CN111302654B - 单面优势压应力玻璃及其制备方法与应用 - Google Patents

单面优势压应力玻璃及其制备方法与应用 Download PDF

Info

Publication number
CN111302654B
CN111302654B CN201811511577.3A CN201811511577A CN111302654B CN 111302654 B CN111302654 B CN 111302654B CN 201811511577 A CN201811511577 A CN 201811511577A CN 111302654 B CN111302654 B CN 111302654B
Authority
CN
China
Prior art keywords
compressive stress
glass
sided
dominant
ion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811511577.3A
Other languages
English (en)
Other versions
CN111302654A (zh
Inventor
胡伟
覃文城
谈宝权
陈芳华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Aureavia Hi Tech Glass Co Ltd
Original Assignee
Chongqing Aureavia Hi Tech Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Aureavia Hi Tech Glass Co Ltd filed Critical Chongqing Aureavia Hi Tech Glass Co Ltd
Priority to CN201811511577.3A priority Critical patent/CN111302654B/zh
Publication of CN111302654A publication Critical patent/CN111302654A/zh
Application granted granted Critical
Publication of CN111302654B publication Critical patent/CN111302654B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/008Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character comprising a mixture of materials covered by two or more of the groups C03C17/02, C03C17/06, C03C17/22 and C03C17/28
    • C03C17/009Mixtures of organic and inorganic materials, e.g. ormosils and ormocers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0075Cleaning of glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/44Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the composition of the continuous phase
    • C03C2217/445Organic continuous phases
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • C03C2218/328Partly or completely removing a coating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/355Temporary coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

本发明公开了一种单面优势压应力玻璃及其制备方法与应用。所述单面优势压应力玻璃一种单面优势压应力玻璃,所述单面优势压应力玻璃具有相对的两个表面,沿所述单面优势压应力玻璃的所述表面至内部的方向,所述单面优势压应力玻璃的至少一表层为离子交换层,且至少一所述表层的压应力递减,且两所述表层的压应力积分相差10%以上。本发明单面优势压应力玻璃的压应力深度大,强度高,具有高的抗跌落性能,其制备方法其所述制备方法工艺条件易控,能够保证制备的单面优势压应力玻璃性能稳定。

Description

单面优势压应力玻璃及其制备方法与应用
技术领域
本发明属于玻璃制品技术领域,具体涉及一种单面优势压应力玻璃及其制备方法与应用。
背景技术
玻璃由于其本身具有透明性、耐高温等特点,因此,玻璃在日常生活中得到了广泛的应用。比如,玻璃在保护装置、装潢等领域得到了广泛的应用。但是玻璃也存在一定的不足,如存在抗冲击性不强,易碎等缺陷,从而限制了玻璃在一些领域的应用。
为了弥补玻璃的该些缺点,使得玻璃满足特定领域中的应用要求,需要对玻璃进行相应的强化处理,以增强玻璃相应的机械性能。
玻璃强化是一种利用高温离子交换工艺,在高温熔盐中大碱金属离子取代玻璃中的小碱金属离子从而产生交换离子体积差,在玻璃一定的表层中产生由高到低的压应力,阻碍和延缓玻璃微裂纹的扩展,达到提高玻璃机械强度的目的。但是张应力与压应力是共生关系,单面优势压应力玻璃在表面产生压应力的同时,其内部也不可避免的产生了相应的张应力。
张应力会在玻璃的中心内部产生张力,并在玻璃受到冲击时,作为玻璃开裂的助力,甚至是玻璃裂纹产生和扩展的原因。经过分析玻璃断面可知,张应力可以严重的破坏玻璃的网络结构。当玻璃内部具有微裂纹时,在过大的张应力影响下,单面优势压应力玻璃的机械强度会下降,尤其是抗跌落性能。当张应力过大时,强化玻璃很容易在轻微的冲击下发生爆炸性开裂,甚至会产生自爆现象。这样会对含有该强化玻璃的产品的可靠性和人身安全性产生严重影响。
但是随着人们对产品的要求越来越高,玻璃也越来越多的被得到了应用,这样,对玻璃的要求也越来越高。具体的如现今智能产品中,随着苹果、三星等智能手机巨头开始引领手机全面屏概念,标志全面屏手机时代的到来,并且随着5G通讯及无线充电等新技术的应用,玻璃材质的无机保护盖板开始逐渐取代金属保护盖板,这使得智能手机的90%以上的面积全为玻璃材质。这样就对玻璃的如厚度、强度、抗摔等相关性能提出了更高的要求。
为满足薄玻璃的强度需求,目前超薄玻璃的强化手段仅为化学强化法,利用离子体积差效应,在内部产生压应力,使微裂纹更难扩展生长,增大玻璃强度。但目前最优的强化玻璃材料锂铝硅玻璃,其强化深度已经达到极限,普通强化下,单面应力达到了厚度的17%,已经接近极限。对于一切较薄的玻璃,如0.5mm以下,其获得的压应力深度极为有限。而且现有普通强化的复合压应力玻璃,由于两面的应力相同,张应力处于玻璃中间位置,这样的应力分布会限制玻璃的单面压应力深度不可能超过玻璃厚度的一半,一般复合压应力的极限深度仅为玻璃厚度的20%。而在盖板玻璃抗跌落测试中,玻璃的破坏是由于玻璃跌落到粗糙地面,受到尖锐颗粒冲击,由于是点冲击,接触面积小,其很容易破坏具有高压应力的表面并产生向玻璃内部的扩展裂纹,当裂纹到达张应力区时,玻璃极易破碎。而目前复合压应力由于其高深度,从其断面观察,其具单面裂纹压制层最高为玻璃的25%,这可以延长裂纹扩展至张应力区域的难度,提高玻璃的抗跌落性能。但是由于玻璃的张应力处于中间,两面为相同的压应力,张应力共生相等的关系,这就限制了规定厚度下,压应力深度能达到的极限值。而正常玻璃使用中,仅是一面需要具有更高的强度。
为在现有的应力极限下提高玻璃的强度及安全性,如目前提出了通过镀膜的方式在强化玻璃的一个表面增加压应力,实现了玻璃两面的压应力不一致,其中的一面压应力较另一面高,虽然增加强化玻璃的抗冲击能力,但是正因为两面的应力存在差值导致了玻璃基体的微形变。另外的,目前还公开看一种在不同区域内应力分布不均匀的强化玻璃以提高强化玻璃的强度.但是这种的强化玻璃至少存在两个内应力不同的区域,这种内应力分布不均的玻璃,在某些应用上能够带来特别的安全性,但这种技术并不能带来增加玻璃额外的强度。
发明内容
本发明的目的在于克服现有技术的所述不足,提供一种单面优势压应力玻璃及其制备方法,以解决现有单面优势压应力玻璃机械强度特别是抗跌落性能不太理想的技术。
为了实现所述发明目的,本发明一方面,提供了一种单面优势压应力玻璃。所述单面优势压应力玻璃具有相对的两个表面,沿所述单面优势压应力玻璃的所述表面至内部的方向,至少一表面表层的压应力递减,且两所述表面表层的压应力积分相差10%以上。
本发明另一方面,提供了一种单面优势压应力玻璃的制备方法。所述单面优势压应力玻璃的制备方法包括如下步骤:
d1:提供待强化的玻璃基体,所述玻璃基体具有相对设置的两个表面;
d2:在所述玻璃基体的一所述表面上涂覆抗离子交换保护涂层,并对所述保护涂层进行固化处理;
d3:将含有所述保护涂层的所述玻璃基体置入第一离子交换盐浴中进行钠-锂离子交换处理或钠-锂离子交换与钾-钠离子交换处理;
d4:去除所述玻璃基体的一所述表面上涂覆的所述保护涂层。
本发明又一方面,提供了本发明单面优势压应力玻璃在制备电子显示设备的盖板、车载显示设备、可穿戴设备显示中的应用。
与现有技术相比,本发明单面优势压应力玻璃的压应力深度大,其单面压应力深度可接近玻璃的50%,其表面压应力至少为600MPa以上,这样所述单面优势压应力玻璃将其一面赋予更高的压应力深度,从而具有更高的裂纹压制层,从而具有高的抗跌落性能。
本发明单面优势压应力玻璃的制备方法通过对玻璃基体进行单面优势压应力的强化处理,使得获得的强化玻璃压应力深度大,而且具有表面表层的压应力积分相差10%以上的特性,具有高强度和高的抗跌落性能。另外,所述制备方法工艺易控制,能够保证制备的单面优势压应力玻璃性能稳定。
由于本发明单面优势压应力玻璃具有高强度和优异的抗跌落性能,因此,其应用于如电子显示设备的盖板、车载显示设备、可穿戴设备显示的应用中,能够赋予相应产品高的机械强度,使得其具有高强度、耐冲击,尤其是高抗跌落性能,从而提高相应产品的可靠性和安全性。
附图说明
图1为本发明实施例单面优势压应力玻璃结构及其中的压应力值、压应力积分和张应力积分的分布示意图;
图2为本发明实施例单面优势压应力玻璃的结构示意图;
图3为本发明实施例单面优势压应力玻璃的产生有痕带的立即断裂面照片;
图4为本发明实施例单面优势压应力玻璃的抗跌落高度测试示意图;
图5为本发明实施例单面优势压应力玻璃的抗冲击强度测试示意图;
图6为本发明实施例单面优势压应力玻璃的一种制备方法的工艺流程图;
图7为本发明实施例单面优势压应力玻璃的另一种制备方法的工艺流程图;
图8为本发明实施例单面优势压应力玻璃制备方法中的热弯处理前后的玻璃基体形变结构示意图。
具体实施方式
为了使本发明要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
下文相关专用名称的解释:
强化玻璃内部的最大张应力点:张应力区最高张应力的点,称CT-CV。
强化玻璃物理厚度中心点:玻璃的中心,如1mm厚度的玻璃,其物理中心就是离玻璃表面0.5mm的位置。
压应力深度:压应力为0时,其距离玻璃表面的距离,如图1中DOL-0所示。
压应力积分:如图1中S1所示面积部分。
张应力积分:如图1中S2所示面积部分。
安全阈值:所述发明玻璃,无论何种厚度的玻璃,当其张应力线密度超过核定数值时,玻璃即产生痕带,该核定数值即为安全阈值。
所述张应力线密度:玻璃应力曲线中张应力部分的线积分与该玻璃的厚度比值,即为张应力线密度。
立即断裂:采用张应力释放实验中,采用气动式传动,以恒定力将维氏硬度压头冲击玻璃表面,当玻璃冲击点只产生2-4条裂纹,为立即断裂。
痕带:立即断裂后,玻璃由于冲击,使得于张应力释放对玻璃内部结构产生的破坏现象,在显微镜中由无数凹坑点及撕裂区组成的肉眼可见的明显带状区域,如图3所示的痕带照片。
钾-钠离子交换:化学强化中,盐浴中的钾离子取代玻璃中的钠离子。
钠-钾离子交换:化学强化中,盐浴中的钠离子取代玻璃中的锂离子。
热弯工艺处理:对玻璃基片进行加热,当达到软化点温度时,玻璃在自身重力或外部压力的作用下使得玻璃基片弯曲的过程。
一方面,本发明实施例提供一种单面优势压应力玻璃。所述单面优势压应力玻璃的结构如图1和2所示,具有相对的两个表面:表面1和表面2,沿所述单面优势压应力玻璃的所述表面至内部的方向,所述单面优势压应力玻璃的至少一表层如表层3为离子交换层,且至少一所述表层如表层3和/或表层4的压应力递减,且两所述表层的压应力积分相差10%以上。其中,至少一所述表层的压应力递减是指所述单面优势压应力玻璃的一个表层如表层3的压应力具有随着深度的增加而呈现递减特征;或者是指所述单面优势压应力玻璃的两个表层即表层3和表层4的压应力均具有随着深度的增加而呈现递减特征。两所述表层也即是表层3和表层4的压应力积分相差10%以上,也即是说所述单面优势压应力玻璃的表层3和表层4中的压应力积分大小是不对称和不相等的,其中一表层3中的压应力积分是大于表层4中的压应力积分,两表层的压应力积分大小存在差值。这样,所述单面优势压应力玻璃由于存在单面压应力优势,可以将压应力积分大的表层3的表面1作为工作面,同时控制两表层的压应力积分相差10%以上,赋予所述单面优势压应力玻璃优异的强度和抗跌落性能。
一实施例中,经检测得知,在所述单面优势压应力玻璃的两所述表层3和表层4中,至少一所述表层的压应力至少一面为600MPa以上。另外,测得两所述表层的压应力在压应力积分相差10%以上的基础上,两所述表层的压应力差值的绝对值小于或等于500Mpa。
进一步对所述单面优势压应力玻璃两表层即表层3和表层4中的压应力分析得知,在压应力积分大的所述表层3中,其压应力深度DOL-0为50μm时,所述压应力为50-200MPa;压应力积分大的所述表层3的压应力深度DOL-0为玻璃厚度的16%-32%,优选20%-32%。压应力积分小的所述表层4的压应力深度DOL-0为玻璃厚度的1%-10%。进一步测得,在所述单面优势压应力玻璃的立即断裂的截面上,痕带偏离所述单面优势压应力玻璃的厚度中心,且所述痕带向压应力积分小的所述表面移动,所述痕带偏离所述单面优势压应力玻璃的厚度中心的距离至少是单面优势压应力玻璃厚度的3%,如图3所示。其中,所述玻璃厚度是指单面优势压应力玻璃的厚度。
对上述各实施例中的所述单面优势压应力玻璃的压应力分析得知,所述单面优势压应力玻璃内部的最大张应力点与所述单面优势压应力玻璃的物理厚度中心点不重合,且所述单面优势压应力玻璃内部的最大张应力点与所述单面优势压应力玻璃的物理厚度中心点两者的差值绝对值与玻璃总厚度比例为5%-35%,所述玻璃张应力单位厚度安全阈值为22000-34000Mpa/mm,优选为30000-34000Mpa/mm。
一实施例中,上述各实施例中的单面优势压应力玻璃可以为含碱铝硅强化玻璃,其中,所述含碱铝硅强化玻璃的素玻璃(也即是下文所述的玻璃基体)中所含的碱金属氧化物的含量为6-18mol%。在具体实施例中,所述碱金属氧化物中的碱包括钠和/或锂。
基于上述对各实施例中所述单面优势压应力玻璃相关性能分析得知,所述单面优势压应力玻璃两表面表层中的压应力随着深度的增加呈递减特征,而且两表面表层中压应力分布不对等,两表面表层压应力存在积分相差,具体体现是其中一表面表层的压应力大于另一表面表层的压应力,而且压应力深度大,如即使0.5mm以下的是超薄玻璃,也能具有超过120微米的压应力深度。另外分析得知,单面优势压应力玻璃内网络结构致密。因此,所述单面优势压应力玻璃具有高的压应力,具有高的机械强度和高的抗跌落性能。如经测得所述单面优势压应力玻璃的厚度为0.2-0.4mm时,所述单面优势压应力玻璃于150g的负载跌落中,其抗跌落高度至少为0.3m。所述单面优势压应力玻璃的厚度为0.45-0.75mm时,所述单面优势压应力玻璃于150g的负载跌落中其抗跌落高度至少为0.5m;所述单面优势压应力玻璃的厚度为0.75-1.0mm,所述单面优势压应力玻璃于150g的负载跌落中,其抗跌落高度至少为0.7m;所述单面优势压应力玻璃的厚度为1.00-1.5mm,所述单面优势压应力玻璃于150g的负载跌落中,其抗跌落高度至少为0.85m。
其中,所述单面优势压应力玻璃的抗跌落高度是按照如下工艺条件进行测试:
如图4所示,将不同厚度的待测单面优势压应力玻璃尺寸定为5英寸规格,将150克重的模具与待测单面优势压应力玻璃贴合牢固,其中单面优势压应力玻璃的优势压应力面为抗破坏面,压应力积分较少一面则贴合模具。将待测单面优势压应力玻璃朝下水平跌落至表面附有150目砂纸的大理石板上。每种同样工艺规格样品取10片每一批,自0.25m高度跌落,在一高度测试中,10片样品中如有7片及7片以上完好,则进行下一个高度测试,至该高度破坏样品超过3片,则取该高度次高度度为抗跌落高度。
进一步对所述单面优势压应力玻璃的抗冲击强度进行测得得知,当所述单面优势压应力玻璃的厚度为0.2-0.5mm,所述单面优势压应力玻璃的压应力积分大的所述表面表层的抗冲击强度至少为0.5J;所述单面优势压应力玻璃的厚度为0.5-0.75mm,其抗冲击强度至少为0.85J;所述单面优势压应力玻璃的厚度为0.75-1.0mm,其抗冲击强度至少为1.15J;所述单面优势压应力玻璃的厚度为1.00-1.5mm,其抗冲击强度至少为1.5J。
其中,所述单面优势压应力玻璃的抗冲击强度是按照如下工艺条件进行测试:
如图5所示,将不同厚度的待测单面优势压应力玻璃尺寸定为5英寸规格,将待测单面优势压应力玻璃放入中空的制具中,并与制具贴合牢固,且优势压应力面朝上。将130克重钢球,于玻璃中心点高度自由落体下落。每种同样工艺规格样品取10片每一批,自0.3m高度跌落,每片玻璃在同一高度撞击2次,如10片样品中如有7片及7片以上完好,则进行下一个高度测试,至该高度破坏样品超过3片,则取该高度次高度时落球冲击玻璃面时的动能为抗冲击强度。
因此,基于上述各实施例中单面优势压应力玻璃高强度和抗跌落性,所述单面优势压应力玻璃特别适合作为超薄玻璃制品,也即是说所述单面优势压应力玻璃的厚度可以是超薄玻璃的厚度,当然还可以是大于超薄玻璃厚度的其他厚度。
另一方面,在上文所述单面优势压应力玻璃的基础上,本发明实施例还提供了所述单面优势压应力玻璃的制备方法。所述单面优势压应力玻璃的制备方法工艺步骤如图6所示,包括如下步骤:
d1:提供待强化的玻璃基体,所述玻璃基体具有相对设置的两个表面;
d2:在所述玻璃基体的一所述表面上涂覆抗离子交换保护涂层,并对所述保护涂层进行固化处理;
d3:将含有所述保护涂层的所述玻璃基体置入第一离子交换盐浴中进行钠-锂离子交换处理或钠-锂离子交换与钾-钠离子交换处理;
d4:去除所述玻璃基体的一所述表面上涂覆的所述保护涂层。
其中,所述步骤d1中,所述玻璃基体为需要被强化处理的素玻璃,如在一实施例中,所述玻璃基体可以为含碱铝硅玻璃,其中碱金属氧化物的含量可以是为6-18mol%。具体地,所述碱金属氧化物中的碱包括钠和/或锂。在本发明实施例中,所述玻璃基体优选为超薄强化玻璃的素玻璃。
在具体实施例中,所述玻璃基体可以为碱铝硅玻璃,在具体实施例中,所述碱金属氧化物中的碱包括钠和/或锂。选用该玻璃基体,其能够配合在上述化学强化方法,从而显著提高制备的单面优势压应力玻璃的压应力,提高其机械强度和抗跌落性能。
所述步骤d2中,所述抗离子交换保护涂层的存在以保护涂覆有该保护涂层的玻璃基体表面避免离子交换处理。因此,所述保护涂层的材料可以是在离子交换盐浴中保持稳定的材料,而且,还得保证形成的所述保护层的固化温度是低于待强化的所述玻璃基体的软化点温度。如所述保护涂层的材料可以是常规用于玻璃强化领域中的保护涂层材料,所述保护图层的厚度至少是能够避免玻璃基体涂覆表面与盐浴进行离子交换即可。
在具体实施例中,所述保护涂层的浆料可以是包括无机物颗粒、玻璃8205粉体与玻璃8206粉体至少一种及有机物溶剂按质量比5:2:4混合物。其中,所述无机物颗粒可以是为氧化铝、碳酸钙按7:3质量比混合得到的混合物;所述无机物颗粒的最大粒径为2-10μm。所述有机物溶剂可以包括:松油醇、C5改性石油树脂、乙基纤维素N-50、WinSperse3090、SER2035A烤漆非硅消泡剂、JL-156(钛酸酯偶联剂)等组分。所述玻璃8205粉体可以是由包括Bi2O3、ZnO、TiO2、ZrO2、Al2O3、MgO、K2O、Na2O、SiO2等组分烧结形成,在具体实施例中,所述玻璃8205粉体所含的所述Bi2O3、ZnO、TiO2、ZrO2、Al2O3、MgO、K2O、Na2O、SiO2的质量比为3.8:5.5:1.9:2.4:15:5:8:15:43.4;所述玻璃8206粉体可以是由包括Bi2O3、ZnO、TiO2、ZrO2、Al2O3、MgO、SiO2等组分烧结形成,在具体实施例中,所述玻璃8205粉体所含的所述Bi2O3、ZnO、TiO2、ZrO2、Al2O3、MgO、SiO2的质量比为3.7:4.5:2.3:3.5:11:10:65。另外,所述保护涂层可以是将所述保护涂层的所述浆料涂覆后于370℃下热处理固化。
由于所述单面优势压应力玻璃的制备方法是先对玻璃基体单表面进行强化处理,这样该单表面在与盐浴进行离子交换过程中,容易导致发生离子交换的表面凸起,从而导致该单面强化后强化玻璃弯曲,具体呈现强化单面向外凸起。因此,为避免该现象发生,在优选实施例中,在所述步骤d2之前,或在所述步骤d2之后和在进行所述步骤d3之前,在进一步实施例中,还包括如下步骤d2’,如图7所示中的步骤d2’:
将所述玻璃基体也即是含有所述保护涂层的所述玻璃基体进行热弯工艺处理,使得所述玻璃基体呈弧形弯曲,且使得不含所述保护涂层的表面为凹面。
待步骤d2’处理后,含有保护涂层所述玻璃基体热弯工艺处理前后的结构如图8所示,在热弯处理之前,所述玻璃基体是平整的,当经热弯处理之后,玻璃基体呈现弧形弯曲,且待强化的单面为凹形表面。
具体的,所述玻璃基体进行热弯工艺处理可以按照现有玻璃热弯工艺处理,在一实施例中,所述玻璃基体热弯工艺处理可以按照如下方法进行:
将玻璃基体依次进行预热、热弯、退火、冷却等处理步骤。
其中,作为所述玻璃基体所述预热弯工艺的一个优选方案,所述的多个预热阶段包括先后进行的第一预热阶段、第二预热阶段、第三预热阶段;其中,在所述第一预热阶段中,将所述玻璃基板传送至所述炉内的温度为80℃~200℃的区域并保温2min~15min;在所述第二预热阶段中,将所述玻璃基板传送至所述炉内的温度为320℃~450℃的区域并保温2min~15min;在所述第三预热阶段中,将所述3D曲面玻璃传送至所述炉内的温度为550℃~650℃的区域并保温2min~15min。
作为所述玻璃基体所述热弯工艺的一个优选方案,所述的热弯阶段包括先后进行的第一热弯阶段、第二热弯阶段;其中,在所述第一热阶段中,将所述玻璃基板传送至所述炉内的温度为650℃~900℃的区域内,给予模具压力为0.5Mpa压力,热弯0.1-3min,使玻璃成型;在所述第二热弯阶段中,将所述玻璃基板传送至所述炉内的温度为600℃~850℃的区域内,给予模具压力为0.2Mpa,保压0.1-5min。
在所述玻璃基板所述退火工艺中,所述退火工序包括先后进行的第一退火阶段、第二退火阶段其中,在所述第一退火阶段中,将所述热弯完成后的玻璃基板传送至所述炉内的温度为600℃~700℃的区域并保温2min~15min;在所述第二退火阶段中,将所述玻璃基板传送至所述炉内的温度为500℃~600℃的区域并保温2min~15min。
在所述玻璃基板所述冷却工艺中,所述冷却工序包括先后进行的第一冷却阶段、第二冷却阶段、第三冷却阶段、第四冷却阶段、第五冷却阶段和第六冷却阶段;其中,在所述第一冷却阶段中,将所述玻璃基板传送至所述晶化炉内的温度为500℃~600℃的区域并保温1min~5min;在所述第二冷却阶段中,将所述玻璃基板传送至所述晶化炉内的温度为400℃~550℃的区域并保温1min~5min;在所述第三冷却阶段中,将所述玻璃基板传送至所述晶化炉内的温度为300℃~450℃的区域并保温1min~5min;在所述第四冷却阶段中,将所述玻璃基板传送至所述晶化炉内的温度为200℃~350℃的区域并保温1min~5min;在所述第五冷却阶段中,将所述玻璃基板传送至所述晶化炉内的温度为100℃~250℃的区域并保温1min~5min;在所述第六冷却阶段中,将所述玻璃基板传送至所述晶化炉内的温度为50℃~150℃的区域并保温1min~5min。
通过对不含所述保护涂层的表面也即是待离子交换处理的表面进行热弯工艺处理,优选上述的优选热弯工艺处理,是为了使得待离子交换处理的表面呈现弧形弯曲面,从而有利于提高该表面的离子交换处理效果,从而提高该单面强化效果,提高该表面表层中的压应力优势。待下述步骤d3单面强化出后,使得被单面强化处理的强化玻璃尽可能的回复至未被强化处理前的平整形态,如图8所示。
所述步骤d3中,将经过上述步骤d2处理的所述玻璃基体在第一离子交换盐浴中进行处理的过程中,由于含有所述保护层的表面无法与第一离子交换盐浴接触,因此,该表面无法进行离子交换处理,这样所述玻璃基体的另一表面,也即是不含有所述保护层的表面直接与第一离子交换盐浴接触,从而发生离子交换处理,使得所述玻璃基体中的相关离子与所述第一离子交换盐浴中的离子进行离子交换,具体的所述离子交换可以是进行钠-锂离子交换处理或钠-锂离子交换与钾-钠离子交换处理。通过所述第一离子交换盐浴强化处理后,在单面强化表层进行钠-锂交换,使得离子张应力中心平移,从而获得单面更高的压应力深度,也即是赋予强化玻璃也就具有高的裂纹压制层,在用此面为抗跌落面,这样就可以大幅度提高抗跌落强度。
在一实施例中,所述第一离子交换盐浴含NaNO3 20wt%以上的混合盐浴,所述混合盐浴中除NaNO3之外的其余为钾的硝酸盐、氯化盐、硫酸盐中的至少一种。
在另一实施例中,在所述第一离子交换盐浴中进行的离子交换处理温度可以是400℃,盐浴时间可以是4h。
待强化的所述玻璃基体在所述第一离子交换盐浴中进行的离子交换处理结束后,优选的对经离子交换处理的玻璃基体进行清洗处理,出去表面附着的第一离子交换盐浴。
所述步骤d4中,除去所述保护涂层的方法可以按照本领域常规方法,如将步骤d3单面强化处理后的玻璃置于下述褪膜液中除去保护涂层:
15wt%无机碱为KOH,10wt%十二烷基苯磺酸钠,7wt%二乙醇胺,5wt%三乙胺,63wt%溶剂为去离子水。
在进一步实施例中,在所述步骤d4之后还包括如下步骤,具体如图7所示的步骤d5-d7:
d5:将经所述抛光平磨处理后的所述强化玻璃进行350℃-420℃空气热处理;
d6:将经所述空气热处理后的所述强化玻璃置入第二离子交换盐浴中进行钾-钠离子交换处理或钾-钠离子交换与钠-锂离子交换处理。
其中,所述步骤d5中,将经步骤d4处理后的强化玻璃进行热处理,可以有效降低经步骤d3和d4处理后的强化玻璃过高的张应力线积分,使得所述强化玻璃处于较高的安全状态。在一实施例中,将所述强化玻璃经所述空气热处理后,并将所述玻璃的张应力线积分控制在张应力单位厚度安全阈值的70-90%之间,以增强所述强化玻璃的强度和抗跌落性能。当然,在进行所述步骤d4之后和步骤d5之前,还可以包括对经步骤d4处理后的强化玻璃进行表面抛光平磨处理,除去由于离子交换处理或除去所述保护涂层的过程中导致强化玻璃表面的不平整部分,使得强化玻璃表面的平整。所示抛光平磨处理可以采用本领域常规抛光平磨处理方法进行处理。
所述步骤d6中,经步骤d5热处理的强化玻璃于第二离子交换盐浴中进行二次强化处理同时对玻璃基体两个表面在相同条件下进行强化处理,这样使得在上述步骤d3中第一离子交换盐浴单面强化处理后所述玻璃基体于步骤d6中第二次强化处理,进一步提高强化玻璃的压力值(CS),这样可保证玻璃的抗划伤性能及抗面冲击性能。
具体的步骤d6中的所述离子交换可以是进行锂-钠离子交换处理或钾-钠离子交换与钠-锂离子交换处理。在一实施例中,所述第二离子交换盐浴为100%硝酸盐,或含KNO390wt%以上的混合盐浴,所述混合盐浴中除KNO3之外的其余盐为钠的硝酸盐、氯化盐、硫酸盐中的至少一种。
在另一实施例中,在所述第二离子交换盐浴中进行的离子交换处理的温度可以是380℃,盐浴时间可以是45min。
本发明实施例单面优势压应力玻璃的制备方法通过对玻璃基体进行单面优势压应力的强化处理,使得获得的强化玻璃压应力深度大,而且具有表面表层的压应力积分相差10%以上的特性,而且还具有如上文所述单面优势压应力玻璃所述的相关性能,具有高强度和高的抗跌落性能。另外,所述制备方法工艺易控制,能够保证制备的单面优势压应力玻璃性能稳定。
由上述单面优势压应力玻璃的制备方法可知,其通过控制玻璃基体强化方法和离子交换处理,使得制备的单面优势压应力玻璃内形成致密网络结构,使得获得的强化玻璃压应力深度大,而且具有表面表层的压应力积分相差10%以上的特性,具有高强度和高的抗跌落性能。另外,所述制备方法工艺易控制,能够保证制备的单面优势压应力玻璃性能稳定。
再一方面,基于上文所述单面优势压应力玻璃及其制备方法,所述单面优势压应力玻璃不仅具有高的机械强度,特别是抗跌落性能,因此,所述单面优势压应力玻璃可以在电子显示设备的盖板、车载显示设备、可穿戴设备显示中的应用,从而能够赋予相比部件的机械强度,使得其具有高强度、耐冲击,尤其是高抗跌落性能,从而提高相应产品的可靠性和安全性。
下面通过所述单面优势压应力玻璃及其制备方法的具体实施例对本发明做进一步说明。
其中,下述各实施例中的待强化的玻璃基体为凯丽6玻璃,尺寸为160*60*0.7mm,且其所含的组分和各组分的摩尔含量如下:
SiO2:61.50mol%、Al2O3:15.00mol%、P2O5:2mol%、MgO:3mol%、Na2O:10.50mol%、Li2O:8mol%。
保护涂层浆料所含的组分:无机物颗粒、玻璃8205粉体有机物溶剂,且其比5:2:4。
其中,所述无机物颗粒为氧化铝、碳酸钙按7:3质量比混合得到的混合物,而且,所述无机物颗粒的最大粒径为2-10μm;
所述玻璃8205粉体是由如下质量百分比的组分烧结形成:Bi2O3:3.8%、ZnO:5.5%、TiO2:1.9%、ZrO2:2.4%、Al2O3:15%、MgO:5%、K2O:8%、Na2O:15%、SiO2:43.4%。
所述有机物溶剂按照如下重量份的组分混合形成:
取溶剂松油醇340g,加入160gC5改性石油树脂充分搅拌;添加填充剂2.4%的乙基纤维素N-50充分搅拌;添加3%WinSperse3090充分搅拌;添加SER2035A 3%烤漆非硅消泡剂充分搅拌;添加8% JL-156(钛酸酯偶联剂)充分搅拌,获得有机溶剂溶液。
所述保护涂层的固化条件:在370摄氏度条件下加热10分钟。
去除所述保护涂层的褪膜液的配方:15wt%无机碱为KOH,10wt%十二烷基苯磺酸钠,7wt%二乙醇胺,5wt%三乙胺,63wt%溶剂为去离子水。
实施例1-4
本实施例1-4提供了一种单面优势压应力玻璃及其制备方法。所述单面优势压应力玻璃的相关性能及其制备方法工艺步骤和相关工艺参数分别如下表1中所述。
本实施例1-5提供的单面优势压应力玻璃制备方法包括如下步骤:
d1:提供待强化的玻璃基体,所述玻璃基体具有相对设置的两个表面;
d2:在所述玻璃基体的一所述表面上涂覆抗离子交换保护涂层,并对所述保护涂层进行固化处理;
d3:将所述玻璃基体进行热弯工艺处理,使得所述玻璃基体的不含所述保护涂层的所述表面边沿呈弧形弯曲。
d4:将含有所述保护涂层的所述玻璃基体置入第一离子交换盐浴中进行强化处理;
d5:去除所述玻璃基体的一所述表面上涂覆的所述保护涂层;
d6:将经第一离子交换盐浴强化后的强化玻璃两面进行抛光平磨处理;
d7:将经所述抛光平磨处理后的所述强化玻璃进行空气热处理;
d8:将经所述空气热处理后的所述强化玻璃置入第二离子交换盐浴中进行强化处理。
实施例5
本实施例5提供了一种单面优势压应力玻璃及其制备方法。所述单面优势压应力玻璃的相关性能及其制备方法工艺步骤和相关工艺参数分别如下表1中所述。
本实施例5提供的单面优势压应力玻璃制备方法包括如下步骤:
d1:提供待强化的玻璃基体,所述玻璃基体具有相对设置的两个表面;
d2:在所述玻璃基体的一所述表面上涂覆抗离子交换保护涂层,并对所述保护涂层进行固化处理;
d3:将含有所述保护涂层的所述玻璃基体置入第一离子交换盐浴中进行强化处理;
d4:去除所述玻璃基体的一所述表面上涂覆的所述保护涂层;
d5:将经第一离子交换盐浴强化后的强化玻璃两面进行抛光平磨处理;
d6:将经所述抛光平磨处理后的所述强化玻璃进行空气热处理;
d7:将经所述空气热处理后的所述强化玻璃置入第二离子交换盐浴中进行强化处理。
实施例6
本实施例6提供了一种单面优势压应力玻璃及其制备方法。所述单面优势压应力玻璃的相关性能及其制备方法工艺步骤和相关工艺参数分别如下表1中所述。
本实施例6提供的单面优势压应力玻璃制备方法包括如下步骤:
d1:提供待强化的玻璃基体,所述玻璃基体具有相对设置的两个表面;
d2:在所述玻璃基体的一所述表面上涂覆抗离子交换保护涂层,并对所述保护涂层进行固化处理;
d3:将所述玻璃基体进行热弯工艺处理,使得所述玻璃基体的不含所述保护涂层的所述表面边沿呈弧形弯曲。
d4:将含有所述保护涂层的所述玻璃基体置入第一离子交换盐浴中进行强化处理;
d5:去除所述玻璃基体的一所述表面上涂覆的所述保护涂层;
d6:将经第一离子交换盐浴强化后的强化玻璃两面进行抛光平磨处理;
d8:将经所述空气热处理后的所述强化玻璃置入第二离子交换盐浴中进行强化处理。
对比例1
本对比例1提供了一种化学强化玻璃及其制备方法。所述化学强化玻璃的相关性能及其制备方法工艺步骤和相关工艺参数分别如下表1中所述。
本对比例1提供的化学强化玻璃制备方法包括如下步骤:
d1:提供待强化的玻璃基体,所述玻璃基体具有相对设置的两个表面;
d2:将含有所述保护涂层的所述玻璃基体置入第一离子交换盐浴中进行强化处理;
d3:将经第一离子交换盐浴强化后的强化玻璃两面进行抛光平磨处理;
d4:将经所述抛光平磨处理后的所述强化玻璃进行空气热处理;
d5:将经所述空气热处理后的所述强化玻璃置入第二离子交换盐浴中进行强化处理。
化学强化玻璃的相关性能测试及相应测试结果
将实施例1-6提供的单面优势压应力玻璃和对比例1提供的化学强化玻璃进行如下文表1中相关性能测试,而且每一实施例中化学强化玻璃样品取样3份,在相同条件下分别对各样品进行测定,计算相应性能参数的平均值,测试结果见表1中各实施例相关数据。
由表1中数据可知,从实施例1-4的单面优势压应力玻璃与正常强化的复合压应力玻璃,具有单面优势压应力的凯丽玻璃,其压应力深度大幅提高,其裂纹压制层也不断提高,最终表现在其抗负载跌落上的性能提高,比普通法强化的对比例1高出近1倍。这很好的说明的以单面优势压应力作为抗跌落面的优势。
由实施例1-4可知,单面优势压应力玻璃中的非优势面压应力的深度可以通过涂层的厚度及盐浴的配比来调节,其抗跌落性能与优势面的压应力深度相关,但是其四边的翘曲度也会随着提高,这可以根据产品的需要进行匹配。
对比实施例1与实施例5可知,如果在进行单面优势压应力工艺强化之前不进行热弯工艺,则由于单面离子交换造成的单面体积增加,导致其产品的翘曲会增加会急剧恶化,其中,虽然实施例5中的翘曲虽然大于对比例1,但是实施例5的单面优势压应力玻璃的抗负载跌落的性能依然明显提高。
对比实施例1与实施例5可知,如果在进行第一段单面优势压应力工艺强化之后不进行空气热处理工艺,则由于张应力线密度增大而导致玻璃内部张应力相对不稳定,使玻璃在受到冲击时,玻璃从内部产生裂纹导致,导致其抗负载跌落的性能相对降低。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
表1

Claims (12)

1.一种单面优势压应力玻璃的制备方法,包括如下步骤:
d1:提供待强化的玻璃基体,所述玻璃基体具有相对设置的表面1(1)和表面2(2),所述玻璃基体为需要被强化处理的素玻璃,该素玻璃中所含的碱金属氧化物的含量为18.50mol%,且所述碱金属氧化物中的碱包括钠和/或锂;
d2:在所述玻璃基体的一所述表面上涂覆抗离子交换保护涂层,并对所述保护涂层进行固化处理;
d3:将含有所述保护涂层的所述玻璃基体置入第一离子交换盐浴中进行钠-锂离子交换处理或钠-锂离子交换与钾-钠离子交换处理,离子交换处理温度是400℃;
d4:去除所述玻璃基体的一所述表面上涂覆的所述保护涂层;
d5:将经第一离子交换盐浴强化后的强化玻璃两面进行抛光平磨处理;
d6:将经所述抛光平磨处理后的所述强化玻璃进行200℃-550℃空气热处理;
d7:将经所述空气热处理后的所述强化玻璃置入第二离子交换盐浴中进行钾-钠离子交换处理或钾-钠离子交换与钠-锂离子交换处理,离子交换处理的温度是380℃;
沿所述单面优势压应力玻璃的所述表面至内部的方向,所述单面优势压应力玻璃的表层3(3)和表层4(4)为离子交换层,所述两个表层的压应力递减,且两所述表层的压应力积分相差10%以上,其中压应力积分大的表层的表面作为工作面;
所述第一离子交换盐浴为含NaNO3 20wt%以上的混合盐浴,所述混合盐浴中除NaNO3之外的其余盐为钾的硝酸盐;
所述第二离子交换盐浴为含KNO3 90wt%以上的混合盐浴,所述混合盐浴中除KNO3之外的其余盐为钠的硝酸盐。
2.根据权利要求1所述的制备方法,其特征在于,在所述步骤d2之后并在所述步骤d3之前还包括如下步骤d2’:
将所述玻璃基体进行热弯工艺处理,使得所述玻璃基体呈弧形弯曲,且不含所述保护涂层的所述表面为凹面。
3.根据权利要求1-2任一项所述的制备方法,其特征在于,所述保护涂层的固化温度低于所述玻璃基体的软化点温度。
4.根据权利要求1所述制备方法制备的单面优势压应力玻璃,所述单面优势压应力玻璃具有相对的表面1(1)和表面2(2),其特征在于:沿所述单面优势压应力玻璃的所述表面至内部的方向,所述单面优势压应力玻璃的表层3(3)和表层4(4)为离子交换层,所述两个表层的压应力递减,且两所述表层的压应力积分相差10%以上,其中压应力积分大的表层的表面作为工作面;
压应力积分大的表层的压应力深度为所述单面优势压应力玻璃厚度的16%-32%,压应力积分小的表层的压应力深度为所述单面优势压应力玻璃厚度的1%-10%。
5.根据权利要求4所述的单面优势压应力玻璃,其特征在于:
在所述单面优势压应力玻璃的立即断裂的截面上,痕带偏离所述单面优势压应力玻璃的厚度中心,且所述痕带向压应力积分小的所述表面移动,所述痕带偏离所述单面优势压应力玻璃的厚度中心的距离至少是单面优势压应力玻璃厚度的3%。
6.根据权利要求4所述的单面优势压应力玻璃,其特征在于:所述单面优势压应力玻璃内部的最大张应力点与所述单面优势压应力玻璃的物理厚度中心点不重合,且所述单面优势压应力玻璃内部的最大张应力点与所述单面优势压应力玻璃的物理厚度中心点两者的差值绝对值与玻璃总厚度比例为5%-35%,所述单面优势压应力玻璃的张应力线密度为22000-34000Mpa/mm。
7.根据权利要求6所述的单面优势压应力玻璃,其特征在于:所述单面优势压应力玻璃的张应力线密度为30000-34000Mpa/mm。
8.根据权利要求4所述的单面优势压应力玻璃,其特征在于:在两所述表层中,至少一所述表层的压应力为600MPa以上,和/或
两所述表层的压应力差值的绝对值小于或等于500Mpa。
9.根据权利要求4-8任一项所述的单面优势压应力玻璃,其特征在于:在压应力积分大的所述表层中,压应力深度为50μm时,所述压应力为50-200MPa。
10.根据权利要求4-8任一项所述的单面优势压应力玻璃,其特征在于:所述单面优势压应力玻璃的厚度为0.2-0.4mm,所述单面优势压应力玻璃于150g的负载跌落中,其抗跌落高度至少为0.3m;或
所述单面优势压应力玻璃的厚度为0.45-0.75mm,所述单面优势压应力玻璃于150g的负载跌落中,其抗跌落高度至少为0.5m;或
所述单面优势压应力玻璃的厚度为0.75-1.0mm,所述单面优势压应力玻璃于150g的负载跌落中,其抗跌落高度至少为0.7m;或
所述单面优势压应力玻璃的厚度为1.00-1.5mm,所述单面优势压应力玻璃于150g的负载跌落中,其抗跌落高度至少为0.85m。
11.根据权利要求4-8任一项所述的单面优势压应力玻璃,其特征在于:所述单面优势压应力玻璃的厚度为0.2-0.5mm,所述单面优势压应力玻璃的压应力积分大的所述表面表层的抗冲击强度至少为0.5J;或
所述单面优势压应力玻璃的厚度为0.5-0.75mm,其抗冲击强度至少为0.85J;或
所述单面优势压应力玻璃的厚度为0.75-1.0mm,其抗冲击强度至少为1.15J;或
所述单面优势压应力玻璃的厚度为1.00-1.5mm,其抗冲击强度至少为1.5J。
12.根据权利要求4-11任一所述的单面优势压应力玻璃在电子显示设备的盖板、车载显示设备、可穿戴设备显示中的应用。
CN201811511577.3A 2018-12-11 2018-12-11 单面优势压应力玻璃及其制备方法与应用 Active CN111302654B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811511577.3A CN111302654B (zh) 2018-12-11 2018-12-11 单面优势压应力玻璃及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811511577.3A CN111302654B (zh) 2018-12-11 2018-12-11 单面优势压应力玻璃及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN111302654A CN111302654A (zh) 2020-06-19
CN111302654B true CN111302654B (zh) 2024-10-11

Family

ID=71154403

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811511577.3A Active CN111302654B (zh) 2018-12-11 2018-12-11 单面优势压应力玻璃及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN111302654B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114075044B (zh) * 2020-08-18 2023-01-24 重庆鑫景特种玻璃有限公司 一种具有安全应力状态的强化玻璃及其加工方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209259943U (zh) * 2018-12-11 2019-08-16 深圳市东丽华科技有限公司 单面优势压应力玻璃

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3314294B2 (ja) * 1995-02-24 2002-08-12 株式会社ユニシアジェックス 内燃機関の制御装置
DE19707982A1 (de) * 1997-02-27 1998-09-03 Siemens Ag Produkt zur Endlagerung radioaktiv kontaminierter Ionenaustauscherharze
WO2017132461A1 (en) * 2016-01-28 2017-08-03 Corning Incorporated Processes for thermal strengthening of glass using liquid conduction
EP3421432B1 (en) * 2016-02-26 2024-09-11 Agc Inc. Method for tempering glass plate, and tempered glass plate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209259943U (zh) * 2018-12-11 2019-08-16 深圳市东丽华科技有限公司 单面优势压应力玻璃

Also Published As

Publication number Publication date
CN111302654A (zh) 2020-06-19

Similar Documents

Publication Publication Date Title
TWI640489B (zh) 可化學性回火的玻璃片
CN107216032B (zh) 一种玻璃用组合物和铝硅酸盐玻璃及其制备方法和应用
CN110240419B (zh) 锂铝硅玻璃、锂铝硅化学强化玻璃及其制备方法与应用
TWI491571B (zh) 用於顯示器裝置的玻璃板,用於顯示器裝置的平板玻璃及其製造方法
CN101328026B (zh) 用于玻璃化学钢化的熔盐及采用该熔盐的化学钢化方法
JP5294150B2 (ja) 強化ガラスの製造方法
EP2961705B1 (en) Porous inorganic layer compatible with ion exchange processes
WO2014030682A1 (ja) 強化ガラス
EP3164365B1 (en) Glass composition for chemically strengthened alkali-aluminosilicate glass and method for the manufacture thereof
TW201536699A (zh) 強化玻璃的製造方法以及強化玻璃
CN108793734B (zh) 玻璃用组合物、硅铝酸盐玻璃及硅铝酸盐玻璃的制备方法
CN111875264B (zh) 一种盖板玻璃的强化工艺
CN209259943U (zh) 单面优势压应力玻璃
WO2018166139A1 (zh) 一种化学强化用玻璃以及由其制备的抗断裂玻璃板
KR20060005920A (ko) 유리패널의 제조방법
KR20240052965A (ko) 차량용 합판유리
CN111302654B (zh) 单面优势压应力玻璃及其制备方法与应用
CN112010552A (zh) 一种铝硅酸盐玻璃及其强化方法
US20160347647A1 (en) Reinforced glass and glass-to-be-treated for reinforced glass
CN112592051B (zh) 一种超薄钠硼硅酸盐玻璃及其制备方法、应用
CN109052934B (zh) 具有抗冲击应力特性的保护玻璃板
CN113880456A (zh) 锂硅酸盐玻璃的强化工艺以及锂硅酸盐强化玻璃
JP2001064028A (ja) フラットパネルディスプレイ用強化ガラス基板
CN115108721A (zh) 用于制备高铝硅酸盐玻璃的组合物、高铝硅酸盐玻璃及其制备方法和应用
JP2019001662A (ja) 風冷強化用ガラス、および、風冷強化ガラス

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20200814

Address after: 404100 No.78, Yunwu Road, Beibei District, Chongqing

Applicant after: Xiameixi technology partnership (L.P.) of Liangjiang New District, Chongqing

Address before: 3, building 4, 518000, Baohua Industrial Park, 45 Hua Sheng Road, Longhua New District, Guangdong, Shenzhen

Applicant before: Shenzhen Donglihua Technology Co.,Ltd.

TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20200902

Address after: No.5-138, Yunhan Avenue, Shuitu hi tech Industrial Park, Beibei District, Chongqing

Applicant after: CHONGQING XINJING SPECIAL GLASS Co.,Ltd.

Address before: 404100 No.78, Yunwu Road, Beibei District, Chongqing

Applicant before: Xiameixi technology partnership (L.P.) of Liangjiang New District, Chongqing

GR01 Patent grant
GR01 Patent grant