CN112341474B - 一种荧光显像探针及其制备方法和应用 - Google Patents

一种荧光显像探针及其制备方法和应用 Download PDF

Info

Publication number
CN112341474B
CN112341474B CN202011218100.3A CN202011218100A CN112341474B CN 112341474 B CN112341474 B CN 112341474B CN 202011218100 A CN202011218100 A CN 202011218100A CN 112341474 B CN112341474 B CN 112341474B
Authority
CN
China
Prior art keywords
fluorescent imaging
probe
imaging probe
tumor
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011218100.3A
Other languages
English (en)
Other versions
CN112341474A (zh
Inventor
谢敏浩
林建国
邱玲
李航
刘清竹
李珂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Institute of Nuclear Medicine
Original Assignee
Jiangsu Institute of Nuclear Medicine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Institute of Nuclear Medicine filed Critical Jiangsu Institute of Nuclear Medicine
Priority to CN202011218100.3A priority Critical patent/CN112341474B/zh
Publication of CN112341474A publication Critical patent/CN112341474A/zh
Application granted granted Critical
Publication of CN112341474B publication Critical patent/CN112341474B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • A61K49/0021Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent group being a small organic molecule
    • A61K49/0032Methine dyes, e.g. cyanine dyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/005Fluorescence in vivo characterised by the carrier molecule carrying the fluorescent agent
    • A61K49/0052Small organic molecules
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1051Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Molecular Biology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明设计了两种具有良好水溶性的NIRF探针(G1和G2)。探针的PEG结构改善了探针的亲水性,体外光谱和脂质‑水分配系数证实:G1和G2具有较低的聚集趋势。生物素结构增强了探针对BR阳性肿瘤细胞的靶向性,G1和G2在体外细胞实验和体内荧光成像中均显示出良好的荧光成像效果。由于特别选择的亲水性基团—PEG结构与靶向基团—生物素的之间的配合,使得探针G1和G2在亲水性和靶向性之间能够取得平衡,进而在荧光强度、肿瘤靶向性、跨膜运输性以及在肿瘤细胞内的滞留时间等几个方面获得平衡,使得制备的探针G1和G2兼具荧光强度高、靶向性强、跨膜运输强以及在肿瘤细胞内的滞留时间长优势。

Description

一种荧光显像探针及其制备方法和应用
技术领域
本发明属于荧光显像技术领域,具体涉及一种荧光显像探针及其制备方法和应用。
背景技术
如今,荧光成像已经成为一种有效的肿瘤成像技术。它的优点很多,例如:灵敏度高,成本低,非入侵性和无放射性。然而,较浅的组织穿透深度和较高的背景信号限制了荧光成像的进一步发展。在过去的十年中,近红外荧光(NIRF)成像已经突破了上述两个障碍。近红外(NIR)区域(700-900nm)是理想的成像区域。相对于可见光,生物组织吸收的近红外光非常少;因此,近红外光有更深的组织穿透深度。而且在NIR区域内,生物体的自发荧光几乎不存在,所以NIRF成像的背景信号很低。综上所述,NIRF 成像更适用于体内肿瘤荧光成像。MayeulCollot团队(Chemical communications 2017, 53,6117-6120)报告了一种NIR荧光基团(本篇中称作G0,见图2),它是花菁染料IR780 的衍生物。G0是具有良好的光稳定性的优异的荧光团,吸收峰在780nm,发射峰在808nm。因此,可以以G0为荧光基团设计新型分子探针。此外,在合成过程中使用5-氯-1-戊炔使得G0结构包含两个炔基,这方便通过铜(I)催化的炔-叠氮化物环化加成反应(CuAAC) 引入其他功能基团。
尽管G0有许多优点,但仍然会在水溶液中聚集。通常,花菁染料是亲脂性的,因此它们在水溶液中的溶解度较低,会形成聚集体,这大大降低了探针对光的利用效率。许多研究表明,花菁染料在有机溶剂中具有较高的摩尔消光系数和光子量子产率,但是这些数据在水溶液中会大大降低。考虑到花菁染料的这一特性,为了获得更好的成像效果,新探针的设计必须降低其聚集趋势。为降低其聚集趋势,获得更好的成像效果,如中国专利文献CN1975418A中提供了一种叶酸-壳聚寡糖-花菁荧光染料生物探针及制备方法,这种新型探针的水溶性得到显著提高,并增加了染料与细胞的相容性,在与生物组织结合及成像时表现出荧光加合效应,探针分子与DNA或细胞相互作用的光学灵敏性显著提高,且具有很好的癌细胞标记的靶向性。然而在上述文献中的探针仅做了体外的探针标记蛋白实验,未能进行体内实验,难以预期其是否适应于生物体内癌细胞的标记,而又因为生物体内的环境十分复杂,花菁染料类的荧光探针不仅面对在生物体内容易聚集的问题,还要面对肿瘤细胞靶向性,是否容易跨膜运输进入肿瘤细胞以及在肿瘤细胞内的滞留时间长等问题,然而,目前还未有相关报道提供一种同时满足上述条件的花菁染料类荧光探针,因此,本发明提供了一种兼具荧光强度高、靶向性强、跨膜运输强以及在肿瘤细胞内滞留时间长等优势的花菁染料荧光显像探针。
发明内容
为此,本发明要解决的技术问题是提供一种兼具荧光强度高、靶向性强、跨膜运输强以及在肿瘤细胞内的滞留时间长优势的花菁染料G0的荧光显像探针及其制备方法和应用。
第一方面,本发明提供一种荧光显像探针,所述荧光显像探针为式G1或式G2,所述式G1或式G2结构式如下:
Figure GDA0003504086460000021
第二方面,本发明提供一种荧光显像探针的制备方法,式G0与Biotin-PEG5-Azide通过叠氮-炔环加成反应,得到式G1或式G2;式G0的结构式为
Figure GDA0003504086460000022
进一步地,所述荧光显像探针的制备方法,包括如下步骤:
1)将化合物G0、Biotin-PEG5-Azide和催化剂溶解于有机溶液,常温搅拌,得到反应产物;优选的常温搅拌为25℃下搅拌1.5h以上;
2)将反应产物中的液体蒸发后,得到的固体,经过分离,即得到探针。
进一步地,所述催化剂为CuSO4·5H2O、L-抗坏血酸钠盐和THPTA配体的混合物。
进一步地,G0与Biotin-PEG5-Azide的摩尔比为1∶(0.1-0.7),且G0与CuSO4·5H2O、L-抗坏血酸钠盐和THPTA配体的摩尔比为1∶0.35∶0.7∶0.35时,得到G1
进一步地,G0与Biotin-PEG5-Azide的摩尔比为1∶2.2,且G0与CuSO4·5H2O、L-抗坏血酸钠盐和THPTA配体的摩尔比为1∶1∶2∶1时得到G2
进一步地,所述有机溶液为THF、CH2Cl2、DMF或DMSO溶液中的一种;所述分离为柱层析分离。
一种肿瘤靶向荧光显像剂,包括上述的荧光显像探针或上述的荧光显像探针的制备方法得到的荧光显像探针。
一种肿瘤靶向荧光显像剂的制备方法,将上述的荧光显像探针或上述的荧光显像探针的制备方法得到的荧光显像探针溶解于水或生理盐水,制备得到荧光显像剂。
一种荧光显像探针使用方法,包括如下1)或2):
1),将上述的荧光显像探针或上述的荧光显像探针的制备方法得到的荧光显像探针溶解于水或生理盐水,或上述的荧光显像剂的制备方法制备得到的荧光显像剂,加入细胞培养液中与肿瘤细胞共孵育;细胞培养液中探针的浓度为25μM,孵育时间为12h;优选的,所述肿瘤细胞选自生物素受体高表达的肿瘤细胞,优选为HeLa细胞或A549 细胞。
2),将上述的荧光显像探针或上述的荧光显像探针的制备方法得到的荧光显像探针溶解于水或生理盐水,或所述的荧光显像剂的制备方法制备得到的荧光显像剂,通过尾静脉注射给药;以20g动物体重为计,给药浓度为20-30μM;给药体积为150-250μL;优选的,给药浓度为25μM,给药体积为200μL;优选的,所述肿瘤为荷瘤裸鼠的肿瘤。
所述方法为非疾病诊断治疗方法。
上述的荧光显像探针或上述制备方法制备得到的荧光显像探针在制备肿瘤靶向的荧光显像剂中的应用。
本发明具备以下优点:
1、在本发明中,设计并合成了两种具有良好水溶性和生物靶向性的NIRF探针G1和G2。探针的PEG结构改善了探针的亲水性,体外光谱和脂质-水分配系数证实:G1和G2具有较低的聚集趋势。生物素结构增强了探针对BR阳性肿瘤细胞的靶向性,G1和G2在体外细胞实验和体内荧光成像中均显示出良好的荧光成像效果。由于特别选择的亲水性基团—PEG结构与靶向基团—生物素的之间的配合,使得探针G1和G2在亲水性和靶向性之间能够取得平衡,进而在荧光强度、肿瘤靶向性、跨膜运输性以及在肿瘤细胞内的滞留时间等几个方面获得平衡,使得制备的探针G1和G2兼具荧光强度高、靶向性强、跨膜运输强以及在肿瘤细胞内的滞留时间长优势。综上所述,探针G1和G2有发展前景的新型肿瘤靶向分子探针。
2、本发明的探针的制备方法,通过调整投料比例,能够制备得到G1和G2。本发明提供的一种制备荧光显像探针的制备方法,通过控制反应物的投料比,能够最大程度的制备获得连接不同个数靶向基团的荧光探针G1和G2,降低了反应过程中副产物的生成,提高反应产率,降低后期反应产物的分离和纯化步骤。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是实施例3中探针G1和G2在HeLa荷瘤小鼠体内的靶向机制图;
图2是实施例1中化合物G1和G2的合成路线,反应条件:(a)CuSO4·5H2O,THPTA, 抗坏血酸钠,DMF与H2O的体积比=5/1,室温,0.5equivalent Biotin-PEG5-Azide;(b)CuSO4·5H2O,THPTA,抗坏血酸钠,DMF与H2O的体积比=5/1,室温,2.2equivalent Biotin-PEG5-Azide;
图3是实施例1中化合物G0的ESI-MS分析图;纵坐标是离子的相对丰度(%);
图4是实施例1中化合物G0的HPLC分析图,检测波长为690nm;
图5是实施例1中化合物G1的ESI-MS分析图;纵坐标是离子的相对丰度(%);
图6是实施例1中化合物G1的HPLC分析图,检测波长为690nm;
图7是实施例1中G1的核磁共振氢谱;
图8是实施例1中G1的核磁共振碳谱;
图9是实施例1中化合物G2的ESI-MS分析图;纵坐标是离子的相对丰度(%)
图10是实施例1中化合物G2的HPLC分析图,检测波长为690nm;
图11是实施例1中G2的核磁共振氢谱;
图12是实施例1中G2的核磁共振碳谱;
图13是实施例2中G0、G1和G2的HPLC分析图,检测波长为690nm;
图14是实施例2中在甲醇中(a、d和g)和水中(b、e和h),不同浓度的化合物G0、G1和G2的归一化吸收光谱;在甲醇中,吸光度与G0、G1和G2的浓度之间的拟合直线见c、f和i;a-c为G0,d-f为G1,g-i为G2
图15a是实施例2中使用甲醇作为溶剂,浓度为4μM的G0、G1和G2溶液的荧光光谱;纵坐标是吸光度(a.u.),横坐标为波长(nm);
图15b是实施例2中使用水作为溶剂,浓度为4μM的G0、G1和G2溶液的荧光光谱;纵坐标是吸光度(a.u.),横坐标为波长(nm);
图15c是实施例2中使用水作为溶剂,浓度为4μM的G0、G1和G2溶液的NIR 荧光图像;
图15d是实施例2中平均荧光强度定量分析图,纵坐标为辐射效率;
图16a是实施例3中G1和G2分别在3.125、6.25、12.5、25和50μM的浓度下,在HeLa细胞中孵育12h的毒性分析图;
图16b是实施例3中G1和G2分别在3.125、6.25、12.5、25和50μM的浓度下,在HeLa细胞中孵育24h的毒性分析图;
图16c是实施例3中G1和G2分别在3.125、6.25、12.5、25和50μM的浓度下, 在LO2细胞中孵育12h的毒性分析图;
图16d是实施例3中G1和G2分别在3.125、6.25、12.5、25和50μM的浓度下, 在LO2细胞中孵育24h的毒性分析图;
图17是实施例3中用25μM的G1和G2溶液分别孵育HeLa细胞和LO2细胞12h后的荧光图像;biotin(+)表示细胞用200μM生物素溶液预处理2小时,而生物biotin (-)表示细胞仅与探针一起孵育;每幅图中的左图为明场下细胞显像图,右图为细胞的荧光显像图;
图18a是实施例4中探针G1和G2在正常小鼠体内,不同时间点的NIR图像;
图18b是实施例4中探针G1和G2在正常小鼠肾脏中,不同时间点荧光强度的定量;
图18c是实施例4中探针G1和G2在正常小鼠12和192h肝脏代谢的NIR图像;
图19a是实施例4中探针G1和G2在HeLa荷瘤小鼠体内,不同时间点的NIR图像;
图19b为实施例4中探针G1在HeLa荷瘤小鼠体内,不同时间点肿瘤和肌肉荧光强度的定量;
图19c为是实施例4中探针G2在HeLa荷瘤小鼠体内,不同时间点肿瘤和肌肉荧光强度的定量;
图19d为是实施例4中探针G1和G2在HeLa荷瘤小鼠体内,不同时间点肿瘤和肌肉荧光强度比值(T/M)。
图20a为实施例4中G1在HeLa荷瘤小鼠解剖后的肿瘤组织和主要器官的体外荧光图;
图20b为实施例4中G2在HeLa荷瘤小鼠解剖后的肿瘤组织和主要器官的体外荧光图;
图20c为G1和G2在HeLa荷瘤小鼠解剖后的肿瘤和主要器官荧光强度的定量分析。
具体实施方式
5-氯-1-戊炔,2,3,3-三甲基吲哚啉和碘化钾购自安耐吉化工(中国上海);Biotin-PEG5-Azide购自华腾公司(中国湖南);2-氯-1-甲酰基-3-(羟基亚甲基)-1- 环己烯购自玉涵公司(中国上海)。除非另有说明,否则所有试剂均直接使用。
探针的吸收光谱通过UV-Vis光谱仪(Lambda 25;Perkin Elmer)获得。发射光谱通过稳态和瞬态荧光光谱仪(QM/TM;PTI)获得。高效液相色谱(HPLC)用于分析化合物,主要由HPLC泵(Waters 1525;USA),双波长吸收UV/vis检测器(Waters2487; USA)和C18色谱柱(10μm,6mm×250mm;elitehlc)组成。核磁共振谱记录在全数字核磁共振谱仪(AvanceⅢ400mHZ;Bruker)上。通过四极串联质谱仪(SQ-detect 2; Waters),电喷雾电离质谱仪(ESI-MS)验证化合物的质荷比。正常裸鼠和荷瘤小鼠的 NIR荧光图像是通过IVIS荧光体内成像系统(Caliper Life Sciences;PerkinElmer) 中的获得的。
本发明中的室温范围为25±2℃。
实施例1化合物G1和G2的合成
1化合物G0的合成
按照已报道的方法(Chemical communications2017,53,6117-6120)获得了G0,具体方法:将KI(5.8g,34.93mmol,6eq)溶解在乙腈(25mL)中;然后加入5-氯-1-戊炔(1841μL,17.45mmol,3eq)。反应液在50℃下搅拌40分钟。向其中添加2,3,3-三甲基吲哚啉(933μL,5.82mmol,1eq)。将反应混合物在85℃下加热24小时。将反应液过滤,然后通过减压蒸馏去除乙腈。所得固体通过柱色谱法(流动相为:MeOH与 DCM体积比为2-5%)纯化得到化合物1,收率为17%(224mg,0.991mmol)。将化合物1(221mg,0.977mmol,1eq)和2-氯-1-甲酰基-3-(羟基亚甲基)-1-环己烯(84.1 mg,0.489mmol,0.5eq)溶解于无水乙腈(3mL)。然后加入乙酸酐(123μL)和醋酸钠(40mg,0.489mmol,0.5eq)。将该溶液在85℃下搅拌5小时。反应后的混合物通过柱色谱法(流动相为1-5%甲醇的二氯甲烷溶液,硅胶200-300目)纯化,得到金黄色深绿色固体(G0),产率为80%(230mg,0.391mmol)。C40H44ClN2 +([M]+)的ESI-MS 计算值588.2,实测值588.32。
ESI-MS结果见图3,HPLC分析结果见图4。
2探针G1的合成
将化合物G0(38.0mg,0.0648mmol,1eq)和Biotin-PEG5-Azide(24.1mg,0.0454mmol,0.7eq)添加到CuSO4·5H2O(5.7mg,0.0227mmol,0.35eq)中。然后加入L- 抗坏血酸钠盐(9.0mg,0.0454mmol,0.7eq)和THPTA配体(9.85mg,0.0227mmol, 0.35eq)。将所有化合物溶解在二甲基甲酰胺(DMF)和H2O的体积比为5∶1的5ml DMF 水溶液中。将反应混合物在25℃下搅拌1.5h。之后,将溶剂蒸发至干。通过柱层析分离(流动相为:甲醇与二氯甲烷的体积比为1-20%,硅胶200-300目)纯化固体,具体方式,流动相从甲醇:二氯甲烷体积比为1%至20%依次增加,每次增加5%,到20%时洗脱出目标产物。以62.5%的产率获得30mg(0.0268mmol)G1,G1为深绿色固体。 C62H84ClN8O7S+([M+])的ESI-MS计算值是1119.59,实测值是1119.46。
测试纯化获得的G1的核磁共振和光谱特征:氢谱和碳谱的数据结果如下:
氢谱解析:1H NMR(400MHz,Chloroform-d)δ8.45(d,J=14.2Hz,1H),8.31(d,J=13.7Hz,1H),7.97(s,1H),7.38(dd,J=11.3,7.8Hz,4H),7.33–7.28(m,2H),7.22(t,J=7.4Hz,2H),7.12(d,J=7.9Hz,1H),6.31(d,J=14.2Hz,1H),6.13(d,J=13.8Hz,1H), 4.60(s,4H),4.23(s,2H),4.14(t,J=7.1Hz,2H),3.90(s,2H),3.63(d,J=6.4Hz,18H), 3.56(s,2H),3.44(s,2H),3.18(s,1H),2.96(s,2H),2.68–2.62(m,4H),2.39–2.34(m,2H), 2.27(s,2H),2.06–2.01(m,2H),1.94(s,1H),1.72(s,18H),1.43(s,4H),1.33(t,J=7.2Hz,2H)。
碳谱解析:13C NMR(101MHz,CDCl3)δ174.22,170.98,151.16,146.54,143.26,142.26,141.67,140.64,129.15,128.74,128.15,127.27,126.21,124.80,122.28,122.22,111.58,109.96,102.62,99.59,82.49,70.48,70.27,70.11,69.86,69.06,55.31,50.85,49.84, 48.94,46.16,44.08,42.60,39.41,35.25,28.27,28.05,27.77,27.67,26.75,26.37,26.22, 25.72,25.38,21.94,20.59,16.04。
3探针G2的合成
将G0(37.1mg,0.0632mmol,1eq)和Biotin-PEG5-Azide(73.9mg,0.139mmol,2.2eq)添加到CuSO4·5H2O(15.8mg,0.0632mmol,1eq)中。然后加入L-抗坏血酸钠盐(25mg,0.01264mmol,2eq)和THPTA配体(27.4mg,0.0632mmol,1eq)。所有化合物都溶解在二甲基甲酰胺(DMF)和H2O的体积比为5∶1的5ml DMF溶液中。将反应混合物在25℃下搅拌1.5h。之后,将溶剂蒸发至干。通过柱层析分离(流动相为:1-30%(体积百分含量)甲醇的二氯甲烷溶液,硅胶200-300目)纯化固体,具体方式:流动相从甲醇比二氯甲烷为1%至30%依次增加,每次增加5%(V/V),到 30%时洗脱出目标产物。以60%的产率获得了深绿色固体形式的G2(58mg,0.035mmol)。 C84H123ClN14O14S2 +([M+])的ESI-MS计算值1651.85,实测值是1652.36。
测试纯化获得的G2的核磁共振和光谱特征:氢谱和碳谱的数据结果如下:
氢谱解析:1H NMR(400MHz,Chloroform-d)δ8.35(d,J=13.5Hz,2H),7.75(s,2H),7.39(dd,J=14.8,7.3Hz,4H),7.24(dd,J=15.7,8.0Hz,6H),6.68(s,2H),6.27(d,J=13.6Hz,2H),5.41–5.25(m,4H),4.57(s,4H),4.35(s,2H),4.24(s,2H),3.90(s,4H),3.62(d,J=8.4Hz,36H),3.55(s,4H),3.41(s,4H),3.15(s,2H),2.92(s,4H),2.75(d,J=12.2Hz,2H), 2.66(s,2H),2.24(d,J=7.0Hz,4H),2.01(dd,J=14.3,8.5Hz,4H),1.72(s,12H),1.66(d,J =6.8Hz,4H),1.43(s,2H),1.26(s,12H).
碳谱解析:13C NMR(101MHz,CDCl3)δ173.81,172.42,150.82,144.71,142.10,141.02,129.90,128.95,127.73,125.36,123.10,122.17,111.02,101.45,70.44,70.39,70.07, 69.83,69.48,62.04,60.48,55.57,50.28,49.32,43.96,40.50,39.20,35.69,31.89,29.77, 29.68,29.61,29.51,29.31,29.23,28.18,28.11,27.99,27.21,26.35,25.56,22.67,22.49。
如图2所示,通过CuAAC反应将G0与Biotin-PEG5-Azide连接,得到探针G1和 G2。通过控制Biotin-PEG5-Azide的当量分别获得G1和G2。探针G1和G2通过质谱, HPLC,核磁共振氢谱和碳谱进行了表征(图5-12)。预期探针上的不同结构基团发挥不同的功能:(1)G0作为近红外荧光基团;(2)生物素残基用于增强探针对肿瘤的特异性; (3)PEG结构改善探针的亲水性,降低探针的聚集趋势。此外,G1和G2的结构差异会影响探针的成像效果,因此本发明后续的实验中研究它们的亲水性和靶向效率的差异。
实施例2化合物G1和G2光化学和光物理性质的测定
1吸收光谱和荧光光谱的测定
选择甲醇作为溶剂,制备G0,G1和G2的储备溶液(20mM),用于测定光谱。用甲醇和水分别将G0、G1和G2的储备溶液稀释至不同浓度(4μM,3μM,2μM,1μM,0.5 μM),以获得吸收光谱。获得了在λmax和浓度下的吸光度拟合直线。准备4μM的G0、G1和G2溶液以测量荧光光谱。本发明分别使用甲醇和水作为溶剂,以比较探针在不同溶剂中的荧光强度。
2光子量子产率的测定
分别用甲醇和水作溶剂准备G1、G2和吲哚菁绿(ICG)溶液(1μM);将ICG用作参考化合物(在甲醇中,Φ=0.043;在水中,Φ=0.005)。根据以下公式计算探针的量子产率(Φ):
Figure GDA0003504086460000091
其中I代表测得的荧光光谱的积分面积;η是溶剂的折射率;A是溶液的吸光度;x表示探针;st是参考化合物。
3脂质/水分配系数(log P)
将G0(20μL,100μM)和1mL水依次添加到1mL正辛醇中。将溶液充分震荡后,将其高速离心3分钟。吸取150μL有机相以测量其吸光度。根据图14c,f,i计算其浓度(Co)。G0的脂质/水分配系数(log P)可根据以下公式计算:
Log P=log(Co/CW) (2)
其中Co代表探针在正辛醇中的浓度,Cw代表探针在水中的浓度。然后通过相同的方法测得G1和G2的log P。
为了比较G0,G1和G2的亲水性,本发明测量了三者的log P,它是反映亲水性的重要参数。G0,G1和G2的log P分别为1.893±0.229、1.039±0.106和0.441±0.143(G0> G1>G2)。如图2所示,G2连接两个PEG5基团,G1连接一个PEG5基团,而G0不连接 PEG。这证明增加PEG增强了探针的亲水性。此外,本发明通过HPLC比较了三个探针的极性(图13),表明G0<G1<G2。此结果与亲水性顺序一致。
接下来,本发明测量了G0、G1和G2的光物理和光化学性质(图14,表1)。在甲醇中,G1和G2均在784nm处有吸收峰;G0的吸收峰在780nm。G1和G2分别在809nm 和807nm处有荧光发射峰,而G0的发射峰在808nm处。这些微小的波长变化表明,生物素和PEG的引入不会改变NIR荧光团的基本荧光性质。值得注意的是,在甲醇中, G0,G1和G2的最大吸收强度遵循比尔-朗伯定律,表明三者没有发生聚集(图14c,14 f,14 i)。但是,G0在水中的摩尔消光系数(ε)为94248M-1cm-1,仅为甲醇中的42%(表1)。这表明G0在水中发生了聚集,对光的吸收大大降低。该实验结果与其他花菁染料的特性一致。例如,吲哚菁绿(ICG)是美国食品和药物管理局(FDA)批准的用于临床的NIR荧光成像剂。在甲醇中,ICG的ε是230000M-1cm-1,而在水中,ε只有157000M-1cm-1 (下降31%)。如表1所示,与G0相比,G1在水中的ε是141372M-1cm-1(G0的1.5倍); G2的ε是161568M-1cm-1(G0的1.71倍)。以上数据表明,PEG结构降低了探针的聚集趋势,增强了探针对光的吸收强度。化合物在水中的吸收强度的差异也与log P的计算结果一致。
表1.G0,G1和G2的光物理和光化学数据
Figure GDA0003504086460000101
aλex=750nm;b,dICG作为参比化合物(Φ=4.3%in MeOH;Φ=0.5%in H2O);cλex=750nm.; em是发射波长;ex为激发波长
如图15a,15 b所示,在甲醇中,G0、G1和G2的吸光度差别不大(G0:11280a.u.; G1:12429a.u;G2:12077a.u.)。但是,在水中,三者的吸光度差异很大。在水中,G1和G2的荧光强度分别是G0的1.67倍和2.04倍(图15)。类似的差异也反映在荧光量子产率上(表1)。G1和G2在水中的荧光量子产率(Φ)分别是G0的1.98倍和2.76倍。 IVIS光谱成像系统也显示G1和G2在水中与G0相比具有较强的荧光强度(图15c)。在水中G1和G2的强度分别是G0的1.49倍和1.70倍(图15d)。以上实验结果证明,G1和G2是具有较强亲水性的新型花菁探针。
实施例3体外肿瘤细胞特异性成像
1细胞培养
为了验证探针在肿瘤部位的特异性积累,选择HeLa细胞作为BR阳性肿瘤细胞,选择LO2细胞作为BR阴性正常细胞。将HeLa和LO2细胞置于含有10%(v/v)胎牛血清(FBS)的高葡萄糖DMEM培养基中,并在5%(v/v)CO2的潮湿稳定环境中培养。孵育温度为37℃。
2细胞毒性测定
进行MTT测定以评估探针G1和G2的细胞毒性。将HeLa和LO2细胞分别接种到 96孔板中,将密度控制为每孔10000个细胞。将细胞在37℃下孵育24h,以使细胞附着。将G1和G2分别溶于DMF,得到20mM G1和G2储备溶液,用完全培养基(含有 10%(v/v)胎牛血清(FBS)的高葡萄糖DMEM培养基中)将G1和G2的储备溶液稀释至目标浓度。除去培养基后,将不同浓度(3.125至50μM)的探针溶液添加到96孔板中。然后将细胞在37℃下孵育12和24h。将MTT溶解在磷酸盐缓冲液(PBS,pH= 7.4),浓度为5mg/mL,并向每个孔中添加20μL浓度为5mg/mlMTT溶液。然后将细胞孵育4h。用PBS洗涤细胞3次,除去培养基,并加入150μL DMSO以溶解甲臜。用酶标仪读取每个孔在470nm处的平均吸光度。对照组是将上述步骤G1和G2探针溶液替换为相同体积的双蒸水。根据实验组和对照组的平均吸光度之比评价细胞毒性。
3体外肿瘤细胞特异性成像
选择N,N-二甲基甲酰胺(DMF)作为G1和G2溶剂,以制备用于细胞和动物实验的储备溶液(G1和G2的浓度均为20mM)。在6孔板中,分别接种 HeLa和LO2细胞,将密度控制为每孔50000个细胞。将细胞在37℃下,5% CO2培养箱中培养过夜。用培养基将G1和G2的储备溶液稀释至25μM,取体积 3ml添加到6孔板中。将细胞在5%CO2气氛下于37℃孵育。持续6h和12h。然后将细胞用PBS洗涤3次。除去培养基后,加入适量的PBS以维持细胞形态。最后,通过荧光显微镜观察细胞。
在进行细胞荧光成像实验之前,应该评估两种探针的细胞毒性。如图16所示,探针G1和G2对HeLa和LO2细胞均显示出低毒性。例如,将细胞与25μM的G1溶液孵育24h后,HeLa和LO2的细胞活力分别为87.84%和88.46%。在将细胞与25μM的 G2溶液孵育24h后,HeLa和LO2的细胞活力分别为80.46%和85.10%。因此,探针 G1和G2可用于后续的细胞和动物实验。
为了验证探针G1和G2对BR阳性肿瘤细胞的靶向能力,选择HeLa和LO2细胞进行细胞荧光成像实验。将两种探针分别与细胞孵育12h后,在HeLa细胞中观察到明亮的荧光信号,而在LO2细胞中几乎没有荧光信号,这说明探针G1和G2可以特异性识别 HeLa细胞(图17)。
为了确认两种探针的特异性细胞成像是由BR介导的,本发明还设计了一种竞争摄取实验。将HeLa细胞用过量的生物素预处理2h,以此占据大量的BR位点。与仅施加探针G1和G2实验组相比,在用过量生物素预处理的对照组中,荧光信号明显减弱(图 17)。该结果表明,生物素基团和BR的相互作用使得探针可以特异性识别HeLa细胞。
实施例4体内实验
1正常裸鼠中探针G1和G2的动态生物分布
选择正常裸鼠(4周大,雌性)以检测探针在体内的分布。将G1和G2分别用生理盐水稀释至25μM,并通过尾静脉将200μL探针溶液(浓度为25μM)注入正常裸鼠中,在不同的时间点(0、1、4、12、24、72、168、192h)通过成像系统监测正常裸鼠,结果见图18。注射探针后1h时,在小鼠肾脏中发现了明亮的荧光信号(图18a)。此外,在肝脏中也检测到了明亮的荧光信号(图18c)。像其他花菁探针一样,探针G1和G2主要由肝脏和肾脏代谢。还发现了G1和G2代谢速率的差异,如图18所示,在注射24h 时,在注射G1的小鼠中仍检测到非常强的荧光信号,而注射G2的小鼠中,荧光信号相对较弱。168h时,探针G2几乎已从小鼠身上清除,而小鼠中仍存在少量探针G1。这表明探针G2的代谢速度更快。
2荷瘤小鼠培养
将HeLa细胞(1×107个)悬浮在PBS溶液中,皮下注射到裸鼠(4-6周大的雌性小鼠)的前肢腋窝中,以构建HeLa肿瘤异种移植模型。饲养小鼠至肿瘤体积达到 100-120mm3
3荷瘤小鼠的体内荧光成像
将探针G1和G2分别用生理盐水稀释至25μM,然后通过尾静脉将200μL探针溶液注射到HeLa肿瘤异种移植小鼠体内。使用成像系统在注射后的不同时间点对小鼠进行成像,见图19。从图19中可以看出,对于G1和G2,在注射后6h时,在肿瘤部位都观察到了明亮的荧光信号,并且持续了162h。连续的肿瘤成像对于诊断疾病和进行手术很有帮助。不同的是,与G1相比,G2在正常组织中的清除速度更快。
为了进一步验证探针的肿瘤靶向能力,发明人定量分析了肿瘤和肌肉处的荧光强度,并计算了肿瘤和肌肉信号值之比(T/M)(图19)。对于G1,在注射后24h以内,肿瘤处的荧光强度迅速增加,然后保持稳定,明显高于肌肉处的荧光强度。对于G2,注射12h之后,肿瘤部位的荧光强度便趋于稳定,并且明显强于肌肉的荧光强度。在荧光成像中,T/M是NIRF探针的重要参数。当T/M超过2.5时,则认为探针在肿瘤中的富集是显著的。如图19所示,15.2h时,G1的T/M超过了2.5,在10.5h时,G2的T/M 超过了2.5。具体数据如下:对于G1,T/M分别是3.06(24h),3.59(72h),4.01(96 h),4.69(168h);对于G2,T/M分别是2.88(24h),3.94(72h),4.19(96h),4.27 (168h)。以上数据表明,探针G1和G2可以特异性识别肿瘤组织。
可以看出,肿瘤组织对G1的摄取高于G2。探针注射后72h时,肿瘤部位G1的荧光强度约为G2的2.39倍。本发明认为,G2的较强亲水性不利于探针跨膜运输。但是,这并不是唯一的原因。如图18和图19所示,探针G2在小鼠中的代谢比G1快。短时间内大量的G2会被排泄掉,所以肿瘤处G2的积累更少。
4.生物分布
为了进一步了解探针在肿瘤和其他器官中的分布情况,在注射探针后72h时,处死并解剖荷瘤小鼠。如图20所示,在肿瘤处检测到了强荧光信号,而肺,胃,脾,心脏和肠的荧光信号较弱,这验证了探针G1和G2在肿瘤处的选择性积累。在肝脏和肾脏中也检测到明亮的荧光信号,表明探针G1和G2主要由肝脏代谢,肾脏排泄,这与图18 的结果一致。G1在肿瘤部位的荧光强度是G2的2.52倍(图20),此结果与图19一致。
在本项研究中,本发明设计了两种具有良好水溶性的NIRF探针(G1和G2)。探针的PEG结构改善了探针的亲水性,生物素结构增强了探针对BR阳性肿瘤细胞的靶向性。体外光谱和脂质-水分配系数证实G1和G2具有较低的聚集趋势。G1和G2在体外细胞实验和体内荧光成像中均显示出良好的荧光成像效果。综上所述,探针G1和G2是具有发展前景的新型肿瘤靶向分子探针。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (11)

1.一种荧光显像探针,其特征在于,所述荧光显像探针为式G1或式G2,所述式G1或式G2结构式如下:
Figure FDA0003390759370000011
2.一种制备权利要求1所述的荧光显像探针的方法,其特征在于,
式G0与Biotin-PEG5-Azide通过叠氮-炔环加成反应,得到式G1或式G2;式G0的结构式为
Figure FDA0003390759370000012
3.根据权利要求2所述荧光显像探针的制备方法,其特征在于,包括如下步骤:
1)将化合物G0、Biotin-PEG5-Azide和催化剂溶解于有机溶液,常温搅拌,得到反应产物;
2)将反应产物中的液体蒸发后,得到的固体,经过分离,即得到探针。
4.根据权利要求3所述荧光显像探针的制备方法,其特征在于,所述催化剂为CuSO4·5H2O、L-抗坏血酸钠盐和THPTA配体的混合物;所述有机溶液为THF、CH2Cl2、DMF或DMSO溶液中的一种;所述分离为柱层析分离。
5.根据权利要求4所述荧光显像探针的制备方法,其特征在于,
G0与Biotin-PEG5-Azide的摩尔比为1:(0.1-0.7),且G0与CuSO4·5H2O、L-抗坏血酸钠盐和THPTA配体的摩尔比为1:0.35:0.7:0.35时,得到G1
6.根据权利要求4所述荧光显像探针的制备方法,其特征在于,
G0与Biotin-PEG5-Azide的摩尔比为1:2.2,且G0与CuSO4·5H2O、L-抗坏血酸钠盐和THPTA配体的摩尔比为1:1:2:1时得到G2
7.一种肿瘤靶向荧光显像剂,其特征在于,包括权利要求1所述的荧光显像探针或权利要求2-6任一所述的荧光显像探针的制备方法得到的荧光显像探针。
8.一种肿瘤靶向荧光显像剂的制备方法,其特征在于,将权利要求1所述的荧光显像探针或权利要求2-6任一所述的荧光显像探针的制备方法得到的荧光显像探针溶解于水或生理盐水,制备得到荧光显像剂。
9.一种非疾病诊断和治疗方法的荧光显像探针使用方法,其特征在于,包括如下1)或2):
1),将权利要求1所述的荧光显像探针或权利要求2-6任一所述的荧光显像探针的制备方法得到的荧光显像探针溶解于水或生理盐水,或将权利要求8所述的荧光显像剂的制备方法制备得到的荧光显像剂,加入细胞培养液中与肿瘤细胞共孵育;细胞培养液中探针的浓度为25μM,孵育时间为12h;
2),将权利要求1所述的荧光显像探针或权利要求2-6任一所述的荧光显像探针的制备方法得到的荧光显像探针溶解于水或生理盐水,或权利要求8所述的荧光显像剂的制备方法制备得到的荧光显像剂,通过尾静脉注射给药;以20g动物体重为计,给药浓度为20-30μM;给药体积为150-250μL。
10.根据权利要求9所述的一种非疾病诊断和治疗方法的荧光显像探针使用方法,其特征在于,给药浓度为25μM;给药体积为200μL。
11.权利要求1所述的荧光显像探针或权利要求2-6任一所述制备方法制备得到的荧光显像探针,或权利要求7所述的荧光显像剂或权利要求8所述的荧光显像剂的制备方法制备得到的荧光显像剂在制备肿瘤靶向荧光显像剂中的应用。
CN202011218100.3A 2020-11-04 2020-11-04 一种荧光显像探针及其制备方法和应用 Active CN112341474B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011218100.3A CN112341474B (zh) 2020-11-04 2020-11-04 一种荧光显像探针及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011218100.3A CN112341474B (zh) 2020-11-04 2020-11-04 一种荧光显像探针及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN112341474A CN112341474A (zh) 2021-02-09
CN112341474B true CN112341474B (zh) 2022-04-15

Family

ID=74428662

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011218100.3A Active CN112341474B (zh) 2020-11-04 2020-11-04 一种荧光显像探针及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN112341474B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111925311B (zh) * 2020-08-28 2021-11-02 上海库擘生物技术有限公司 肿瘤造影化合物、其制备方法及在肿瘤诊断成像中的应用
CN113398284B (zh) * 2021-06-17 2023-04-14 江苏省原子医学研究所 一种肿瘤靶向核素诊断与治疗分子探针及制备方法和应用
CN113979912B (zh) * 2021-11-16 2023-04-07 中国医学科学院肿瘤医院 两种前列腺特异性膜抗原靶向荧光探针及其制备方法与应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111187279A (zh) * 2020-01-16 2020-05-22 新乡医学院 蓝萼甲素-生物素类小分子探针及其制备方法和应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111187279A (zh) * 2020-01-16 2020-05-22 新乡医学院 蓝萼甲素-生物素类小分子探针及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Ca-NIR: a ratiometric near-infrared calcium probe based on a dihydroxanthene-hemicyanine fluorophore;Mayeul Collot,et al.,;《Chem. Commun.》;20170515;第53卷;第6117-6120页 *
Dual-channel near-infrared fluorescent probe for real-time tracking of endogenous r-glutamyl transpeptidase activity;Bing Bai,et al.,;《Chem. Commun.》;20181004;第54卷;第12393-12396页 *
In vivo real-time tracking of tumor-specific biocatalysis in cascade nanotheranostics enables synergistic cancer treatment;Ruofei Wang,et al.,;《Chem. Sci.》;20200226;第11卷;第3371-3377页 *

Also Published As

Publication number Publication date
CN112341474A (zh) 2021-02-09

Similar Documents

Publication Publication Date Title
CN112341474B (zh) 一种荧光显像探针及其制备方法和应用
CN101440282B (zh) 近红外荧光分子探针及其合成方法和用途
EP4015518B1 (en) Active-targeting near-infrared fluorescent molecule for targeting folate receptor and preparation method therefor
CN106390143A (zh) 肿瘤靶向核磁共振/荧光双模态成像造影剂及其制备和应用
CN112694431B (zh) 超敏感荧光探针检验细菌中硝基还原酶及在细菌感染应用
Liang et al. A nitroreductase and glutathione responsive nanoplatform for integration of gene delivery and near-infrared fluorescence imaging
Pradipta et al. Tetramethylrhodamine is an essential scaffold of azide probe in detecting cellular acrolein
CN111592482B (zh) 一种pH可逆激活型光热/光动力/荧光一体化探针分子
Wang et al. Near-infrared fluorescence probes for monitoring and diagnosing nephron-urological diseases
Lu et al. Assessing Early Atherosclerosis by Detecting and Imaging of Hypochlorous Acid and Phosphorylation Using Fluorescence Nanoprobe
Zhang et al. In vivo selective imaging of metabolic glycosylation with a tetrazine-modified upconversion nanoprobe
EP3943919B1 (en) Fluorescence imaging of lipid droplets in cell and tissue with 3-(benzo[d]thiazol-2-yl)-2h-benzo[g]chromen-2-one derivatives and the corresponding benzo[d]oxazole and 1h-benzo[d]imidazole derivatives
JP2010203966A (ja) 低酸素領域イメージング用近赤外蛍光プローブ
Zhang et al. Structure-inherent near-infrared fluorescent probe mediates apoptosis imaging and targeted drug delivery in vivo
Patel et al. Impact of Substituents in Tumor Uptake and Fluorescence Imaging Ability of Near‐Infrared Cyanine‐like Dyes
CN109796444B (zh) 一种近红外双荧光探针化合物及制法和应用
Li et al. Development of biotin-tagged near-infrared fluorescence probes for tumor-specific imaging
CN116554274A (zh) 一种用于肿瘤靶向成像的近红外荧光探针的制备法与应用
CN114249696B (zh) 一种鲁米诺类化合物及其制备方法和应用、药物组合物
Morsby et al. Structure‐Activity Studies of Nitroreductase‐Responsive Near‐Infrared Heptamethine Cyanine Fluorescent Probes
CN111072584B (zh) 一种近红外荧光小分子探针及其制备与应用
Yu et al. A lysosome-targeted triazole near-infrared cyanine fluorescent probe for in vivo long-term cell tracking
Jia et al. Near-infrared fluorescent probes for non-invasive, real-time, and dual-color in vivo NIR-II imaging
CN108250125B (zh) 一种肿瘤靶向探针化合物及其合成和应用
CN114437098A (zh) 一种近红外荧光标记的gsh响应型的鬼臼毒素前药的设计与合成

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant