CN109988885B - Production method of low-carbon killed steel - Google Patents

Production method of low-carbon killed steel Download PDF

Info

Publication number
CN109988885B
CN109988885B CN201910397891.1A CN201910397891A CN109988885B CN 109988885 B CN109988885 B CN 109988885B CN 201910397891 A CN201910397891 A CN 201910397891A CN 109988885 B CN109988885 B CN 109988885B
Authority
CN
China
Prior art keywords
carbon
steel
slag
deoxidizer
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910397891.1A
Other languages
Chinese (zh)
Other versions
CN109988885A (en
Inventor
梅雪辉
张晓军
臧绍双
李德军
王宏明
李俊峰
金龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Angang Steel Co Ltd
Original Assignee
Angang Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Angang Steel Co Ltd filed Critical Angang Steel Co Ltd
Priority to CN201910397891.1A priority Critical patent/CN109988885B/en
Publication of CN109988885A publication Critical patent/CN109988885A/en
Application granted granted Critical
Publication of CN109988885B publication Critical patent/CN109988885B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

The invention relates to a production method of low-carbon killed steel, wherein the mass percentage of the upper limit of the carbon content of the low-carbon killed steel is 0.10-0.25%, carbon is left in a converter for boiling tapping, and the mass percentage of the carbon content at the end point is controlled according to that C is more than or equal to 0.05% and less than or equal to-0.03% of the upper limit of the finished product carbon; after molten steel in a boiling state enters an LF furnace treatment position, firstly adding a first batch of slag material to dilute the oxidability of top slag in a molten steel tank, and then adding a carbon deoxidizer; heating the electrode, and deoxidizing the carbide slag at high temperature by using lime, a carbon deoxidizer and an electric arc. The advantages are that: the method is carried out in an LF furnace under normal pressure. The carbon deoxidizer is used to replace partial silicon and aluminum as deoxidizer, so that the cost is reduced. Compared with the silicon deoxidation process and the aluminum deoxidation process which are commonly used at present, the cost per ton of steel can be reduced by 10-20 yuan. Meanwhile, the carbon deoxidation does not leave deoxidation product residues in the molten steel, and is beneficial to improving the cleanliness of the molten steel.

Description

Production method of low-carbon killed steel
Technical Field
The invention belongs to the field of low-carbon steel production, and particularly relates to a production method of low-carbon killed steel.
Background
In the conventional steelmaking method, especially for producing low-carbon killed steel, deoxidation is mainly completed by depending on elements such as silicon, aluminum and the like which have stronger affinity with oxygen than iron. These elements react with oxygen dissolved in the molten steel to form deoxidation products insoluble in the molten steel, and the oxygen content in the steel is reduced due to their floating out.
The carbon deoxidation process is mainly applied to vacuum conditions, and carbon and oxygen are reacted by using RH, VD and other vacuum refining equipment. Under the vacuum condition, the excess carbon in the molten steel can react with oxygen to produce carbon-oxygen reaction, so that the oxygen in the molten steel can be changed into CO to be removed, at this time, the carbon can be used as deoxidant under the vacuum condition, and its deoxidization capacity can be raised with the improvement of vacuum degree. However, the vacuum condition for carbon deoxidation has high cost, and is commonly used for ultra-low carbon steel, high-grade pipeline steel with special requirements on gas content and other steel grades.
The low-carbon killed steel is produced under normal pressure, and generally, silicon alloy or aluminum alloy is added for deoxidation in the process of converter tapping, so that molten steel enters refining treatment after being killed. And a small amount of carburant is added in the tapping process of the converter for primary deoxidation, and then silicon deoxidation or aluminum deoxidation and alloying treatment are carried out. However, the foaming degree of the top slag is not easy to control, and the slag overflow risk is large. At present, silicon deoxidation or aluminum deoxidation is adopted to produce low-carbon killed steel, so that the production cost is higher.
Disclosure of Invention
In order to overcome the defects of the prior art, the invention aims to provide a production method of low-carbon killed steel, which adopts a carbon deoxidation process under normal pressure to produce the low-carbon killed steel with the carbon content of the finished product of which the upper limit is 0.10-0.25 percent, utilizes the carbon deoxidizer, lime and electrode to heat up high-temperature carbide slag for deoxidation, improves the heating efficiency, reduces the consumption of the deoxidizer, reduces the alloy cost, reduces the Al2O3The molten steel cleanliness is improved.
In order to achieve the purpose, the invention is realized by the following technical scheme:
the production method of the low-carbon killed steel comprises the following steps of:
1) making steel
a, leaving carbon in a converter, boiling and tapping, wherein the mass percent of the carbon content at the end point is controlled according to the mass percent of more than or equal to 0.05 percent and less than or equal to-0.03 percent of the upper limit of finished carbon;
b, controlling the clearance of the molten steel tank to be 400-600 mm;
2) refining
a, after molten steel in a boiling state enters an LF furnace treatment position, firstly adding a first batch of slag material to dilute the oxidability of top slag in a molten steel tank, and then adding a carbon deoxidizer;
b, heating the electrode, namely performing deoxidation by utilizing lime, a carburant and the high temperature of electric arc to generate carbide slag, adding two batches of slag in the heating process, wherein the weight ratio of the lime to the slag melting agent in the two batches of slag is controlled to be 4: 1-5: 1; controlling the amount of the slag charge of the second batch to be 0-6 kg/ton steel;
c, after the temperature is raised, adding a deoxidizing agent for final deoxidation, desulfurization, taking a process sample, alloying according to the process sample, finally adjusting the components, and casting on a machine.
The slagging agent in the step 2) is fluorite or bauxite or a slagging material taking bauxite as a main component; the carbon deoxidizer is a coke carburant or a petroleum coke carburant.
The first batch of slag charge and the adding amount thereof in the step 2) are 4-5 kg of lime per ton of steel and 2-2.5 kg of slag melting agent per ton of steel; the addition amount of the carbon deoxidizer is as follows: the amount of molten steel is x (the upper limit of finished carbon-the carbon content in molten steel is-0.01%)/the carbon deoxidizer carbon content.
When the deoxidizer in the step 2) is an aluminum wire section, the produced low-carbon killed steel is low-carbon aluminum killed steel; the number of the added first batch of aluminum wire sections is 1.1-1.9 kg/ton steel.
When the deoxidizer in the step 2) is ferrosilicon, the produced low-carbon killed steel is low-carbon silicon killed steel; adding the first batch of ferrosilicon after temperature rise: the molten steel amount is multiplied by (the upper limit of finished product silicon-the silicon content in the molten steel)/the silicon-iron content.
Compared with the prior art, the invention has the beneficial effects that:
1. the production method of low-carbon killed steel is characterized by that the carbon deoxidation reaction is mainly implemented in LF furnace under the normal pressure. The carbon deoxidizer is used to replace partial silicon and aluminum as deoxidizer, so that the cost is reduced. Compared with the silicon deoxidation process and the aluminum deoxidation process which are commonly used at present, the cost per ton of steel can be reduced by 10-20 yuan. Meanwhile, the carbon deoxidation does not leave deoxidation product residues in the molten steel, and is beneficial to improving the cleanliness of the molten steel.
2. The invention uses the existing production equipment, adopts boiling molten steel to enter an LF furnace, and adds a carbon deoxidizer, lime and a slagging agent into the molten steel in a boiling state, and utilizes the carbon deoxidizer, the lime and the high temperature of an electrode to heat up to produce carbide slag for deoxidation.
3. The proportion of the lime of the first slag material of the LF furnace and the slagging agent is controlled, so that the carbide slag generated in the carbon deoxidation reaction process has a good submerged arc effect, and the electrode heating efficiency can be improved. And an electrode heating mode is adopted, and the heating rate of the LF furnace is increased from 3-5 ℃/min to 4-6 ℃/min.
4. In the LF process, a carbon deoxidizer is added to the boiling molten steel, so that slag overflow is likely to occur. The slag is added firstly to dilute the oxidability of the top slag in the molten steel tank, so that the slag overflow risk of adding a carbon deoxidizer is eliminated; the carbon deoxidation process can meet the normal production requirement.
5. The method can improve the accuracy of the first aluminum addition of the deoxidizer in the LF furnace, and avoid the phenomenon of repeated aluminum addition of the deoxidizer caused by inaccurate first aluminum addition of the deoxidizer. Thereby ensuring the stable quality of the molten steel after the LF furnace is finished and the stable production of the LF furnace.
6. By adopting the method, the silicon return of the molten steel in the LF furnace treatment process can be reduced, and the low-silicon killed steel with the upper limit of 0.03 percent of the finished product silicon can be stably produced.
7. The operation of the LF is greatly influenced by the LF length experience and the molten steel entering the LF, the operation of the LF is modeled, the influence of human factors and the molten steel entering the LF on the operation of the LF is reduced, and the method is favorable for realizing the intelligent production of the LF.
Detailed Description
The present invention is described in detail below, but it should be noted that the practice of the present invention is not limited to the following embodiments.
The production method of the low-carbon killed steel comprises the following steps of:
1) making steel
a, leaving carbon in a converter, boiling and tapping, wherein the mass percent of the carbon content at the end point is controlled according to the mass percent of more than or equal to 0.05 percent and less than or equal to-0.03 percent of the upper limit of finished carbon;
b, controlling the clearance of the molten steel tank to be 300-600 mm;
2) refining
a, after molten steel in a boiling state enters an LF furnace treatment position, firstly adding a first batch of slag material to dilute the oxidability of top slag in a molten steel tank, and then adding a carbon deoxidizer;
b, heating the electrode for 5-10 minutes, performing high-temperature acetylene sludge deoxidation by using lime, a carbon deoxidizer and an electric arc, and adding two batches of slag materials in the heating process, wherein the weight ratio of the lime to the slag melting agent in the two batches of slag materials is controlled to be 4: 1-5: 1; controlling the amount of the slag charge of the second batch to be 0-6 kg/ton steel;
c, after the temperature is raised, adding a deoxidizing agent for final deoxidation, desulfurization, taking a process sample, alloying according to the process sample, finally adjusting the components, and casting on a machine.
The slagging agent in the step 2) is fluorite or bauxite or a slagging material taking bauxite as a main component; the carbon deoxidizer is a coke carburant or a petroleum coke carburant.
The first batch of slag charge and the adding amount thereof in the step 2) are 4-5 kg of lime per ton of steel and 2-2.5 kg of slag melting agent per ton of steel; the addition amount of the carbon deoxidizer is as follows: the amount of molten steel is x (the upper limit of finished carbon-the carbon content in molten steel is-0.01%)/the carbon deoxidizer carbon content.
When the deoxidizer in the step 2) is an aluminum wire section, the produced low-carbon killed steel is low-carbon aluminum killed steel; the number of the added first batch of aluminum wire sections is 1.1-1.9 kg/ton steel, the upper limit of finished carbon is higher than the lower limit, and the upper limit of finished carbon is lower than the upper limit.
When the deoxidizer in the step 2) is ferrosilicon, the produced low-carbon killed steel is low-carbon silicon killed steel; adding the first batch of ferrosilicon after temperature rise: the molten steel amount is multiplied by (the upper limit of finished product silicon-the silicon content in the molten steel)/the silicon-iron content.
Example one
The production method of the low-carbon killed steel comprises the following steps of:
1. steel-making process
1) The end point carbon content of the converter is 0.05 percent;
2) tapping is carried out in a boiling way, and the clearance of the large tank is 400 mm.
2. Refining procedure
1) After molten steel enters an LF furnace treatment position, adding slag (4 kg/ton of steel white ash and 2 kg/ton of steel bauxite), and after the slag is completely melted, adding a carbon deoxidizer, wherein the adding amount of the carbon deoxidizer is x (the upper carbon limit of a finished product-the carbon content in the molten steel is-0.01%)/the carbon deoxidizer carbon content; .
2) Heating the electrode for 9 minutes, and blowing argon: 200L/min.
3) In the temperature rising process, adding the rest slag materials, wherein lime and bauxite in the rest slag materials are respectively 2 kg/ton steel and 0.5 kg/ton steel;
4) after the temperature rise, the addition amount of the first batch of aluminum wire segments is 1.8 kg/ton steel.
5) And (3) timely sticking and taking the slag sample, and when the slag sample changes color and is light green or transparent glass slag, taking the process sample and finally adjusting the components according to the process sample.
6) After molten steel is alloyed, feeding an aluminum-calcium wire of 2 m/ton steel, and blowing argon for 3 minutes to machine.
Example two
The production method of the low-carbon killed steel comprises the following steps of:
1. steel-making process
1) The carbon content at the end point of the converter is 0.06 percent;
2) tapping is carried out in a boiling way, and the clearance of the large tank is 500 mm.
2. Refining procedure
1) After molten steel enters an LF furnace treatment position, adding slag (4.5 kg/ton steel white ash and 2.3 kg/ton steel bauxite), and after the slag is completely melted, adding a carbon deoxidizer, wherein the adding amount of the carbon deoxidizer is x (finished carbon upper limit-carbon content in molten steel-0.01%)/carbon deoxidizer carbon content; .
2) Heating the electrode for 8 minutes, and blowing argon: 260L/min.
3) In the temperature rising process, adding the rest slag materials, wherein the lime and the bauxite in the rest slag materials are respectively 1.5 kg/ton steel and 0.3 kg/ton steel;
4) after the temperature rise, the addition amount of the first batch of aluminum wire segments is 1.5 kg/ton steel.
5) And (3) timely sticking and taking the slag sample, and when the slag sample changes color and is light green or transparent glass slag, taking the process sample and finally adjusting the components according to the process sample.
6) After molten steel is alloyed, feeding an aluminum-calcium wire of 2.5 m/ton steel, and blowing argon for 3 minutes.
EXAMPLE III
The production method of the low-carbon killed steel comprises the following steps of:
1. steel-making process
1) The end point carbon content of the converter is 0.09%;
2) tapping is carried out in a boiling way, and the clearance of the big tank is 600 mm.
2. Refining procedure
1) After molten steel enters an LF furnace treatment position, adding slag (5 kg/ton of steel white ash and 2.5 kg/ton of steel bauxite), and after the slag is completely melted, adding a carbon deoxidizer, wherein the adding amount of the carbon deoxidizer is x (the upper limit of finished carbon-the carbon content in the molten steel is-0.01%)/the carbon deoxidizer carbon content; .
2) Heating the electrode for 10 minutes, and blowing argon: 300L/min.
3) In the temperature rising process, adding the rest slag materials, wherein lime and bauxite in the rest slag materials are respectively 3 kg/ton steel and 0.7 kg/ton steel;
4) after the temperature rise, the addition amount of the first batch of aluminum wire segments is 1.2 kg/ton steel.
5) And (3) timely sticking and taking the slag sample, and when the slag sample changes color and is light green or transparent glass slag, taking the process sample and finally adjusting the components according to the process sample.
6) After molten steel is alloyed, feeding 3 m/ton of steel aluminum-calcium wire, blowing argon for 3 minutes and loading the machine.
Example four
The production method of the low-carbon killed steel comprises the following steps of:
1. steel-making process
1) The carbon content at the end point of the converter is 0.06 percent;
2) tapping is carried out in a boiling way, and the clearance of the large tank is 500 mm.
2. Refining procedure
1) After molten steel enters an LF furnace treatment position, adding slag (4 kg/ton of steel white ash and 2 kg/ton of steel bauxite), and after the slag is completely melted, adding a carbon deoxidizer, wherein the adding amount of the carbon deoxidizer is x (the upper carbon limit of a finished product-the carbon content in the molten steel is-0.01%)/the carbon deoxidizer carbon content; .
2) Heating the electrode for 9 minutes, and blowing argon: 230L/min.
3) In the temperature rising process, adding the rest slag materials, wherein lime and bauxite in the rest slag materials are respectively 2 kg/ton steel and 0.4 kg/ton steel;
4) and after the temperature is raised, the adding amount of the ferrosilicon is the molten steel amount multiplied by (the upper limit of finished product silicon-the silicon content in the molten steel)/the silicon content of the ferrosilicon.
5) And (3) timely sticking and taking the slag sample, and when the slag sample changes color and is light green or transparent glass slag, taking the process sample and finally adjusting the components according to the process sample.
6) After molten steel is alloyed, feeding a silicon-calcium wire of 2 m/ton steel, and blowing argon for 3 minutes to machine.
EXAMPLE five
The production method of the low-carbon killed steel comprises the following steps of:
1. steel-making process
1) The end point carbon content of the converter is 0.12 percent;
2) tapping is carried out in a boiling way, and the clearance of the large tank is 400 mm.
2. Refining procedure
1) After molten steel enters an LF furnace treatment position, adding slag (4.3 kg/ton steel white ash and 2.2 kg/ton steel bauxite), and after the slag is completely melted, adding a carbon deoxidizer, wherein the adding amount of the carbon deoxidizer is x (finished carbon upper limit-carbon content in molten steel-0.01%)/carbon deoxidizer carbon content; .
2) Heating the electrode for 8 minutes, and blowing argon: 270L/min.
3) In the temperature rising process, adding the rest slag materials, wherein lime and bauxite in the rest slag materials are respectively 2.5 kg/ton steel and 0.5 kg/ton steel;
4) and after the temperature is raised, the adding amount of the ferrosilicon is the molten steel amount multiplied by (the upper limit of finished product silicon-the silicon content in the molten steel)/the silicon content of the ferrosilicon.
5) And (3) timely sticking and taking the slag sample, and when the slag sample changes color and is light green or transparent glass slag, taking the process sample and finally adjusting the components according to the process sample.
6) After molten steel is alloyed, feeding a silicon-calcium wire of 1.5 m/ton steel, and blowing argon for 3 minutes to machine.

Claims (5)

1. The production method of the low-carbon killed steel is characterized in that the mass percentage of the upper limit of the carbon content of the low-carbon killed steel is 0.10-0.25%, and the production method comprises the following steps:
1) making steel
a, leaving carbon in a converter, boiling and tapping, wherein the mass percent of the carbon content at the end point is controlled according to the mass percent of more than or equal to 0.05 percent and less than or equal to-0.03 percent of the upper limit of finished carbon;
b, controlling the clearance of the molten steel tank to be 400-600 mm;
2) refining
a, after molten steel in a boiling state enters an LF furnace treatment position, firstly adding a first batch of slag material to dilute the oxidability of top slag in a molten steel tank, and then adding a carbon deoxidizer; the carbon deoxidizer is a coke carburant or a petroleum coke carburant; the addition amount of the carbon deoxidizer is as follows: the amount of molten steel is x (the upper limit of finished carbon-the carbon content in molten steel is-0.01%)/the carbon content of the carbon deoxidizer;
b, heating the electrode, namely performing deoxidation by utilizing lime, a carburant and the high temperature of electric arc to generate carbide slag, adding two batches of slag in the heating process, wherein the weight ratio of the lime to the slag melting agent in the two batches of slag is controlled to be 4: 1-5: 1; controlling the amount of the slag charge of the second batch to be 0-6 kg/ton steel;
c, after the temperature is raised, adding a deoxidizing agent for final deoxidation, desulfurization, taking a process sample, alloying according to the process sample, finally adjusting the components, and casting on a machine.
2. The method for producing low-carbon killed steel according to claim 1, wherein the slagging agent in step 2) is fluorite or bauxite or a slagging material containing bauxite as a main component.
3. The method for producing low-carbon killed steel according to claim 1, wherein the first slag charge in step 2) and the addition amount thereof are 4-5 kg lime per ton steel and 2-2.5 kg slag melting agent per ton steel.
4. The method for producing a low-carbon killed steel as claimed in claim 1, wherein when the deoxidizer in step 2) c is an aluminum wire section, the produced low-carbon killed steel is a low-carbon aluminum killed steel; the number of the added aluminum wire segments is 1.1-1.9 kg/ton steel.
5. The method for producing a low-carbon killed steel as claimed in claim 1, wherein when the deoxidizer c in step 2) is ferrosilicon, the produced low-carbon killed steel is a low-carbon silicon killed steel; the quantity of added ferrosilicon after temperature rise is as follows: the molten steel amount is multiplied by (the upper limit of finished product silicon-the silicon content in the molten steel)/the silicon-iron content.
CN201910397891.1A 2019-05-14 2019-05-14 Production method of low-carbon killed steel Active CN109988885B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910397891.1A CN109988885B (en) 2019-05-14 2019-05-14 Production method of low-carbon killed steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910397891.1A CN109988885B (en) 2019-05-14 2019-05-14 Production method of low-carbon killed steel

Publications (2)

Publication Number Publication Date
CN109988885A CN109988885A (en) 2019-07-09
CN109988885B true CN109988885B (en) 2021-04-02

Family

ID=67136455

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910397891.1A Active CN109988885B (en) 2019-05-14 2019-05-14 Production method of low-carbon killed steel

Country Status (1)

Country Link
CN (1) CN109988885B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113088628A (en) * 2021-03-31 2021-07-09 山东钢铁股份有限公司 LF refining method of low-carbon steel

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0730388B2 (en) * 1989-07-26 1995-04-05 川崎製鉄株式会社 Low oxygen ultra low carbon steel manufacturing method
CN102051440A (en) * 2009-11-10 2011-05-11 攀钢集团钢铁钒钛股份有限公司 Molten steel deoxidizing and carbureting method and steelmaking method
KR101363927B1 (en) * 2012-08-10 2014-02-20 주식회사 포스코 Refining method of the molten steel
CN103014235B (en) * 2013-01-07 2014-07-02 河北钢铁股份有限公司唐山分公司 Deoxidizing process for reducing consumption of aluminum killed steel deoxidizing agent
CN103642970B (en) * 2013-12-09 2016-01-13 攀钢集团攀枝花钢铁研究院有限公司 A kind of smelting process of carbon aluminium-killed steel
CN103741007B (en) * 2013-12-23 2015-08-19 武钢集团昆明钢铁股份有限公司 A kind of production method reducing gas content in carbon aluminium-killed steel
CN105855494B (en) * 2015-01-23 2019-02-26 鞍钢股份有限公司 Processing method of small overwater square billet casting machine for low-carbon aluminum steel
CN108998613B (en) * 2018-08-08 2020-06-23 鞍钢股份有限公司 Method for controlling free oxygen in ultra-low carbon low aluminum steel

Also Published As

Publication number Publication date
CN109988885A (en) 2019-07-09

Similar Documents

Publication Publication Date Title
CN107236894B (en) A kind of method for making steel of low-sulfur, low titanium Aluminum steel
CN105861775A (en) Smelting process method of high-nickel-content ultra-low-phosphorus steel
CN111057817A (en) Economic and environment-friendly efficient desulfurization refining slag system and production method thereof
CN112126737B (en) Production method of low-sulfur alloy molten steel
CN109402327A (en) A kind of external refining production method of super clean high-carbon-chromium bearing steel
CN108148941B (en) Smelting method of ultra-low boron steel
CN108342664A (en) A kind of high-carbon resulfurizing series free cutting steel and its production method
CN109988885B (en) Production method of low-carbon killed steel
CN110004268B (en) Method for producing low-carbon killed steel by carbon deoxidation process under normal pressure
CN110106316B (en) Method for duplex production of low-carbon aluminum killed steel
CN102230121A (en) Refining method of T91 heat-resistant steel tube blank
CN101440419B (en) Control method for smelting high carbon low phosphorus steel by converter
CN110004269B (en) Production method of aluminum-free medium-high carbon steel
CN107974528B (en) Method for reducing nitrogen content of molten steel at converter end point
CN109554515B (en) Method for smelting stainless steel by top-blown converter
CN112481550B (en) Smelting process of lanthanum-cerium-rare earth alloy die steel
CN111411190B (en) Production method for improving smelting efficiency of converter
CN116287564B (en) Low-nitrogen smelting method for LF refining furnace
CN111020115A (en) Method for refining molten steel outside furnace by using liquid blast furnace slag
CN115717179B (en) Converter and alloying method for refining and reducing manganese element in lean manganese ore
CN114774615B (en) Method for producing ultralow-sulfur steel by adopting high-sulfur semisteel
CN115074487B (en) Smelting method for desulfurizing low-carbon, low-silicon and low-sulfur titanium deoxidized steel in LF furnace
CN115418434B (en) Production method of low-phosphorus molten iron for carburetion
CN115161434B (en) Production method of low alloy steel
CN110484693B (en) Low-cost RH decarburization dephosphorization method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant