CN111118060B - BnALS1 mutant gene based on gene editing, protein and application thereof - Google Patents

BnALS1 mutant gene based on gene editing, protein and application thereof Download PDF

Info

Publication number
CN111118060B
CN111118060B CN202010051263.0A CN202010051263A CN111118060B CN 111118060 B CN111118060 B CN 111118060B CN 202010051263 A CN202010051263 A CN 202010051263A CN 111118060 B CN111118060 B CN 111118060B
Authority
CN
China
Prior art keywords
vector
editing
bnals1
ala
leu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010051263.0A
Other languages
Chinese (zh)
Other versions
CN111118060A (en
Inventor
吴健
霍诗诗
王幼平
张辉
倪萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou University
Original Assignee
Yangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou University filed Critical Yangzhou University
Priority to CN202010051263.0A priority Critical patent/CN111118060B/en
Publication of CN111118060A publication Critical patent/CN111118060A/en
Application granted granted Critical
Publication of CN111118060B publication Critical patent/CN111118060B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8274Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for herbicide resistance
    • C12N15/8278Sulfonylurea
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1022Transferases (2.) transferring aldehyde or ketonic groups (2.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y202/00Transferases transferring aldehyde or ketonic groups (2.2)
    • C12Y202/01Transketolases and transaldolases (2.2.1)
    • C12Y202/01006Acetolactate synthase (2.2.1.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/20Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/13Plant traits

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Plant Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Mycology (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention discloses a BnALS1 mutant gene based on gene editing, a protein and application thereof. The invention also discloses a cytosine base editing vector, and the invention reports that single base editing is realized in rape for the first time. The base editing method provided by the invention can directionally improve the rape characters, is quicker, more efficient and more accurate compared with chemical mutagenesis, and enriches the germplasm resources of herbicide resistance of rape. The mutant materials R10 and R144 obtained by the invention have stronger resistance to tribenuron-methyl herbicide. After 20 days of spraying 15mg ai/L tribenuron-methyl 20ml (approximately equal to 5 times of the recommended amount of broadleaf weed control) on each plant in the 5-6 leaf stage, the R10 and R144 materials are not affected at all, and the transgenic receptor materials are seriously phytotoxicity (new leaves wither, old leaves stop growing and become purple).

Description

BnALS1 mutant gene based on gene editing, protein and application thereof
Technical Field
The invention belongs to the technical field of plant genetic engineering, and particularly relates to a brassica napus BnALS1 mutant gene based on gene editing, protein and application thereof.
Background
The field weeds are used as one of biotic stresses, compete with crops for nutrients and growth space, and seriously affect the growth and yield of the crops; on the other hand, artificial weeding and mechanical weeding increase the production cost of crops. The herbicide spraying is the most effective means for preventing and controlling weeds, and can promote the development of crop production towards high efficiency, low cost and light simplification.
The weeds in the rape fields in China are various, large in quantity and serious in harm, the yield of rapeseeds can be reduced by 15.8% according to statistics, the yield reduction range of serious fields can reach more than 50%, and the weed harm areas of winter rape areas and north spring rape areas in Yangtze river basin respectively reach 46.9% and 90%. The control of weeds in rape fields mainly depends on artificial weed removal and chemical herbicides. However, the artificial weeding increases the production cost, reduces the planting benefit and the enthusiasm of farmers, and simultaneously restricts the mechanized and large-scale planting of the rapes. Therefore, the cultivation of new herbicide-resistant rape varieties is an important measure for increasing the rape yield, improving the enthusiasm of farmers and realizing the large-scale rape planting.
Acetolactate synthase (ALS), or acetohydroxy acid synthase (AHAS), is a key enzyme in the biosynthesis of 3 branched-chain amino acids (valine, leucine, and isoleucine) in plants and microorganisms. ALS herbicides or ALS inhibitors are developed by taking ALS as a target, and spraying the ALS herbicides can reduce ALS activity in a plant body, so that synthesis of 3 branched chain amino acids is hindered, synthesis of protein is influenced, cell division is further inhibited, plant tissues are green and yellow, plant growth is inhibited, and finally the plant gradually dies. ALS herbicides have the advantages of strong selectivity, wide weed control spectrum, low dosage, low toxicity to mammals and the like, and are widely applied in production.
It is now known that alteration of certain amino acid residues of ALS can lead to a decrease in the sensitivity of the primer plant to ALS herbicides, thereby resulting in resistance to ALS herbicides. These include Ala122, Pro197, Ala205, Asp376, Arg377, Trp574, Ser653, Gly654 etc. (calculated for Arabidopsis ALS amino acid positions). Currently, herbicide-resistant materials are screened mainly by means of chemical mutagenesis, and herbicide-resistant mutants are screened from a large number of mutagenized offspring. Because of the randomness of the mutations generated by chemical mutagenesis, the screening effort is very large and blind.
The genome editing technology developed in recent years can carry out site-directed modification on biological DNA, and is widely applied to the genetic improvement of biomedicine and animals and plants. The CRISPR/Cas (Clustered regulated genomic repeats/CRISPR-associated) system is a novel genome site-directed editing technology developed in recent years, and the most mature type II CRISPR/Cas derived from Streptococcus pyogenes (Streptococcus pyogenes) in plants at present, namely the CRISPR/Cas9 system. CRISPR/Cas9 has been widely used for gene knockout and site-directed modification (including site-directed mutation and gene insertion). However, the efficiency of site-directed mutagenesis of genes based on homologous recombination is still low. Consequently, scientists have subsequently developed single base editing techniques that fuse cytosine deaminase or adenosine deaminase to nCas9(Cas9 nickase) or dCas9 (nuclear-dead Cas9) to achieve precise replacement of the single base C-T (G-a) or a-G (T-C) at a specific region of the target site that is complementarily paired to the sgRNA. Base editors based on CRISPR/Cas9 have been successfully used for a variety of plants including arabidopsis, rice, maize, wheat, and cotton, among others. However, no report that the base editing technology is applied to rape exists at present.
Disclosure of Invention
The purpose of the invention is as follows: the first technical problem to be solved by the invention is to provide a cytosine base editing vector.
The invention also aims to solve the technical problem of providing the BnALS1 mutant protein.
The invention also aims to solve the technical problem of providing a BnALS1 mutant gene or nucleic acid.
The technical problem to be solved by the present invention is to provide an expression cassette, a recombinant vector, a transgenic system or a cell.
The technical problem to be solved by the present invention is to provide a method for obtaining a plant having herbicide resistance based on gene editing technology.
The technical problem to be solved by the present invention is to provide a method for identifying plants obtained by said method based on gene editing technology.
It is therefore an object of the present invention to provide a vector and method useful for the single base editing of allotetraploid brassica napus. Pro197 of the cabbage type rape BnALS1 gene is mutated into Ser197 and Phe197 by the technology, so that the cabbage type rape material resisting sulfonylurea herbicide is obtained. The invention can provide a carrier and a method for rape base editing; provides a new resource for the breeding of the rape herbicide resistance.
In order to solve the technical problems, the technical scheme adopted by the invention is as follows: a cytosine base editing vector is constructed based on a pCAMBIA1300 vector and comprises a hygromycin-resistant protein, a sgRNA expression cassette and an rAPOBEC1-nCas9-UGI fusion protein.
The sgRNA expression cassette is driven by an Arabidopsis U6 promoter, and the rAPOBEC1-nCas9-UGI fusion protein is driven by an Arabidopsis ubiqintin1 promoter.
The DNA sequence of the synthesized DNA containing the U6 promoter, the sgRNA expression cassette, the ubiqintin1 promoter, the NOs terminator and other elements is shown as SEQ ID NO:1 is shown.
The rAPOBEC1-nCas9-UGI fusion protein comprises D10ACas9 incision enzyme protein, rat cytosine deaminase and uracil DNA glucoamylase inhibitor.
Wherein, the nucleotide sequence of the cytosine base editing carrier is shown as SEQ ID NO:2, the cytosine base editing vector suitable for dicotyledonous plants such as rape is named as pCBE-Bn.
The invention also comprises a recombinant vector, wherein the recombinant vector is prepared by mixing the cytosine base editing vector with a target site sequence SEQ ID NO:3 are connected to obtain the compound.
The invention also discloses a BnALS1 mutant protein, wherein proline at position 182 of the amino acid sequence of the BnALS1 mutant protein is mutated into serine or phenylalanine, and the amino acid sequence is shown as SEQ ID NO:4 or SEQ ID NO:5, respectively.
The invention also provides a brassica napus BnALS1 mutant protein. Sequence information of the wild-type BnALS1 gene was extracted from the reference genomic database (https:// www.genoscope.cns.fr/brassicana /) of winter rape variety Darmor-bzh. The target site is designed by using CRISPR-P2.0 software (https:// CRISPR. hzau. edu. cn/CRISPR2/), and the sequence of the target site is AGGTCCCTCGCCGGATGAT (SEQ ID NO: 3). The target site is connected to an sgRNA expression cassette, and an expression vector is constructed. Then carrying out genetic transformation on the rape to obtain transgenic plants, and finally screening to obtain mutant materials R10 and R144. The C of the R10 mutant material at nucleotide 543 and 544 is mutated to T, so that proline (Pro, CCT) at amino acid 182 (relative to position 197 of Arabidopsis) is mutated to serine (Ser, TCT). The C at the 543-545 position of the R144 mutant material nucleotide is mutated to T, so that the proline (Pro, CCT) at the 182 th position of the amino acid is mutated to phenylalanine (Phe, TTT).
The invention also comprises a BnALS1 mutant gene or nucleic acid, which encodes the mutant protein, and the nucleotide sequence of the mutant protein is shown as SEQ ID NO:6 or SEQ ID NO: shown at 7.
The present disclosure also includes expression cassettes, recombinant vectors, transgenic systems or cells containing the BnALS1 mutant gene or nucleic acid.
The invention also comprises the cytosine base editing vector, the recombinant vector, the Brassica napus BnALS1 mutant protein, the mutant gene or nucleic acid, and application of the expression cassette, the recombinant vector or the cell in herbicide resistance of plants.
The present disclosure also includes a method for obtaining a plant with herbicide resistance based on gene editing technology, comprising the steps of:
1) the cytosine base editing vector or the BnALS1 editing vector edits the BnALS1 gene, so that proline at the 197 th position of amino acid of the gene is mutated into serine and phenylalanine;
2) the cytosine base editing vector or the BnALS1 editing vector of claim 5 edits a BnALS1 gene so that the C at the 543 th site and the 544 th site of the nucleotide is mutated into T or the C at the 543 th site to the 545 th site of the nucleotide is mutated into T.
Specifically, the invention further discloses a method for editing the Brassica napus BnALS1 gene by using the cytosine base editing system, so that proline (Pro, CCT) at the 197 th site of the amino acid of the Brassica napus is mutated into serine (Ser, TCT) or phenylalanine (Phe, TTT), and the novel sulfonylurea herbicide-resistant Brassica napus materials R10 and R144 are obtained.
The invention also relates to a method for identifying plants obtained by said method, based on gene editing techniques, comprising the following steps:
1) determining whether said plant has said BnALS1 mutant gene or nucleic acid;
2) determining whether said plant has said BnALS1 mutant protein.
Has the advantages that: the invention reports that single base editing is realized in rape for the first time. The base editing method provided by the invention can directionally improve the rape characters, is quicker, more efficient and more accurate compared with chemical mutagenesis, and enriches the germplasm resources of herbicide resistance of rape. The mutant materials R10 and R144 obtained by the invention have stronger resistance to tribenuron-methyl herbicide. After 20 days of spraying 15mg ai/L tribenuron-methyl 20ml (approximately equal to 5 times of the recommended amount of broadleaf weed control) on each plant in the 5-6 leaf stage, the R10 and R144 materials are not affected at all, and the transgenic receptor materials are seriously phytotoxicity (new leaves wither, old leaves stop growing and become purple).
Drawings
FIG. 1 is a diagram of a base editing vector used in the present invention;
FIG. 2 shows a positive detection electrophoretogram constructed by the edited vector BnALS1, wherein M is 2000bpMarker, lanes 1-7 are 7 picked different colonies, and lane 8 is a negative control ddH2O;
FIG. 3, Sanger sequencing peak chart, shows that 7T 0 transgenic plants have a mutation event at the target site;
FIG. 4, TA cloning to determine the specific mutation pattern of each mutant;
FIG. 5 shows the results of treatment of homozygous mutant material tribenuron-methyl.
Detailed Description
Embodiments of the present invention will be described in detail below with reference to examples, but those skilled in the art will appreciate that the following examples are only illustrative of the present invention and should not be construed as limiting the scope of the present invention. The examples, in which specific conditions are not specified, were conducted under conventional conditions or conditions recommended by the manufacturer. The reagents or instruments used are not indicated by the manufacturer, and are all conventional products commercially available.
EXAMPLE 1 construction of cytosine base editing vector
The cytosine base editing vector pCBE-Bn suitable for dicotyledonous plants such as rape and the like provided by the invention is constructed based on a pCAMBIA1300 vector (figure 1). First, IDNA sequences (shown as SEQ ID NO: 1) comprising the U6 promoter, sgRNA expression cassette, ubiqintin1 promoter, NOs terminator and other elements were synthesized in Shanghai. The pCAMBIA1300 vector was digested with HindIII and Acc65I, and the digested vector was then ligated with the synthesized DNA sequence to obtain an intermediate vector. The rice nucleotide editing vector pH-nCas9-PBE (Addgene: #98164) is used as a template, and B-NcoI-F (GAAACACAAA)CCATGCCAAAGAAGAAGAGGAAGGTT) and BE-BamHI-R (CGATCAATCA)GGATCCCTACACCTTCCGCTTCTTCTTTG) is a primer for amplifying the rAPOBEC1-nCas9-UGI element sequence. The intermediate vector is cut by BamHI and NcoI and then is subjected to In-fusion with rAPOBEC1-nCas9-UGI amplified fragment
Figure GDA0002423250770000051
-Uni Seamless Cloning and analysis Kit) to construct a complete rape base editing vector, wherein the sequence of the vector is shown as SEQ ID NO:2, the vector diagram is shown in figure 1.
The modified editing vector contains hygromycin-resistant protein, sgRNA expression cassette, D10A Cas9 nickase protein (nCas9), rat cytosine deaminase (rAPOBEC1) and uracil DNA glucoamylase inhibitor (UGI). The sgRNA is driven by the Arabidopsis U6 promoter, and the rAPOBEC1-nCas9-UGI fusion protein is driven by the Arabidopsis ubiqintin1 promoter.
Example 2 construction and genetic transformation of BnALS1 editing vector
Sequence information for the wild-type BnALS1 gene was obtained from the reference genomic database (https:// www.genoscope.cns.fr/brassicana /) of winter rape variety Darmor-bzh. Combining known herbicide resistance site information with target site information designed by the CRISPR-P2.0 software (https:// CRISPR. hzau. edu. cn/CRISPR2/), it was found that there are 1 suitable target sites AGGTCCCTCGCCGGATGAT at the Pro197 site.
The rape base editing vector obtained in example 1 was digested with BsaI by synthesizing the following adapter-carrying primers sgRNA-F and sgRNA-R, annealing, and then the target site was ligated to the sgRNA expression cassette by the conventional fragment vector ligation method. The specific method comprises the following steps:
(1) the primer sequence is as follows:
sgRNA-F GATTGAGGTCCCTCGCCGGATGAT
sgRNA-R AAACATCATCCGGCGAGGGACCTC
(the plus base is a linker sequence)
(2) Annealing of the primer:
mu.l sgRNA-F (10. mu.M) + 1. mu.l sgRNA-R (10. mu.M) + 8. mu.M annex Buffer (TE +50mM NaCl) were mixed well, 10min at 95 ℃ and lowered to 20 ℃ at 0.1 ℃/s.
(3) And (3) carrying out enzyme digestion on the vector:
mu.l of the canola nucleotide editing vector plasmid obtained in example 1 (about 1. mu.g) + 10. mu.l of 10 XNEBuffer + 1. mu.l of Bsa I enzyme (NEB Co.) + 84. mu.l of water at 37 ℃ for 2-3h, and the vector was recovered.
(4) Connecting:
mu.l of the annealed product + 2. mu.l of the recovered digestion vector + 0.5. mu.l of 10 XT 4 buffer + 0.5. mu. l T4 ligase (200 units/. mu.l), 15min at room temperature.
(5) And (3) transformation:
mu.l of the ligation product was added to E.coli competence for 30min on ice, heat shock at 42 ℃ for 45s, 2min on ice, 400. mu.l of nonreactive LB was added, 1h at 37 ℃, centrifugation at 5000rpm for 1min, most of the supernatant was aspirated off, 100. mu.l of liquid was left to aspirate and spread on LB + Kan plates.
(6) Colony PCR identification:
with PCR system, PCR mix 10. mu.l + M13F (19. mu.M, universal primer) 0.4. mu.l + sgRNA-R2 (19. mu.M) 0.4. mu.l + H2O9.2. mu.l + A few bacteria were picked.
(7) And (3) PCR reaction:
7min at 95 ℃, 25s at 56 ℃, 25s at 72 ℃, 34 cycles, 5min at 72 ℃.
(8) Agarose electrophoresis detection, the electrophoretogram is shown in FIG. 2.
(9) Selecting positive bacterial colony, propagating, extracting plasmid by Beijing Quanjin biology corporation
Figure GDA0002423250770000061
The Plasmid MiniPrep Kit refers to the specification of the specific method, and the correct Cas9/sgRNA base editing vector is obtained through verification.
The successfully constructed Cas9/sgRNA base editing vector is transformed into the Agrobacterium GV3101 strain by a freeze-thaw method. Followed by genetic transformation of brassica napus. The specific method comprises the following steps:
(1) and (3) sterilization:
soaking Brassica napus receptor material J9712 (laboratory preservation strain) seeds with 75% alcohol for 1 min; then sterilizing with 2% sodium hypochlorite for 10-15min (time is determined according to seed contamination); finally, using sterile ddH2And washing the seeds until the seeds have no smell of NaClO.
(2) Sowing:
1) the sterilized seeds are sown to M by tweezers burned by alcohol lamp020-30 granules per jar on the culture medium.
2) Placing the inoculated tissue culture tank in a tissue culture box, and culturing for 6-7d at 24 ℃ in dark light.
(3) Shaking the bacteria:
after 5-6 days of sowing, the strain of the transformation vector is activated by shaking, cultured for 14-24h at 28 ℃ and 220rpm until the OD of the bacterial liquid600The value was 0.6.
(4) Explant preparation and infection:
1) cutting the seedling with sterile forceps and knife burned with alcohol, wherein the length of hypocotyl of each section is 0.8-1.0 cm.
2) Inoculum solution OD600Adjusting the rotation speed of a centrifuge to 6000rpm, centrifuging for 10min, removing supernatant, resuspending the precipitate with DM solution with the same volume as the bacterial solution, and repeatedly washing the precipitate once. Then, an invasion solution is prepared according to the dilution ratio of 2mL of bacterial liquid and 20mL of LDM liquid.
3) The cut explants are placed into the prepared staining solution with the concentration, and the staining is carried out for 10min, and the following steps are taken: the infection time is not too long, otherwise the explant is dead. 20mL of bacterial liquid and preferably 150-200 explants.
(5) Placing the infected explants on filter paper for drying, and then transferring the explants to M1In the culture medium, 20-25 explants per dish are generally suitable. Culturing at 24 ℃ in dark light.
(6) Transferring the explant to M after 36-48 h2The culture medium was cultured in a light incubator (24 ℃ C. for 16h day/8 h night).
(7) After 20d from M2Transfer of Medium to M3In the medium, subculture was performed every 20d until green shoots appeared.
(8) Transfer of Green shoots into M4In rooting culture medium. The rooting time is 2-4 weeks. After healthy and complete seedlings are grown, the seedlings can be transferred to a field or a greenhouse for normal growth and fructification.
The formula of the culture medium is as follows:
Figure GDA0002423250770000071
note: except that M0The pH should be adjusted to 5.8-6.0, and the rest should be adjusted to 5.8.
Example 3 Positive identification and editing detection of tissue culture seedlings
After the regenerated seedlings of example 2 were transplanted into soil for normal production, young leaves were taken and genomic DNA was extracted using 2% CTAB method. PCR positive detection was then performed using vector specific primer M13F (GGTAACGCCAGGGTTTTCC) and sgRNA-R2 (GCCATTTGTCTGCAGAATTG). The detection shows that 217 positive plants in 230 tissue culture seedlings have a positive rate of 94.3%. The rape transgenic system used by the invention is more perfect.
We then performed editorial tests on the positive plants obtained. PCR amplification was performed using BnALS1 specific primers WJP198F (TCGACAAGAACAAGACTTTCG) and WJP198R (CACGGTCATCAAACCTAACAC), followed by direct Sanger sequencing of the amplified products. Based on the sequencing peak patterns, we found that 7 total T0 generation plants were mutated at the target site. Wherein base substitution events were present at #10, #127, #130, #144, and consecutive double peaks were present at #7, #8, and #34 from the target site, indicating the possible presence of insertion/deletion mutations (FIG. 3). We subsequently further determined the type of mutation editing the individual using TA clonal sequencing. Wherein #10, #127 and #130 are all C mutations at positions 5 and 6 of the target site to T. The 5 th base mutation is in the third position of the codon and does not cause amino acid change; the mutation at position 6 mutated Pro to Ser (FIG. 4). #144 is a target site in which all of the C's at positions 5-7 were mutated to T, and Pro was mutated to Phe. Therefore we obtained mutants of both forms P197S and P197F.
Example 4 identification of resistance of mutants to tribenuron-methyl
The mutant strains obtained in example 3 are subjected to bagging selfing, leaf DNA of T1 plants is subjected to PCR amplification and Sanger sequencing by using BnALS1 specific primers, and finally homozygous mutant strains are separated. 10 plants of the homozygous mutant and WT are respectively selected for the treatment of tribenuron-methyl spraying. 15mg ai/L tribenuron-methyl (10% wettable powder, Henan Laienbane) is sprayed at the 5-6 leaf stage respectively, and 20ml of the wettable powder is sprayed on each plant. The using amount is approximately 3 times of the recommended concentration for controlling the broadleaf weeds in the wheat field. After 20 days, neither the P197S nor the P197F homozygous mutant material was affected at all, while its transgenic recipient material WT was severely phytologically damaged, as evidenced by new leaf withering, old leaf stopping growth and purple development (FIG. 5). The results show that the obtained homozygous mutant has stronger resistance to tribenuron-methyl herbicide. We named homozygous mutant progeny of individuals #10 and #144 as R10 and R144.
Sequence listing
<110> Yangzhou university
<120> gene editing-based BnALS1 mutant gene, protein and application thereof
<160> 15
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1456
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 1
aagcttcatt cggagttttt gtatcttgtt tcatagtttg tcccaggatt agaatgatta 60
ggcatcgaac cttcaagaat ttgattgaat aaaacatctt cattcttaag atatgaagat 120
aatcttcaaa aggcccctgg gaatctgaaa gaagagaagc aggcccattt atatgggaaa 180
gaacaatagt atttcttata taggcccatt taagttgaaa acaatcttca aaagtcccac 240
atcgcttaga taagaaaacg aagctgagtt tatatacagc tagagtcgaa gtagtgattg 300
ggagaccgag gtctcctgtt ttagagctag aaatagcaag ttaaaataag gctagtccgt 360
tatcaacttg aaaaagtggc accgagtcgg tgcttttttg ttttagagct agaaatagca 420
agttaaaata aggctagtcc gtagcgcgtg cgccaattct gcagacaaat cccgggatat 480
ttcacaaatt gaacatagac tacagaattt tagaaaacaa actttctctc tcttatctca 540
cctttatctt ttagagagaa aaagttcgat ttccggttga ccggaatgta tctttgtttt 600
ttttgttttg taacatattt cgttttccga tttagatcgg atctcctttt ccgttttgtc 660
ggaccttctt ccggtttatc cggatctaat aatatccatc ttagacttag ctaagtttgg 720
atctgttttt tggttagctc ttgtcaatcg cctcatcatc agcaagaagg tgaaattttt 780
gacaaataaa tcttagaatc atgtagtgtc tttggacctt gggaatgata gaaacgattt 840
gttatagcta ctctatgtat cagaccctga ccaagatcca acaatctcat aggttttgtg 900
catatgaaac cttcgactaa cgagaagtgg tcttttaatg agagagatat ctaaaatgtt 960
atcttaaaag cccactcaaa tctcaaggca taaggtagaa atgcaaattt ggaaagtggg 1020
ctgggccttt tgtggtaaag gcctgtaacc tagcccaata ttagcaaaac cctagacgcg 1080
tacattgaca tatataaacc cgcctcctcc ttgtttaggg tttctacgtg agagagacga 1140
aacacaaacc atggtctaga ggatcctgat tgatcgatag agctcgaatt tccccgatcg 1200
ttcaaacatt tggcaataaa gtttcttaag attgaatcct gttgccggtc ttgcgatgat 1260
tatcatataa tttctgttga attacgttaa gcatgtaata attaacatgt aatgcatgac 1320
gttatttatg agatgggttt ttatgattag agtcccgcaa ttatacattt aatacgcgat 1380
agaaaacaaa atatagcgcg caaactagga taaattatcg cgcgcggtgt catctatgtt 1440
actagatcgg ggtacc 1456
<210> 2
<211> 15573
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 2
aattcgtaat catggtcata gctgtttcct gtgtgaaatt gttatccgct cacaattcca 60
cacaacatac gagccggaag cataaagtgt aaagcctggg gtgcctaatg agtgagctaa 120
ctcacattaa ttgcgttgcg ctcactgccc gctttccagt cgggaaacct gtcgtgccag 180
ctgcattaat gaatcggcca acgcgcgggg agaggcggtt tgcgtattgg ctagagcagc 240
ttgccaacat ggtggagcac gacactctcg tctactccaa gaatatcaaa gatacagtct 300
cagaagacca aagggctatt gagacttttc aacaaagggt aatatcggga aacctcctcg 360
gattccattg cccagctatc tgtcacttca tcaaaaggac agtagaaaag gaaggtggca 420
cctacaaatg ccatcattgc gataaaggaa aggctatcgt tcaagatgcc tctgccgaca 480
gtggtcccaa agatggaccc ccacccacga ggagcatcgt ggaaaaagaa gacgttccaa 540
ccacgtcttc aaagcaagtg gattgatgtg ataacatggt ggagcacgac actctcgtct 600
actccaagaa tatcaaagat acagtctcag aagaccaaag ggctattgag acttttcaac 660
aaagggtaat atcgggaaac ctcctcggat tccattgccc agctatctgt cacttcatca 720
aaaggacagt agaaaaggaa ggtggcacct acaaatgcca tcattgcgat aaaggaaagg 780
ctatcgttca agatgcctct gccgacagtg gtcccaaaga tggaccccca cccacgagga 840
gcatcgtgga aaaagaagac gttccaacca cgtcttcaaa gcaagtggat tgatgtgata 900
tctccactga cgtaagggat gacgcacaat cccactatcc ttcgcaagac cttcctctat 960
ataaggaagt tcatttcatt tggagaggac acgctgaaat caccagtctc tctctacaaa 1020
tctatctctc tcgagctttc gcagatcccg gggggcaatg agatatgaaa aagcctgaac 1080
tcaccgcgac gtctgtcgag aagtttctga tcgaaaagtt cgacagcgtc tccgacctga 1140
tgcagctctc ggagggcgaa gaatctcgtg ctttcagctt cgatgtagga gggcgtggat 1200
atgtcctgcg ggtaaatagc tgcgccgatg gtttctacaa agatcgttat gtttatcggc 1260
actttgcatc ggccgcgctc ccgattccgg aagtgcttga cattggggag tttagcgaga 1320
gcctgaccta ttgcatctcc cgccgtgcac agggtgtcac gttgcaagac ctgcctgaaa 1380
ccgaactgcc cgctgttcta caaccggtcg cggaggctat ggatgcgatc gctgcggccg 1440
atcttagcca gacgagcggg ttcggcccat tcggaccgca aggaatcggt caatacacta 1500
catggcgtga tttcatatgc gcgattgctg atccccatgt gtatcactgg caaactgtga 1560
tggacgacac cgtcagtgcg tccgtcgcgc aggctctcga tgagctgatg ctttgggccg 1620
aggactgccc cgaagtccgg cacctcgtgc acgcggattt cggctccaac aatgtcctga 1680
cggacaatgg ccgcataaca gcggtcattg actggagcga ggcgatgttc ggggattccc 1740
aatacgaggt cgccaacatc ttcttctgga ggccgtggtt ggcttgtatg gagcagcaga 1800
cgcgctactt cgagcggagg catccggagc ttgcaggatc gccacgactc cgggcgtata 1860
tgctccgcat tggtcttgac caactctatc agagcttggt tgacggcaat ttcgatgatg 1920
cagcttgggc gcagggtcga tgcgacgcaa tcgtccgatc cggagccggg actgtcgggc 1980
gtacacaaat cgcccgcaga agcgcggccg tctggaccga tggctgtgta gaagtactcg 2040
ccgatagtgg aaaccgacgc cccagcactc gtccgagggc aaagaaatag agtagatgcc 2100
gaccggatct gtcgatcgac aagctcgagt ttctccataa taatgtgtga gtagttccca 2160
gataagggaa ttagggttcc tatagggttt cgctcatgtg ttgagcatat aagaaaccct 2220
tagtatgtat ttgtatttgt aaaatacttc tatcaataaa atttctaatt cctaaaacca 2280
aaatccagta ctaaaatcca gatcccccga attaattcgg cgttaattca gtacattaaa 2340
aacgtccgca atgtgttatt aagttgtcta agcgtcaatt tgtttacacc acaatatatc 2400
ctgccaccag ccagccaaca gctccccgac cggcagctcg gcacaaaatc accactcgat 2460
acaggcagcc catcagtccg ggacggcgtc agcgggagag ccgttgtaag gcggcagact 2520
ttgctcatgt taccgatgct attcggaaga acggcaacta agctgccggg tttgaaacac 2580
ggatgatctc gcggagggta gcatgttgat tgtaacgatg acagagcgtt gctgcctgtg 2640
atcaccgcgg tttcaaaatc ggctccgtcg atactatgtt atacgccaac tttgaaaaca 2700
actttgaaaa agctgttttc tggtatttaa ggttttagaa tgcaaggaac agtgaattgg 2760
agttcgtctt gttataatta gcttcttggg gtatctttaa atactgtaga aaagaggaag 2820
gaaataataa atggctaaaa tgagaatatc accggaattg aaaaaactga tcgaaaaata 2880
ccgctgcgta aaagatacgg aaggaatgtc tcctgctaag gtatataagc tggtgggaga 2940
aaatgaaaac ctatatttaa aaatgacgga cagccggtat aaagggacca cctatgatgt 3000
ggaacgggaa aaggacatga tgctatggct ggaaggaaag ctgcctgttc caaaggtcct 3060
gcactttgaa cggcatgatg gctggagcaa tctgctcatg agtgaggccg atggcgtcct 3120
ttgctcggaa gagtatgaag atgaacaaag ccctgaaaag attatcgagc tgtatgcgga 3180
gtgcatcagg ctctttcact ccatcgacat atcggattgt ccctatacga atagcttaga 3240
cagccgctta gccgaattgg attacttact gaataacgat ctggccgatg tggattgcga 3300
aaactgggaa gaagacactc catttaaaga tccgcgcgag ctgtatgatt ttttaaagac 3360
ggaaaagccc gaagaggaac ttgtcttttc ccacggcgac ctgggagaca gcaacatctt 3420
tgtgaaagat ggcaaagtaa gtggctttat tgatcttggg agaagcggca gggcggacaa 3480
gtggtatgac attgccttct gcgtccggtc gatcagggag gatatcgggg aagaacagta 3540
tgtcgagcta ttttttgact tactggggat caagcctgat tgggagaaaa taaaatatta 3600
tattttactg gatgaattgt tttagtacct agaatgcatg accaaaatcc cttaacgtga 3660
gttttcgttc cactgagcgt cagaccccgt agaaaagatc aaaggatctt cttgagatcc 3720
tttttttctg cgcgtaatct gctgcttgca aacaaaaaaa ccaccgctac cagcggtggt 3780
ttgtttgccg gatcaagagc taccaactct ttttccgaag gtaactggct tcagcagagc 3840
gcagatacca aatactgtcc ttctagtgta gccgtagtta ggccaccact tcaagaactc 3900
tgtagcaccg cctacatacc tcgctctgct aatcctgtta ccagtggctg ctgccagtgg 3960
cgataagtcg tgtcttaccg ggttggactc aagacgatag ttaccggata aggcgcagcg 4020
gtcgggctga acggggggtt cgtgcacaca gcccagcttg gagcgaacga cctacaccga 4080
actgagatac ctacagcgtg agctatgaga aagcgccacg cttcccgaag ggagaaaggc 4140
ggacaggtat ccggtaagcg gcagggtcgg aacaggagag cgcacgaggg agcttccagg 4200
gggaaacgcc tggtatcttt atagtcctgt cgggtttcgc cacctctgac ttgagcgtcg 4260
atttttgtga tgctcgtcag gggggcggag cctatggaaa aacgccagca acgcggcctt 4320
tttacggttc ctggcctttt gctggccttt tgctcacatg ttctttcctg cgttatcccc 4380
tgattctgtg gataaccgta ttaccgcctt tgagtgagct gataccgctc gccgcagccg 4440
aacgaccgag cgcagcgagt cagtgagcga ggaagcggaa gagcgcctga tgcggtattt 4500
tctccttacg catctgtgcg gtatttcaca ccgcatatgg tgcactctca gtacaatctg 4560
ctctgatgcc gcatagttaa gccagtatac actccgctat cgctacgtga ctgggtcatg 4620
gctgcgcccc gacacccgcc aacacccgct gacgcgccct gacgggcttg tctgctcccg 4680
gcatccgctt acagacaagc tgtgaccgtc tccgggagct gcatgtgtca gaggttttca 4740
ccgtcatcac cgaaacgcgc gaggcagggt gccttgatgt gggcgccggc ggtcgagtgg 4800
cgacggcgcg gcttgtccgc gccctggtag attgcctggc cgtaggccag ccatttttga 4860
gcggccagcg gccgcgatag gccgacgcga agcggcgggg cgtagggagc gcagcgaccg 4920
aagggtaggc gctttttgca gctcttcggc tgtgcgctgg ccagacagtt atgcacaggc 4980
caggcgggtt ttaagagttt taataagttt taaagagttt taggcggaaa aatcgccttt 5040
tttctctttt atatcagtca cttacatgtg tgaccggttc ccaatgtacg gctttgggtt 5100
cccaatgtac gggttccggt tcccaatgta cggctttggg ttcccaatgt acgtgctatc 5160
cacaggaaag agaccttttc gacctttttc ccctgctagg gcaatttgcc ctagcatctg 5220
ctccgtacat taggaaccgg cggatgcttc gccctcgatc aggttgcggt agcgcatgac 5280
taggatcggg ccagcctgcc ccgcctcctc cttcaaatcg tactccggca ggtcatttga 5340
cccgatcagc ttgcgcacgg tgaaacagaa cttcttgaac tctccggcgc tgccactgcg 5400
ttcgtagatc gtcttgaaca accatctggc ttctgccttg cctgcggcgc ggcgtgccag 5460
gcggtagaga aaacggccga tgccgggatc gatcaaaaag taatcggggt gaaccgtcag 5520
cacgtccggg ttcttgcctt ctgtgatctc gcggtacatc caatcagcta gctcgatctc 5580
gatgtactcc ggccgcccgg tttcgctctt tacgatcttg tagcggctaa tcaaggcttc 5640
accctcggat accgtcacca ggcggccgtt cttggccttc ttcgtacgct gcatggcaac 5700
gtgcgtggtg tttaaccgaa tgcaggtttc taccaggtcg tctttctgct ttccgccatc 5760
ggctcgccgg cagaacttga gtacgtccgc aacgtgtgga cggaacacgc ggccgggctt 5820
gtctcccttc ccttcccggt atcggttcat ggattcggtt agatgggaaa ccgccatcag 5880
taccaggtcg taatcccaca cactggccat gccggccggc cctgcggaaa cctctacgtg 5940
cccgtctgga agctcgtagc ggatcacctc gccagctcgt cggtcacgct tcgacagacg 6000
gaaaacggcc acgtccatga tgctgcgact atcgcgggtg cccacgtcat agagcatcgg 6060
aacgaaaaaa tctggttgct cgtcgccctt gggcggcttc ctaatcgacg gcgcaccggc 6120
tgccggcggt tgccgggatt ctttgcggat tcgatcagcg gccgcttgcc acgattcacc 6180
ggggcgtgct tctgcctcga tgcgttgccg ctgggcggcc tgcgcggcct tcaacttctc 6240
caccaggtca tcacccagcg ccgcgccgat ttgtaccggg ccggatggtt tgcgaccgtc 6300
acgccgattc ctcgggcttg ggggttccag tgccattgca gggccggcag acaacccagc 6360
cgcttacgcc tggccaaccg cccgttcctc cacacatggg gcattccacg gcgtcggtgc 6420
ctggttgttc ttgattttcc atgccgcctc ctttagccgc taaaattcat ctactcattt 6480
attcatttgc tcatttactc tggtagctgc gcgatgtatt cagatagcag ctcggtaatg 6540
gtcttgcctt ggcgtaccgc gtacatcttc agcttggtgt gatcctccgc cggcaactga 6600
aagttgaccc gcttcatggc tggcgtgtct gccaggctgg ccaacgttgc agccttgctg 6660
ctgcgtgcgc tcggacggcc ggcacttagc gtgtttgtgc ttttgctcat tttctcttta 6720
cctcattaac tcaaatgagt tttgatttaa tttcagcggc cagcgcctgg acctcgcggg 6780
cagcgtcgcc ctcgggttct gattcaagaa cggttgtgcc ggcggcggca gtgcctgggt 6840
agctcacgcg ctgcgtgata cgggactcaa gaatgggcag ctcgtacccg gccagcgcct 6900
cggcaacctc accgccgatg cgcgtgcctt tgatcgcccg cgacacgaca aaggccgctt 6960
gtagccttcc atccgtgacc tcaatgcgct gcttaaccag ctccaccagg tcggcggtgg 7020
cccatatgtc gtaagggctt ggctgcaccg gaatcagcac gaagtcggct gccttgatcg 7080
cggacacagc caagtccgcc gcctggggcg ctccgtcgat cactacgaag tcgcgccggc 7140
cgatggcctt cacgtcgcgg tcaatcgtcg ggcggtcgat gccgacaacg gttagcggtt 7200
gatcttcccg cacggccgcc caatcgcggg cactgccctg gggatcggaa tcgactaaca 7260
gaacatcggc cccggcgagt tgcagggcgc gggctagatg ggttgcgatg gtcgtcttgc 7320
ctgacccgcc tttctggtta agtacagcga taaccttcat gcgttcccct tgcgtatttg 7380
tttatttact catcgcatca tatacgcagc gaccgcatga cgcaagctgt tttactcaaa 7440
tacacatcac ctttttagac ggcggcgctc ggtttcttca gcggccaagc tggccggcca 7500
ggccgccagc ttggcatcag acaaaccggc caggatttca tgcagccgca cggttgagac 7560
gtgcgcgggc ggctcgaaca cgtacccggc cgcgatcatc tccgcctcga tctcttcggt 7620
aatgaaaaac ggttcgtcct ggccgtcctg gtgcggtttc atgcttgttc ctcttggcgt 7680
tcattctcgg cggccgccag ggcgtcggcc tcggtcaatg cgtcctcacg gaaggcaccg 7740
cgccgcctgg cctcggtggg cgtcacttcc tcgctgcgct caagtgcgcg gtacagggtc 7800
gagcgatgca cgccaagcag tgcagccgcc tctttcacgg tgcggccttc ctggtcgatc 7860
agctcgcggg cgtgcgcgat ctgtgccggg gtgagggtag ggcgggggcc aaacttcacg 7920
cctcgggcct tggcggcctc gcgcccgctc cgggtgcggt cgatgattag ggaacgctcg 7980
aactcggcaa tgccggcgaa cacggtcaac accatgcggc cggccggcgt ggtggtgtcg 8040
gcccacggct ctgccaggct acgcaggccc gcgccggcct cctggatgcg ctcggcaatg 8100
tccagtaggt cgcgggtgct gcgggccagg cggtctagcc tggtcactgt cacaacgtcg 8160
ccagggcgta ggtggtcaag catcctggcc agctccgggc ggtcgcgcct ggtgccggtg 8220
atcttctcgg aaaacagctt ggtgcagccg gccgcgtgca gttcggcccg ttggttggtc 8280
aagtcctggt cgtcggtgct gacgcgggca tagcccagca ggccagcggc ggcgctcttg 8340
ttcatggcgt aatgtctccg gttctagtcg caagtattct actttatgcg actaaaacac 8400
gcgacaagaa aacgccagga aaagggcagg gcggcagcct gtcgcgtaac ttaggacttg 8460
tgcgacatgt cgttttcaga agacggctgc actgaacgtc agaagccgac tgcactatag 8520
cagcggaggg gttggatcaa agtactttga tcccgagggg aaccctgtgg ttggcatgca 8580
catacaaatg gacgaacgga taaacctttt cacgcccttt taaatatccg ttattctaat 8640
aaacgctctt ttctcttagg tttacccgcc aatatatcct gtcaaacact gatagtttaa 8700
actgaaggcg ggaaacgaca atctgatcca agctcaagct gctctagcat tcgccattca 8760
ggctgcgcaa ctgttgggaa gggcgatcgg tgcgggcctc ttcgctatta cgccagctgg 8820
cgaaaggggg atgtgctgca aggcgattaa gttgggtaac gccagggttt tcccagtcac 8880
gacgttgtaa aacgacggcc agtgccaagc ttcattcgga gtttttgtat cttgtttcat 8940
agtttgtccc aggattagaa tgattaggca tcgaaccttc aagaatttga ttgaataaaa 9000
catcttcatt cttaagatat gaagataatc ttcaaaaggc ccctgggaat ctgaaagaag 9060
agaagcaggc ccatttatat gggaaagaac aatagtattt cttatatagg cccatttaag 9120
ttgaaaacaa tcttcaaaag tcccacatcg cttagataag aaaacgaagc tgagtttata 9180
tacagctaga gtcgaagtag tgattgggag accgaggtct cctgttttag agctagaaat 9240
agcaagttaa aataaggcta gtccgttatc aacttgaaaa agtggcaccg agtcggtgct 9300
tttttgtttt agagctagaa atagcaagtt aaaataaggc tagtccgtag cgcgtgcgcc 9360
aattctgcag acaaatcccg ggatatttca caaattgaac atagactaca gaattttaga 9420
aaacaaactt tctctctctt atctcacctt tatcttttag agagaaaaag ttcgatttcc 9480
ggttgaccgg aatgtatctt tgtttttttt gttttgtaac atatttcgtt ttccgattta 9540
gatcggatct ccttttccgt tttgtcggac cttcttccgg tttatccgga tctaataata 9600
tccatcttag acttagctaa gtttggatct gttttttggt tagctcttgt caatcgcctc 9660
atcatcagca agaaggtgaa atttttgaca aataaatctt agaatcatgt agtgtctttg 9720
gaccttggga atgatagaaa cgatttgtta tagctactct atgtatcaga ccctgaccaa 9780
gatccaacaa tctcataggt tttgtgcata tgaaaccttc gactaacgag aagtggtctt 9840
ttaatgagag agatatctaa aatgttatct taaaagccca ctcaaatctc aaggcataag 9900
gtagaaatgc aaatttggaa agtgggctgg gccttttgtg gtaaaggcct gtaacctagc 9960
ccaatattag caaaacccta gacgcgtaca ttgacatata taaacccgcc tcctccttgt 10020
ttagggtttc tacgtgagag agacgaaaca caaaccatgc caaagaagaa gaggaaggtt 10080
tcatcggaga ccggccctgt tgctgttgac cccaccctgc ggcggagaat cgagccacac 10140
gagttcgagg tgttcttcga cccaagggag ctccgcaagg agacgtgcct cctgtacgag 10200
atcaactggg gcggcaggca ctccatctgg aggcacacca gccaaaacac caacaagcac 10260
gtggaggtca acttcatcga gaagttcacc accgagaggt acttctgccc aaacacccgc 10320
tgctccatca cctggttcct gtcctggagc ccatgcggcg agtgctccag ggccatcacc 10380
gagttcctca gccgctaccc acacgtcacc ctgttcatct acatcgccag gctctaccac 10440
cacgccgacc caaggaacag gcagggcctc cgcgacctga tctccagcgg cgtgaccatc 10500
caaatcatga ccgagcagga gtccggctac tgctggagga acttcgtcaa ctactcccca 10560
agcaacgagg cccactggcc aaggtaccca cacctctggg tgcgcctcta cgtgctcgag 10620
ctgtactgca tcatcctcgg cctgccacca tgcctcaaca tcctgaggcg caagcaacca 10680
cagctgacct tcttcaccat cgccctccaa agctgccact accagaggct cccaccacac 10740
atcctgtggg ctaccggcct caagtccggc agcgagacgc caggcacctc cgagagcgct 10800
acgcctgaac ttaaggacaa gaagtactcg atcggcctcg ccatcgggac gaactcagtt 10860
ggctgggccg tgatcaccga cgagtacaag gtgccctcta agaagttcaa ggtcctgggg 10920
aacaccgacc gccattccat caagaagaac ctcatcggcg ctctcctgtt cgacagcggg 10980
gagaccgctg aggctacgag gctcaagaga accgctaggc gccggtacac gagaaggaag 11040
aacaggatct gctacctcca agagattttc tccaacgaga tggccaaggt tgacgattca 11100
ttcttccacc gcctggagga gtctttcctc gtggaggagg ataagaagca cgagcggcat 11160
cccatcttcg gcaacatcgt ggacgaggtt gcctaccacg agaagtaccc tacgatctac 11220
catctgcgga agaagctcgt ggactccacc gataaggcgg acctcagact gatctacctc 11280
gctctggccc acatgatcaa gttccgcggc catttcctga tcgaggggga tctcaaccca 11340
gacaacagcg atgttgacaa gctgttcatc caactcgtgc agacctacaa ccaactcttc 11400
gaggagaacc cgatcaacgc ctctggcgtg gacgcgaagg ctatcctgtc cgcgaggctc 11460
tcgaagtcca ggaggctgga gaacctgatc gctcagctcc caggcgagaa gaagaacggc 11520
ctgttcggga acctcatcgc tctcagcctg gggctcaccc cgaacttcaa gtcgaacttc 11580
gatctcgctg aggacgccaa gctgcaactc tccaaggaca cctacgacga tgacctcgat 11640
aacctcctgg cccagatcgg cgatcaatac gcggacctgt tcctcgctgc caagaacctg 11700
tcggacgcca tcctcctgtc agatatcctc cgcgtgaaca ccgagatcac gaaggctcca 11760
ctctctgcct ccatgatcaa gcgctacgac gagcaccatc aggatctgac cctcctgaag 11820
gcgctggtcc gccaacagct cccggagaag tacaaggaga ttttcttcga tcagtcgaag 11880
aacggctacg ctgggtacat cgacggcggg gcctcacaag aggagttcta caagttcatc 11940
aagccaatcc tggagaagat ggacggcacg gaggagctcc tggtgaagct caacagggag 12000
gacctcctgc ggaagcagag aaccttcgat aacggcagca tcccccacca aatccatctc 12060
ggggagctgc acgccatcct gagaaggcaa gaggacttct accctttcct caaggataac 12120
cgggagaaga tcgagaagat cctgaccttc agaatcccat actacgtcgg ccctctcgcg 12180
cgggggaact caagattcgc ttggatgacc cgcaagtctg aggagaccat cacgccgtgg 12240
aacttcgagg aggtggtgga caagggcgct agcgctcagt cgttcatcga gaggatgacc 12300
aacttcgaca agaacctgcc caacgagaag gtgctcccta agcactcgct cctgtacgag 12360
tacttcaccg tctacaacga gctcacgaag gtgaagtacg tcaccgaggg catgcgcaag 12420
ccagcgttcc tgtccgggga gcagaagaag gctatcgtgg acctcctgtt caagaccaac 12480
cggaaggtca cggttaagca actcaaggag gactacttca agaagatcga gtgcttcgat 12540
tcggtcgaga tcagcggcgt tgaggaccgc ttcaacgcca gcctcgggac ctaccacgat 12600
ctcctgaaga tcatcaagga taaggacttc ctggacaacg aggagaacga ggatatcctg 12660
gaggacatcg tgctgaccct cacgctgttc gaggacaggg agatgatcga ggagcgcctg 12720
aagacgtacg cccatctctt cgatgacaag gtcatgaagc aactcaagcg ccggagatac 12780
accggctggg ggaggctgtc ccgcaagctc atcaacggca tccgggacaa gcagtccggg 12840
aagaccatcc tcgacttcct caagagcgat ggcttcgcca acaggaactt catgcaactg 12900
atccacgatg acagcctcac cttcaaggag gatatccaaa aggctcaagt gagcggccag 12960
ggggactcgc tgcacgagca tatcgcgaac ctcgctggct cccccgcgat caagaagggc 13020
atcctccaga ccgtgaaggt tgtggacgag ctcgtgaagg tcatgggccg gcacaagcct 13080
gagaacatcg tcatcgagat ggccagagag aaccaaacca cgcagaaggg gcaaaagaac 13140
tctagggagc gcatgaagcg catcgaggag ggcatcaagg agctggggtc ccaaatcctc 13200
aaggagcacc cagtggagaa cacccaactg cagaacgaga agctctacct gtactacctc 13260
cagaacggca gggatatgta cgtggaccaa gagctggata tcaaccgcct cagcgattac 13320
gacgtcgatc atatcgttcc ccagtctttc ctgaaggatg actccatcga caacaaggtc 13380
ctcaccaggt cggacaagaa ccgcggcaag tcagataacg ttccatctga ggaggtcgtt 13440
aagaagatga agaactactg gaggcagctc ctgaacgcca agctgatcac gcaaaggaag 13500
ttcgacaacc tcaccaaggc tgagagaggc gggctctcag agctggacaa ggccggcttc 13560
atcaagcggc agctggtcga gaccagacaa atcacgaagc acgttgcgca aatcctcgac 13620
tctcggatga acacgaagta cgatgagaac gacaagctga tcagggaggt taaggtgatc 13680
accctgaagt ctaagctcgt ctccgacttc aggaaggatt tccagttcta caaggttcgc 13740
gagatcaaca actaccacca tgcccatgac gcttacctca acgctgtggt cggcaccgct 13800
ctgatcaaga agtacccaaa gctggagtcc gagttcgtgt acggggacta caaggtttac 13860
gatgtgcgca agatgatcgc caagtcggag caagagatcg gcaaggctac cgccaagtac 13920
ttcttctact caaacatcat gaacttcttc aagaccgaga tcacgctggc caacggcgag 13980
atccggaaga gaccgctcat cgagaccaac ggcgagacgg gggagatcgt gtgggacaag 14040
ggcagggatt tcgcgaccgt ccgcaaggtt ctctccatgc cccaggtgaa catcgtcaag 14100
aagaccgagg tccaaacggg cgggttctca aaggagtcta tcctgcctaa gcggaacagc 14160
gacaagctca tcgccagaaa gaaggactgg gacccaaaga agtacggcgg gttcgacagc 14220
cctaccgtgg cctactcggt cctggttgtg gcgaaggttg agaagggcaa gtccaagaag 14280
ctcaagagcg tgaaggagct cctggggatc accatcatgg agaggtccag cttcgagaag 14340
aacccaatcg acttcctgga ggccaagggc tacaaggagg tgaagaagga cctgatcatc 14400
aagctcccga agtactctct cttcgagctg gagaacggca ggaagagaat gctggcttcc 14460
gctggcgagc tccagaaggg gaacgagctc gcgctgccaa gcaagtacgt gaacttcctc 14520
tacctggctt cccactacga gaagctcaag ggcagcccgg aggacaacga gcaaaagcag 14580
ctgttcgtcg agcagcacaa gcattacctc gacgagatca tcgagcaaat ctccgagttc 14640
agcaagcgcg tgatcctcgc cgacgcgaac ctggataagg tcctctccgc ctacaacaag 14700
caccgggaca agcccatcag agagcaagcg gagaacatca tccatctctt caccctgacg 14760
aacctcggcg ctcctgctgc tttcaagtac ttcgacacca cgatcgatcg gaagagatac 14820
acctccacga aggaggtcct ggacgcgacc ctcatccacc agtcgatcac cggcctgtac 14880
gagacgagga tcgacctctc acaactcggc ggggataaga gacccgcagc aaccaagaag 14940
gcagggcaag caaagaagaa gaagacgcgt gactccggcg gcagcaccaa cctgtccgac 15000
atcatcgaga aggagacggg caagcaactc gtgatccagg agagcatcct catgctgcca 15060
gaggaggtgg aggaggtcat cggcaacaag ccagagtccg acatcctggt gcacaccgcc 15120
tacgacgagt ccaccgacga gaacgtcatg ctcctgacca gcgacgcccc agagtacaag 15180
ccatgggccc tcgtcatcca ggacagcaac ggggagaaca agatcaagat gctgtcgggg 15240
gggagcccaa agaagaagcg gaaggtgtag ggatcctgat tgatcgatag agctcgaatt 15300
tccccgatcg ttcaaacatt tggcaataaa gtttcttaag attgaatcct gttgccggtc 15360
ttgcgatgat tatcatataa tttctgttga attacgttaa gcatgtaata attaacatgt 15420
aatgcatgac gttatttatg agatgggttt ttatgattag agtcccgcaa ttatacattt 15480
aatacgcgat agaaaacaaa atatagcgcg caaactagga taaattatcg cgcgcggtgt 15540
catctatgtt actagatcgg ggtaccgagc tcg 15573
<210> 3
<211> 19
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 3
aggtccctcg ccggatgat 19
<210> 4
<211> 570
<212> PRT
<213> BnALS1 mutant protein (BnALS1)
<400> 4
Met Ala Ala Ala Thr Ser Ser Ser Pro Ile Ser Leu Thr Ala Lys Pro
1 5 10 15
Ser Ser Lys Ser Pro Leu Pro Ile Ser Arg Phe Ser Leu Pro Phe Ser
20 25 30
Leu Thr Pro Gln Lys Asp Ser Ser Arg Leu His Arg Pro Leu Ala Ile
35 40 45
Ser Ala Val Leu Asn Ser Pro Val Asn Val Ala Pro Pro Ser Pro Glu
50 55 60
Lys Ile Asp Lys Asn Lys Thr Phe Val Ser Arg Tyr Ala Pro Asp Glu
65 70 75 80
Pro Arg Lys Gly Ala Asp Ile Leu Val Glu Ala Leu Glu Arg Gln Gly
85 90 95
Val Glu Thr Val Phe Ala Tyr Pro Gly Gly Ala Ser Met Glu Ile His
100 105 110
Gln Ala Leu Thr Arg Ser Ser Thr Ile Arg Asn Val Leu Pro Arg His
115 120 125
Glu Gln Gly Gly Val Phe Ala Ala Glu Gly Tyr Ala Arg Ser Ser Gly
130 135 140
Lys Pro Gly Ile Cys Ile Ala Thr Ser Gly Pro Gly Ala Thr Asn Leu
145 150 155 160
Val Ser Gly Leu Ala Asp Ala Met Leu Asp Ser Val Pro Leu Val Ala
165 170 175
Ile Thr Gly Gln Val Ser Arg Arg Met Ile Gly Thr Asp Ala Phe Gln
180 185 190
Glu Thr Pro Ile Val Glu Val Thr Arg Pro Val Leu Tyr Val Gly Gly
195 200 205
Gly Ser Leu Asn Ser Ser Glu Glu Leu Gly Arg Phe Val Glu Leu Thr
210 215 220
Gly Ile Pro Val Ala Ser Thr Leu Met Gly Leu Gly Ser Tyr Pro Cys
225 230 235 240
Asn Asp Glu Leu Ser Leu Gln Met Leu Gly Met His Gly Thr Val Tyr
245 250 255
Ala Asn Tyr Ala Val Glu His Ser Asp Leu Leu Leu Ala Phe Gly Val
260 265 270
Arg Phe Asp Asp Arg Val Thr Gly Lys Leu Glu Ala Phe Ala Ser Arg
275 280 285
Ala Lys Ile Val His Ile Asp Ile Asp Ser Ala Glu Ile Gly Lys Asn
290 295 300
Lys Thr Pro His Val Ser Val Cys Gly Asp Val Lys Leu Ala Leu Gln
305 310 315 320
Gly Met Asn Lys Val Leu Glu Asn Arg Ala Glu Glu Leu Lys Leu Asp
325 330 335
Phe Gly Val Trp Arg Ser Glu Leu Ser Glu Gln Lys Gln Lys Phe Pro
340 345 350
Leu Ser Phe Lys Thr Phe Gly Glu Ala Ile Pro Pro Gln Tyr Ala Ile
355 360 365
Gln Ile Leu Asp Glu Leu Thr Glu Gly Lys Ala Ile Ile Ser Thr Gly
370 375 380
Val Gly Gln His Gln Met Trp Ala Ala Gln Phe Tyr Lys Tyr Arg Lys
385 390 395 400
Pro Arg Gln Trp Leu Ser Ser Ser Gly Leu Gly Ala Met Gly Phe Gly
405 410 415
Leu Pro Ala Ala Ile Gly Ala Ser Val Ala Asn Pro Asp Ala Ile Val
420 425 430
Val Asp Ile Asp Gly Asp Gly Ser Phe Ile Met Asn Val Gln Glu Leu
435 440 445
Ala Thr Ile Arg Val Glu Asn Leu Pro Val Lys Ile Leu Leu Leu Asn
450 455 460
Asn Gln His Leu Gly Met Val Met Gln Trp Glu Asp Arg Phe Tyr Lys
465 470 475 480
Ala Asn Arg Ala His Thr Tyr Leu Gly Asp Pro Ala Arg Glu Asn Glu
485 490 495
Ile Phe Pro Asn Met Leu Gln Phe Ala Gly Ala Cys Gly Ile Pro Ala
500 505 510
Ala Arg Val Thr Lys Lys Glu Glu Leu Arg Glu Ala Ile Gln Thr Met
515 520 525
Leu Asp Thr Pro Gly Pro Tyr Leu Leu Asp Val Ile Cys Pro His Gln
530 535 540
Glu His Val Leu Pro Met Ile Pro Ser Gly Gly Thr Phe Lys Asp Val
545 550 555 560
Ile Thr Glu Gly Asp Gly Arg Thr Lys Tyr
565 570
<210> 5
<211> 570
<212> PRT
<213> BnALS1 mutant protein (BnALS1)
<400> 5
Met Ala Ala Ala Thr Ser Ser Ser Pro Ile Ser Leu Thr Ala Lys Pro
1 5 10 15
Ser Ser Lys Ser Pro Leu Pro Ile Ser Arg Phe Ser Leu Pro Phe Ser
20 25 30
Leu Thr Pro Gln Lys Asp Ser Ser Arg Leu His Arg Pro Leu Ala Ile
35 40 45
Ser Ala Val Leu Asn Ser Pro Val Asn Val Ala Pro Pro Ser Pro Glu
50 55 60
Lys Ile Asp Lys Asn Lys Thr Phe Val Ser Arg Tyr Ala Pro Asp Glu
65 70 75 80
Pro Arg Lys Gly Ala Asp Ile Leu Val Glu Ala Leu Glu Arg Gln Gly
85 90 95
Val Glu Thr Val Phe Ala Tyr Pro Gly Gly Ala Ser Met Glu Ile His
100 105 110
Gln Ala Leu Thr Arg Ser Ser Thr Ile Arg Asn Val Leu Pro Arg His
115 120 125
Glu Gln Gly Gly Val Phe Ala Ala Glu Gly Tyr Ala Arg Ser Ser Gly
130 135 140
Lys Pro Gly Ile Cys Ile Ala Thr Ser Gly Pro Gly Ala Thr Asn Leu
145 150 155 160
Val Ser Gly Leu Ala Asp Ala Met Leu Asp Ser Val Pro Leu Val Ala
165 170 175
Ile Thr Gly Gln Val Phe Arg Arg Met Ile Gly Thr Asp Ala Phe Gln
180 185 190
Glu Thr Pro Ile Val Glu Val Thr Arg Pro Val Leu Tyr Val Gly Gly
195 200 205
Gly Ser Leu Asn Ser Ser Glu Glu Leu Gly Arg Phe Val Glu Leu Thr
210 215 220
Gly Ile Pro Val Ala Ser Thr Leu Met Gly Leu Gly Ser Tyr Pro Cys
225 230 235 240
Asn Asp Glu Leu Ser Leu Gln Met Leu Gly Met His Gly Thr Val Tyr
245 250 255
Ala Asn Tyr Ala Val Glu His Ser Asp Leu Leu Leu Ala Phe Gly Val
260 265 270
Arg Phe Asp Asp Arg Val Thr Gly Lys Leu Glu Ala Phe Ala Ser Arg
275 280 285
Ala Lys Ile Val His Ile Asp Ile Asp Ser Ala Glu Ile Gly Lys Asn
290 295 300
Lys Thr Pro His Val Ser Val Cys Gly Asp Val Lys Leu Ala Leu Gln
305 310 315 320
Gly Met Asn Lys Val Leu Glu Asn Arg Ala Glu Glu Leu Lys Leu Asp
325 330 335
Phe Gly Val Trp Arg Ser Glu Leu Ser Glu Gln Lys Gln Lys Phe Pro
340 345 350
Leu Ser Phe Lys Thr Phe Gly Glu Ala Ile Pro Pro Gln Tyr Ala Ile
355 360 365
Gln Ile Leu Asp Glu Leu Thr Glu Gly Lys Ala Ile Ile Ser Thr Gly
370 375 380
Val Gly Gln His Gln Met Trp Ala Ala Gln Phe Tyr Lys Tyr Arg Lys
385 390 395 400
Pro Arg Gln Trp Leu Ser Ser Ser Gly Leu Gly Ala Met Gly Phe Gly
405 410 415
Leu Pro Ala Ala Ile Gly Ala Ser Val Ala Asn Pro Asp Ala Ile Val
420 425 430
Val Asp Ile Asp Gly Asp Gly Ser Phe Ile Met Asn Val Gln Glu Leu
435 440 445
Ala Thr Ile Arg Val Glu Asn Leu Pro Val Lys Ile Leu Leu Leu Asn
450 455 460
Asn Gln His Leu Gly Met Val Met Gln Trp Glu Asp Arg Phe Tyr Lys
465 470 475 480
Ala Asn Arg Ala His Thr Tyr Leu Gly Asp Pro Ala Arg Glu Asn Glu
485 490 495
Ile Phe Pro Asn Met Leu Gln Phe Ala Gly Ala Cys Gly Ile Pro Ala
500 505 510
Ala Arg Val Thr Lys Lys Glu Glu Leu Arg Glu Ala Ile Gln Thr Met
515 520 525
Leu Asp Thr Pro Gly Pro Tyr Leu Leu Asp Val Ile Cys Pro His Gln
530 535 540
Glu His Val Leu Pro Met Ile Pro Ser Gly Gly Thr Phe Lys Asp Val
545 550 555 560
Ile Thr Glu Gly Asp Gly Arg Thr Lys Tyr
565 570
<210> 6
<211> 1713
<212> DNA
<213> BnALS1 mutant protein (BnALS1)
<400> 6
atggcggcgg caacatcgtc ttctccgatc tccttaaccg ctaaaccttc ttccaaatcc 60
cctctaccca tttccagatt ctcccttccc ttctccttaa ccccacagaa agactcctcc 120
cgtctccacc gtcctctcgc catctccgcc gttctcaact cacccgtcaa tgtcgcacct 180
ccttcccctg aaaaaatcga caagaacaag actttcgtct cccgctacgc tcccgacgag 240
ccccgcaagg gtgctgatat cctcgtcgaa gccctcgagc gtcaaggcgt cgaaaccgtc 300
tttgcttatc ccggaggtgc ttccatggag atccaccaag ccttgactcg ctcctccacc 360
atccgtaacg tccttccccg tcacgaacaa ggaggagtct tcgccgccga gggttacgct 420
cgttcctccg gcaaaccggg aatctgcata gccacttcgg gtcccggagc taccaacctc 480
gtcagcgggt tagcagacgc gatgcttgac agtgttcctc ttgtcgccat tacaggacag 540
gtttctcgcc ggatgatcgg tactgacgcc ttccaagaga caccaatcgt tgaggtaacg 600
aggcctgttt tgtacgttgg tggtggaagc ttgaactcga gtgaagaact ggggagattt 660
gtcgagctta ctgggatccc cgttgcgagt actttgatgg ggcttggctc ttatccttgt 720
aacgatgagt tgtccctgca gatgcttggc atgcacggga ctgtgtatgc taactacgct 780
gtggagcata gtgatttgtt gctggcgttt ggtgttaggt ttgatgaccg tgtcacggga 840
aagctcgagg ctttcgctag cagggctaaa attgtgcaca tagacattga ttctgctgag 900
attgggaaga ataagacacc tcacgtgtct gtgtgtggtg atgtaaagct ggctttgcaa 960
gggatgaaca aggttcttga gaaccgagcg gaggagctca agcttgattt cggtgtttgg 1020
aggagtgagt tgagcgagca gaaacagaag ttccctttga gcttcaaaac gtttggagaa 1080
gccattcctc cgcagtacgc gattcagatc ctcgacgagc taaccgaagg gaaggcaatt 1140
atcagtactg gtgttggaca gcatcagatg tgggcggcgc agttttacaa gtacaggaag 1200
ccgagacagt ggctgtcgtc atcaggcctc ggagctatgg gttttggact tcctgctgcg 1260
attggagcgt ctgtggcgaa ccctgatgcg attgttgtgg atattgacgg tgatggaagc 1320
ttcataatga acgttcaaga gctggccaca atccgtgtag agaatcttcc tgtgaagata 1380
ctcttgttaa acaaccagca tcttgggatg gtcatgcaat gggaagatcg gttctacaaa 1440
gctaacagag ctcacactta tctcggggac ccggcaaggg agaacgagat cttccctaac 1500
atgctgcagt ttgcaggagc ttgcgggatt ccagctgcga gagtgacgaa gaaagaagaa 1560
ctccgagaag ctattcagac aatgctggat acaccaggac catacctgtt ggatgtgatc 1620
tgtccgcacc aagaacatgt gttaccgatg atcccaagtg gtggcacttt caaagatgta 1680
ataacagaag gggatggtcg cactaagtac tga 1713
<210> 7
<211> 1713
<212> DNA
<213> BnALS1 mutant protein (BnALS1)
<400> 7
atggcggcgg caacatcgtc ttctccgatc tccttaaccg ctaaaccttc ttccaaatcc 60
cctctaccca tttccagatt ctcccttccc ttctccttaa ccccacagaa agactcctcc 120
cgtctccacc gtcctctcgc catctccgcc gttctcaact cacccgtcaa tgtcgcacct 180
ccttcccctg aaaaaatcga caagaacaag actttcgtct cccgctacgc tcccgacgag 240
ccccgcaagg gtgctgatat cctcgtcgaa gccctcgagc gtcaaggcgt cgaaaccgtc 300
tttgcttatc ccggaggtgc ttccatggag atccaccaag ccttgactcg ctcctccacc 360
atccgtaacg tccttccccg tcacgaacaa ggaggagtct tcgccgccga gggttacgct 420
cgttcctccg gcaaaccggg aatctgcata gccacttcgg gtcccggagc taccaacctc 480
gtcagcgggt tagcagacgc gatgcttgac agtgttcctc ttgtcgccat tacaggacag 540
gtttttcgcc ggatgatcgg tactgacgcc ttccaagaga caccaatcgt tgaggtaacg 600
aggcctgttt tgtacgttgg tggtggaagc ttgaactcga gtgaagaact ggggagattt 660
gtcgagctta ctgggatccc cgttgcgagt actttgatgg ggcttggctc ttatccttgt 720
aacgatgagt tgtccctgca gatgcttggc atgcacggga ctgtgtatgc taactacgct 780
gtggagcata gtgatttgtt gctggcgttt ggtgttaggt ttgatgaccg tgtcacggga 840
aagctcgagg ctttcgctag cagggctaaa attgtgcaca tagacattga ttctgctgag 900
attgggaaga ataagacacc tcacgtgtct gtgtgtggtg atgtaaagct ggctttgcaa 960
gggatgaaca aggttcttga gaaccgagcg gaggagctca agcttgattt cggtgtttgg 1020
aggagtgagt tgagcgagca gaaacagaag ttccctttga gcttcaaaac gtttggagaa 1080
gccattcctc cgcagtacgc gattcagatc ctcgacgagc taaccgaagg gaaggcaatt 1140
atcagtactg gtgttggaca gcatcagatg tgggcggcgc agttttacaa gtacaggaag 1200
ccgagacagt ggctgtcgtc atcaggcctc ggagctatgg gttttggact tcctgctgcg 1260
attggagcgt ctgtggcgaa ccctgatgcg attgttgtgg atattgacgg tgatggaagc 1320
ttcataatga acgttcaaga gctggccaca atccgtgtag agaatcttcc tgtgaagata 1380
ctcttgttaa acaaccagca tcttgggatg gtcatgcaat gggaagatcg gttctacaaa 1440
gctaacagag ctcacactta tctcggggac ccggcaaggg agaacgagat cttccctaac 1500
atgctgcagt ttgcaggagc ttgcgggatt ccagctgcga gagtgacgaa gaaagaagaa 1560
ctccgagaag ctattcagac aatgctggat acaccaggac catacctgtt ggatgtgatc 1620
tgtccgcacc aagaacatgt gttaccgatg atcccaagtg gtggcacttt caaagatgta 1680
ataacagaag gggatggtcg cactaagtac tga 1713
<210> 8
<211> 36
<212> DNA
<213> B-NcoI-F(Artificial Sequence)
<400> 8
gaaacacaaa ccatgccaaa gaagaagagg aaggtt 36
<210> 9
<211> 39
<212> DNA
<213> BE-BamHI-R(Artificial Sequence)
<400> 9
cgatcaatca ggatccctac accttccgct tcttctttg 39
<210> 10
<211> 24
<212> DNA
<213> sgRNA-F(Artificial Sequence)
<400> 10
gattgaggtc cctcgccgga tgat 24
<210> 11
<211> 24
<212> DNA
<213> sgRNA-R(Artificial Sequence)
<400> 11
aaacatcatc cggcgaggga cctc 24
<210> 12
<211> 19
<212> DNA
<213> M13F(Artificial Sequence)
<400> 12
ggtaacgcca gggttttcc 19
<210> 13
<211> 20
<212> DNA
<213> sgRNA-R2(Artificial Sequence)
<400> 13
gccatttgtc tgcagaattg 20
<210> 14
<211> 21
<212> DNA
<213> WJP198F(Artificial Sequence)
<400> 14
tcgacaagaa caagactttc g 21
<210> 15
<211> 21
<212> DNA
<213> WJP198R(Artificial Sequence)
<400> 15
cacggtcatc aaacctaaca c 21

Claims (1)

1. A method for obtaining a plant having herbicide resistance based on a gene editing technique, comprising the steps of: editing the BnALS1 gene by using a BnALS1 editing vector to mutate proline at the 182 th site of the amino acid into serine or phenylalanine, wherein the amino acid sequence of the proline is shown as SEQ ID NO. 4 or SEQ ID NO. 5; editing a BnALS1 gene by using a BnALS1 editing vector, so that the 543 th and 544 th nucleotides of the gene are all mutated into T or the 543 th to 545 th nucleotides of the gene are all mutated into T, and the nucleotide sequence of the gene is shown as SEQ ID NO. 6 or SEQ ID NO. 7; the specific steps of the construction of the BnALS1 editing vector are as follows: synthesizing a DNA sequence shown as SEQ ID NO. 1, carrying out enzyme digestion on the pCAMBIA1300 vector by using Hind III and Acc65I to obtain an enzyme digestion vector, and then connecting the enzyme digestion vector with the synthesized DNA sequence to obtain an intermediate vector; taking a rice base editing vector pH-nCas9-PBE as a template and B-NcoI-F and BE-BamHI-R is a primer for amplifying an element sequence of rAPOBEC1-nCas9-UGI in the HI-R, and an intermediate carrier is usedBamHI andNcoi, after enzyme digestion, connecting the I with an element sequence amplification fragment In an In-fusion mode to construct and finish a rape base editing vector, wherein the sequence of the vector is shown as SEQ ID NO. 2; synthesizing primers sgRNA-F and sgRNA-R with joints, annealing, digesting a rape base editing vector by BsaI, and then connecting a target site sequence SEQ ID NO. 3 into a sgRNA expression box by a conventional fragment vector connection method to obtain a Cas9/sgRNA base editing vector, namely a BnALS1 editing vector; said B-NcoThe sequence of I-F is GAAACACAAACCATGCCAAAGAAGAAGAGGAAGGTT and BE-BamThe HI-R sequence is CGATCAATCAGGATCCCTACACCTTCCGCTTCTTCTTTG; the sequence of the sgRNA-F is as follows: GATTGAGGTCCCTCGCCGGATGAT, the sgRNA-R sequence is AAACATCATCCGGCGAGGGACCTC; the specific editing steps are as follows: transforming the successfully constructed Cas9/sgRNA base editing vector by a freeze-thaw methodEntering agrobacterium GV3101 strain, then carrying out the genetic transformation of cabbage type rape to obtain positive plant, and then carrying out the editing detection on the positive plant, wherein the editing detection comprises the following steps: use ofBnALS1Specific primer WJP 198F: TCGACAAGAACAAGACTTTCG and WJP 198R: CACGGTCATCAAACCTAACAC, carrying out PCR amplification, and then directly carrying out Sanger sequencing on the amplification product to finally obtain two forms of mutant plants; wherein the plant is Brassica napus winter rape variety Darmor-bzhThe herbicide is tribenuron-methyl.
CN202010051263.0A 2020-01-16 2020-01-16 BnALS1 mutant gene based on gene editing, protein and application thereof Active CN111118060B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010051263.0A CN111118060B (en) 2020-01-16 2020-01-16 BnALS1 mutant gene based on gene editing, protein and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010051263.0A CN111118060B (en) 2020-01-16 2020-01-16 BnALS1 mutant gene based on gene editing, protein and application thereof

Publications (2)

Publication Number Publication Date
CN111118060A CN111118060A (en) 2020-05-08
CN111118060B true CN111118060B (en) 2021-04-27

Family

ID=70489568

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010051263.0A Active CN111118060B (en) 2020-01-16 2020-01-16 BnALS1 mutant gene based on gene editing, protein and application thereof

Country Status (1)

Country Link
CN (1) CN111118060B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112266420B (en) * 2020-10-30 2022-08-09 华南农业大学 Plant efficient cytosine single-base editor and construction and application thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106867977B (en) * 2017-01-20 2018-06-05 湖南杂交水稻研究中心 A kind of rice herbicide resistant protein and gene and its application
CN106916852B (en) * 2017-04-13 2020-12-04 上海科技大学 Base editing system and construction and application method thereof
WO2019217785A1 (en) * 2018-05-10 2019-11-14 St. Jude Children's Research Hospital, Inc. High-throughput method for characterizing the genome-wide activity of editing nucleases in vitro
CN110628783A (en) * 2019-10-23 2019-12-31 江苏省农业科学院 Non-transgenic herbicide-resistant rape gene and application thereof

Also Published As

Publication number Publication date
CN111118060A (en) 2020-05-08

Similar Documents

Publication Publication Date Title
CN101405394B (en) D-amino acid selection for soybean
AU2019345788A1 (en) Method for knocking out BnMAX1 gene in Brassica napus L. using CRISPR-Cas9 system and application
CN112626080B (en) R gene for controlling soybean-rhizobium matching property, protein and application thereof
CN110669785B (en) Application of tomato SlLOB40 protein and coding gene thereof in regulation and control of plant drought resistance
CN111139261B (en) Method for reducing polyphenol oxidase content of wheat grains by using gene editing
US20040199944A1 (en) Maize H3C4 promoter combined with the first intron of rice actin, chimeric gene comprising it and transformed plant
CN111511198A (en) Modified plants with enhanced traits
US20030145345A1 (en) LexA DNA binding domain optimized for arabidopsis species
CN110878302B (en) Method for knocking out Brassica napus Bna. TT8 gene by using CRISPR/Cas9 system and application
EP0554273A1 (en) A process for the gene manipulation of plant cells, recombinant plasmids, recombinant bacteria, plants
CN111118060B (en) BnALS1 mutant gene based on gene editing, protein and application thereof
CN113621643A (en) Application of GhTULP34 in regulation and control of plant resistance to abiotic adversity stress and regulation and control method
CN113265403A (en) Soybean Dt1 gene editing site and application thereof
CN113462690A (en) Application of soybean gene promoters pRPS28 and pRPS28-I in soybeans, arabidopsis thaliana and tobaccos
CN113462689A (en) Application of soybean gene promoters pEIF1 and pEIF1-I in soybeans, arabidopsis thaliana and tobaccos
CN109456969B (en) Rice brown planthopper-harming inducible promoter and application thereof
CN111926009B (en) Method for improving rice grain traits by blocking or weakening rice OsMIR394 gene expression
CN109096380B (en) Application of OsBICs gene in regulation and control of plant height and flowering time
CN107988233B (en) Application of soybean GmCRY1b gene in regulation of plant height and flowering time
CN112250743B (en) Wheat drought stress related protein TaWRKY-A and coding gene and application thereof
CN113862296B (en) Construction and application of rice jasmin biosensor J6V-HM
CN116178515A (en) Application of Glyma.19G26700 protein in cultivation of soybean cyst nematode resistant plant
CN114989282B (en) Rice mutant protein of dinitroaniline herbicide and application thereof
CN112063597B (en) Maize multi-copper oxidase coding gene ZmDEK559-2 and application thereof
CN107267513B (en) Promoter HLP2 induced by pathogenic bacteria

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant