CN112973716A - 加氢精制催化剂及其制备方法 - Google Patents

加氢精制催化剂及其制备方法 Download PDF

Info

Publication number
CN112973716A
CN112973716A CN202011490412.XA CN202011490412A CN112973716A CN 112973716 A CN112973716 A CN 112973716A CN 202011490412 A CN202011490412 A CN 202011490412A CN 112973716 A CN112973716 A CN 112973716A
Authority
CN
China
Prior art keywords
hours
zirconium
catalyst
zirconia
roasting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011490412.XA
Other languages
English (en)
Other versions
CN112973716B (zh
Inventor
许本静
柴永明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi Tengmao Technology Co ltd
Original Assignee
Beijing Zhongneng Weiye Technology Development Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Zhongneng Weiye Technology Development Co ltd filed Critical Beijing Zhongneng Weiye Technology Development Co ltd
Publication of CN112973716A publication Critical patent/CN112973716A/zh
Application granted granted Critical
Publication of CN112973716B publication Critical patent/CN112973716B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8871Rare earth metals or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及加氢催化剂领域。公开了加氢精制催化剂及其制备方法。方法包括:(1)将含锆的化合物和水混合均匀,并调节所得浆液的pH值为5‑10,然后在室温‑90℃下搅拌0.5‑12小时,过滤烘干和焙烧,得到氧化锆;(2)将含助活性元素的化合物、氧化锆和水混合均匀,并调节所得混合物的pH值为5‑10,再在室温‑90℃下搅拌0.5‑12小时,过滤烘干和在550‑800℃焙烧2‑5小时,得到复合氧化锆载体;助活性元素选自RE、Mg、Ca中的至少一种;(3)将复合氧化锆载体在有机溶剂中浸渍活性金属并烘干;(4)在惰性气氛下将步骤(3)所得产物在300‑700℃进行焙烧0.5‑5小时,得到加氢精制催化剂。能够有效改善载体的物化性质,显著提高活性金属在催化剂表面的分散度。

Description

加氢精制催化剂及其制备方法
技术领域
本发明涉及加氢催化剂领域,具体地,涉及一种加氢精制催化剂的制备方法和制得的加氢催化剂。
背景技术
随着环保法规的日趋严格,新的柴油标准对柴油产品中硫质量分数、芳烃质量分数和十六烷值提出了更为严格的要求。催化裂化柴油产量约占柴油总产量的30%左右,由于其十六烷值低、硫、氮和胶质的质量分数高,油品颜色深、安定性差,无法直接作为柴油使用。加氢工艺是改善油品质量最有效的工艺手段之一,加氢催化剂是加氢工艺中最为重要和关键的技术。
加氢催化剂一般由具有加氢功能的金属或金属氧化物和载体组成,常用的金属组份是VIB族和VIII金属,例如钴、钼、镍、钨等,这类催化剂一般通过浸渍法使金属活性组份负载于载体上。常用的载体为氧化锆或含硅氧化锆。为了进一步提高催化剂的活性和稳定性,常常对载体进行改进,使之更适合于劣质柴油馏分的深度加氢精制。
CN1133723C公开了一种馏分油加氢精制催化剂及其制备方法,以含二氧化硅5-15wt%的氧化锆小球为载体,含MoO321-28wt%,NiO 2-8wt%,CoO 0.03-2.0wt%,采用两段喷浸。催化剂的比表面积为190-220m2/ml,孔容为0.35-0.55ml/g。所述的催化剂同时具有较高的加氢脱硫和加氢脱氮活性,适用于同时含硫氮较多的劣质馏分油加氢精制。
WO2007084438公开了一种选择性加氢脱硫催化剂,该催化剂含有8-30重量%的选自第VIB族的钼,2-8重量的选自第VIII族的钴,及适当量的有机物作为络合剂负载在硅载体上。使用该催化剂处理催化裂化汽油原料,烯烃饱和率低。
CN1123765.1公开了一种柴油加氢处理催化剂,该催化剂含有一种载体和负载在该载体上的锢和/或钨及镍和/或钴,其特征在于,所述载体由氧化锆和沸石组成,氧化锆与沸石的重量比为90:10-50:50,所述氧化锆是由小孔氧化锆和大孔氧化锆按照75:25-50:50的重量比复合而成的氧化锆,其中,小孔氧化锆为直径小于80埃孔的孔体积占总孔体积95%以上的氧化锆,大孔氧化锆为直径60-600埃孔的孔体积占总孔体积70%以上的氧化锆。
CN1049679C公开了一种柴油加氢转化催化剂,以氧化锆和Y型分子筛为载体,含有至少一种VIB族金属和至少一种VIll族金属,其特征在于催化剂载体组成为氧化锆40-90w%、无定形硅铝0-20w%,分子筛5-40w%,其中的Y型分子筛孔容0.40-0.52ml/g,比表面750-900m2/g,晶胞常数2.420-2.500nm,SiO2/A12O3比7-15,催化剂中VIB族金属氧化物含量为10-30w%,VIll族金属氧化物含量为2-15w%。它适合于150-400℃的石油馏分的加氢转化,特别适用于硫,氮,芳烃含量高,十六炕值较低的催化裂化轻循环油(LCO)的转化,其特点是在较缓和的条件下,降低硫、氮、芳烃含量,大幅度提高产品十六烷值。
CN1289828A公开了一种以γ-Al2O3或以含有SiO2的γ-Al2O3为载体的加氢精制催化剂,催化剂以W、Mo、Ni、P为活性组分。以SiO2改性的Al2O3为载体的加氢催化剂性能得到一定改进,但其载体酸量较低,强酸性中心较少,不利于氮杂环的开环断裂,脱氮活性不好。
发明内容
本发明的目的是为了克服现有的加氢催化剂载体酸量较低,且脱硫、脱氮的活性较低的缺陷,而提供一种加氢精制催化剂及其制备方法。该制备方法可以有效改善催化剂的理化性质,提高活性金属的分散度,适用于加氢脱金属、加氢脱硫及加氢转化等加氢工艺过程。
为了实现上述目的,本发明第一方面提供一种加氢精制催化剂的制备方法,包括以下步骤:
(1)将含锆的化合物和水混合均匀,并调节得到的浆液的pH值为5-10,然后在室温-90℃下搅拌0.5-12小时,过滤烘干和焙烧,得到氧化锆;
(2)将含助活性元素的化合物、所述氧化锆和水混合均匀,并调节得到的混合物的pH值为5-10,再在室温-90℃下搅拌0.5-12小时,过滤烘干,和在550-800℃焙烧2-5小时,得到复合氧化锆载体;其中,所述助活性元素选自RE、Mg、Ca中的一种或几种;
(3)将所述复合氧化锆载体在有机溶剂中浸渍活性金属;
(4)在惰性气氛下将步骤(3)得到的产物进行焙烧,焙烧温度为300-700℃,焙烧时间为0.5-5小时,得到加氢精制催化剂。
本发明第二方面提供了一种上述方法制备得到的加氢精制催化剂。
通过上述技术方案,采用含助活性元素的化合物对氧化锆载体进行改性处理,可以有效改善催化剂载体的孔径分布,使孔体积增加;采用有机溶剂浸渍的方法可以显著提高活性金属在催化剂表面的分散度。采用本发明方法制备的催化剂有较高的加氢活性,特别适用于加氢脱金属、加氢脱硫及加氢转化催化剂的制备。
本发明的其他特征和优点将在随后的具体实施方式部分予以详细说明。
具体实施方式
下面的实施例将对本发明作进一步说明,旨在帮助阅读者更好地理解本发明的实质所在和所带来的有益效果,但不应理解为对本发明的可实施范围的任何限定。
本发明第一方面提供一种加氢精制催化剂的制备方法,包括以下步骤:
(1)将含锆的化合物和水混合均匀,并调节得到的浆液的pH值为5-10,然后在室温-90℃下搅拌0.5-12小时,过滤烘干和焙烧,得到氧化锆;
(2)将含助活性元素的化合物、所述氧化锆和水混合均匀,并调节得到的混合物的pH值为5-10,再在室温-90℃下搅拌0.5-12小时,过滤烘干,和在550-800℃焙烧2-5小时,得到复合氧化锆载体;其中,所述助活性元素选自RE、Mg、Ca中的一种或几种;
(3)将所述复合氧化锆载体在有机溶剂中浸渍活性金属;
(4)在惰性气氛下将步骤(3)得到的产物进行焙烧,焙烧温度为300-700℃,焙烧时间为0.5-5小时,得到加氢精制催化剂。
在本发明提供的一些实施方式中,步骤(1)用于制备氧化锆载体。优选地,所述含锆的化合物可以选自四氯化锆、硫酸锆、硝酸锆、氧氯化锆、醋酸锆、异丙醇锆中的一种或多种,用以提供锆源。室温可以为20-35℃。调节浆液的pH值可以是加入沉淀剂,可以为碱性化合物,优选为氨水,避免引入杂质元素。所述浆液的pH值根据锆源的物质不同,调节最终控制在上述范围内,提供相应获得合适的氧化锆载体。优选pH值可以是5、6、7、8、9、10,以及上述数值中任意两个数值组成的范围。其中,干燥可以是在100-120℃下进行10-15小时。焙烧可以是在600-800℃下进行2-8小时。
在本发明提供的一些实施方式中,步骤(2)用于改性所述氧化锆。使用所述助活性元素对所述氧化锆进行改性,得到的复合氧化锆载体能够提供对于加氢反应更好的促进性,改善催化剂载体的性能。优选地,所述助活性元素选自RE、Mg、Ca的一种或几种。进一步地,所述助活性元素通过含助活性元素的化合物引入到氧化锆中,可以优选分布在氧化锆载体表面。优选地,所述含助活性元素的化合物选自所述助活性元素的可溶性盐类,所述可溶性盐类例如硫酸盐、硝酸盐或氯化盐。步骤(2)中通过调节得到的混合物的pH值在上述范围内,以获得本发明所需的复合氧化锆载体。
在本发明提供的一些实施方式中,步骤(2)中,氧化锆、所述含助活性元素的化合物的加入量可以控制以实现得到的所述复合氧化锆载体具有合适的孔结构和酸性。优选地,步骤(2)中,氧化锆:含助活性元素的化合物:水的重量比为1:(0.01-0.25):(1-20),其中,所述含助活性元素的化合物以氧化物计。优选,氧化锆:含助活性元素的化合物的重量比可以是1:0.01、1:0.05、1:0.1、1:0.15、1:0.2、1:0.25,以及上述数值中任意两个数值组成的范围;氧化锆:水的重量比可以是1:1-11,优选为1:1、1:2、1:3、1:4、1:5、1:6、1:7、1:8、1:9、1:10、1:11,以及上述数值中任意两个数值组成的范围。
在本发明提供的一些实施方式中,步骤(3)用于负载所述活性金属,在所述复合氧化锆载体上负载本发明的加氢精制催化剂所需的活性金属。优选地,步骤(3)中,所述活性金属为第VIII族和/或第VIB族金属,第VIII族金属为Fe、Ni、Co中的至少一种,第VIB族金属为W和/或Mo。所述活性金属的用量进一步地优选,相对于所述复合氧化锆载体,第VIII族金属以金属氧化物计的用量为0.1wt%-30wt%,第VIB族金属以金属氧化物计的用量为0.08wt%-20wt%。优选地,第VIII族金属的用量为0.1wt%-0.4wt%,第VIB族金属的用量为0.08wt%-0.4wt%。
在本发明提供的一些实施方式中,优选地,步骤(3)中,所述浸渍的过程包括:将所述活性金属的前驱体溶解于所述有机溶剂中,然后与所述复合氧化锆载体混合,在搅拌或静置下保持0.5-12小时,其中所述复合氧化锆载体:所述有机溶剂的固液重量比为1:(0.5-5);优选地,所述浸渍的次数至少为1次。所述活性金属的前驱体可以选自含所述活性金属的可溶于所述有机溶剂中的化合物,例如可以为氯化铁、钼酸铵、硝酸钴、偏钨酸铵、硝酸镍。其中,所述浸渍的过程完成后,进行烘干,温度为80-120℃,时间为10-15小时,去除有机溶剂。
在本发明提供的一些实施方式中,优选地,所述有机溶剂的标准沸点优选40-100℃。优选地,所述有机溶剂可以是烷烃、芳香烃、醇、酮、醚、酯、卤代烷烃中的一种或者多种。优选地,所述有机溶剂优选正己烷、环己烷、庚烷、苯、甲苯、甲醇、乙醇、异丙醇、丙酮、丁酮、三氯甲烷中的一种或多种。步骤(3)中的浸渍活性金属所采用的有机溶剂以及用量,能够有助于提高活性金属在催化剂表面的分散度,可以通过催化剂的反应结果反映。在本发明提供的一些实施方式中,优选地,步骤(4)中,焙烧温度为450-650℃,焙烧时间为1-4小时。
本发明第二方面提供了一种上述方法制得的加氢精制催化剂。
在本发明提供的一些实施方式中,获得的催化剂的比表面积为300-400m2/g,优选为310-360m2/g;孔容为0.4-0.6mL/g,优选为0.45-0.55mL/g。所述加氢精制催化剂的组成包括:基于所述催化剂的总量,氧化锆含量为25-75wt%,助活性元素(以氧化物计)为1-25wt%,第VIII族金属(以金属氧化物)含量为0.1-30wt%,第VIB族金属(以金属氧化物)计的含量为0.08-20wt%。所述加氢精制催化剂的组成可以通过荧光分析法测定,或制备投料计算。
本发明还提供了一种催化裂化柴油加氢精制的方法,包括:将催化裂化柴油在加氢精制催化剂存在下进行加氢精制反应,所述加氢精制催化剂为本发明的馏分油加氢精制催化剂。
催化裂化柴油可以是从石油炼制的催化裂化工艺制得的柴油。加氢精制反应的条件可以是:温度为300-400℃,氢分压为5-7MPa,原料催化裂化柴油的体积空速为1-4h-1,氢气与原料催化裂化柴油的体积比为200-500:1。
使用本发明的加氢精制催化剂,催化裂化柴油的加氢脱硫率达到100%,脱氮率94.0%以上。
以下将通过实施例对本发明进行详细描述。
以下实施例和对比例中:
催化剂的比表面积、孔容通过BET测试方法测定;
原料油、加氢产物中的硫含量通过气相色谱法方法测定;
加氢脱硫率%=1-(原料油中硫含量-加氢产物中硫含量)/原料油中硫含量×100%;
加氢脱氮率%=1-(原料油中氮含量-加氢产物中氮含量)/原料油中氮含量×100%。
实施例1
取1465g氧氯化锆ZrOCl2·8H2O和2269g去离子水打浆后,用稀氨水调节混合物的pH值为7.0,室温搅拌3.0小时,过滤后将其120℃下干燥12小时,并700℃下焙烧3小时,得到氧化锆。
取氧化锆737g(以干基计算)、240mL氯化稀土溶液(氧化稀土含量250g/L)、2800g去离子水混合,用稀氨水调节混合物的pH值为5.5,在30℃下搅拌老化2小时,过滤后将其120℃下干燥12小时,在750℃焙烧2小时,得到复合氧化锆载体。氧化锆:氧化稀土:水的重量比为1:0.08:3.80。
将339g氯化铁、272g钼酸铵溶于800g乙醇(纯度99.9%)中制成浸渍液,所得浸渍液与上述复合氧化锆载体(相对于复合氧化锆载体,氧化铁的用量为10wt%,氧化钼的用量为20wt%)混合均匀(复合氧化锆载体:有机溶剂的固液重量比为1:2),室温下保持12h,然后所得产物100℃烘干24小时,再在氮气气氛、500℃下焙烧4小时。得到催化剂A1。催化剂A1的分析结果见表1。
实施例2
取1250g异丙醇锆和1100g去离子水打浆后,用稀氨水调节混合物的pH值为5.5,40℃搅拌3.0小时,过滤后将其120℃下干燥12小时,并600℃下焙烧5小时,得到氧化锆。
取氧化锆618g(以干基计算)、203g氯化镁、2000g去离子水混合,用稀氨水调节混合物的pH值为7.5,在40℃下搅拌老化1小时,过滤后将其120℃下干燥12小时,在650℃焙烧3小时,得到复合氧化锆载体。氧化锆:氧化镁:水的重量比为1:0.14:3.24。
将280g硝酸钴Co(NO3)2·6H2O、160g偏钨酸铵溶于900g乙醇(纯度99.9%)中制成浸渍液,所得浸渍液与上述复合氧化锆载体(相对于复合氧化锆载体,氧化钴的用量为8wt%,氧化钨的用量为15wt%)混合均匀(复合氧化锆载体:有机溶剂的固液重量比为1:2),室温下保持8h,然后所得产物120℃烘干6小时,再在氮气气氛、550℃下焙烧2小时。得到催化剂A2。催化剂A2的分析结果见表1。
实施例3
取1680g硝酸锆和574g去离子水打浆后,用稀氨水调节混合物的pH值为6.5,60℃搅拌1.0小时,过滤后将其120℃下干燥12小时,并800℃下焙烧2小时,得到氧化锆。
取氧化锆526g(以干基计算)、99g氯化钙、5600g去离子水混合,用稀氨水调节混合物的pH值为6.5,在60℃下搅拌老化1小时,过滤后将其120℃下干燥12小时,在550℃焙烧5小时,得到复合氧化锆载体。氧化锆:氧化钙:水的重量比为1:0.09:10.6。
将489g硝酸镍、68g钼酸铵溶于600g环己烷(纯度99.9%)中制成浸渍液,所得浸渍液与上述复合氧化锆载体(相对于复合氧化锆载体,氧化镍的用量为20wt%,氧化钼的用量为5wt%)混合均匀(复合氧化锆载体:有机溶剂的固液重量比为1:2),室温下保持12h,然后所得产物120℃烘干6小时,再在氮气气氛、600℃下焙烧3小时。得到催化剂A3。催化剂A3的分析结果见表1。
实施例4
取1600g硝酸锆和1000g去离子水打浆后,用稀氨水调节混合物的pH值为7.5,25℃搅拌5.0小时,过滤后将其120℃下干燥12小时,并650℃下焙烧4小时,得到氧化锆。
取氧化锆500g(以干基计算)、240g硫酸镁、4600g去离子水混合,用稀氨水调节混合物的pH值为7.5,在60℃下搅拌老化1.5小时,过滤后将其120℃下干燥12小时,在700℃焙烧2小时,得到复合氧化锆载体。氧化锆:氧化镁:水的重量比为1:0.16:9.2。
将175g硝酸钴Co(NO3)2·6H2O、272g钼酸铵溶于1000g环己烷(纯度99.9%)中制成浸渍液,所得浸渍液与上述复合氧化锆载体(相对于复合氧化锆载体,氧化钴的用量为5wt%,氧化钼的用量为20wt%)混合均匀(复合氧化锆载体:有机溶剂的固液重量比为1:3),室温下保持24h,然后所得产物120℃烘干6小时,再在氮气气氛、650℃下焙烧3小时。得到催化剂A4。催化剂A4的分析结果见表1。
实施例5
取1177g氧氯化锆和1800g去离子水打浆后,用稀氨水调节混合物的pH值为9.0,25℃搅拌2.0小时,过滤后将其120℃下干燥12小时,并750℃下焙烧2.5小时,得到氧化锆。
取氧化锆523g(以干基计)、480mL氯化稀土溶液(氧化稀土含量250g/L)、2700g去离子水混合,用稀氨水调节混合物的pH值为8.5,在90℃下搅拌老化1.5小时,过滤后将其120℃下干燥12小时,在700℃焙烧2小时,得到复合氧化锆载体。氧化锆:氧化稀土:水的重量比为1:0.23:5.16。
将526g硝酸钴Co(NO3)2·6H2O、106g偏钨酸铵溶于1000g丁酮(纯度99.9%)中制成浸渍液,所得浸渍液与上述复合氧化锆载体(相对于复合氧化锆载体,氧化钴的用量为15wt%,氧化钨的用量为10wt%)混合均匀(复合氧化锆载体:有机溶剂的固液重量比为1:2)混合均匀,室温下保持24h,然后所得产物120℃烘干6小时,再在氮气气氛、550℃下焙烧3小时。得到催化剂A5。催化剂A5的分析结果见表1。
对比例1
取1465g氧氯化锆ZrOCl2·8H2O和2269g去离子水打浆后,用稀氨水调节混合物的pH值为7.0,室温搅拌3.0小时,过滤后将其120℃下干燥12小时,在750℃焙烧2小时,得到氧化锆。
将339g氯化铁、272g钼酸铵溶于800g乙醇(纯度99.9%)中制成浸渍液,所得浸渍液与上述氧化锆(相对于复合氧化锆,氧化铁的用量为12wt%,氧化钼的用量为23wt%)混合均匀,室温下保持12h,然后所得产物100℃烘干24小时,再在氮气气氛、500℃下焙烧4小时。得到对比催化剂D1。催化剂分析结果见表1。
对比例2
取1465g氧氯化锆ZrOCl2·8H2O和2269g去离子水打浆后,用稀氨水调节混合物的pH值为7.0,室温搅拌3.0小时,过滤后将其120℃下干燥12小时,在750℃焙烧2小时,得到氧化锆。
取氧化锆737g(以干基计算)、560g硅溶胶(氧化硅含量25%)、2800g去离子水混合,在室温下搅拌老化2小时,过滤后将其120℃下干燥12小时,在750℃焙烧2小时,得到改性氧化锆载体。
将339g氯化铁、272g钼酸铵溶于800g去离子水中制成浸渍液,所得浸渍液与上述改性氧化锆载体(相对于改性氧化锆载体,氧化铁的用量为8.5wt%,氧化钼的用量为17wt%)混合均匀,室温下保持12h,然后所得产物100℃烘干24小时,在空气气氛、500℃下焙烧4小时。得到对比催化剂D2。催化剂分析结果见表1。
表1
Figure BDA0002838100430000101
表1结果表明,本发明方法制备方法的催化剂具有较高的比表面积和孔容,较高的金属在载体表面的分散性。
实施例6-10
将催化剂A1-A5按照表2提供的原料油和评价条件进行加氢脱硫和脱氮反应。反应评价结果见表3。
表2
Figure BDA0002838100430000102
Figure BDA0002838100430000111
对比例3-4
按照实施例6-10中方法,将催化剂D1-D2进行加氢脱硫和脱氮反应。反应评价结果见表3。
表3
编号 催化剂名称 加氢脱硫,% 加氢脱氮,%
实施例6 A1 100 94.0
实施例7 A2 100 95.5
实施例8 A3 100 96.0
实施例9 A4 100 95.5
实施例10 A5 100 94.6
对比例3 D1 78.3 70.2
对比例4 D2 80.3 69.5
表3结果表明,本发明提供的催化剂具有更高的催化加氢活性,其催化柴油加氢性能显著优于对比催化剂。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方法中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何的方式进行组合。为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (10)

1.一种加氢精制催化剂的制备方法,该方法包括:
(1)将含锆的化合物和水混合均匀,并调节得到的浆液的pH值为5-10,然后在室温-90℃下搅拌0.5-12小时,过滤烘干和焙烧,得到氧化锆;
(2)将含助活性元素的化合物、所述氧化锆和水混合均匀,并调节得到的混合物的pH值为5-10,再在室温-90℃下搅拌0.5-12小时,过滤烘干,和在550-800℃焙烧2-5小时,得到复合氧化锆载体;其中,所述助活性元素选自RE、Mg、Ca中的一种或几种;
(3)将所述复合氧化锆载体在有机溶剂中浸渍活性金属,并烘干;
(4)在惰性气氛下将步骤(3)得到的产物进行焙烧,焙烧温度为300-700℃,焙烧时间为0.5-5小时,得到加氢精制催化剂。
2.根据权利要求1所述的方法,其特征在于,步骤(1)中,所述含锆的化合物选自四氯化锆、硫酸锆、硝酸锆、氧氯化锆、醋酸锆、异丙醇锆中的一种或多种。
3.根据权利要求1或2所述的方法,其特征在于,步骤(2)中,所述含助活性元素的化合物选自所述助活性元素的可溶性盐类,所述可溶性盐类为硫酸盐、硝酸盐或氯化盐。
4.根据权利要求1-3中任意一项所述的方法,其特征在于,步骤(2)中,氧化锆:含助活性元素的化合物:水的重量比为1:(0.01-0.25):(1-20),其中,所述含助活性元素的化合物以氧化物计。
5.根据权利要求1-4中任意一项所述的方法,其特征在于,步骤(3)中,所述活性金属为第VIII族和/或第VIB族金属,优选第VIII族金属为Fe、Ni、Co中的至少一种,第VIB族金属为W和/或Mo。
6.根据权利要求1-5中任意一项所述的方法,其特征在于,相对于所述复合氧化锆载体,第VIII族金属以金属氧化物计的用量为0.1wt%-30wt%,第VIB族金属以金属氧化物计的用量为0.08wt%-20wt%。
7.根据权利要求1-6中任意一项所述的方法,其特征在于,步骤(3)中,所述浸渍的过程包括:将所述活性金属的前驱体溶解于所述有机溶剂中,然后与所述复合氧化锆载体混合,在搅拌或静置下保持0.5-12小时,其中所述复合氧化锆载体:所述有机溶剂的固液重量比为1:(0.5-5);优选地,所述浸渍的次数至少为1次。
8.根据权利要求1-7中任意一项所述的方法,其特征在于,步骤(3)中,所述有机溶剂的标准沸点为40-100℃;
优选地,所述有机溶剂选自烷烃、芳香烃、醇、酮、醚、酯、卤代烷烃中的一种或者多种;优选所述有机溶剂为正己烷、环己烷、庚烷、苯、甲苯、甲醇、乙醇、异丙醇、丙酮、丁酮、三氯甲烷中的一种或多种。
9.根据权利要求1-8中任意一项所述的方法,其特征在于,步骤(4)中,焙烧温度为450-650℃,焙烧时间为1-4小时。
10.一种权利要求1-9中任意一项所述的制备方法制得的加氢精制催化剂。
CN202011490412.XA 2019-12-16 2020-12-16 加氢精制催化剂及其制备方法 Active CN112973716B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911299652 2019-12-16
CN2019112996529 2019-12-16

Publications (2)

Publication Number Publication Date
CN112973716A true CN112973716A (zh) 2021-06-18
CN112973716B CN112973716B (zh) 2023-08-18

Family

ID=76345010

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011490412.XA Active CN112973716B (zh) 2019-12-16 2020-12-16 加氢精制催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN112973716B (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5182250A (en) * 1990-03-23 1993-01-26 Cosmo Research Institute Catalyst composition for hydrodesulfurization of hydrocarbon oil and process for producing the same
EP1857527A1 (en) * 2006-05-17 2007-11-21 Petroleo Brasileiro S.A. Petrobras Process for the selective hydrodesulfurization of naphtha streams
CN101563437A (zh) * 2006-12-19 2009-10-21 埃克森美孚研究工程公司 高活性负载馏出物加氢处理催化剂
WO2011036862A1 (en) * 2009-09-25 2011-03-31 Nippon Ketjen Co., Ltd. Process for producing a hydroprocessing catalyst, and method for hydroprocessing a hydrocarbon oil using said catalyst
DE102010038310A1 (de) * 2010-07-23 2012-01-26 Evonik Degussa Gmbh Verfahren zur Herstellung von Diamino-dianhydro-dideoxy-hexitolen, besonders bevorzugt 2,5-Diamino-1,4:3,6-Dianhydro-2,5-Dideoxy-D-Hexitol
CN103301889A (zh) * 2012-03-15 2013-09-18 山西腾茂科技有限公司 一种催化裂化催化剂及其制备方法
CN103801343A (zh) * 2012-11-08 2014-05-21 中国石油化工股份有限公司 一种加氢处理催化剂的制备方法
CN103878020A (zh) * 2014-04-17 2014-06-25 中国华电集团科学技术研究总院有限公司 一种高选择性非贵金属长链烷烃异构化催化剂的制备及应用方法
CN104588084A (zh) * 2013-11-03 2015-05-06 中国石油化工股份有限公司 一种含稀土的加氢裂化催化剂的制备方法
CN107961795A (zh) * 2016-10-20 2018-04-27 中国石油化工股份有限公司 一种加氢脱硫催化剂及其制备方法和硫化态加氢脱硫催化剂的制备方法
CN107970943A (zh) * 2016-10-21 2018-05-01 中国石油化工股份有限公司 一种加氢催化剂的浸渍溶液以及加氢催化剂的制备方法
CN109833890A (zh) * 2017-11-24 2019-06-04 中国石油化工股份有限公司 一种渣油加氢催化剂及其制备

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5182250A (en) * 1990-03-23 1993-01-26 Cosmo Research Institute Catalyst composition for hydrodesulfurization of hydrocarbon oil and process for producing the same
EP1857527A1 (en) * 2006-05-17 2007-11-21 Petroleo Brasileiro S.A. Petrobras Process for the selective hydrodesulfurization of naphtha streams
CN101563437A (zh) * 2006-12-19 2009-10-21 埃克森美孚研究工程公司 高活性负载馏出物加氢处理催化剂
WO2011036862A1 (en) * 2009-09-25 2011-03-31 Nippon Ketjen Co., Ltd. Process for producing a hydroprocessing catalyst, and method for hydroprocessing a hydrocarbon oil using said catalyst
DE102010038310A1 (de) * 2010-07-23 2012-01-26 Evonik Degussa Gmbh Verfahren zur Herstellung von Diamino-dianhydro-dideoxy-hexitolen, besonders bevorzugt 2,5-Diamino-1,4:3,6-Dianhydro-2,5-Dideoxy-D-Hexitol
CN103301889A (zh) * 2012-03-15 2013-09-18 山西腾茂科技有限公司 一种催化裂化催化剂及其制备方法
CN103801343A (zh) * 2012-11-08 2014-05-21 中国石油化工股份有限公司 一种加氢处理催化剂的制备方法
CN104588084A (zh) * 2013-11-03 2015-05-06 中国石油化工股份有限公司 一种含稀土的加氢裂化催化剂的制备方法
CN103878020A (zh) * 2014-04-17 2014-06-25 中国华电集团科学技术研究总院有限公司 一种高选择性非贵金属长链烷烃异构化催化剂的制备及应用方法
CN107961795A (zh) * 2016-10-20 2018-04-27 中国石油化工股份有限公司 一种加氢脱硫催化剂及其制备方法和硫化态加氢脱硫催化剂的制备方法
CN107970943A (zh) * 2016-10-21 2018-05-01 中国石油化工股份有限公司 一种加氢催化剂的浸渍溶液以及加氢催化剂的制备方法
CN109833890A (zh) * 2017-11-24 2019-06-04 中国石油化工股份有限公司 一种渣油加氢催化剂及其制备

Also Published As

Publication number Publication date
CN112973716B (zh) 2023-08-18

Similar Documents

Publication Publication Date Title
JP4156859B2 (ja) 軽油の水素化処理触媒及びその製造方法並びに軽油の水素化処理方法
US7618916B2 (en) Hydrotreating catalyst for gas oil, process for producing the same, and method of hydrotreating gas oil
CA2560925C (en) Catalyst for hydrotreating hydrocarbon oil, process for producing the same, and method for hydrotreating hydrocarbon oil
US7968069B2 (en) Catalyst, its preparation and use for hydrodesulfurization of residua and heavy crudes
CN101733151B (zh) 一种馏分油加氢精制催化剂
US6383975B1 (en) Procedure to obtain a catalyst for the hydrodenitrogenation and hydrodesulfurization of middle and heavy oil fraction and the resulting product
CN101157056A (zh) 含镍或钴的加氢催化剂载体、加氢催化剂及其制备方法
CN101468317B (zh) 一种加氢裂化催化剂及其制备方法
CN1325612C (zh) 一种馏分油加氢处理催化剂及其制备方法
CN100348311C (zh) 一种含分子筛的加氢脱硫催化剂
CN108993521A (zh) 一种柴油加氢脱氮催化剂及其制备方法与应用
CN1243081C (zh) 加氢处理催化剂及其制备方法
CN109718867A (zh) 加氢精制催化剂体系及其应用以及加氢精制催化剂的制备方法和馏分油的加氢精制方法
CN112973713B (zh) 加氢精制催化剂及其制备方法
CN100448538C (zh) 馏分油加氢处理催化剂及其制备方法
CN112973716A (zh) 加氢精制催化剂及其制备方法
CN112973717B (zh) 加氢精制催化剂及其制备方法
CN112973712A (zh) 加氢精制催化剂及其的制备方法
CN107670699A (zh) 一种采用复合载体的重油悬浮床加氢催化剂
CN1508224A (zh) 一种加氢裂化后处理催化剂及其制备方法
JP4954095B2 (ja) 軽油の水素化処理触媒及びその製造方法並びに軽油の水素化処理方法
CN110090654A (zh) 加氢处理催化剂及其制备方法和应用
CN112675828A (zh) 一种加氢脱硫催化剂及其制备方法
US4504589A (en) Hydrodenitrification catalyst and a method for improving the activity of the catalyst
CN103566926A (zh) 一种具有加氢功能的催化剂及其制备和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20221223

Address after: 043300 Yanzhang village, Senglou Town, Hejin City, Yuncheng City, Shanxi Province

Applicant after: Shanxi tengmao Technology Co.,Ltd.

Address before: 100021 room 516-3, 5th floor, building 1, 1 Jinsong South Road, Chaoyang District, Beijing

Applicant before: Beijing Zhongneng Weiye Technology Development Co.,Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant