CN110376585A - Compartment crowding detection method and device, system based on 3D radar scanning - Google Patents

Compartment crowding detection method and device, system based on 3D radar scanning Download PDF

Info

Publication number
CN110376585A
CN110376585A CN201910666603.8A CN201910666603A CN110376585A CN 110376585 A CN110376585 A CN 110376585A CN 201910666603 A CN201910666603 A CN 201910666603A CN 110376585 A CN110376585 A CN 110376585A
Authority
CN
China
Prior art keywords
compartment
target
dimensional character
passenger
character data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910666603.8A
Other languages
Chinese (zh)
Other versions
CN110376585B (en
Inventor
郜春海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Traffic Control Technology TCT Co Ltd
Original Assignee
Traffic Control Technology TCT Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Traffic Control Technology TCT Co Ltd filed Critical Traffic Control Technology TCT Co Ltd
Priority to CN201910666603.8A priority Critical patent/CN110376585B/en
Publication of CN110376585A publication Critical patent/CN110376585A/en
Application granted granted Critical
Publication of CN110376585B publication Critical patent/CN110376585B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/415Identification of targets based on measurements of movement associated with the target

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

The embodiment of the invention provides a kind of compartment crowding detection method and device, system based on 3D radar scanning, obtain the point cloud data of the passenger getting on/off for the 3D radar scanning being mounted on above compartment car door, two dimensional character data are obtained from point cloud data, then mark the corresponding target two dimensional character data of visitor of starting a work shift from two dimensional character data by identification model trained in advance.Track the direction of travel for the passenger that each target two dimensional character data obtain corresponding to it, and then the number got on the bus and got off at current station is counted according to the direction of travel of each passenger, when calculating train and sailing out of the station, passengers quantity in compartment, next station is sent by passengers quantity, is shown at next station.Before passenger reaches next station, the passengers quantity in each compartment of statistics is shown, the passenger to clamp on is enable to select platform according to the passengers quantity in each compartment, avoids blindly improving the carrying capacity of train to vehicle.

Description

Compartment crowding detection method and device, system based on 3D radar scanning
Technical field
The present invention relates to train transport power technical fields, examine more particularly, to a kind of compartment crowding based on 3D radar scanning Survey method and device, system.
Background technique
In the process of running, before train gets to the station, the passenger on station can not learn in each compartment train at present Passengers quantity.Thus when waiting since the congested conditions of every array carriage can not be predicted, can only blindness waiting.Especially peak Period, the vehicle parking time is short, and passenger can not predict the degree of crowding of every array carriage, may cause some compartments passenger and gathers around very much It squeezes, and some cabin spaces are very loose, cause space waste, reduce the carrying capacity of train.It, can also be when passenger is excessive Interior passenger's delay of standing is caused to a certain extent, influences normal operation and management in arriving at a station.
In actual application, inventor has found in existing train travelling process that passenger, which can not learn, to be reached Train in each compartment passengers quantity situation, cause blindly to vehicle, influence train transport power.
Summary of the invention
The embodiment of the present invention provides a kind of compartment crowding detection method and device, system based on 3D radar scanning, uses To solve in train travelling process in the prior art, passenger can not learn the ridership in each compartment in the train that will be reached Situation is measured, the problem of blindly influencing train transport power to vehicle is caused.
Against the above technical problems, in a first aspect, the embodiment provides a kind of vehicles based on 3D radar scanning Compartment crowding detection method, comprising:
To the either objective compartment of train, the passenger obtained by 3D radar scanning is obtained at current station by the mesh The point cloud data that the car door in mark compartment is got on or off the bus, and two dimensional character data are obtained from the point cloud data;
The scanning for being scanned and being formed to passenger is marked from two dimensional character data by identification model trained in advance Point tracks each target two dimensional character data as target two dimensional character data, obtains that target two dimensional character data are corresponding to be multiplied The direction of travel of visitor;
Enter first passengers quantity in the target compartment at the current station according to the direction of travel of each passenger statistics With the second passengers quantity for walking out the target compartment, obtains having in target compartment when train sails out of a station and multiply Objective quantity calculates train according to first passengers quantity, second passengers quantity and the existing passengers quantity and sails out of institute Target passengers quantity when current station in the target compartment is stated, the target passengers quantity is sent, with aobvious at next station Show the target passengers quantity;
Wherein, the identification model from two dimensional character data for marking the data for meeting humanoid feature, as right Passenger is scanned the target two dimensional character data to be formed;What two dimensional character data referred to intercepting from point cloud data includes sweeping The set of described point and the scanning element being parallel on the two-dimensional surface of target compartment car door.
Optionally, the training of the identification model includes:
The point cloud data that is scanned in advance to the passenger to get on or off the bus is obtained, by two-dimentional peak-seeking by the point cloud that obtains The two dimensional character data that data obtain, and the data to be formed will be scanned to passenger in each two dimensional character data and marked Note, using the two dimensional character data before being marked as the input parameter of deep learning, the two dimension after being marked is special Desired output of the data as deep learning is levied, using the model trained by deep learning as the identification model.
Optionally, each target two dimensional character data of tracking, obtain the corresponding passenger's of target two dimensional character data Direction of travel, comprising:
To each target two dimensional character data, the target two dimensional character data are obtained in upper primary scanning or next time The first position in obtained point cloud data is scanned, and obtains the point that the target two dimensional character data present scan obtains The second position in cloud data determines the target two dimension according to first position and second position The direction of travel of the corresponding passenger of characteristic.
Optionally, described to send the target passengers quantity, to show the target passengers quantity at next station, packet It includes:
The mapping relations between the passengers quantity in the preset compartment degree of crowding and compartment are obtained, are reflected according to described It penetrates relationship and the target passengers quantity determines the degree of crowding in target compartment when train sails out of the current station, as The target degree of crowding sends passenger information system PIS for the target passengers quantity and the target degree of crowding, to pass through The display equipment at next station shows the target passengers quantity and the target degree of crowding;
Wherein, the target degree of crowding is indicated by preset color corresponding with the target degree of crowding.
Optionally, the mapping relations include:
When the passengers quantity in compartment is less than the first preset quantity, the compartment degree of crowding is the seat compartment Nei You;
When the passengers quantity in compartment is greater than or equal to first preset quantity and when less than the second preset quantity, compartment The degree of crowding be compartment in without seat but loosely;
When the passengers quantity in compartment is greater than or equal to second preset quantity and is less than third preset quantity, compartment The degree of crowding is more crowded in compartment;
When the passengers quantity in compartment is greater than or equal to the third preset quantity, the compartment degree of crowding is non-in compartment It is often crowded;
Wherein, first preset quantity is equal to the amount of seats configured in compartment.
It is optionally, described that two dimensional character data are obtained from the point cloud data, comprising:
It is intercepted from the point cloud data by two-dimentional peak-seeking and contains the summit formed by scanning element and be parallel to described The two-dimensional surface of target compartment car door, using the set of the scanning element on the two-dimensional surface of interception as two dimensional character data.
Optionally, further includes:
After receiving train position and car door opening state by Train Control and management system TCMS transmission, if judgement Train is in main track operation and car door is in the open state, then sends to 3D radar and open prompt, so that 3D radar starts to sweep It retouches and obtains the point cloud data by the passenger that the car door in the target compartment is got on or off the bus at current station.
Optionally, further includes:
After receiving train position and car door opening state by Train Control and management system TCMS transmission, if judgement Train is located at terminus or car door is not opened, then does not send the unlatching prompt to 3D radar.
Second aspect, the embodiment provides a kind of compartment ridership amount detection device based on 3D radar scanning It sets, comprising:
Module is obtained, for the either objective compartment to train, obtains the passenger obtained by 3D radar scanning current The point cloud data that station is got on or off the bus by the car door in the target compartment, and two dimensional character number is obtained from the point cloud data According to;
Processing module sweeps passenger for being marked from two dimensional character data by identification model trained in advance The scanning element to be formed is retouched, as target two dimensional character data, each target two dimensional character data is tracked, obtains target two dimensional character The direction of travel of the corresponding passenger of data;
Sending module, for entering the target compartment at the current station according to the direction of travel of each passenger statistics First passengers quantity and the second passengers quantity for walking out the target compartment obtain train and sail out of a target carriage when station Existing passengers quantity in compartment, according to first passengers quantity, second passengers quantity and the existing ridership meter It calculates train and sails out of target passengers quantity when the current station in the target compartment, send the target passengers quantity to Next station;
Wherein, the identification model from two dimensional character data for marking the data for meeting humanoid feature, as right Passenger is scanned the target two dimensional character data to be formed;What two dimensional character data referred to intercepting from point cloud data includes sweeping The set of described point and the scanning element being parallel on the two-dimensional surface of target compartment car door.
The third aspect, the compartment passengers quantity detection system based on 3D radar scanning that the embodiment provides a kind of System, including data processing unit and the 3D radar being arranged in above each compartment car door of train;
Every 3D radar connection Train Control and management system TCMS and data processing unit, data processing unit connection PIS;
Wherein, to the either objective compartment of train, the 3D radar above target compartment car door is set and is being received Start to scan at current station after the unlatching for the passenger that the car door in the target compartment is got on or off the bus prompt, opens 3D radar and sweep The passenger to get on or off the bus at current station by the car door in the target compartment is retouched, point cloud data is obtained;
The data processing unit is used to execute the compartment crowding inspection described in any of the above item based on 3D radar scanning Survey method.
Fourth aspect the embodiment provides a kind of electronic equipment, including memory, processor and is stored in On reservoir and the computer program that can run on a processor, the processor realize any of the above item institute when executing described program The step of compartment crowding detection method based on 3D radar scanning stated.
5th aspect, the embodiment provides a kind of non-transient computer readable storage mediums, are stored thereon with Computer program realizes the compartment based on 3D radar scanning described in any of the above item when the computer program is executed by processor The step of crowding detection method.
The compartment crowding detection method and device that the embodiment provides a kind of based on 3D radar scanning are System obtains the point cloud data of the passenger getting on/off for the 3D radar scanning being mounted on above compartment car door, obtains from point cloud data Two dimensional character data, then the corresponding target two dimension of the visitor that starts a work shift is marked from two dimensional character data by identification model trained in advance Characteristic.The direction of travel for the passenger that each target two dimensional character data obtain corresponding to it is tracked, and then according to each passenger Direction of travel count the number getting on the bus and get off at current station, passenger when calculating train and sailing out of the station, in compartment Passengers quantity is sent next station by quantity, shows at next station.Before passenger reaches next station, by statistics The passengers quantity in each compartment is shown, so that the passenger to clamp on is selected platform according to the passengers quantity in each compartment, is avoided Blindly to vehicle, the carrying capacity of train is improved.
Detailed description of the invention
In order to more clearly explain the embodiment of the invention or the technical proposal in the existing technology, to embodiment or will show below There is attached drawing needed in technical description to do one simply to introduce, it should be apparent that, the accompanying drawings in the following description is this hair Bright some embodiments for those of ordinary skill in the art without creative efforts, can be with root Other attached drawings are obtained according to these attached drawings.
Fig. 1 is a kind of stream of compartment crowding detection method based on 3D radar scanning provided by one embodiment of the present invention Journey schematic diagram;
Fig. 2 is the schematic illustration for the compartment congestion state detection that another embodiment of the present invention provides;
Fig. 3 is that the passenger that another embodiment of the present invention provides passes in and out walking direction flow diagram;
Fig. 4 is demographics flow diagram in the compartment of another embodiment of the present invention offer;
Fig. 5 is a kind of compartment passengers quantity detection device based on 3D radar scanning that another embodiment of the present invention provides Structural block diagram;
Fig. 6 is the state flow diagram that the 3D radar that another embodiment of the present invention provides opens and closes;
Fig. 7 is the structural block diagram for the electronic equipment that another embodiment of the present invention provides.
Specific embodiment
In order to make the object, technical scheme and advantages of the embodiment of the invention clearer, below in conjunction with the embodiment of the present invention In attached drawing, technical scheme in the embodiment of the invention is clearly and completely described, it is clear that described embodiment is A part of the embodiment of the present invention, instead of all the embodiments.Based on the embodiments of the present invention, those of ordinary skill in the art Every other embodiment obtained without making creative work, shall fall within the protection scope of the present invention.
Fig. 1 is a kind of process signal of compartment crowding detection method based on 3D radar scanning provided in this embodiment Figure, referring to Fig. 1, this method comprises:
101: to the either objective compartment of train, obtaining the passenger obtained by 3D radar scanning at current station by institute The point cloud data that the car door in target compartment is got on or off the bus is stated, and obtains two dimensional character data from the point cloud data;
102: marking by identification model trained in advance to be scanned passenger from two dimensional character data to be formed Scanning element tracks each target two dimensional character data as target two dimensional character data, and it is corresponding to obtain target two dimensional character data Passenger direction of travel;
103: first passenger in the target compartment is entered at the current station according to the direction of travel of each passenger statistics Quantity and the second passengers quantity for walking out the target compartment obtain train and sail out of when a station in the target compartment There is passengers quantity, train is calculated according to first passengers quantity, second passengers quantity and the existing passengers quantity and is sailed Target passengers quantity when from the current station in the target compartment sends the target passengers quantity, in next vehicle It stands and shows the target passengers quantity;
Wherein, the identification model from two dimensional character data for marking the data for meeting humanoid feature, as right Passenger is scanned the target two dimensional character data to be formed;What two dimensional character data referred to intercepting from point cloud data includes sweeping The set of described point and the scanning element being parallel on the two-dimensional surface of target compartment car door.
Method provided in this embodiment is executed by being equipped with the equipment for executing the software of the above method, which can be meter Calculation machine, dedicated processing equipment are integrated in same equipment with 3D radar, and the present embodiment is not particularly limited this.
3D radar is generally arranged at the top of compartment car door, and when car door opening, 3D radar carries out space below Scanning, obtains the point cloud data of passenger getting on/off.What two dimensional character data referred to intercepting from point cloud data is parallel to target The set of scanning element on the two-dimensional surface of compartment car door.In order to reduce operand, calculation can be passed through when intercepting two-dimensional surface Method interception contains the two-dimensional surface of the scanning element with certain features, for example, can be intercepted by two-dimentional peak-seeking comprising by sweeping The two-dimensional surface for the summit that described point is formed.Wherein, there are peaks for finding from three dimensional point cloud for this algorithm of two-dimentional peak-seeking The position of value, and the two-dimensional surface of car door place plane is intercepted there are peak value and is parallel to, the point on the two-dimensional surface is two Dimensional feature data.In general, by calling the two-dimentional peak-seeking function in Matlab software that can obtain two-dimentional spy from point cloud data Levy data.Identification model be train in advance come can distinguish whether two dimensional character data are that the point to be formed is scanned to people Model, can accurately mark the data for being scanned and being formed to passenger.
Two dimensional character data are that there are peak value and the set of point that is parallel on the two-dimensional surface of car door, target two dimensional characters Data are to be scanned the set for the point to be formed in the two-dimensional surface to a certain passenger.That is, in a frame two dimensional character The each target two dimensional character data marked in data correspond to a passenger.
Further, it is calculated according to first passengers quantity, second passengers quantity and the existing passengers quantity Train sails out of target passengers quantity when the current station in the target compartment, comprising:
The difference of the existing passengers quantity Yu second passengers quantity is calculated, then calculates the difference and described first The sum of passengers quantity, using the sum of calculating as the target passengers quantity.
A kind of compartment crowding detection method based on 3D radar scanning is present embodiments provided, acquisition is mounted on compartment vehicle The point cloud data of the passenger getting on/off of the 3D radar scanning of door top, obtains two dimensional character data, then pass through from point cloud data Trained identification model marks the corresponding target two dimensional character data of visitor of starting a work shift from two dimensional character data in advance.Track each mesh Mark two dimensional character data obtain the direction of travel of the passenger corresponding to it, and then are counted according to the direction of travel of each passenger current The number that station gets on the bus and gets off, when calculating train and sailing out of the station, passengers quantity in compartment sends passengers quantity to Next station is shown at next station.Before passenger reaches next station, the passengers quantity in each compartment of statistics is shown Show, the passenger to clamp on is enable to select platform according to the passengers quantity in each compartment, avoids blindly improving the delivery of train to vehicle Ability.
Further, on the basis of the various embodiments described above, the training of the identification model includes:
The point cloud data that is scanned in advance to the passenger to get on or off the bus is obtained, by two-dimentional peak-seeking by the point cloud that obtains The two dimensional character data that data obtain, and the data to be formed will be scanned to passenger in each two dimensional character data and marked Note, using the two dimensional character data before being marked as the input parameter of deep learning, the two dimension after being marked is special Desired output of the data as deep learning is levied, using the model trained by deep learning as the identification model.
Specifically, Fig. 2 is the schematic illustration of compartment congestion state provided in this embodiment detection, referring to fig. 2, by taking It is downloaded to compartment door outside 3D radar, acquires the disengaging situation of Vehicular occupant, the spy of the number of people and shoulder is obtained by two-dimentional peak-seeking Distribution of the point value on two-dimensional space is levied, collected characteristic is put into identification model trained in advance, so that mould Type can by be transmitted through come character numerical value judge whether as people.After completing Human detection, the feelings that are obtained by 3D radar scanning Condition, judges the direction of motion of the humanoid data of every frame, to obtain the number of disengaging.After having judged disengaging direction, by entering people Number subtracts away number to count the number in compartment.Finally by the number in compartment, sent out by 3D radar scanning system It is sent in the PIS display system of the next stop, passenger is allowed intuitively to see each compartment by the platform CCTV of the next stop Crowding situation.
Further, the point cloud data for being trained to the identification model includes being scanned to child Point cloud data, to exist mutually point cloud data that the parallel passenger blocked is scanned and to there are when shelter to passenger The point cloud data being scanned.Wherein, shelter includes the objects such as school bag, luggage and passenger's knapsack.
As shown in Fig. 2, need to carry out the training and test of model before carrying out the detection of compartment congestion state, for into The data as training sample acquired when row model training need type abundant, are related to a variety of data cases, such as child's 3D thunder Up to scan data and the radar scanning data blocked etc. of parallel passenger.By two-dimentional peak-seeking, acquisition characteristics point data is carried out Second order derivation and smoothing processing, and carry out characteristic and be labeled.The present embodiment carries out model using the method for deep learning Training, for example, using Tensorflow deep learning frame, the data that will be collected are put into corresponding label (label) Model training is carried out in model, obtains identification model.Further, it is carried out during training pattern using test the set pair analysis model Adjustment, so that the Human detection rate of model is up to 92 or more percent.
A kind of compartment crowding detection method based on 3D radar scanning is present embodiments provided, deep learning training is passed through The model that the corresponding data of passenger are identified in two dimensional character data is entered data into using deep learning algorithm out It can accurately judge whether to be people in model trace, can effectively evade the interference of classes personage's product such as school bag, identification is accurate Degree height, strong antijamming capability.
Further, on the basis of the various embodiments described above, each target two dimensional character data of tracking obtain target The direction of travel of the corresponding passenger of two dimensional character data, comprising:
To each target two dimensional character data, the target two dimensional character data are obtained in upper primary scanning or next time The first position in obtained point cloud data is scanned, and obtains the point that the target two dimensional character data present scan obtains The second position in cloud data determines the target two dimension according to first position and second position The direction of travel of the corresponding passenger of characteristic.
During judging direction of travel, in order to avoid having obscured the target two dimensional character obtained to different passenger scans Data can add the step of whether the target two dimensional character data that verifying front and back twice sweep obtains correspond to same passenger. For example, if target two dimensional character data are in the point cloud data of position and present scan in the upper point cloud data once scanned Positional distance is smaller, then the target two dimensional character data of twice sweep belong to same passenger, can be according to target in twice sweep The change in location of two dimensional character data judges passenger's direction of travel, and otherwise, by present scan and scanning next time obtains target Two dimensional character data judge passenger's direction of travel.
For example, the point cloud for obtaining the target two dimensional character data and being scanned in upper primary scanning or next time The first position in data, comprising:
If the peak value position of the target two dimensional character data of last time scanning and the target of present scan The distance between peak value position of two dimensional character data is less than or equal to pre-determined distance, then the target two dimension of twice sweep is special Sign data are the corresponding target two dimensional character data of same passenger, obtain the target two dimensional character data and primary scan upper To point cloud data in the first position, otherwise, the target two dimensional character data of twice sweep are not that same passenger is corresponding Target two dimensional character data, obtain first of the target two dimensional character data in the point cloud data scanned next time Position.
During judging passenger's direction of travel, if last the first place for scanning the target two dimensional character data Second position of target two dimensional character data described in position to present scan is directed toward in the target compartment, then the target The corresponding passenger of two dimensional character data enters the target compartment.
If last time scanning the first position to the second position of present scan in the target compartment, Then the corresponding passenger of the target two dimensional character data walks out the target compartment.
Fig. 3 is that passenger provided in this embodiment disengaging walking direction flow diagram after humanoid judgement, passes through referring to Fig. 3 Humanoid (target two dimensional character data) position in two continuous frames of label judges the direction of travel of passenger.For example, to mesh The peak value of mark two dimensional character data is tracked, and is obtained the direction of motion of the peak value in two continuous frames and then is determined the disengaging of passenger Direction.
A kind of compartment crowding detection method based on 3D radar scanning is present embodiments provided, by special to target two dimension The tracking of sign data realizes the judgement that compartment is passed in and out to passenger, convenient for the passengers quantity in statistics disengaging compartment.
Further, described to send the target passengers quantity on the basis of the various embodiments described above, at next station Show the target passengers quantity, comprising:
The mapping relations between the passengers quantity in the preset compartment degree of crowding and compartment are obtained, are reflected according to described It penetrates relationship and the target passengers quantity determines the degree of crowding in target compartment when train sails out of the current station, as The target degree of crowding sends passenger information system PIS for the target passengers quantity and the target degree of crowding, to pass through The display equipment at next station shows the target passengers quantity and the target degree of crowding;
Wherein, the target degree of crowding is indicated by preset color corresponding with the target degree of crowding.
Further, when train is in the starting station and non-opening car door, by existing passengers quantity, the first passengers quantity and Second passengers quantity is initialized as zero.
Fig. 4 is demographics flow diagram in compartment provided in this embodiment, and referring to fig. 4, system is from the train starting station It rises and completes crowding state initialization, the number in number of people entering and compartment is set as zero.When train is run in section, 3D radar scanning system respectively adds up to disengaging compartment number after car door opening, by subtracting the number walked out into number To obtain the effective strength in the compartment.When train reaches the end of run, TCMS is by location information and vehicle door status information It is sent to 3D radar scanning system, system automatically resets the number in number of people entering and compartment, until train reaches real hair station It runs again, system re-starts disengaging passenger and counts.
A kind of compartment crowding detection method based on 3D radar scanning is present embodiments provided, the compartment degree of crowding is passed through Mapping relations between the passengers quantity in compartment divide compartment congestion state, convenient for passing through the display at next station Equipment intuitively represents the degree of crowding in compartment.
Further, on the basis of the various embodiments described above, the mapping relations include:
When the passengers quantity in compartment is less than the first preset quantity, the compartment degree of crowding is the seat compartment Nei You;
When the passengers quantity in compartment is greater than or equal to first preset quantity and when less than the second preset quantity, compartment The degree of crowding be compartment in without seat but loosely;
When the passengers quantity in compartment is greater than or equal to second preset quantity and is less than third preset quantity, compartment The degree of crowding is more crowded in compartment;
When the passengers quantity in compartment is greater than or equal to the third preset quantity, the compartment degree of crowding is to gather around in compartment It squeezes;
Wherein, first preset quantity is equal to the amount of seats configured in compartment.
The degree of crowding can also be indicated by different colors, intuitively to show the congestion state in each compartment, example Such as, passengers quantity is greater than or equal to 310 people in compartment, then the degree of crowding is very crowded, returns the result to PIS as car number And compartment number adds red;Passengers quantity is greater than or equal to 150 in compartment, and less than 310 people, then the degree of crowding is more crowded, It returns the result to PIS as car number and compartment number plus yellow;Passengers quantity is greater than or equal to 40 in compartment, less than 150 people, Then the degree of crowding is no seat but loose, is returned the result to PIS as car number and compartment number plus green;Ridership in compartment Amount is less than 40 people, then the degree of crowding is to have seat, returns the result to PIS as car number and compartment number plus blue.
The degree of crowding and passengers quantity are sent to PIS system, and next station receives the congestion information in each compartment of train, and Uniformly send result to progress result displaying in platform CCTV.Show that content includes the number in each compartment, each compartment The number of crowding corresponding color, each compartment, when standing, interior train is sailed out of, and receives the train congestion information that will arrive at a station When, PIS system completes display information with new.After withdrawal of train, system will no longer receive train congestion information, until next Run the period starts, restarting.
A kind of compartment crowding detection method based on 3D radar scanning is present embodiments provided, to the degree of crowding in compartment Detailed grade classification has been carried out, the degree of crowding in compartment is intuitively illustrated by color.
It is further, described that two dimensional character data are obtained from the point cloud data on the basis of the various embodiments described above, Include:
It is intercepted from the point cloud data by two-dimentional peak-seeking and contains the summit formed by scanning element and be parallel to described The two-dimensional surface of target compartment car door, using the set of the scanning element on the two-dimensional surface of interception as two dimensional character data.
A kind of compartment crowding detection method based on 3D radar scanning is present embodiments provided, is obtained by two-dimentional peak-seeking Two dimensional character data, greater probability includes that the scanning element to be formed is scanned to passenger in the two dimensional character data of acquisition, is subtracted Lack the calculation amount for identifying target two dimensional character data by identification model, improves computational efficiency.
Further, on the basis of the various embodiments described above, further includes:
After receiving train position and car door opening state by Train Control and management system TCMS transmission, if judgement Train is in main track operation and car door is in the open state, then sends to 3D radar and open prompt, so that 3D radar starts to sweep It retouches and obtains the point cloud data by the passenger that the car door in the target compartment is got on or off the bus at current station.
Further, on the basis of the various embodiments described above, further includes:
Receive by TCMS send train position and car door opening state after, if judge train be located at terminus or Car door is not opened, then does not send the unlatching prompt to 3D radar.
It is provided with 3D radar above the compartment car door of each train, when the train position and car door that send according to TCMS are opened It when the state of opening judges that train is in main track operation and car door in the open state, is sent to 3D radar and opens prompt, 3D radar exists After receiving unlatching prompt, that is, starts to scan the passenger to get on or off the bus at current station by the car door in the target compartment, obtain Otherwise point cloud data does not send to 3D radar and opens prompt.3D radar only can just start to mesh when receiving and opening prompt The passenger that the car door in mark compartment is got on or off the bus is scanned.
For example, the algorithm integration for executing the above-mentioned compartment crowding detection method based on 3D radar scanning in the present embodiment exists In 3D radar scanning system, then when 3D radar scanning system receives the location information and vehicle for the train that vehicle-mounted TCMS system is sent When door state, if judging, train is in main track operation, and car door is in the open state, then sends to 3D radar and open prompt, Start to scan to control 3D radar, obtains point cloud data.
A kind of compartment crowding detection method based on 3D radar scanning is present embodiments provided, by sending to 3D radar It opens prompt triggering 3D radar to be scanned, realizes the acquisition of point cloud data.Simultaneously when not needing scanning, 3D radar is not opened It opens, avoids unnecessary resource loss.
Compartment crowding detection method provided by the present application based on 3D radar scanning passes in and out passengers quantity by identification, By calculating the number in each compartment, by the logical PIS system for being sent to next platform of data after identifying processing, pass through station Platform CCTV display screen shows each compartment crowding situation, sets including the number in compartment number, compartment, and according to number The crowding colouring information that threshold feedback is returned is set, the passenger that next station is waited selects according to the congestion state in compartment Waiting station platform is selected, cabin space is rationally applied, improves train transport power.
Fig. 5 is the structural block diagram of the compartment passengers quantity detection device provided in this embodiment based on 3D radar scanning, ginseng See Fig. 5, which includes obtaining module 501, processing module 502 and sending module 503, wherein
Module 501 is obtained, for the either objective compartment to train, the passenger obtained by 3D radar scanning is obtained and is working as The point cloud data that preceding station is got on or off the bus by the car door in the target compartment, and two dimensional character number is obtained from the point cloud data According to;
Processing module 502, for by identification model trained in advance marked from two dimensional character data to passenger into The scanning element that row scanning is formed tracks each target two dimensional character data as target two dimensional character data, obtains target two dimension The direction of travel of the corresponding passenger of characteristic;
Sending module 503, for entering the target carriage at the current station according to the direction of travel of each passenger statistics First passengers quantity in compartment and the second passengers quantity for walking out the target compartment obtain train and sail out of a mesh when station The existing passengers quantity in compartment is marked, according to first passengers quantity, second passengers quantity and the existing ridership Amount calculates train and sails out of target passengers quantity when the current station in the target compartment, and the target passengers quantity is sent out It is sent to next station;
Wherein, the identification model from two dimensional character data for marking the data for meeting humanoid feature, as right Passenger is scanned the target two dimensional character data to be formed;What two dimensional character data referred to intercepting from point cloud data includes sweeping The set of described point and the scanning element being parallel on the two-dimensional surface of target compartment car door.
Compartment passengers quantity detection device provided in this embodiment based on 3D radar scanning is mentioned suitable for above-described embodiment The compartment crowding detection method based on 3D radar scanning supplied, details are not described herein.
A kind of compartment passengers quantity detection device based on 3D radar scanning is present embodiments provided, acquisition is mounted on compartment The point cloud data of the passenger getting on/off of 3D radar scanning above car door, obtains two dimensional character data, then lead to from point cloud data The corresponding target two dimensional character data of visitor of starting a work shift are marked from two dimensional character data after identification model trained in advance.It tracks each Target two dimensional character data obtain the direction of travel of the passenger corresponding to it, and then are being worked as according to the direction of travel of each passenger statistics The number that preceding station gets on the bus and gets off, when calculating train and sailing out of the station, passengers quantity in compartment sends passengers quantity To next station, shown at next station.Before passenger reaches next station, the passengers quantity in each compartment of statistics is carried out Display enables the passenger to clamp on to select platform according to the passengers quantity in each compartment, avoids blindly improving the fortune of train to vehicle Loading capability.
The present embodiment additionally provides a kind of compartment passengers quantity detection system based on 3D radar scanning, including data processing Unit and the 3D radar being arranged in above each compartment car door of train;
Every 3D radar connection Train Control and management system TCMS and data processing unit, data processing unit connection PIS;
Wherein, to the either objective compartment of train, the 3D radar above target compartment car door is set and is being received Start to scan at current station after the unlatching for the passenger that the car door in the target compartment is got on or off the bus prompt, opens 3D radar and sweep The passenger to get on or off the bus at current station by the car door in the target compartment is retouched, point cloud data is obtained;
The data processing unit is used to execute the compartment crowding inspection described in any of the above item based on 3D radar scanning Survey method.
3D radar is provided with above the car door in each compartment of train, 3D radar is for sweeping the passenger to get on or off the bus It retouches to obtain point cloud data, data processing unit is to be integrated in 3D radar scanning system, for by described in the various embodiments described above The method obtained point cloud data of processing 3D radar scanning and the functional module opened of control 3D radar, pass through data processing list Member obtains the passengers quantity in each compartment, PIS system is sent by the passengers quantity in compartment and congestion state, at next station It is shown, avoids the passenger at next station blindly to vehicle, promote train transport power.
Fig. 6 is the state flow diagram that 3D radar provided in this embodiment opens and closes, referring to Fig. 6, vehicle-mounted TCMS Vehicle door status and location information can be sent in 3D radar scanning system.(i.e. train position is removing train main track operational process When operation section other than terminus) in, after car door opening, 3D radar system is connected to Train door opening imformation, opens immediately Scanning function, after closing of the door, TCMS sends location information and door closing information in 3D radar scanning system, closes 3D radar.
Methods, devices and systems provided in this embodiment have the advantage that (1) only from Vehicular door state and vehicle Location information, so that it may which it is determined whether to enable crowding detection functions to be not necessarily to people without multisystem linkage and mass data interaction Because the function such as automatic opening, automatic identification detection, automatic signal transmitting, the automatic display of the compartment CCTV crowding can be realized in intervention Energy;(2) fusion for passing through 3D radar scanning and deep learning algorithm may make application scenarios root for multiplicity, and recognition result is more Accurately;(3) crowding grade classification in compartment is more careful, include sit, be loose, more crowding, very crowded four grades, More careful crowding display function can be provided for passenger, perfect PIS system display function can mention to a certain extent The transport power of train is risen, the risk that passenger's large area is detained is reduced.
Fig. 7 is the structural block diagram for showing electronic equipment provided in this embodiment.
Referring to Fig. 7, the electronic equipment includes: processor (processor) 710, communication interface (Communications Interface) 720, memory (memory) 730 and communication bus 740, wherein processor 710, communication interface 720, storage Device 730 completes mutual communication by communication bus 740.Processor 710 can call the logical order in memory 730, To execute following method: to the either objective compartment of train, obtaining the passenger obtained by 3D radar scanning and passed through at current station The point cloud data that the car door in the target compartment is got on or off the bus is crossed, and obtains two dimensional character data from the point cloud data;Pass through Trained identification model marks the scanning element for being scanned and being formed to passenger from two dimensional character data in advance, as target two Dimensional feature data track each target two dimensional character data, obtain the direction of travel of the corresponding passenger of target two dimensional character data; Enter first passengers quantity in the target compartment at the current station according to the direction of travel of each passenger statistics and walks out institute Second passengers quantity in target compartment is stated, train is obtained and sails out of an existing passengers quantity when station in the target compartment, It calculates train according to first passengers quantity, second passengers quantity and the existing passengers quantity and sails out of and described work as front truck Target passengers quantity when standing in the target compartment sends the target passengers quantity, to show the mesh at next station Mark passengers quantity;Wherein, the identification model is used to mark the data for meeting humanoid feature from two dimensional character data, as The target two dimensional character data to be formed are scanned to passenger;What two dimensional character data referred to intercepting from point cloud data includes The set of scanning element and the scanning element being parallel on the two-dimensional surface of target compartment car door.
In addition, the logical order in above-mentioned memory 730 can be realized by way of SFU software functional unit and conduct Independent product when selling or using, can store in a computer readable storage medium.Based on this understanding, originally Substantially the part of the part that contributes to existing technology or the technical solution can be in other words for the technical solution of invention The form of software product embodies, which is stored in a storage medium, including some instructions to So that a computer equipment (can be personal computer, server or the network equipment etc.) executes each implementation of the present invention The all or part of the steps of example the method.And storage medium above-mentioned include: USB flash disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic or disk etc. it is various It can store the medium of program code.
The present embodiment provides a kind of non-transient computer readable storage mediums, are stored thereon with computer program, the calculating Machine program is executed by processor following method: to the either objective compartment of train, obtaining the passenger obtained by 3D radar scanning In the point cloud data that current station is got on or off the bus by the car door in the target compartment, and two dimension spy is obtained from the point cloud data Levy data;The scanning for being scanned and being formed to passenger is marked from two dimensional character data by identification model trained in advance Point tracks each target two dimensional character data as target two dimensional character data, obtains that target two dimensional character data are corresponding to be multiplied The direction of travel of visitor;Enter first passenger in the target compartment at the current station according to the direction of travel of each passenger statistics Quantity and the second passengers quantity for walking out the target compartment obtain train and sail out of when a station in the target compartment There is passengers quantity, train is calculated according to first passengers quantity, second passengers quantity and the existing passengers quantity and is sailed Target passengers quantity when from the current station in the target compartment sends the target passengers quantity, in next vehicle It stands and shows the target passengers quantity;Wherein, the identification model meets humanoid spy for marking from two dimensional character data The data of sign, as being scanned the target two dimensional character data to be formed to passenger;Two dimensional character data are referred to from a cloud number What it is according to middle interception includes scanning element and the set of scanning element that is parallel on the two-dimensional surface of target compartment car door.
The present embodiment discloses a kind of computer program product, and the computer program product includes being stored in non-transient calculating Computer program on machine readable storage medium storing program for executing, the computer program include program instruction, when described program instruction is calculated When machine executes, computer is able to carry out method provided by above-mentioned each method embodiment, it may for example comprise: to any mesh of train Compartment is marked, the point that the passenger obtained by 3D radar scanning gets on or off the bus at current station by the car door in the target compartment is obtained Cloud data, and two dimensional character data are obtained from the point cloud data;By identification model trained in advance from two dimensional character number The scanning element for being scanned and being formed to passenger is marked in, and as target two dimensional character data, it is special to track each target two dimension Data are levied, the direction of travel of the corresponding passenger of target two dimensional character data is obtained;It is counted according to the direction of travel of each passenger in institute First passengers quantity and second passengers quantity of walking out the target compartment of the current station into the target compartment are stated, is obtained Train sails out of an existing passengers quantity when station in the target compartment, according to first passengers quantity, described second Passengers quantity and the existing passengers quantity calculate train and sail out of target passenger when the current station in the target compartment Quantity sends the target passengers quantity, to show the target passengers quantity at next station;Wherein, the identification model It is two-dimentional as the target to be formed is scanned to passenger for marking the data for meeting humanoid feature from two dimensional character data Characteristic;What two dimensional character data referred to intercepting from point cloud data includes scanning element and is parallel to target compartment vehicle The set of scanning element on the two-dimensional surface of door.
The embodiments such as electronic equipment described above are only schematical, wherein it is described as illustrated by the separation member Unit may or may not be physically separated, and component shown as a unit may or may not be object Manage unit, it can it is in one place, or may be distributed over multiple network units.It can select according to the actual needs Some or all of the modules therein is selected to achieve the purpose of the solution of this embodiment.Those of ordinary skill in the art are not paying wound In the case where the labour for the property made, it can understand and implement.
Through the above description of the embodiments, those skilled in the art can be understood that each embodiment can It realizes by means of software and necessary general hardware platform, naturally it is also possible to pass through hardware.Based on this understanding, on Stating technical solution, substantially the part that contributes to existing technology can be embodied in the form of software products in other words, should Computer software product may be stored in a computer readable storage medium, such as ROM/RAM, magnetic disk, CD, including several fingers It enables and using so that a computer equipment (can be personal computer, server or the network equipment etc.) executes each implementation Method described in certain parts of example or embodiment.
Finally, it should be noted that the above various embodiments is only to illustrate the technical solution of the embodiment of the present invention, rather than it is right It is limited;Although the embodiment of the present invention is described in detail referring to foregoing embodiments, the ordinary skill of this field Personnel are it is understood that it is still possible to modify the technical solutions described in the foregoing embodiments, or to part Or all technical features are equivalently replaced;And these are modified or replaceed, it does not separate the essence of the corresponding technical solution The range of each embodiment technical solution of the embodiment of the present invention.

Claims (10)

1. a kind of compartment crowding detection method based on 3D radar scanning characterized by comprising
To the either objective compartment of train, the passenger obtained by 3D radar scanning is obtained at current station by the target carriage The point cloud data that the car door in compartment is got on or off the bus, and two dimensional character data are obtained from the point cloud data;
The scanning element for being scanned and being formed to passenger is marked from two dimensional character data by identification model trained in advance, is made For target two dimensional character data, each target two dimensional character data are tracked, obtain the corresponding passenger's of target two dimensional character data Direction of travel;
Enter first passengers quantity in the target compartment at the current station according to the direction of travel of each passenger statistics and walks Second passengers quantity in the target compartment out obtains train and sails out of an existing ridership when station in the target compartment Amount calculates train according to first passengers quantity, second passengers quantity and the existing passengers quantity and sails out of described work as Target passengers quantity when preceding station in the target compartment sends the target passengers quantity, to show institute at next station State target passengers quantity;
Wherein, the identification model from two dimensional character data for marking the data for meeting humanoid feature, as to passenger It is scanned the target two dimensional character data to be formed;What two dimensional character data referred to intercepting from point cloud data includes scanning element And it is parallel to the set of the scanning element on the two-dimensional surface of target compartment car door.
2. the compartment crowding detection method according to claim 1 based on 3D radar scanning, which is characterized in that the knowledge The training of other model includes:
The point cloud data that is scanned in advance to the passenger to get on or off the bus is obtained, by two-dimentional peak-seeking by the point cloud data that obtains Obtained two dimensional character data, and the data to be formed will be scanned to passenger in each two dimensional character data and be marked, Two dimensional character number using the two dimensional character data before being marked as the input parameter of deep learning, after being marked According to the desired output as deep learning, using the model trained by deep learning as the identification model.
3. the compartment crowding detection method according to claim 1 based on 3D radar scanning, which is characterized in that described to chase after The each target two dimensional character data of track, obtain the direction of travel of the corresponding passenger of target two dimensional character data, comprising:
To each target two dimensional character data, obtains the target two dimensional character data and scanned in upper primary scanning or next time The first position in obtained point cloud data, and obtain the point cloud number that the target two dimensional character data present scan obtains The second position in determines the target two dimensional character according to first position and second position The direction of travel of the corresponding passenger of data.
4. the compartment crowding detection method according to claim 1 based on 3D radar scanning, which is characterized in that the hair The target passengers quantity is sent, to show the target passengers quantity at next station, comprising:
The mapping relations between the passengers quantity in the preset compartment degree of crowding and compartment are obtained, are closed according to the mapping System and the target passengers quantity determine the degree of crowding in target compartment when train sails out of the current station, as target The target passengers quantity and the target degree of crowding are sent passenger information system PIS by the degree of crowding, by next The display equipment at station shows the target passengers quantity and the target degree of crowding;
Wherein, the target degree of crowding is indicated by preset color corresponding with the target degree of crowding.
5. the compartment crowding detection method according to claim 4 based on 3D radar scanning, which is characterized in that described to reflect The relationship of penetrating includes:
When the passengers quantity in compartment is less than the first preset quantity, the compartment degree of crowding is the seat compartment Nei You;
When the passengers quantity in compartment is greater than or equal to first preset quantity and when less than the second preset quantity, compartment is crowded Degree be compartment in without seat but loosely;
When the passengers quantity in compartment is greater than or equal to second preset quantity and is less than third preset quantity, compartment is crowded Degree is more crowded in compartment;
When the passengers quantity in compartment is greater than or equal to the third preset quantity, the compartment degree of crowding is to gather around very much in compartment It squeezes;
Wherein, first preset quantity is equal to the amount of seats configured in compartment.
6. the compartment crowding detection method according to claim 1 based on 3D radar scanning, which is characterized in that it is described from Two dimensional character data are obtained in the point cloud data, comprising:
It is intercepted from the point cloud data by two-dimentional peak-seeking and contains the summit formed by scanning element and be parallel to the target The two-dimensional surface of compartment car door, using the set of the scanning element on the two-dimensional surface of interception as two dimensional character data.
7. the compartment crowding detection method according to claim 1 based on 3D radar scanning, which is characterized in that also wrap It includes:
After receiving train position and car door opening state by Train Control and management system TCMS transmission, if judging train It is run in main track and car door is in the open state, then sent to 3D radar and open prompt, existed so that 3D radar starts scanning Current station obtains the point cloud data by the passenger that the car door in the target compartment is got on or off the bus.
8. the compartment crowding detection method according to claim 7 based on 3D radar scanning, which is characterized in that also wrap It includes:
After receiving train position and car door opening state by Train Control and management system TCMS transmission, if judging train It is not opened positioned at terminus or car door, does not then send the unlatching prompt to 3D radar.
9. a kind of compartment crowding detection device based on 3D radar scanning characterized by comprising
Module is obtained, for the either objective compartment to train, obtains the passenger obtained by 3D radar scanning at current station By the point cloud data that the car door in the target compartment is got on or off the bus, and two dimensional character data are obtained from the point cloud data;
Processing module is scanned shape to passenger for marking from two dimensional character data by identification model trained in advance At scanning element track each target two dimensional character data as target two dimensional character data, obtain target two dimensional character data The direction of travel of corresponding passenger;
Sending module, for entering the first of the target compartment at the current station according to the direction of travel of each passenger statistics Passengers quantity and the second passengers quantity for walking out the target compartment obtain train and sail out of when a station in the target compartment Existing passengers quantity, column are calculated according to first passengers quantity, second passengers quantity and the existing passengers quantity Vehicle sails out of target passengers quantity when the current station in the target compartment, sends the target passengers quantity to next Station;
Wherein, the identification model from two dimensional character data for marking the data for meeting humanoid feature, as to passenger It is scanned the target two dimensional character data to be formed;What two dimensional character data referred to intercepting from point cloud data includes scanning element And it is parallel to the set of the scanning element on the two-dimensional surface of target compartment car door.
10. a kind of compartment crowding detection system based on 3D radar scanning, which is characterized in that including data processing unit and set Set the 3D radar above each compartment car door of train;
Every 3D radar connection Train Control and management system TCMS and data processing unit, data processing unit connect PIS;
Wherein, to the either objective compartment of train, the 3D radar above target compartment car door is set and is receiving beginning It scans at current station after the unlatching for the passenger that the car door in the target compartment is got on or off the bus prompt, opens 3D radar scanning and exist The passenger that current station is got on or off the bus by the car door in the target compartment, obtains point cloud data;
The data processing unit requires the described in any item compartment crowdings based on 3D radar scanning of 1-8 for perform claim Detection method.
CN201910666603.8A 2019-07-23 2019-07-23 Carriage congestion degree detection method, device and system based on 3D radar scanning Active CN110376585B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910666603.8A CN110376585B (en) 2019-07-23 2019-07-23 Carriage congestion degree detection method, device and system based on 3D radar scanning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910666603.8A CN110376585B (en) 2019-07-23 2019-07-23 Carriage congestion degree detection method, device and system based on 3D radar scanning

Publications (2)

Publication Number Publication Date
CN110376585A true CN110376585A (en) 2019-10-25
CN110376585B CN110376585B (en) 2022-02-15

Family

ID=68255188

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910666603.8A Active CN110376585B (en) 2019-07-23 2019-07-23 Carriage congestion degree detection method, device and system based on 3D radar scanning

Country Status (1)

Country Link
CN (1) CN110376585B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112561971A (en) * 2020-12-16 2021-03-26 珠海格力电器股份有限公司 People flow statistical method, device, equipment and storage medium
CN114782469A (en) * 2022-06-16 2022-07-22 西南交通大学 Method and device for identifying degree of congestion of public traffic, electronic device and storage medium

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104268506A (en) * 2014-09-15 2015-01-07 郑州天迈科技股份有限公司 Passenger flow counting detection method based on depth images
CN104517040A (en) * 2014-12-31 2015-04-15 青岛海信网络科技股份有限公司 Method for calculating in-carriage congestion degree of public traffic vehicle based on IC card data
CN106022460A (en) * 2016-05-25 2016-10-12 重庆市勘测院 Crowd density real-time monitoring method based on laser radar
CN106846297A (en) * 2016-12-21 2017-06-13 深圳市镭神智能系统有限公司 Pedestrian's flow quantity detecting system and method based on laser radar
CN206696862U (en) * 2017-03-22 2017-12-01 西南交通大学 Subway number identifies and delivery system
CN108269219A (en) * 2017-12-25 2018-07-10 河南辉煌软件有限公司 A kind of rail transit cars passengers quantity counting and displaying method
CN108710818A (en) * 2018-03-09 2018-10-26 唐义 A kind of real-time monitoring and statistics system and method for number based on three-dimensional laser radar

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104268506A (en) * 2014-09-15 2015-01-07 郑州天迈科技股份有限公司 Passenger flow counting detection method based on depth images
CN104517040A (en) * 2014-12-31 2015-04-15 青岛海信网络科技股份有限公司 Method for calculating in-carriage congestion degree of public traffic vehicle based on IC card data
CN106022460A (en) * 2016-05-25 2016-10-12 重庆市勘测院 Crowd density real-time monitoring method based on laser radar
CN106846297A (en) * 2016-12-21 2017-06-13 深圳市镭神智能系统有限公司 Pedestrian's flow quantity detecting system and method based on laser radar
CN206696862U (en) * 2017-03-22 2017-12-01 西南交通大学 Subway number identifies and delivery system
CN108269219A (en) * 2017-12-25 2018-07-10 河南辉煌软件有限公司 A kind of rail transit cars passengers quantity counting and displaying method
CN108710818A (en) * 2018-03-09 2018-10-26 唐义 A kind of real-time monitoring and statistics system and method for number based on three-dimensional laser radar

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112561971A (en) * 2020-12-16 2021-03-26 珠海格力电器股份有限公司 People flow statistical method, device, equipment and storage medium
CN112561971B (en) * 2020-12-16 2024-08-09 珠海格力电器股份有限公司 People flow statistics method, device, equipment and storage medium
CN114782469A (en) * 2022-06-16 2022-07-22 西南交通大学 Method and device for identifying degree of congestion of public traffic, electronic device and storage medium
CN114782469B (en) * 2022-06-16 2022-08-19 西南交通大学 Method and device for identifying degree of congestion of public traffic, electronic device and storage medium

Also Published As

Publication number Publication date
CN110376585B (en) 2022-02-15

Similar Documents

Publication Publication Date Title
CN110362077B (en) Unmanned vehicle emergency hedge decision making system, method and medium
CN105678267A (en) Scene recognition method and device
CN103824066B (en) A kind of licence plate recognition method based on video flowing
CN109808700A (en) System and method for mapping road interfering object in autonomous vehicle
CN110487562A (en) One kind being used for unpiloted road-holding ability detection system and method
US10990820B2 (en) Heterogeneous convolutional neural network for multi-problem solving
CN109190444A (en) A kind of implementation method of the lane in which the drivers should pay fees vehicle feature recognition system based on video
CN110516518A (en) A kind of illegal manned detection method of non-motor vehicle, device and electronic equipment
CN105216797A (en) Method of overtaking and system
CN113688805B (en) Unmanned aerial vehicle-based unlicensed muck vehicle identification method and system
CN108765945A (en) A kind of vehicle peccancy recognition methods and system
CN107145819A (en) A kind of bus crowding determines method and apparatus
CN110376585A (en) Compartment crowding detection method and device, system based on 3D radar scanning
CN110490103A (en) Track traffic for passenger flow Density Detection method and device
CN113255444A (en) Training method of image recognition model, image recognition method and device
CN112183206B (en) Traffic participant positioning method and system based on road side monocular camera
CN117037084A (en) Method and device for identifying abnormal behavior of toll station vehicle based on track reconstruction
CN111079488B (en) Deep learning-based bus passenger flow detection system and method
CN110154896A (en) A kind of method and equipment detecting barrier
CN110696828B (en) Forward target selection method and device and vehicle-mounted equipment
CN111275008B (en) Method and device for detecting abnormality of target vehicle, storage medium and electronic device
CN113705549B (en) Road rescue work node determination method and device and related equipment
CN114972731A (en) Traffic light detection and identification method and device, moving tool and storage medium
CN115616557A (en) Vehicle visibility detection method and system
CN112164205A (en) Method and device for sending alarm information

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant