CN112501257B - 一种基于核酸自组装无酶催化的circRNA活细胞内成像的可视化传感器 - Google Patents
一种基于核酸自组装无酶催化的circRNA活细胞内成像的可视化传感器 Download PDFInfo
- Publication number
- CN112501257B CN112501257B CN202110159582.8A CN202110159582A CN112501257B CN 112501257 B CN112501257 B CN 112501257B CN 202110159582 A CN202110159582 A CN 202110159582A CN 112501257 B CN112501257 B CN 112501257B
- Authority
- CN
- China
- Prior art keywords
- circrna
- cha
- detection
- hcr
- chains
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6816—Hybridisation assays characterised by the detection means
- C12Q1/6825—Nucleic acid detection involving sensors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/645—Specially adapted constructive features of fluorimeters
- G01N21/6456—Spatial resolved fluorescence measurements; Imaging
- G01N21/6458—Fluorescence microscopy
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N2021/6417—Spectrofluorimetric devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
- G01N2021/6432—Quenching
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Pathology (AREA)
- General Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Urology & Nephrology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Microbiology (AREA)
- Hematology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Cell Biology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Optics & Photonics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
Abstract
本发明提供一种基于核酸自组装无酶催化的circRNA活细胞内成像的可视化传感器,包括:(1)基于氧化石墨烯GO的胞内高效递送系统,(2)基于GO的信号开关体系,(3)基于CHA和HCR联合的无酶催化的核酸自组装双重信号放大成像系统。本发明通过CHA和HCR发卡探针的设计,利用GO的生物相容性以及荧光淬灭效应,完成活体细胞内靶标circRNA的检测。解决了传统PCR、测序以及northblot等检测手段circRNA检测过程繁琐且难以灵敏可视化的难题,并且实现了对circRNA的快速、高灵敏度、高选择性的活细胞内可视化检测。对于作为生物标志物的circRNA检测更加精准、实时且高效。
Description
技术领域
本发明涉及生物传感器技术领域,具体地说,涉及一种基于核酸自组装无酶催化的circRNA活细胞内成像的可视化传感器。
背景技术
非编码RNA是一类从基因组转录而来不具有翻译成蛋白质的能力的RNA,。它广泛参与生物的各种生理和病理过程。CircRNA是环状的单链非编码RNA分子,是在剪接过程中由pre-mRNA的5'和3'末端反向拼接形成的。由于没有线性RNA游离的5'和3'末端,很难通过许多传统的线性RNA衰变途径降解circRNA,这赋予circRNA在复杂生物流体中较强的稳定性。此外,由于其可以作为miRNA的“海绵体”吸附miRNA抑制其行使功能从而在各种生理和病理过程的调节中也发挥着重要作用。因此,形成circRNA的特殊剪接方式的稳定性,其在生物进程中的重要调控作用,以及在不同细胞中分布和表达水平的不同使其被广泛用作疾病诊断和监测的生物标志物。已经发现了许多类型的circRNA,分为外显子和内含子circRNA,它们的长度从数十个碱基到几万个碱基不等,因此每个circRNA都有一个可以用作“身份证”的序列在5'和3'末端的拼接处称为junction sequence,junction sequence是由于5'和3'末端按特殊剪接方式—反向剪接形成的特异性序列可以作为检测靶标序列。目前,circRNA的检测技术主要使用传统方法,例如二代测序技术,基因芯片,PCR和Northernblotting。然而,这些技术需要复杂的仪器和繁琐的操作,从细胞提取RNA并且破坏细胞,限制了它们的常规应用。因此,迫切需要开发一种对灵敏,高效且无损伤的细胞内低丰度circRNA检测策略。
发明内容
本发明的目的是提供一种基于核酸自组装无酶催化的circRNA活细胞内成像的可视化传感器。
本发明的另一目的是提供基于生物传感器技术检测circRNA的方法。
为了实现本发明目的,发明人根据circRNA特异性序列junction sequence设计可以被其触发的CHA发卡链HP1和HP2,以及可以被CHA循环产物触发的HCR发卡链H1和H2,并将CHA和HCR检测发卡链与GO组合形成完整检测体系。
第一方面,一种基于核酸自组装无酶催化的circRNA活细胞内成像的可视化传感器,其特征在于,包括:(1)基于氧化石墨烯GO的胞内高效递送系统(2)基于GO的信号开关体系(3)基于CHA和HCR联合的无酶催化核酸自组装双重信号放大成像系统;
所述可视化传感器实现待测样品检测需依次经过GO对CHA和HCR的检测发卡链的富集并递送进入细胞,然后在靶标circRNA存在情况下触发CHA和HCR联合的无酶催化核酸自组装双重信号放大成像系统,释放被GO淬灭的荧光基团实现双重信号输出;
其中,所述CHA和HCR联合的无酶催化核酸自组装双重信号放大成像系统包括CHA和HCR的检测发卡链(HP1、HP2、H1、H2)和待检测circRNA的代替链(I’和I)如下所示:
SEQ ID NO:1(HP1):5’-GCTATGTTGTTTCGTCTTGAGGTAGGCCGTCCAGACAAATCCCTCAAGACGAATTCCACAGACT-3’
SEQ ID NO:2(HP2):5’-TGGAATTCGTCTTGAGGGATTTGTCTGGACGGCCTACCTCAAGACGAAATCCCTCAAGACGAAT
AATGTAGT-3’;
SEQ ID NO:3(H1):5’-AAGACGAATAATGTAGCTGCCACTACATTATTCGTCTTGAGGGA-3’;
SEQ ID NO:4(H2):5’-TGGCAGCTACATTATTCGTCTTTCCCTCAAGACGAATAATGTAG-3’;
SEQ ID NO:5(I’): 5’-ACGGCCUACCUCAAGACGAAAC-3’;
SEQ ID NO:6(I):5’-ACGGCCTACCTCAAGACGAAAC-3’;
其中SEQ ID NO:1的3’端和SEQ ID NO:2的5’端分别增加FAM基团。
其中,所述基于GO的信号开关在于荧光基团靠近GO会产生荧光共振能量转移使荧光信号猝灭,而在经由CHA以及HCR核酸自组装形成长双链则会使FAM荧光基团与GO产生距离效应,进而释放荧光信号。
本发明所述的检测体系包括:GO以及CHA和HCR发卡链结合形成的检测系统和CHA以及HCR反应缓冲液
其中,所述CHA以及HCR反应缓冲液为:100 mM Tris、120 mM NaCl、10 mM MgCl2、100 mM KCl,pH 8.4。
本发明还提供前述传感器在检测circRNA方面中的应用,所述检测可表现为定性检测或定量检测。
第二方面,本发明提供了一种利用前述传感器对circRNA进行定性检测的方法,包括如下步骤:
S1、将CHA以及HCR发卡链在CHA以及HCR反应缓冲液中进行结合
S2、将待检测circRNA混合液加入S1所得的检测系统中利用荧光分光光度计检测荧光强度
S3、将S1所得的检测系统加入细胞进行孵育利用荧光显微镜对于细胞内荧光变化进行观察;
S1,S2具体如下:50 nM CHA发卡链HP1、HP2以及100 nM HCR发卡链H1、H2与GO进行混合15 min完成检测系统的组装,将待检测circRNA混合液加入到组装好的检测系统孵育3.5 h,在利用荧光分光光度计检测荧光强度。
S1,S3具体如下:50 nM CHA发卡链HP1、HP2以及100 nM HCR发卡链H1、H2与GO进行混合15 min完成检测系统的组装,将组装好的检测系统加入到待检测细胞培养基内孵育7h,在荧光显微镜下观察细胞内荧光变化。
第三方面,本传感器提供对circRNA进行定量检测的方法,其特征在于,包括如下步骤:
SI、制作标准曲线:
利用已知浓度的circRNA拼接序列溶液,构建具有不同circRNA拼接序列浓度的检测体系,检测步骤与前述circRNA进行定性检测的步骤相同;
以circRNA拼接序列浓度为横坐标,以荧光强度值为纵坐标,绘制标准曲线;
SII、按照前述对circRNA进行定性检测的方法对待测样品进行检测,将测得的荧光强度值代入标准曲线,计算得到待测样品中circRNA的含量,实现对circRNA的定量检测。
本发明提供一种基于生物传感器技术检测circRNA的方法,首先根据circRNA特异性序列junction sequence设计可以被其触发的CHA发卡链HP1和HP2,以及可以被CHA循环产物触发的HCR发卡链H1和H2,并将CHA和HCR检测发卡链与GO组合形成完整检测体系,无靶标circRNA存在的情况下,H2链上携带的FAM荧光基团由于距离GO较近而被淬灭,而在靶标circRNA存在的情况下可触发CHA循环形成杂交双链,CHA形成的杂交双链带有HCR的触发链进而触发下游HCR循环形成长杂交双链释放被GO淬灭的FAM荧光实现信号输出,进而完成对circRNA的快速可视化检测
借由上述技术方案,本发明至少具有下列优点及有益效果:
本发明通过建立基于核酸自组装无酶催化的circRNA活细胞内成像的传感器,用于circRNA的快速可视化检测。根据circRNA的junction sequence,可以被其触发的CHA发卡链HP1和HP2,以及可以被CHA循环产物触发的HCR发卡链H1和H2,并将CHA和HCR检测发卡链与GO组合形成完整检测体系,构建了一种新型的可以用于活细胞内在线成像的传感器,并提供了一种快速、可视的circRNA检测新方法。使样品的检测时间大大缩短,检出限达pM级,而且本发明成功解决了例如二代测序技术,基因芯片,PCR和Northern blotting等技术需要复杂的仪器和繁琐的操作并且需要从细胞提取RNA并且破坏细胞等问题,可以直接、快速、灵敏的检测在活细胞内检测circRNA含量,对临床疾病的监测和预防具有重要的现实意义。
(一)本方法既可以体外检测混合液中靶标circRNA的含量也可以检测细胞内circRNA的含量
(二)检测体系组装的时间较短只需要15 min
(三)本方法可实现活细胞内对circRNA成像,能够直观准确的得到circRNA在细胞内的空间位置信息。
附图说明
图1为本发明实施例1中CHA和HCR以及二者联用的核酸组装非变性PAGE胶的结果;其中,前四个泳道分别是HP1、HP2、H1和H2:泳道1-6:CHA反应物、CHA产物、HCR反应物、HCR产物、CHA-HCR反应物、CHA-HCR产物。
图2为本发明实施例1中GO-CHA、GO-HCR以及GO-CHA和HCR联用在有无待检测链存在的情况下荧光的变化情况,a和a*、b和b*、c和c*分别代表GO-CHA和HCR联用、GO-HCR、GO-CHA在有无触发链存在情况下的荧光变化情况。
图3为本发明实施例1中不同浓度circRNA junction sequence荧光变化绘制的标准曲线。
图4为本发明实施例2中生物传感器特异性检测结果。
图5为本发明实施例3中检测体系的细胞毒性检测。
图6为本发明实施例3中检测体系在不同浓度血清溶液和2U Dnase I中的稳定性的检测。
图7为本发明实施例3中该检测体系在Beas-2B细胞和MCF-7细胞中的荧光成像结果。
具体实施方式
以下实施例用于说明本发明,但不用来限制本发明的范围。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段,所用原料均为市售商品。
实施例1 无酶催化的基于GO和核酸自组装的可视化传感器的建立
1、实验材料
氧化石墨烯GO、SYBR Gold 核酸染料、核酸分子量标准ultra-low range DNAladder、4-羟乙基哌嗪乙磺酸(HEPES)、Tris、氯化钠、氯化镁、氯化钾、乙二胺四乙酸二钠,硫酸,四甲基联苯胺,尿素,均购自赛默飞科技(Thermo Scientific Life Technologies),Beas-2B、MCF-7、H596、H1299和L02细胞来源于上海生物科学研究院。实验用水均来自Milli-Q纯水系统。
实验中用到的CHA和HCR的检测发卡链(HP1、HP2、H1、H2)和待检测circRNA的代替链(I’和I),如下所示:
SEQ ID NO:1(HP1):5’-GCTATGTTGTTTCGTCTTGAGGTAGGCCGTCCAGACAAATCCCTCAAGACGAATTCCACAGACT-3’
SEQ ID NO:2(HP2):5’-TGGAATTCGTCTTGAGGGATTTGTCTGGACGGCCTACCTCAAGACGAAATCCCTCAAGACGAAT
AATGTAGT-3’;
SEQ ID NO:3(H1):5’-AAGACGAATAATGTAGCTGCCACTACATTATTCGTCTTGAGGGA-3’;
SEQ ID NO:4(H2):5’-TGGCAGCTACATTATTCGTCTTTCCCTCAAGACGAATAATGTAG-3’;
SEQ ID NO:5(I’): 5’-ACGGCCUACCUCAAGACGAAAC-3’;
SEQ ID NO:6(I):5’-ACGGCCTACCTCAAGACGAAAC-3’;
其中SEQ ID NO:1的3’端和SEQ ID NO:2的5’端分别增加FAM基团。
2、基于GO和CHA以及HCR联用的检测系统的建立与体外验证
将50 nM CHA检测发卡HP1和HP2以及HCR检测发卡H1和H2在反应buffer中混合并于30 μg/ml 的GO进行混合,室温孵育15 min即可完成体系的构建。将60 nM待检测circRNAjunction sequence的DNA替代物I’加入到检测体系中,于37℃下孵育3.5 h,用10%的非变性聚丙烯酰胺凝胶电泳验证CHA、HCR以及CHA和HCR联用检测体系在存在以及不存在待检测I’链的核酸组装结果(图1),以及在存在和不存在待检测I’链的情况下基于GO和CHA、HCR以及CHA和HCR联用检测系统的荧光变化情况(图2)
3、CircRNA的灵敏体外快速检测
根据上述体系,分别在检测系统中加入不同浓度的0.03、0.06、0.3、0.6、3、6、30、60 nM待检测circRNA代替物I,根据荧光强度的变化绘制标准曲线(图3)。
Mg2+检测范围是0.03-60 nM(可在此范围内实现定量检测),最低检出限是15 pM。
实施例2 传感器的特异性考察
按照实施例1构建的生物传感器,分别将L02、H596、H1299和Beas-2B细胞裂解液加入到体系中进行检测,结果表明,所建立的circRNA生物传感器具有较好的特异性(图4)。
实施例3 传感器的活细胞内成像考察
将实施例1构建的生物传感器分别加入到Beas-2B和MCF-7细胞中孵育24h利用CCK8检测该传感器对于细胞的毒性,发现其几乎不影响细胞的活力,可进行后续的细胞内荧光成像实验(图5),随后将该检测系统加入不同浓度的血清(图6A)和2U Dnase I检测其在复杂生物流体中的稳定性(图6B),发现该检测系统有较高的稳定性。最后将该生物传感器分别加入到Beas-2B和MCF-7细胞中孵育7h后在荧光显微镜下可以观察到细胞内靶标circRNA的空间位置信息以及其含量的变化(图7)。
虽然,上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对之做一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。
序列表
<110> 中国农业大学
<120> 一种基于核酸自组装无酶催化的circRNA活细胞内成像的可视化传感器
<160> 6
<170> SIPOSequenceListing 1.0
<210> 1
<211> 64
<212> DNA
<213> Artificial Sequence
<400> 1
gctatgttgt ttcgtcttga ggtaggccgt ccagacaaat ccctcaagac gaattccaca 60
gact 64
<210> 2
<211> 72
<212> DNA
<213> Artificial Sequence
<400> 2
tggaattcgt cttgagggat ttgtctggac ggcctacctc aagacgaaat ccctcaagac 60
gaataatgta gt 72
<210> 3
<211> 44
<212> DNA
<213> Artificial Sequence
<400> 3
aagacgaata atgtagctgc cactacatta ttcgtcttga ggga 44
<210> 4
<211> 44
<212> DNA
<213> Artificial Sequence
<400> 4
tggcagctac attattcgtc tttccctcaa gacgaataat gtag 44
<210> 5
<211> 22
<212> RNA
<213> Artificial Sequence
<400> 5
acggccuacc ucaagacgaa ac 22
<210> 6
<211> 22
<212> DNA
<213> Artificial Sequence
<400> 6
acggcctacc tcaagacgaa ac 22
Claims (10)
1.一种基于核酸自组装无酶催化的circRNA活细胞内成像的可视化传感器,其特征在于,包括:(1)氧化石墨烯GO;和(2)CHA和HCR联合的无酶催化核酸自组装双重信号放大成像系统;
所述可视化传感器实现待测样品检测需依次经过GO对CHA和HCR的检测发卡链的富集并递送进入细胞,然后在靶标circRNA存在情况下触发CHA和HCR联合的无酶催化核酸自组装双重信号放大成像系统,释放被GO淬灭的荧光基团实现信号输出;
所述CHA和HCR联合的无酶催化核酸自组装双重信号放大成像系统包括CHA和HCR的检测发卡链HP1、HP2、H1、H2和待检测circRNA的代替链I’和I,具体序列如下所示:
HP 1 SEQ ID NO:1:5’-GCTATGTTGTTTCGTCTTGAGGTAGGCCGTCCAGACAAATCCCTCAAGACGAATTCCACAGACT-3’
HP2 SEQ ID NO:2:5’-TGGAATTCGTCTTGAGGGATTTGTCTGGACGGCCTACCTCAAGACGAAATCCCTCAAGACGAAT
AATGTAGT-3’;
H1 SEQ ID NO:3:5’-AAGACGAATAATGTAGCTGCCACTACATTATTCGTCTTGAGGGA-3’;
H2 SEQ ID NO:4:5’-TGGCAGCTACATTATTCGTCTTTCCCTCAAGACGAATAATGTAG-3’;
I’SEQ ID NO:5:5’-ACGGCCUACCUCAAGACGAAAC-3’;
I SEQ ID NO:6:5’-ACGGCCTACCTCAAGACGAAAC-3’;
其中SEQ ID NO:1的3’端和SEQ ID NO:2的5’端分别增加FAM基团。
2.根据权利要求1所述的传感器,其特征在于,所述传感器依靠荧光基团靠近GO会产生荧光共振能量转移使荧光猝灭,经由CHA以及HCR核酸自组装形成长双链则会使FAM荧光基团与GO产生距离效应,进而释放荧光信号。
3.权利要求1或2任一项所述传感器在非疾病诊断目的的检测circRNA中的应用。
4.根据权利要求3所述的应用,其特征在于,所述检测为定性检测或定量检测。
5.利用权利要求1或2所述传感器对circRNA进行非疾病诊断目的的定性检测的方法,其特征在于,包括如下步骤:
S1、将CHA和HCR的检测发卡链HP1、HP2、H1、H2在CHA和HCR反应缓冲液中进行结合;并添加GO进行混合,室温孵育;
S2、将待检测circRNA混合液加入S1所得的检测系统中利用荧光分光光度计检测荧光强度。
6.利用权利要求1或2所述传感器对circRNA进行非疾病诊断目的的定性检测的方法,其特征在于,包括如下步骤:
S1、将CHA和HCR的检测发卡链HP1、HP2、H1、H2在CHA和HCR反应缓冲液中进行结合;并添加GO进行混合,室温孵育;
S3、将S1所得的检测系统加入细胞进行孵育利用荧光显微镜对于细胞内荧光变化进行观察。
7.根据权利要求5所述的方法,其特征在于,
所述S1的步骤为:50nM CHA检测发卡链HP1、HP2以及100nM HCR检测发卡链H1、H2与GO进行混合15min完成检测系统的组装;
所述S2的步骤为:将待检测circRNA混合液加入到组装好的检测系统孵育3.5h,再利用荧光分光光度计检测荧光强度。
8.根据权利要求6所述的方法,其特征在于,
所述S1的步骤为:50nM CHA检测发卡链HP1、HP2以及100nM HCR检测发卡链H1、H2与GO进行混合15min,完成检测系统的组装;
所述S3的步骤为:将组装好的检测系统加入到待检测细胞培养基内孵育7h,在荧光显微镜下观察细胞内荧光变化。
9.利用权利要求1或2所述传感器对circRNA进行非疾病诊断目的的定量检测的方法,其特征在于,包括如下步骤:
SI、制作标准曲线:
利用已知浓度的circRNA拼接序列溶液,构建具有不同circRNA拼接序列浓度的检测体系,检测步骤为;
S1、将CHA以及HCR发卡链HP1、HP2、H1、H2在CHA以及HCR反应缓冲液中进行结合;并添加GO进行混合,室温孵育;
S2、将待检测circRNA混合液加入S1所得的检测系统中利用荧光分光光度计检测荧光强度;
以circRNA拼接序列浓度为横坐标,以荧光强度值为纵坐标,绘制标准曲线;
SII、对待测样品进行检测,检测步骤为;
S1、将CHA以及HCR发卡链HP1、HP2、H1、H2在CHA以及HCR反应缓冲液中进行结合;并添加GO进行混合,室温孵育;
S2、将待检测circRNA混合液加入S1所得的检测系统中利用荧光分光光度计检测荧光强度;
将测得的荧光强度值代入标准曲线,计算得到待测样品中circRNA的含量,实现对circRNA的定量检测。
10.根据权利要求9所述的方法,其特征在于,所述circRNA拼接序列的浓度区间为30pM-60nM。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110159582.8A CN112501257B (zh) | 2021-02-05 | 2021-02-05 | 一种基于核酸自组装无酶催化的circRNA活细胞内成像的可视化传感器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110159582.8A CN112501257B (zh) | 2021-02-05 | 2021-02-05 | 一种基于核酸自组装无酶催化的circRNA活细胞内成像的可视化传感器 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112501257A CN112501257A (zh) | 2021-03-16 |
CN112501257B true CN112501257B (zh) | 2021-05-04 |
Family
ID=74953119
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110159582.8A Active CN112501257B (zh) | 2021-02-05 | 2021-02-05 | 一种基于核酸自组装无酶催化的circRNA活细胞内成像的可视化传感器 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112501257B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114350751B (zh) * | 2022-01-14 | 2023-11-10 | 福州大学 | 一种基于交联网络结构的cha-phcr检测系统及其应用 |
CN114414557B (zh) * | 2022-01-20 | 2022-12-16 | 重庆医科大学 | 基于二维的金属有机框架锌卟啉配合物纳米材料在电致化学发光检测miRNA中的应用 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111808932A (zh) * | 2020-07-21 | 2020-10-23 | 广州吉赛生物科技股份有限公司 | 一种环形rna检测方法及试剂盒 |
-
2021
- 2021-02-05 CN CN202110159582.8A patent/CN112501257B/zh active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111808932A (zh) * | 2020-07-21 | 2020-10-23 | 广州吉赛生物科技股份有限公司 | 一种环形rna检测方法及试剂盒 |
Non-Patent Citations (3)
Title |
---|
applications of catalytic hairpin assembly reaction in biosensing;Jumei Liu等;《Small》;20191231;第1-17页 * |
electrochemical detection of circRNAs based on the combination of back-splice junction and duplex-specific nuclease;Jin Jiao等;《sensors and actuators B:chemical》;20190921;第302卷;第1-6页 * |
环状RNA研究进展;李宏宇等;《生物技术通报》;20181231;第21-31页 * |
Also Published As
Publication number | Publication date |
---|---|
CN112501257A (zh) | 2021-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Molecular beacons: an optimal multifunctional biological probe | |
Guo et al. | Amplified fluorescence sensing of miRNA by combination of graphene oxide with duplex-specific nuclease | |
Zhang et al. | A DNA tetrahedral structure-mediated ultrasensitive fluorescent microarray platform for nucleic acid test | |
JP6126381B2 (ja) | 標的核酸の検出方法及びキット | |
Jiang et al. | Aptamer superstructure-based electrochemical biosensor for sensitive detection of ATP in rat brain with in vivo microdialysis | |
CN112501257B (zh) | 一种基于核酸自组装无酶催化的circRNA活细胞内成像的可视化传感器 | |
Meng et al. | FRET investigation toward DNA tetrahedron-based ratiometric analysis of intracellular telomerase activity | |
Li et al. | An electrochemical microRNA biosensor based on protein p19 combining an acridone derivate as indicator and DNA concatamers for signal amplification | |
Zhu et al. | Aptamer-based and DNAzyme-linked colorimetric detection of cancer cells | |
Huang et al. | Dual signal amplification for microRNA-21 detection based on duplex-specific nuclease and invertase | |
Wang et al. | Tracing cellular interaction of circRNA-miRNA axis with Cu metal-organic framework supported DNA cascade assembly | |
Zhang et al. | Detection of HIV-1 ribonuclease H activity in single-cell by using RNA mimics green fluorescent protein based biosensor | |
Li et al. | Direct visualization of living bacterial genotypes using CRISPR/Cas12a-circular reporter nanoprobes | |
CN110628888A (zh) | 一组miRNA-21触发组装的核酸探针及细胞荧光成像 | |
WO2023202303A1 (zh) | 一种微rna检测方法及试剂盒 | |
Liu et al. | In situ analysis of cancer cells based on DNA signal amplification and DNA nanodevices | |
Hu et al. | A radar-like DNA monitor for RNase H-targeted natural compounds screening and RNase H activity in situ detection | |
KR102309189B1 (ko) | 핵산 검출용 다가 핵산 나노구조체 및 이를 이용한 고감도 핵산 탐침 | |
CN113462753B (zh) | 点击化学介导的单量子点纳米传感器及检测miRNAs的方法与应用 | |
CA2839771A1 (en) | Binding-induced formation of dna three-way junctions | |
CN116042927A (zh) | 一种用于检测新型冠状病毒的CRISPR-Cas13系统及其试剂盒和方法 | |
CN110938675B (zh) | siRNA定向自组装量子点生物传感器及其检测方法和应用 | |
CN111500683A (zh) | 体外检测dnase1l3蛋白的方法 | |
JP2021193934A (ja) | 短鎖ヘアピンDNAを用いた改良型in situ ハイブリダイゼーション反応 | |
CN118272523B (zh) | 基于裂开型G四聚体编程的循环式AIE生物传感器免标记检测急性肾损伤miRNA的体系及其方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |