media cards, card-type memory (e.g., SD or DX memory, etc.), magnetic memory, magnetic disks, optical disks, and the like. The data processor 12 may in some embodiments be an internal memory unit of the underwater robotic hydraulic oil pipeline surface weld defect identification apparatus 1, for example a hard disk of the underwater robotic hydraulic oil pipeline surface weld defect identification apparatus 1. The data processor 12 may also be an external storage device of the underwater robot hydraulic oil pipeline surface weld defect identification apparatus 1 in other embodiments, for example, a plug-in hard disk, a Smart Media Card (SMC), a Secure Digital (SD) Card, a Flash memory Card (Flash Card), or the like provided on the underwater robot hydraulic oil pipeline surface weld defect identification apparatus 1. Further, the data processor 12 may also include both an internal storage unit and an external storage device of the underwater robot hydraulic oil pipeline surface weld defect recognition apparatus 1. The data processor 12 can be used for storing not only application software and various data installed on the surface weld defect recognition device 1 of the hydraulic oil pipeline of the underwater robot, but also temporarily storing data which is output or is to be output.
The communication bus 14 is used to enable connection communication between these components.
The network interface 15 may optionally comprise a standard wired interface, a wireless interface (e.g. WI-FI interface), typically used for establishing a communication connection between the apparatus 1 and other electronic devices.
Optionally, the underwater robot hydraulic oil pipeline surface weld defect identification apparatus 1 may further include a user interface, the user interface may include a Display (Display), an input unit such as a Keyboard (Keyboard), and the optional user interface may further include a standard wired interface and a wireless interface. Alternatively, in some embodiments, the display may be an LED display, a liquid crystal display, a touch-sensitive liquid crystal display, an OLED (Organic Light-Emitting Diode) touch device, or the like. Wherein the display, which may also be appropriately referred to as a display screen or a display unit, is used for displaying information processed in the underwater robot hydraulic oil pipeline surface weld defect recognition device 1 and for displaying a visual user interface.
Fig. 2 only shows the underwater robot hydraulic oil pipeline surface weld defect recognition device 1 with the components 11-15, and it can be understood by those skilled in the art that the structure shown in fig. 1 does not constitute a definition of the underwater robot hydraulic oil pipeline surface weld defect recognition device 1, and may include fewer or more components than those shown, or some components in combination, or a different arrangement of components.
In the embodiment of the device 1 for identifying weld defects on the surface of the hydraulic oil pipeline of the underwater robot, shown in fig. 2, the data processor 12 stores therein defect identification program instructions 16; the defect recognition device 13 executes the steps of the defect recognition program instructions 16 stored in the data processor 12, and the implementation method of the method for recognizing the weld defects on the surface of the hydraulic oil pipeline of the underwater robot is the same as the method for recognizing the weld defects on the surface of the hydraulic oil pipeline of the underwater robot, and the method is not described herein.
Furthermore, an embodiment of the present invention also provides a computer-readable storage medium having stored thereon defect identification program instructions executable by one or more processors to implement the following operations:
acquiring a hydraulic oil pipeline image, and performing image graying and grayscale stretching pretreatment on the hydraulic oil pipeline image to obtain a hydraulic oil pipeline grayscale image;
carrying out image enhancement processing on the gray level image of the hydraulic oil pipeline by using an image enhancement strategy;
segmenting the enhanced image by using an image segmentation network to obtain a plurality of sub-images;
performing characteristic parameter extraction processing on the subimages by utilizing a characteristic parameter extraction algorithm based on the gray level co-occurrence matrix to obtain the image characteristics of the subimages;
and (3) taking the image characteristics of the sub-images as the input of a convolutional neural network, and identifying the position of the weld defect point on the surface of the hydraulic oil pipeline by using the convolutional neural network.
It should be noted that the above-mentioned numbers of the embodiments of the present invention are merely for description, and do not represent the merits of the embodiments. And the terms "comprises," "comprising," or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, apparatus, article, or method that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, apparatus, article, or method. Without further limitation, an element defined by the phrase "comprising an … …" does not exclude the presence of other like elements in a process, apparatus, article, or method that includes the element.
Through the above description of the embodiments, those skilled in the art will clearly understand that the method of the above embodiments can be implemented by software plus a necessary general hardware platform, and certainly can also be implemented by hardware, but in many cases, the former is a better implementation manner. Based on such understanding, the technical solution of the present invention may be embodied in the form of a software product, which is stored in a storage medium (e.g., ROM/RAM, magnetic disk, optical disk) as described above and includes instructions for enabling a terminal device (e.g., a mobile phone, a computer, a server, or a network device) to execute the method according to the embodiments of the present invention.
The above description is only a preferred embodiment of the present invention, and not intended to limit the scope of the present invention, and all modifications of equivalent structures and equivalent processes, which are made by using the contents of the present specification and the accompanying drawings, or directly or indirectly applied to other related technical fields, are included in the scope of the present invention.
Claims (8)
1. A method for identifying weld defects on the surface of a hydraulic oil pipeline of an underwater robot is characterized by comprising the following steps:
acquiring a hydraulic oil pipeline image, and performing image graying and grayscale stretching pretreatment on the hydraulic oil pipeline image to obtain a hydraulic oil pipeline grayscale image;
carrying out image enhancement processing on the gray level image of the hydraulic oil pipeline by using an image enhancement strategy;
segmenting the enhanced image by using an image segmentation network to obtain a plurality of sub-images;
performing characteristic parameter extraction processing on the subimages by utilizing a characteristic parameter extraction algorithm based on the gray level co-occurrence matrix to obtain the image characteristics of the subimages;
and (3) taking the image characteristics of the sub-images as the input of a convolutional neural network, and identifying the position of the weld defect point on the surface of the hydraulic oil pipeline by using the convolutional neural network.
2. The method for identifying the weld defects on the surface of the hydraulic oil pipeline of the underwater robot as claimed in claim 1, wherein the preprocessing of image graying and grayscale stretching on the hydraulic oil pipeline image comprises the following steps:
solving the maximum value of three components of each pixel in the hydraulic oil pipeline image, setting the maximum value as the gray value of the pixel point, and obtaining the gray map of the hydraulic oil pipeline image, wherein the formula of the graying treatment is as follows:
G(i,j)=max{R(i,j),G(i,j),B(i,j)}
wherein:
(i, j) is a pixel point in the hydraulic oil pipeline image;
r (i, j), G (i, j) and B (i, j) are respectively the values of the pixel point (i, j) in R, G, B three color channels;
g (i, j) is the gray value of the pixel point (i, j);
for the gray level image of the hydraulic oil pipeline, stretching the gray level of the image in a piecewise linear transformation mode, wherein the formula of the gray level stretching is as follows:
wherein:
f (x, y) is a gray scale map;
MAXf(x,y),MINf(x,y)respectively the maximum and minimum grey values of the grey map.
3. The method for identifying the weld defects on the surface of the hydraulic oil pipeline of the underwater robot as claimed in claim 2, wherein the image enhancement strategy flow comprises the following steps:
1) constructing a Gaussian filter kernel function matrix, and performing convolution operation on the Gaussian filter kernel function matrix and the hydraulic oil pipeline gray level image to obtain the hydraulic oil pipeline gray level image after Gaussian filtering;
2) the histogram equalization processing is carried out on the gray level image of the hydraulic oil pipeline, and the method comprises the following steps:
counting the number of pixels corresponding to each gray level of the gray level image of the hydraulic oil pipeline to obtain a histogram of the image:
wherein:
k is 0,1, …, L-1, representing the gray level of the image;
nkrepresents the number of pixels whose gray level is k;
n represents the total number of pixels of the hydraulic oil pipeline gray level image;
calculating a cumulative histogram of the gray level image of the hydraulic oil pipeline:
mapping the cumulative histogram to a gray scale range L0,Lk]:
S=L0+(Lk-L0)c(k)
Counting the number of pixels of each gray level in S after mapping transformation to obtain a new image histogram;
3) carrying out color correction on the gray level image of the hydraulic oil pipeline with the histogram equalization by adopting a self-adaptive underwater image color correction algorithm, wherein the formula of the self-adaptive underwater image color correction is as follows:
wherein:
i (R, G and B) represents the sum of the gray images of the hydraulic oil pipeline in three color channels of R, G and B;
μ represents the minkowski distance mean of the image color channel;
alpha represents the maximum value of the gray level image of the hydraulic oil pipeline in three color channels of R, G and B;
beta is a correction parameter, which is set to 0.2;
4) carrying out image brightness enhancement processing on the gray level image of the hydraulic oil pipeline after color correction by using an underwater image brightness enhancement algorithm based on image gradient, wherein the formula of the image brightness enhancement is as follows:
wherein:
[Tmin,Tmax]representing a range of image brightness enhancement;
s (x, y) represents a luminance value of the image pixel (x, y);
e (x, y) represents the luminance value of the enhanced image pixel (x, y);
i represents a gradient direction;
qirepresenting the target gradient in different gradient directions;
wi(x, y) represents the influence weight of the gradient residual in different gradient directions, a represents the sensitivity of the gradient residual, and its value range is [ -0.8,2]To (c) to (d);
g (x, y) is a luminance constraint function, limiting the enhanced luminance within the target range.
4. The method for identifying the weld defects on the surface of the hydraulic oil pipeline of the underwater robot as claimed in claim 3, wherein the segmenting the enhanced image by using the image segmentation network comprises the following steps:
the objective function of the image segmentation network is as follows:
wherein:
t' is the predicted image segmentation boundary;
t is a binarization result of the image segmentation boundary;
m is an input image;
r is a segmentation image;
d (t) represents the distance transformation of the segmentation frame, i.e. the distance map between different segmentation images;
and inputting the enhanced image into an image segmentation network, and performing image segmentation according to the segmentation boundary t' obtained by prediction to obtain a plurality of sub-images.
5. The method for identifying the weld defects on the surface of the hydraulic oil pipeline of the underwater robot as claimed in claim 4, wherein the performing the feature parameter extraction processing on the sub-images by using the feature parameter extraction algorithm based on the gray level co-occurrence matrix comprises the following steps:
1) for a sub-image f (x, y) of size M N, there are kGray scale in which the distance between any two pixels i and pixel j isAnd the included angle formed by the two pixel connecting lines and the same coordinate axis is theta, the gray level co-occurrence matrix value of the image pixel i and the image pixel j is Pij(d, θ), the gray level co-occurrence matrix of the sub-images is:
2) extracting angular second moment features in the gray level co-occurrence matrix:
3) extracting entropy characteristics in the gray level co-occurrence matrix:
4) extracting contrast characteristics in the gray level co-occurrence matrix:
5) extracting clustering shadow features in the gray level co-occurrence matrix:
and for each sub-image, taking the features extracted from the gray level co-occurrence matrix as the features of the sub-image.
6. The method for identifying the weld defect on the surface of the hydraulic oil pipeline of the underwater robot as claimed in claim 5, wherein the identifying the position of the weld defect point on the surface of the hydraulic oil pipeline by using the convolutional neural network comprises the following steps:
taking the image characteristics of the sub-images as the input of a convolutional neural network; the convolutional layer in the convolutional neural network is used for feature extraction, and the formula is as follows:
wherein:
f () represents an activation function;
m represents a set of input sub-images;
representing a convolution kernel between the ith feature map of the nth layer and the jth feature map connection of the n-1 layer;
the pooling layer performs feature compression on the input feature graph, so that the network complexity is simplified; and the full connection layer maps the acquired features to the original sample mark space and sends the output value to the classifier.
In the transmission process, input information is processed layer by layer from an input layer through a hidden unit layer and is transmitted to an output layer, and the output of each layer of neurons only influences the input of the next layer of neurons; if the output layer can not obtain the expected output, the reverse propagation is carried out, and the weight and the threshold of the network are learned and corrected through an error reverse propagation algorithm;
and when the mean square error of the network is smaller than a given value, entering NMS algorithm operation, and determining the position of the defect point, namely finishing the surface defect identification of the hydraulic oil pipeline.
7. An underwater robot hydraulic oil pipeline surface weld defect recognition device, characterized in that the device includes:
the image acquisition device is used for acquiring an image of the hydraulic oil pipeline;
the data processor is used for preprocessing the image graying and the gray stretching of the hydraulic oil pipeline image and carrying out image enhancement processing on the hydraulic oil pipeline gray image by utilizing an image enhancement strategy; segmenting the enhanced image by using an image segmentation network to obtain a plurality of sub-images;
the defect identification device is used for extracting the characteristic parameters of the sub-images by utilizing a characteristic parameter extraction algorithm based on the gray level co-occurrence matrix to obtain the image characteristics of the sub-images; and (3) taking the image characteristics of the sub-images as the input of a convolutional neural network, and identifying the position of the weld defect point on the surface of the hydraulic oil pipeline by using the convolutional neural network.
8. A computer readable storage medium having stored thereon defect identification program instructions executable by one or more processors to implement the steps of a method of implementing weld defect identification on a surface of a hydraulic oil pipeline of an underwater robot as described above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110697224.2A CN113436162B (en) | 2021-06-23 | 2021-06-23 | Method and device for identifying weld defects on surface of hydraulic oil pipeline of underwater robot |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110697224.2A CN113436162B (en) | 2021-06-23 | 2021-06-23 | Method and device for identifying weld defects on surface of hydraulic oil pipeline of underwater robot |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113436162A true CN113436162A (en) | 2021-09-24 |
CN113436162B CN113436162B (en) | 2022-12-09 |
Family
ID=77753498
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110697224.2A Active CN113436162B (en) | 2021-06-23 | 2021-06-23 | Method and device for identifying weld defects on surface of hydraulic oil pipeline of underwater robot |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113436162B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113763294A (en) * | 2021-09-26 | 2021-12-07 | 上海航天精密机械研究所 | Weld image rapid preprocessing method and system based on dynamic CLAHE |
CN114399432A (en) * | 2021-12-13 | 2022-04-26 | 广西北投信创科技投资集团有限公司 | Target identification method, device, equipment, medium and product |
CN115598131A (en) * | 2022-09-21 | 2023-01-13 | 江苏华电昆山热电有限公司(Cn) | Positioning method suitable for inner welding seam of pipeline |
CN117576105A (en) * | 2024-01-17 | 2024-02-20 | 高科建材(咸阳)管道科技有限公司 | Pipeline production control method and system based on artificial intelligence |
CN117710365A (en) * | 2024-02-02 | 2024-03-15 | 中国电建集团华东勘测设计研究院有限公司 | Processing method and device for defective pipeline image and electronic equipment |
CN117830300A (en) * | 2024-03-04 | 2024-04-05 | 新奥新能源工程技术有限公司 | Visual-based gas pipeline appearance quality detection method |
CN118279314A (en) * | 2024-06-04 | 2024-07-02 | 河南安盛技术管理有限公司 | Water quality abnormality detection method |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130112673A1 (en) * | 2011-11-07 | 2013-05-09 | Lincoln Global, Inc. | Use of mobile communications devices as user interface for welding equipment and systems |
CN104408724A (en) * | 2014-11-27 | 2015-03-11 | 中南大学 | Depth information method and system for monitoring liquid level and recognizing working condition of foam flotation |
CN104985290A (en) * | 2015-08-04 | 2015-10-21 | 梁彦云 | Neural-network-identification-based underwater weld joint tracking method |
CN105938563A (en) * | 2016-04-14 | 2016-09-14 | 北京工业大学 | Weld surface defect identification method based on image texture |
US10282914B1 (en) * | 2015-07-17 | 2019-05-07 | Bao Tran | Systems and methods for computer assisted operation |
CN110349114A (en) * | 2019-05-24 | 2019-10-18 | 江西理工大学 | Applied to the image enchancing method of AOI equipment, device and road video monitoring equipment |
KR102125167B1 (en) * | 2019-01-21 | 2020-06-19 | 한양대학교 에리카산학협력단 | Automatic welding device, working method thereof |
CN111360780A (en) * | 2020-03-20 | 2020-07-03 | 北京工业大学 | Garbage picking robot based on visual semantic SLAM |
CN111932489A (en) * | 2020-06-03 | 2020-11-13 | 西安电子科技大学 | Weld defect detection method, system, storage medium, computer device and terminal |
CN112396564A (en) * | 2020-11-19 | 2021-02-23 | 汪金玲 | Product packaging quality detection method and system based on deep learning |
CN112734693A (en) * | 2020-12-18 | 2021-04-30 | 平安科技(深圳)有限公司 | Pipeline weld defect detection method and related device |
-
2021
- 2021-06-23 CN CN202110697224.2A patent/CN113436162B/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130112673A1 (en) * | 2011-11-07 | 2013-05-09 | Lincoln Global, Inc. | Use of mobile communications devices as user interface for welding equipment and systems |
CN104408724A (en) * | 2014-11-27 | 2015-03-11 | 中南大学 | Depth information method and system for monitoring liquid level and recognizing working condition of foam flotation |
US10282914B1 (en) * | 2015-07-17 | 2019-05-07 | Bao Tran | Systems and methods for computer assisted operation |
CN104985290A (en) * | 2015-08-04 | 2015-10-21 | 梁彦云 | Neural-network-identification-based underwater weld joint tracking method |
CN105938563A (en) * | 2016-04-14 | 2016-09-14 | 北京工业大学 | Weld surface defect identification method based on image texture |
KR102125167B1 (en) * | 2019-01-21 | 2020-06-19 | 한양대학교 에리카산학협력단 | Automatic welding device, working method thereof |
CN110349114A (en) * | 2019-05-24 | 2019-10-18 | 江西理工大学 | Applied to the image enchancing method of AOI equipment, device and road video monitoring equipment |
CN111360780A (en) * | 2020-03-20 | 2020-07-03 | 北京工业大学 | Garbage picking robot based on visual semantic SLAM |
CN111932489A (en) * | 2020-06-03 | 2020-11-13 | 西安电子科技大学 | Weld defect detection method, system, storage medium, computer device and terminal |
CN112396564A (en) * | 2020-11-19 | 2021-02-23 | 汪金玲 | Product packaging quality detection method and system based on deep learning |
CN112734693A (en) * | 2020-12-18 | 2021-04-30 | 平安科技(深圳)有限公司 | Pipeline weld defect detection method and related device |
Non-Patent Citations (2)
Title |
---|
ZIMU XIAO ET AL.: "Development of a CNN edge detection model of noised X-ray images for enhanced performance of non-destructive testing", 《MEASUREMENT》 * |
黄晔: "基于BP神经网络的焊缝缺陷建模及其识别算法研究", 《中国优秀硕士学位论文全文数据库信息科技辑》 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113763294A (en) * | 2021-09-26 | 2021-12-07 | 上海航天精密机械研究所 | Weld image rapid preprocessing method and system based on dynamic CLAHE |
CN113763294B (en) * | 2021-09-26 | 2023-08-08 | 上海航天精密机械研究所 | Quick preprocessing method and system for weld image based on dynamic CLAHE |
CN114399432A (en) * | 2021-12-13 | 2022-04-26 | 广西北投信创科技投资集团有限公司 | Target identification method, device, equipment, medium and product |
CN115598131A (en) * | 2022-09-21 | 2023-01-13 | 江苏华电昆山热电有限公司(Cn) | Positioning method suitable for inner welding seam of pipeline |
CN117576105A (en) * | 2024-01-17 | 2024-02-20 | 高科建材(咸阳)管道科技有限公司 | Pipeline production control method and system based on artificial intelligence |
CN117576105B (en) * | 2024-01-17 | 2024-03-29 | 高科建材(咸阳)管道科技有限公司 | Pipeline production control method and system based on artificial intelligence |
CN117710365A (en) * | 2024-02-02 | 2024-03-15 | 中国电建集团华东勘测设计研究院有限公司 | Processing method and device for defective pipeline image and electronic equipment |
CN117710365B (en) * | 2024-02-02 | 2024-05-03 | 中国电建集团华东勘测设计研究院有限公司 | Processing method and device for defective pipeline image and electronic equipment |
CN117830300A (en) * | 2024-03-04 | 2024-04-05 | 新奥新能源工程技术有限公司 | Visual-based gas pipeline appearance quality detection method |
CN117830300B (en) * | 2024-03-04 | 2024-05-14 | 新奥新能源工程技术有限公司 | Visual-based gas pipeline appearance quality detection method |
CN118279314A (en) * | 2024-06-04 | 2024-07-02 | 河南安盛技术管理有限公司 | Water quality abnormality detection method |
Also Published As
Publication number | Publication date |
---|---|
CN113436162B (en) | 2022-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113436162B (en) | Method and device for identifying weld defects on surface of hydraulic oil pipeline of underwater robot | |
CN110060237B (en) | Fault detection method, device, equipment and system | |
CN110414507B (en) | License plate recognition method and device, computer equipment and storage medium | |
CN106934795B (en) | A kind of automatic testing method and prediction technique of glue into concrete beam cracks | |
CN111257341B (en) | Underwater building crack detection method based on multi-scale features and stacked full convolution network | |
CN111680690B (en) | Character recognition method and device | |
CN110033040B (en) | Flame identification method, system, medium and equipment | |
TW201732651A (en) | Word segmentation method and apparatus | |
EP3176751A1 (en) | Information processing device, information processing method, computer-readable recording medium, and inspection system | |
CN109118473A (en) | Angular-point detection method, storage medium and image processing system neural network based | |
CN110852311A (en) | Three-dimensional human hand key point positioning method and device | |
CN112614136A (en) | Infrared small target real-time instance segmentation method and device | |
CN107563290A (en) | A kind of pedestrian detection method and device based on image | |
JP2010157118A (en) | Pattern identification device and learning method for the same and computer program | |
CN111951283A (en) | Medical image identification method and system based on deep learning | |
CN113435377A (en) | Medical palm vein image acquisition monitoring method and system | |
CN115439804A (en) | Monitoring method and device for high-speed rail maintenance | |
JP2006285956A (en) | Red eye detecting method and device, and program | |
CN116128849A (en) | Method, device, equipment and storage medium for detecting underwater cracks of concrete dam | |
CN117557565B (en) | Detection method and device for lithium battery pole piece | |
CN116934762B (en) | System and method for detecting surface defects of lithium battery pole piece | |
CN114998282B (en) | Image detection method, device, electronic equipment and storage medium | |
CN113554748B (en) | Medical instrument three-dimensional modeling method and device | |
CN110070490A (en) | Image split-joint method and device | |
CN115270841A (en) | Bar code detection method and device, storage medium and computer equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |