CN109890564B - 具有成形磨粒的成形玻璃化磨料团聚物、磨料制品和相关方法 - Google Patents
具有成形磨粒的成形玻璃化磨料团聚物、磨料制品和相关方法 Download PDFInfo
- Publication number
- CN109890564B CN109890564B CN201780066390.4A CN201780066390A CN109890564B CN 109890564 B CN109890564 B CN 109890564B CN 201780066390 A CN201780066390 A CN 201780066390A CN 109890564 B CN109890564 B CN 109890564B
- Authority
- CN
- China
- Prior art keywords
- shaped abrasive
- particles
- agglomerate
- abrasive
- shaped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D3/00—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
- B24D3/02—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
- B24D3/04—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic
- B24D3/14—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic ceramic, i.e. vitrified bondings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D3/00—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
- B24D3/34—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents characterised by additives enhancing special physical properties, e.g. wear resistance, electric conductivity, self-cleaning properties
- B24D3/346—Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents characterised by additives enhancing special physical properties, e.g. wear resistance, electric conductivity, self-cleaning properties utilised during polishing, or grinding operation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D11/00—Constructional features of flexible abrasive materials; Special features in the manufacture of such materials
- B24D11/001—Manufacture of flexible abrasive materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D18/00—Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
- B24D18/0009—Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for using moulds or presses
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/10—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
- C04B35/111—Fine ceramics
- C04B35/1115—Minute sintered entities, e.g. sintered abrasive grains or shaped particles such as platelets
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62625—Wet mixtures
- C04B35/6263—Wet mixtures characterised by their solids loadings, i.e. the percentage of solids
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/14—Anti-slip materials; Abrasives
- C09K3/1409—Abrasive particles per se
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Structural Engineering (AREA)
- Polishing Bodies And Polishing Tools (AREA)
Abstract
一种成形磨料团聚物颗粒包含粘结在玻璃状基质中的成形磨粒。成形磨粒具有在表面上的最长颗粒线性尺寸和垂直于最长颗粒线性尺寸的最短颗粒尺寸,并且最长颗粒线性尺寸是最短颗粒尺寸的至少两倍。成形磨料团聚物颗粒具有在表面上的最长团聚物线性尺寸和垂直于最长团聚物线性尺寸的最短团聚物尺寸,并且最长团聚物线性尺寸是最短团聚物尺寸的至少两倍。磨料团聚物颗粒可用于磨料制品中。还描述了制造成形磨料团聚物颗粒以及研磨工件的方法。
Description
背景技术
在陶瓷基质中包含各种磨粒的成形磨料团聚物已在美国专利第5,975,988号(Christianson)、第6,319,108号、第6,702,650号和第6,951,504号(各自授予Adefris)和国际专利申请公布2015/088953(Kasai)中公开。在有机树脂基质中包含成形磨粒的成形磨料团聚物已在美国专利申请公布第2014/0080393号(Ludwig)中公开。
通过模制溶胶-凝胶、干燥和烧结干燥的溶胶-凝胶以获得成形陶瓷磨粒而制备的成形磨粒已在美国专利第5,201,916号(Berg)、第5,984,988号(Berg)、第Re.35,570号(Rowenhorst)、第8,034,137号(Erickson)、第8,123,828号(Culler)、第8,142,531号(Adefris)、第8,142,891号(Culler)、第8,142,532号(Erickson)和第8,764,865号(Boden),以及美国专利申请公布第2010/0319269号(Erickson)和第2015/0052825号(Adefris)中描述。
发明内容
优异的研磨性能和长的使用寿命是磨料制品的期望特性。在研磨工具的寿命期间不一致的切割速率是研磨工件时遇到的问题。与具有更多块状形状和包括压碎磨粒的团聚物的成形团聚物相比,根据本公开的成形磨料团聚物颗粒可用于提供可在延长的寿命期间表现出意想不到的研磨性能、延长的寿命和稳定的切割速率的磨料制品。
在一个方面,本公开提供成形磨料团聚物颗粒,其包括在玻璃状基质中粘结的成形磨粒。成形磨粒具有在表面上的最长颗粒线性尺寸和垂直于最长颗粒线性尺寸的最短颗粒尺寸,并且最长颗粒线性尺寸是最短颗粒尺寸的至少两倍。成形磨料团聚物颗粒也具有在表面上的最长团聚物线性尺寸,和垂直于最长团聚物线性尺寸的最短团聚物尺寸,并且最长团聚物线性尺寸是最短团聚物尺寸的至少两倍。
在另一方面,本公开提供包含保留在粘结剂中的多个成形磨料团聚物颗粒的磨料制品。
在另一方面,本公开提供一种研磨工件的方法。该方法包括使工件与以上和以下描述的磨料制品接触,并且使工件和磨料制品相对于彼此移动以研磨该工件。
在另一方面,本公开提供制造多个成形磨料团聚物颗粒的方法。该方法包括用包含玻璃料、成形磨粒和挥发性液体的浆料填充具有多个腔体的模具,去除挥发性液体的至少一部分以提供成形前体团聚物颗粒,并烧制成形前体团聚物颗粒以提供成形磨料团聚物颗粒。
在另一方面,本公开提供制造多个成形磨料团聚物颗粒的方法。该方法包括用包含玻璃料、成形磨粒和临时有机粘结剂的混合物填充具有多个腔体的模具,对混合物进行加热或照射中的至少一种以提供成形前体团聚物颗粒,并烧制成形前体团聚物颗粒以提供成形磨料团聚物颗粒。
在本申请中,术语诸如“一个”、“一种”和“该/所述”并非旨在仅指单一实体,而是包括可用于例示的具体示例的一般类别。术语“一个”、“一种”和“该/所述”可与术语“至少一个(种)”互换使用。
后接列表的短语“......中的至少一个(种)”和“包含......中的至少一个(种)”是指列表中项目中的任一项以及列表中两项或更多项的任何组合。
本文所用的术语“陶瓷”是指玻璃、结晶陶瓷、玻璃陶瓷以及它们的组合。
如本文所用,术语“玻璃状基质”是指玻璃态基质。玻璃态基质可包含一些晶畴(例如,在玻璃陶瓷中)。
如本文所用,术语“成形磨粒”和“成形磨料团聚物颗粒”是指磨粒或磨料团聚物颗粒,其中颗粒的至少一部分具有从用于形成成形前体磨粒的模具腔体复制的预定形状。通常,成形磨粒和成形磨料团聚物颗粒具有至少两个以这种方式预定的尺寸。在模具腔体在一侧或两侧敞开到空气的情况下,成形磨料团聚物颗粒和/或成形磨粒可具有不是平面的面,但仍然认为该颗粒具有预定形状。除了磨料碎片(例如,如美国专利申请第8,034,137号(Erickson)中所述的)的情况之外,成形磨粒通常会具有预定几何形状,该预定几何形状基本上复制了用于形成成形磨粒的模具腔体。在磨料碎片的情况下,成形磨粒将通常具有基本上复制用于形成成形磨粒的模具腔体的至少一个面或两个侧面的至少一部分。如本文所用的成形磨粒不包括通过机械粉碎操作获得的磨粒。
针对表面,而不是主体对角线测量成形磨粒和成形磨料团聚物颗粒的最长线性尺寸。通常在实施方案中针对边缘测量线性尺寸,其中成形团聚磨粒和成形磨粒具有规则的形状。
除非另行指出,否则所有数值范围都包括其端值以及在端值之间的非整数值(例如1至5包括1、1.5、2、2.75、3、3.80、4和5)。
本公开的上述概述并非旨在描述本公开的每个公开实施方案或每种实现方式。以下描述更为具体地举例说明了例示性实施方案。因此,应当理解,以下描述不应被理解为是对本公开范围的不当限制。
附图说明
图1A是根据本公开的包含成形磨粒的成形磨料团聚物颗粒的实施方案的简化透视图;和
图1B示出图1A中所示的成形磨料团聚物颗粒或成形磨粒的侧视图;
图2是根据本公开的用于制造成形磨粒或成形磨料团聚物颗粒的模具的实施方案的示意性横截面边缘视图;
图3是根据本公开的成形磨粒或成形磨料团聚物颗粒的实施方案的示意性透视图;
图4是根据本公开的成形磨粒或成形磨料团聚物颗粒的另一实施方案的示意性透视图;
图5A和图5B是根据本公开的成形磨粒或成形磨料团聚物颗粒的一些实施方案中的拐角的示意性顶视图,其示出了如果它们具有弯曲表面则如何计算它们的内角;
图6是如实施例4中所述的成形磨料团聚物颗粒的显微照片;
图7是如实施例5中所述的成形磨料团聚物颗粒的显微照片;
图8是根据本公开的涂覆的磨料制品的实施方案的横截面边缘视图;
图9是根据本公开的粘结磨料制品的实施方案的透视图;和
图10是根据本公开的非织造磨料制品的实施方案的放大侧视图。
虽然以上说明的附图和图片示出了本公开的实施方案,但正如具体实施方式中所指出的那样,还可以想到其它的实施方案。在所有情况下,本公开通过示例性而非限制性的方式介绍本发明。应当理解,本领域的技术人员可设计出许多其它修改形式和实施方案,这些修改形式和实施方案均落在本公开的范围内。附图可不按比例绘制。
具体实施方式
参照图1A,其示出成形磨料团聚物颗粒10的实施方案。成形磨料团聚物颗粒10包含粘结在玻璃状基质7中的成形磨粒5。成形磨料团聚物颗粒具有在表面上的最长团聚物线性尺寸L。尺寸W与最长团聚物线性尺寸L一起通常有助于限定成形磨料团聚物颗粒的第二面14,其可以与最长线性尺寸L长度相同或比其短。成形磨粒5也具有在表面上的最长线性尺寸l。尺寸w与最长颗粒线性尺寸l一起有助于限定成形磨粒的第二面4,其可以与最长颗粒线性尺寸l长度相同或比其短。
图1A是根据本公开的成形磨料团聚物颗粒的实施方案的简化视图。为简单起见,图1A仅示出了一个成形磨粒5,成形磨料团聚物颗粒10通常具有多个成形磨粒。在一些实施方案中,在成形磨料团聚物颗粒10内存在至少10、20或25个成形磨粒5。在一些实施方案中,沿着成形磨料团聚物颗粒10的最长团聚物线性尺寸L存在至少3、4或5或至多10个成形磨粒。成形磨料团聚物颗粒可具有例如诸如图6所示的外观。
图1B为图1A中所示的成形磨料团聚物颗粒10和/或成形磨粒5的侧视图的图示。成形磨料团聚物颗粒10具有垂直于在表面上的最长团聚物线性尺寸L的最短团聚物尺寸t。在表面上的最长团聚物线性尺寸L是最短团聚物尺寸t的至少两倍。在一些实施方案中,最长团聚物线性尺寸L是最短团聚物尺寸t的至少3、4、5或10倍。厚度t也可以被认为是成形团聚物颗粒的第一面26和第二面24之间的距离。同样,成形磨料团聚物颗粒5具有垂直于在表面上的最长颗粒线性尺寸1的最短尺寸t。在表面上的最长颗粒线性尺寸l是最短颗粒尺寸t的至少两倍。在一些实施方案中,最长颗粒线性尺寸l是最短颗粒尺寸t的至少3、4、5或10倍。厚度t也可以被认为是成形磨粒的第一面26和第二面24之间的距离。
为了便于从用于制造它们的模具中移除,并且在某些情况下,为了提高研磨应用中的性能,根据本公开的成形磨料团聚物颗粒10或其中的成形磨粒5中的至少一者可以是锥形的,对应于例如如美国专利第8,142,531号(Adefris等人)中所述的模具的脱模角。因此,在一些实施方案中,成形磨粒5或成形磨料团聚物颗粒10中的至少一者具有倾斜侧壁。在图1B所示的实施方案中,第一面26和第二面24通过至少一个倾斜侧壁22彼此连接。在一些实施方案中,可存在不止一个倾斜侧壁22并且每个倾斜侧壁22的倾斜度或角度可与图1B中示出的相同或不同。参见图1B,可以改变成形磨料团聚物颗粒10和成形磨粒5的第一面26和倾斜侧壁22之间的角α,以改变每个面的相对尺寸。在一些实施方案中,成形磨粒或成形磨料团聚物颗粒中的至少一者在第一面和倾斜侧壁之间具有95度至130度范围内的角α。在各种实施方案中,角α可介于大约95度至大约130度、或介于约95度至约125度、或介于约95度至约120度、或介于约95度至约115度、或介于约95度至约110度、或介于约95度至约105度、或介于约95度至约100度之间。三个倾斜侧壁22构成成形磨粒5的外周表面8,并且三个倾斜侧壁22构成图1A中所示的成形磨料团聚物颗粒10的外周表面18。
第一面26和倾斜侧壁22之间的角度通常由用于制造成形磨粒5和成形磨料团聚物颗粒10的模具的脱模角确定。术语“脱模角”是指锥形的角,该角结合到模具腔体的壁中使得模具腔体的开口宽于其基部。现在参见图2,其示出模具100和模具腔体105的横截面,脱模角μ是模具基部150和模具壁130之间的角。可以改变脱模角以改变成形磨粒5和成形磨料团聚物颗粒10的第一面26和第二面24的相对尺寸。可用的是,具有略微圆形或圆角的拐角以用材料彻底填充模具并从模具中移除成形磨料团聚物颗粒或成形磨粒。
在其他实施方案中,成形磨料团聚物颗粒或成形磨粒中的至少一者的外周表面不是锥形的(即,图1B中的侧壁22可以是垂直的),并且/或者第一面26和第二面24可以具有相同的大小和形状。
在一些实施方案中,第一面26是基本上平面的,第二面24是基本上平面的,或第一面26和第二面24两者是基本上平面的。在其他实施方案中,这些面可以是凹面或凸面,如在美国专利第8,142,891号(Culler等人)中更详细地讨论的。另外,在一些实施方案中可以存在穿过面的开口或孔口,如在美国专利第8,142,532号(Erickson等人)中更详细地讨论的。在一些实施方案中,第一面26和第二面24基本上彼此平行。在其它实施方案中,第一面26和第二面24可以不平行,使得一个面相对于另一个面倾斜,并且与每一个面相切的假想线都将相交于一点。在一些实施方案中,模具腔体105的空气界面处的面可以不是平面的。
在一些实施方案中,第一面26和第二面24的周边29被选择为具有一定的几何形状,并且第一面26和第二面24被选择为具有相同的几何形状,但是它们的尺寸不同,其中第二面24大于第一面26。在这些实施方案中,根据本公开的成形磨料团聚物颗粒或其中包含的成形磨粒中的至少一者是截头棱锥体形,其也可以称为斜截棱锥体。在这些实施方案中,第一面和第二面可具有各种有用的形状。在一些实施方案中,成形磨粒或成形团聚物颗粒中的至少一者具有三角形截头体形状、方形截头体形状或六边形截头体形状。
在第一面26和第二面24全等的其他实施方案中,成形磨料团聚物颗粒和成形磨粒的有用形状的示例包括三角形、矩形、正方形、五边形和六边形棱柱。
根据本公开的成形磨料团聚物颗粒和包含在其中的成形磨粒的其他有用形状包括除常规多边形之外的形状。图3和图4描绘通常为箭头形的成形磨粒或成形磨料团聚物颗粒。现在参见图3,成形磨粒或成形磨料团聚物颗粒300包括具有周边320的第一表面310。周边320包括第一边缘330、第二边缘332和第三边缘334。第一边缘330是凹的单调曲线,而第二边缘332和第三边缘334是基本上直的边缘。第二表面370与第一主表面310相对,并且不接触第一主表面310。周向表面380具有预定的形状,并且被设置在第一表面310和第二表面370之间并且连接第一表面310和第二表面370。周向表面380包括第一壁382、第二壁384和第三壁386。第一边缘330、第二边缘332和第三边缘334分别表示第一壁382、第二壁384和第三壁386与周边320的相交处。周边320的第一区域390包括向内延伸的第一边缘330并且在第一拐角350和第二拐角352处终止,第一拐角350和第二拐角352限定相应的第一锐角内角360和第二锐角内角362。
如图3所示,周边320的第一区域390可包括单个向内弯曲的延伸边缘,然而还预期周边320的第一区域390可包括多个边缘(如,2、3、4、5、6、7、8、9、10个或更多个边缘),例如如图4所示。
现在参见图4,成形磨粒或成形磨料团聚物颗粒400包括第一表面410,该第一表面具有周边420。周边420包括基本上直的第一边缘430、第二边缘432、第三边缘434和第四边缘436。第二表面470与第一表面410相对,并且不接触第一表面410。周向表面480包括第一壁482、第二壁484、第三壁486和第四壁488。周向表面480具有预定的形状,并且被设置在第一主表面410和第二主表面470之间并连接第一主表面410和第二主表面470。第一边缘430、第二边缘432、第三边缘434和第四边缘436分别表示第一壁482、第二壁484、第三壁486和第四壁488与周边420的相交处。周边420的第一区域490包括第一边缘430和第四边缘436,并且向内延伸。第一区域490在第一拐角450和第二拐角452处终止,第一拐角450和第二拐角452限定相应的第一锐角内角460和第二锐角内角462。
在一些实施方案中,在周边的向内延伸的第一区域390、490和相邻边缘任一者或两者之间形成的内角小于在向内延伸的第一区域例如被单个直线段或凸的边缘替换的情况下的内角。例如,就等边三角形而言,所有的拐角具有60度的内角,而对于有凹的边缘替换三角形的边缘之一的对应形状,与向内延伸的区域相邻的两个拐角的内角可以为基本上减小的。例如,在成形磨料团聚物颗粒或成形磨粒通常具有三个拐角350、352、450、452的情况下,内角360、362、460、462可以为在5、10、15、20、25或30度至35、40、45、50或55度,或40至55度的范围内。在一些实施方案中,内角可以为在35至55度、40至55度、或甚至45至55度的范围内,但其他值也是可以的。相似地,如果三角形的边缘中的两个(或三个)被向内延伸的弯曲的边缘替换,它们相邻拐角的内角可落在相同范围内或甚至更低。在具有四个或更多个边缘的周边的情况中趋势相同,,但内角值可能趋于更大。
为了测量周边的拐角的内角(θ),取在相应边缘的切线(T1、T2)之间形成的角,其中相应边缘在其最靠近拐角的点处形成拐角,拐角相对于向内延伸的区域尚未穿过拐点。就相交的直边缘而言,此类切线具有与边缘本身相同的斜率并且内角可容易地确定。在边缘之一或两者是单调向内延伸曲线的情况下(例如,如图5A和图5B所示),切线(分别为T1a和T2a或T1b和T2b)同样可通过沿着弯曲的边缘趋近拐角来容易地确定。然而,如果拐角是圆的或换句话讲是变形的,拐角的内角的测量可能变得很成问题。因此,在此类情况下,切线应通过在每个相邻边缘的切线在趋近邻近拐角的拐点(如果存在)时测量它来确定。
在成形磨粒或成形磨料团聚物颗粒具有向内延伸的第一区域390、490的情况下,在表面上的最长线性尺寸通常是直边缘332、334、432、434。然而,如果所有边缘都像向内延伸的边缘第一边缘330那样弯曲,则在表面上的最长线性尺寸可以被视为两个拐角350和拐角352之间的距离,在该两个拐角350和拐角352处,面向内的边缘330终止。在不规则形状的颗粒的其他情况下,在表面上的最长线性尺寸可以被视为两点之间的最远距离。在图3和4中,第二面310、410大于第一面370、470,这可由于上述原因而有用。在其他实施方案中,图3和4中所示的大致箭头形颗粒可以具有全等的第一面370、470和第二面310、410。关于带有具有面向内边缘的形状的成形磨粒的更多信息,参见美国专利申请第2015/0052825号(Adefris)。
在一些实施方案中,成形磨料团聚物颗粒和成形磨粒具有相同的形状。也就是说,成形磨料团聚物颗粒和成形磨粒两者都可以描述为例如三角形截头体、正方形截头体或箭头形状。在其他实施方案中,,成形磨料团聚物颗粒和成形磨粒具有不同的形状。图6示出如实施例4中所述的成形磨料团聚物颗粒的实施方案,其中成形磨料团聚物颗粒和包含在其中的成形磨粒两者均具有三角形截头体形状。图7示出如实施例5中所述的成形磨料团聚物颗粒的实施方案,其中成形磨料团聚物颗粒具有正方形截头体形状,并且其中包含的成形磨粒具有三角形截头体形状。图7中的底部颗粒示出在制造其的模具中向空气敞开的面。因此,该面似乎是非平面的。
成形磨料团聚物颗粒内的成形磨粒可以全部为相同形状或具有不同形状。在一些实施方案中,成形磨料团聚物颗粒内的成形磨粒的至少50%、60%、75%、80%、90%或95%具有相同的形状。在一些实施方案中,成形磨粒是磨料碎片,例如当前体磨粒(如下所述)在模具内破裂时形成的磨料碎片,如美国专利第8,034,137号(Erickson)中所述。在这些实施方案中,成形磨料团聚物颗粒内的成形磨粒将具有不同的形状。
对于具有不同形状的根据本公开的团聚物内的成形磨粒,最长颗粒线性尺寸是最短颗粒尺寸的至少两倍。此外,在一些实施方案中,团聚物内的成形磨粒具有大致类似的厚度。在一些实施方案中,成形磨料团聚物颗粒内的成形磨粒的至少50%、60%、75%、80%、90%或95%具有成形磨粒的平均厚度的10%、5%或2.5%内的厚度。成形磨粒的厚度与最短颗粒尺寸相同。
在可用于根据本公开的成形磨料团聚物颗粒的成形磨粒中,在表面上的最长颗粒线性尺寸可以为至多1600微米、至多1000微米、至多500微米、至多300微米或至多200微米。有用的成形磨粒可具有在约1微米至1600微米、1微米至1000微米、1微米至500微米、10微米至300微米、15微米至300微米、或大于25微米至300微米的范围内的在表面上的最长颗粒线性尺寸。
根据本公开的成形磨料团聚物颗粒具有至少400微米,在一些实施方案中,至少500微米,或至少600微米的在表面上的最长团聚物线性尺寸。在一些实施方案中,根据本公开的成形磨料团聚物颗粒具有至多5毫米(mm)、至多2mm、至多1.5mm、至多1.4mm、至多1.25mm、至多1毫米、或至多0.9毫米的在表面上的最长团聚物线性尺寸。在一些实施方案中,团聚物颗粒具有在约400微米至5毫米、400微米至2毫米、400微米至1000微米、500微米至1000微米、500微米至900微米、或600微米至900微米范围内的在表面上的最长团聚物线性尺寸。通常,在成形磨料团聚物颗粒的表面上的最长团聚物线性尺寸是在团聚物颗粒中的成形磨粒的表面上的最长颗粒线性尺寸的至少约3、5或10倍。
根据本公开的任何成形磨料团聚物颗粒和包含在其中的成形磨粒可以根据磨料行业认可的特定标称等级来设定尺寸。磨料行业认可的分级标准的示例包括由ANSI(美国国家标准学会)、FEPA(欧洲磨料制造者联盟)和JIS(日本工业标准)颁布的那些标准。这类行业接纳的分级标准包括例如ANSI 4、ANSI 6、ANSI 8、ANSI 16、ANSI 24、ANSI 30、ANSI36、ANSI 40、ANSI 50、ANSI 60、ANSI 80、ANSI 100、ANSI 120、ANSI 150、ANSI 180、ANSI220、ANSI 240、ANSI 280、ANSI 320、ANSI 360、ANSI 400和ANSI 600;FEPA P8、FEPA P12、FEPA P16、FEPA P24、FEPA P30、FEPA P36、FEPA P40、FEPA P50、FEPA P60、FEPA P80、FEPAP100、FEPA P120、FEPA P150、FEPA P180、FEPA P220、FEPA P320、FEPA P400、FEPA P500、FEPA P600、FEPA P800、FEPA P1000和FEPA P1200;以及JIS 8、JIS 12、JIS 16、JIS 24、JIS36、JIS 46、JIS 54、JIS 60、JIS 80、JIS 100、JIS 150、JIS 180、JIS 220、JIS 240、JIS280、JIS 320、JIS 360、JIS 400、JIS 400、JIS 600、JIS 800、JIS 1000、JIS 1500、JIS2500、JIS 4000、JIS 6000、JIS 8000和JIS 10,000。
术语“磨料行业认可的规定标称等级”还包括磨料行业认可的规定标称筛分等级。例如,规定的标称筛分等级可使用符合ASTM E-11-09“Standard Specification for WireCloth and Sieves for Testing Purposes(针对测试目的的筛布和筛的标准规格)”的美国标准测试筛。ASTM E-11-09阐明了测试筛的设计和构造需求,所述测试筛利用安装在框架中的织造筛布为介质,根据指定粒度对材料进行分类。典型名称可表示为-18+20,意思是成形陶瓷磨粒通过了符合ASTM E-11-09“Standard Specification for Woven Wire TestSieve Cloth and Test Sieves(织造测试筛布和测试筛的标准规格)”针对18号筛的规格的测试筛并且保留在符合ASTM E11-09针对20号筛的规格的测试筛上。在一些实施方案中,可用于实施本公开的成形磨粒可具有标称筛分等级,包括:-18+20、-20/+25、-25+30、-30+35、-35+40、5-40+45、-45+50、-50+60、-60+70、-70/+80、-80+100、-100+120、-120+140、-140+170、-170+200、-200+230、-230+270、-270+325、-325+400、-400+450、-450+500或-500+635。
在一些实施方案中,可用于根据本公开的成形磨料团聚物颗粒中的成形磨粒包含陶瓷材料。在一些实施方案中,它们可基本上由陶瓷材料组成或甚至由陶瓷材料组成,但它们可包含非陶瓷相(如,像在玻璃-陶瓷中那样)。合适的陶瓷材料的示例包括α氧化铝、熔融的氧化铝-氧化锆以及熔融的氮氧化物。关于适用于成形陶瓷磨粒中的溶胶-凝胶衍生的陶瓷材料的另外细节可见于例如美国专利第4,314,827号(Leitheiser等人)、美国专利第4,518,397号(Leitheiser等人)、美国专利第4,623,364号(Cottringer等人)、美国专利第4,744,802号(Schwabel)、美国专利第4,770,671号(Monroe等人)、美国专利第4,881,951号(Wood等人)、美国专利第4,960,441号(Pellow等人)、美国专利第5,139,978号(Wood)、美国专利第5,201,916号(Berg等人)、美国专利第5,366,523号(Rowenhorst等人)、美国专利第5,429,647号(Larmie)、美国专利第5,547,479号(Conwell等人)、美国专利第5,498,269号(Larmie)、美国专利第5,551,963号(Larmie)、美国专利第5,725,162号(Garg等人)和美国专利第6,054,093号(Torre等人)中。
多种方法可用于制造可用于本公开的成形磨料团聚物颗粒的成形磨粒,例如模塑、挤出和模切。在一些实施方案中,可根据多步骤工艺来制造成形磨粒。该工艺可使用陶瓷前体分散体(如,包含陶瓷前体材料的分散体(如,溶胶-凝胶)来实施。
简而言之,该方法可包括以下步骤:制造可转变为对应的陶瓷的有晶种或无晶种的陶瓷前体分散体(如,可转变成α氧化铝的勃姆石或假勃姆石溶胶-凝胶);用陶瓷前体分散体填充具有期望的成形磨粒外部形状的一个或多个模具腔体,干燥陶瓷前体分散体以形成成形陶瓷前体颗粒;从模具腔体中移除成形陶瓷前体颗粒;煅烧成形陶瓷前体颗粒以形成经煅烧的成形陶瓷前体颗粒,并且然后烧结经煅烧的成形陶瓷前体颗粒以形成成形陶瓷磨粒。在一些实施方案中,省略煅烧步骤并且成形陶瓷前体颗粒在从模具中移除之后直接进行烧结。在一些实施方案中,模具可由在煅烧或烧结期间烧尽的牺牲材料(例如,聚烯烃材料)制成,从而在加工期间消除将陶瓷前体颗粒从模具中分离的步骤。
制造成形磨粒的方法可包括提供可转变为陶瓷材料的有晶种或无晶种的陶瓷前体材料分散体(即,陶瓷前体分散体)。陶瓷前体分散体常常包含挥发性液体组分。在一些实施方案中,挥发性液体组分是水。陶瓷前体分散体应当包含足量的液体以使分散体的粘度足够低,从而能够填充模具腔体并且复制模具表面,但是液体的量不能太多,以致引起随后将液体从模具腔体中移除的成本过高。在一个实施方案中,陶瓷前体分散体包含2重量%至90重量%的可以被转变为陶瓷的颗粒(例如,氧化铝一水合物(勃姆石)或另一种氧化铝前体的颗粒),以及至少10重量%至98重量%、或50重量%至70重量%、或50重量%至60重量%的挥发性组分(例如,水)。相反地,在一些实施方案中,陶瓷前体分散体包含30重量%至50重量%、或40重量%至50重量%的固体。
可用的陶瓷前体分散体的示例包括氧化锆溶胶、氧化钒溶胶、氧化铈溶胶、氧化铝溶胶以及它们的组合。可用的氧化铝分散体包括例如勃姆石分散体、假勃姆石分散体以及其他氧化铝水合物分散体。勃姆石和假勃姆石可以通过已知技术制备或可以商购获得。可商购获得的勃姆石和假勃姆石的示例包括具有商品名“HIQ-40”的购自巴斯夫公司(BASFCorporation),以及商品名“DISPERAL”和“DISPAL”均购自Sasol North America,Inc.的产品。这些氧化铝一水合物是相对纯的;即,它们除了一水合物外只包含相对较少的(如果有的话)其它水合物相,并且具有高表面积。关于陶瓷前体分散体的进一步信息,包括改性添加剂、成核剂、胶溶剂、消泡剂和其它添加剂,可以在例如美国专利申请公布第2015/0052825号(Adefris)中找到。
所得成形陶瓷磨粒的物理特性一般将取决于陶瓷前体分散体中使用的材料类型。如本文所用,“凝胶”是分散在液体中的固体的三维网络。
可以使用与模塑成形磨料团聚物颗粒类似的模具和方法来进行成形磨粒的模塑,如下所述。
成形陶瓷前体颗粒在从模具中移除后可以干燥或煅烧。如果陶瓷前体分散体在模具中干燥至所需程度,则不需要额外干燥步骤。然而,在一些情况下,采用额外干燥步骤来使陶瓷前体分散体停留在模具中的时间最小化可能是经济的。通常,将成形陶瓷前体颗粒在50℃至160℃、或在120℃至150℃的温度下干燥10至480分钟、或120至400分钟。在任选煅烧期间,基本上所有的挥发性物质都被去除,并且存在于陶瓷前体分散体中的各种组分均转化成金属氧化物。一般将成形陶瓷前体颗粒加热到400℃至800℃的温度,并且将其保持在此温度范围内,直至去除游离水和90重量%以上的任何结合的挥发性物质为止。在任选步骤中,可能期望通过浸渍工艺引入改性添加剂。可通过浸渍将水溶性盐引入经煅烧的成形陶瓷前体颗粒的孔隙中。然后再次对成形陶瓷前体颗粒进行预烧制。该任选步骤在美国专利5,164,348(Wood)中进行了进一步描述。
烧结成形陶瓷前体颗粒以形成陶瓷颗粒通常是必要的,以获得有用的成形陶瓷磨粒的所需硬度。通过将成形陶瓷前体颗粒加热到1000℃至1650℃的温度来进行烧结。为了实现此转变程度而必须使经煅烧的成形陶瓷前体颗粒暴露于烧结温度下的时间长度取决于多种因素,但通常5秒至48小时是典型的。在一些实施方案中,烧结步骤的持续时间在一分钟至90分钟的范围内。烧结之后,成形陶瓷磨粒可具有10GPa(吉帕斯卡)、16GPa、18GPa、20GPa或更大的维氏硬度。
可以使用其他步骤来改变所述工艺,所述步骤例如像,使材料从煅烧温度快速加热至烧结温度,对陶瓷前体分散体进行离心处理以去除油泥和/或垃圾。此外,如果需要,则可以通过组合这些工艺步骤中的两个或更多个来修改该工艺。可以用来修改本公开的工艺的常规工艺步骤在美国专利4,314,827(Leitheiser)中进行了更完整的描述。
可以根据(例如)美国专利第5,213,591号(Celikkaya等人)中描述的方法,使用溶胶-凝胶α氧化铝前体颗粒来制备由α氧化铝、镁铝尖晶石以及稀土六方铝酸盐的晶粒构成的成形陶瓷磨粒。α氧化铝磨粒可包含氧化锆,如美国专利No.5,551,963(Larmie)中所公开。作为另外一种选择,α氧化铝磨粒可以具有微观结构或添加剂,例如,如美国专利No.6,277,161(Castro)中所公开。关于制造成形陶瓷磨粒的方法的更多信息公开在美国专利第8,123,828号(Culler et al.)和美国专利第8,034,137号(Erickson)中,其描述了例如用于制造研磨碎片的条件。
根据本公开的成形团聚物颗粒包含玻璃状基质。玻璃状基质可以是玻璃或玻璃陶瓷。各种类型的玻璃和玻璃陶瓷可以用于制造玻璃状基质。在下面的实施例中使用的玻璃料提供了此种玻璃状基质。
玻璃状基质可由包含一种或多种原料的混合物或组合的前体组合物制备,所述原料在加热至高温时熔化和/或熔融以形成整体的玻璃状基质相。玻璃状基质可由例如玻璃料形成。玻璃料是在其用于玻璃状粘结前体组合物之前已经预烧制的组合物,用于形成成形磨料团聚物颗粒的玻璃状基质。如本文所用,术语“玻璃料”是材料的通用术语,所述材料通过以下形成:充分共混包含一种或多种玻璃料形成组分的混合物,然后将混合物加热(也称为预烧制)到至少高到足以将其熔化的温度;冷却所得的玻璃并将其压碎。然后可将压碎的材料筛分至非常细的粉末。
用于玻璃状基质的合适玻璃和用于制造玻璃状基质的玻璃料的示例包括二氧化硅玻璃、硅酸盐玻璃、硼硅酸盐玻璃以及它们的组合。二氧化硅玻璃通常由100重量%的二氧化硅构成。在一些实施方案中,玻璃状基质是包含金属氧化物或准金属氧化物的玻璃,例如氧化铝、氧化硅、氧化硼、氧化镁、氧化钠、氧化锰、氧化锌、氧化钙、氧化钡、氧化锂、氧化钾、氧化钛、可以表征为颜料的金属氧化物(例如,氧化钴、氧化铬和氧化铁)、以及它们的混合物。
玻璃状基质、玻璃状基质前体组合物和/或玻璃料的合适范围的示例包括基于玻璃状材料的总重量25重量%至90重量%,任选地35至85重量%的SiO2;基于玻璃状材料的总重量0重量%至40重量%,任选地0重量%至30重量%的B2O3;基于玻璃状材料的总重量0重量%至40重量%,任选地5重量%至30重量%的Al2O3;基于玻璃状材料的总重量0重量%至5重量%,任选地0重量%至3重量%的Fe2O3;基于玻璃状材料的总重量0重量%至5重量%,任选地0重量%至3重量%的TiO2;基于玻璃状材料的总重量0重量%至20重量%,任选地0重量%至10重量%的CaO;基于玻璃状材料的总重量0重量%至20重量%,任选地1重量%至10重量%的MgO;基于玻璃状材料的总重量0重量%至20重量%,任选地0重量%至10重量%的K2O;基于玻璃状材料的总重量0重量%至25重量%,任选地0重量%至15重量%的Na2O;基于玻璃状材料的总重量0重量%至20重量%,任选地0重量%至12重量%的Li2O;基于玻璃状材料的总重量0重量%至10重量%,任选地0重量%至3重量%的ZnO;基于玻璃状材料的总重量0重量%至10重量%,任选地0重量%至3重量%的BaO;以及基于玻璃状材料的总重量0重量%至5重量%,任选地0重量%至3重量%的金属氧化物(例如CoO、Cr2O3或其它颜料)。
合适的硅酸盐玻璃组合物的示例包含基于玻璃料的总重量,约70重量%至约80重量%的二氧化硅、约10%至约20%的氧化钠、约5%至约10%的氧化钙、约0.5%至约1%的氧化铝、约2%至约5%的氧化镁和约0.5%至约1%的氧化钾。合适的硅酸盐玻璃组合物的另一示例包含基于玻璃料的总重量,约73重量%的二氧化硅、约16重量%的氧化钠、约5重量%的氧化钙、约1重量%的氧化铝、约4重量%的氧化镁、以及约1重量%的氧化钾。在一些实施方案中,玻璃基质包括含有SiO2、B2O3和Al2O3的氧化铝-硼硅酸盐玻璃。合适的硼硅酸盐玻璃组合物的示例包含基于玻璃料的总重量,约50重量%至约80重量%的二氧化硅、约10重量%至约30重量%的氧化硼、约1重量%至约2重量%的氧化铝、约0重量%至约10重量%的氧化镁、约0重量%至约3重量%的氧化锌、约0重量%至约2重量%的氧化钙、约1重量%至约5重量%的氧化钠、约0重量%至约2重量%的氧化钾、以及约0重量%至约2重量%的氧化锂。合适的硼硅酸盐玻璃组合物的另一示例包含基于玻璃料的总重量,约52重量%的二氧化硅、约27重量%的氧化硼、约9重量%的氧化铝、约8重量%的氧化镁、约2重量%的氧化锌、约1重量%的氧化钙、约1重量%的氧化钠、约1重量%的氧化钾、以及约1重量%的氧化锂。其它示例性合适硼硅酸盐玻璃组合物包含基于重量计47.61%的SiO2、16.65%的Al2O3、0.38%的Fe2O3、0.35%的TiO2、1.58%的CaO、0.10%的MgO、9.63%的Na2O、2.86%的K2O、1.77%的Li2O、19.03%的B2O3、0.02%的MnO2和0.22%的P2O5;以及63%的SiO2、12%的Al2O3、1.2%的CaO、6.3%的Na2O、7.5%的K2O和10%的B2O3。在一些实施方案中,可用的氧化铝-硼硅酸盐玻璃组合物包含按重量计约18%的B2O3、8.5%的Al2O3、2.8%的BaO、1.1%的CaO、2.1%的Na2O、1.0%的Li2O,剩余为Si2O。此种氧化铝-硼硅酸盐玻璃可从佛罗里达州奥德马尔的特种玻璃股份有限公司(Specialty Glass Incorporated,Oldsmar,FL)商购获得。
用于制造玻璃-陶瓷的玻璃料可选自铝硅酸镁、铝硅酸锂、铝硅酸锌、铝硅酸钙、以及它们的组合。可在上文列出的系统内形成玻璃的已知晶体陶瓷相包括:堇青石(2MgO.2Al2O3.5SiO2)、钙铝黄长石(2CaO.Al2O3.SiO2)、钙长石(2CaO.Al2O3.2SiO2)、锌黄长石(2CaO.ZnO.2SiO2)、镁黄长石(2CaO.MgO.2SiO2)、锂辉石(2Li2O.Al2O3.4SiO2)、硅锌矿(2ZnO.SiO2)和锌尖晶石(ZnO.Al2O3).用于制造玻璃-陶瓷的玻璃料可包含成核剂。已知成核剂促进玻璃-陶瓷中晶体陶瓷相的形成。作为具体加工技术的结果,玻璃材料不具有结晶陶瓷所具有的长程有序。玻璃陶瓷是受控热处理的结果,在一些情况下产生超过90%的一个或多个结晶相,剩余的非结晶相填充晶界。玻璃陶瓷组合了陶瓷和玻璃两者的优点,并提供持久的机械和物理性能。
可用于形成玻璃状基质的玻璃料还可含有玻璃料粘结剂(例如,长石、硼砂、石英、苏打灰、氧化锌、白垩、三氧化锑、二氧化钛、氟硅酸钠、燧石、冰晶石、硼酸以及它们的组合)和其它矿物(例如,粘土、高岭土、硅灰石、石灰石、白云石、白垩以及它们的组合)。
根据本公开的团聚物颗粒中的玻璃状基质可例如基于所需的热膨胀系数(CTE)来选择。在一些实施方案中,它可用于玻璃状基质和成形磨粒以具有类似的CTE,例如,彼此为±100%、50%、40%、25%或20%。熔融氧化铝的CTE通常为约8×10-6/开尔文(K)。玻璃状基质可被选择成具有4×10-6/K至16×10-6/K范围内的CTE。据信以下实施例中使用的玻璃料V601具有约7.7×10-6/K的CTE。用于制造合适的玻璃状基质的玻璃料的示例包括在下面的实施例中使用的那些玻璃料,以及以商品名“F245”从例如俄亥俄州卡罗顿的熔融陶瓷公司(Fusion Ceramics,Carrollton,Ohio)商购获得的玻璃料。
成形磨料团聚物颗粒包含基于成形磨料团聚物颗粒的总重量,约70重量%至95重量%的成形磨粒和30重量%至5重量%的玻璃状基质。在一些实施方案中,成形磨料团聚物颗粒包含基于成形磨料团聚物颗粒的总重量,约70重量%至85重量%的成形磨粒和30重量%至15重量%的玻璃状基质。在一些实施方案中,成形磨料团聚物颗粒包含基于团聚物颗粒的总重量,约70重量%至80重量%的成形磨粒和30重量%至20重量%的玻璃状基质。在根据本公开的成形磨料团聚物颗粒中,玻璃状基质的量相对较小(例如,至多30%、20%、15%或5%),这可用于促进成形磨料团聚物颗粒的所需侵蚀,例如,在用于无心磨削应用的涂层带中。
团聚物颗粒还可包含其它添加剂,诸如填料、助磨剂、颜料(例如金属氧化物颜料)、粘合促进剂、压碎的磨粒和其它加工材料。填料的示例包括小玻璃泡、固体玻璃球体、氧化铝、氧化锆、二氧化钛和金属氧化物填料,其可改善团聚物的可蚀性。助磨剂的示例包括蜡、有机卤化物化合物、卤化物盐、以及金属及其合金。有机卤化物化合物将通常在磨削过程中分解,并且释放卤酸或气态卤化物化合物。此类材料的示例包括氯化蜡,如四氯化萘、五氯化萘;和聚氯乙烯。卤化物盐的示例包括氯化钠、钾冰晶石、钠冰晶石、铵冰晶石、四氟硼酸钾、四氟硼酸钠、氟化硅、氯化钾和氯化镁。其它助磨剂的示例包括硫、有机硫化合物、石墨和金属硫化物。可使用不同助磨剂的组合。颜料的示例包括氧化铁、二氧化钛和炭黑。加工材料即加工助剂的示例包括液体和临时有机粘结剂前体。液体可以是水、有机溶剂或它们的组合。有机溶剂的示例包括烷烃、醇类诸如异丙醇、酮类诸如甲乙酮、酯和醚。
多种方法可用于制造根据本公开的成形磨料团聚物颗粒,例如模塑、挤出和模切。用于制造成形磨料团聚物颗粒的一种方法包括例如将包含玻璃状基质前体(例如,玻璃料)、成形磨粒和临时有机粘结剂的起始物质混合。在一些实施方案中,临时有机粘结剂可经历物理变化(例如,熔化或软化,随后固化和硬化)或化学变化(例如,在固化期间交联或形成化学键)以将成形磨料团聚物颗粒粘结在一起。合适的临时有机粘结剂包括糊精(例如马铃薯淀粉)、多糖、聚乙二醇、聚丙烯酸酯、粘合剂、有机树脂(例如,脲/甲醛树脂或下面描述的用于涂覆的磨料制品的那些中的任一种)、蜡或它们的组合。临时有机粘结剂允许混合物更容易成形,并且在进一步加工期间保持这种形状。在一些实施方案中,临时有机粘结剂包含糊精和甲基纤维素中的至少一种。
任选地,如上所述的其他添加剂和加工助剂,例如无机填料、助磨剂和/或液体介质(例如,如上所述的水或有机溶剂)可用于制备成形附聚物颗粒。起始物质可通过产生均匀混合物的任何常规技术混合在一起。例如,成形磨粒可以在机械混合装置诸如行星式混合器中与临时有机粘结剂混合。然后可以将玻璃状基质前体(例如玻璃料)加入到所得的混合物中并共混直至获得均匀的混合物,通常为10至30分钟。
在一些实施方案中,将起始物质在液体介质(例如水或有机溶剂)中混合以制造浆料。一些无机填料诸如热解法二氧化硅填料可用作例如流变改性剂。
然后可以将包含玻璃状基质前体、成形磨粒和临时有机粘结剂的混合物成形并加工以形成团聚物前体。混合物可通过例如模制、挤出和冲切来成形。通常将存在一些与临时有机粘结剂的损失相关联的收缩,并且当确定初始形状和尺寸时可以考虑到该收缩。成形工艺可以分批工艺或以连续方式完成。在一些实施方案中,通过将已经组合并形成均匀混合物的起始物质放入具有成形磨料团聚物颗粒的相反形状的模具中来进行使团聚物成形。在一些实施方案中,模具被形成为生产工具,其可以是例如束带、片材、连续纤维网、诸如轮转凹辊的涂布辊、安装在涂布辊上的套筒、或者模具。
模具可以是允许颗粒释放的任何模具。在一些实施方案中,模具包含聚合物材料。合适的聚合物材料的示例包括热塑性塑料,诸如聚酯、聚碳酸酯、聚(醚砜)、聚(甲基丙烯酸甲酯)、聚氨酯、聚氯乙烯、聚烯烃、聚苯乙烯、聚丙烯、聚乙烯或它们的组合、有机硅,或热固性材料。在一些实施方案中,整个模具由聚合物材料制成。在其他实施方案中,在进行干燥时与陶瓷前体分散体接触的模具的表面(如所述多个腔体的表面)包含聚合物材料,并且该模具的其他部分可以由其他材料制成。例如,可将合适的聚合物涂层施加到金属模具以改变其表面张力性质。如果需要,可使用脱模剂以有助于从模具中移除颗粒。典型的脱模剂包括油类(诸如花生油或矿物油、鱼油)、有机硅、聚四氟乙烯、硬脂酸锌和石墨。一般来讲,将在液体诸如水或醇中的脱模剂诸如花生油施加到与陶瓷前体分散体接触的生产模具的表面,使得当需要脱模时,每单位面积模具存在介于约0.1mg/in2(0.02mg/cm2)至约3.0mg/in2(0.5mg/cm2),或介于约0.1mg/in2(0.02mg/cm2)至约5.0mg/in2(0.8mg/cm2)之间的脱模剂。
从模具的顶部表面或底部表面中的开口均可进入腔体中。在一些情况下,腔体可延伸过模具的整个厚度。另选地,腔体可仅延伸至模具的厚度的一部分。在一个实施方案中,顶部表面大体上平行于模具的底部表面,其中腔体具有大体上均匀的深度。模具的至少一个边缘,即,其中形成腔体的边缘可以在其中去除挥发性组分的步骤期间保持暴露于周围大气环境。
腔体具有特定三维形状,以制造成形磨粒和成形磨料团聚物颗粒。深度尺寸等于从顶部表面到底部表面上最低点的垂直距离。给定腔体的深度可为均匀的,或者可沿其长度和/或宽度而发生变化。给定模具的腔体可具有相同的形状或不同的形状。
可以通过常规技术将包含玻璃状基质前体、临时有机粘结剂和成形磨粒的混合物引入模具腔体中。在一些实施方案中,可使用刀辊涂布机或真空槽模涂布机。可使用刮刀或矫直棒将混合物完全压入模具的腔体中。可将未进入腔体的混合物的剩余部分从模具的顶部表面移除,并将其回收利用。在一些实施方案中,混合物的一小部分可保留在顶部表面上,并且在其他实施方案中,顶部表面可基本上不含混合物。
然后可将含有混合物的模具置于烘箱中并加热至少部分地去除任何液体(例如,在浆液中)或以其他方式硬化临时粘结剂(例如,通过固化)。温度取决于所用的临时有机粘结剂,并且通常在35至200℃之间,在一些实施方案中,在70至150℃之间。然后将至少部分干燥的混合物从模具中移除。还可以毁坏(例如,完全烧掉)模具以释放团聚物。还可以对混合物进行照射(例如,用UV光、IR光或另一种能量源)以使临时粘结剂硬化(在一些实施方案中,固化)。
然后将团聚物前体加热以烧掉用于制备团聚物前体的有机材料,例如临时有机粘结剂,并使玻璃状粘结剂熔化或玻璃化,其可以单独发生或作为一个连续步骤发生,从而适应任何必要的温度变化。可以选择烧掉有机材料的温度以控制成形磨料团聚物颗粒中的孔隙率。所选择的温度可取决于临时有机粘结剂和其它任选成分的化学性质。通常,用于烧掉有机材料的温度的范围为约50℃至600℃,在一些实施方案中为75℃至500℃,但更高的温度也是可能的。用于使玻璃状粘结剂熔化或玻璃化的温度的范围通常在650℃至1150℃之间,在一些实施方案中,在650℃至950℃之间。
成形磨料团聚物颗粒可包括无机颗粒的涂层,该无机颗粒的涂层可用于使成形磨料团聚物颗粒在其制造期间彼此之间的团聚最小化。然而,并不认为涂层是成形磨料团聚物颗粒的一部分,因为它们未掺入在基质内或粘结在基质中。
适于涂覆根据本公开的成形磨料团聚物颗粒的无机颗粒的示例包括填料和磨料晶粒,例如金属碳酸盐、二氧化硅、硅酸盐、金属硫酸盐、金属碳化物、金属氮化物、金属硼化物、石膏、金属氧化物、石墨和金属亚硫酸盐。无机颗粒可包含熔融氧化铝。在一些实施方案中,无机颗粒具有约10微米至500微米,在一些实施方案中为25微米至250微米范围内的尺寸。无机颗粒的涂层可以通过在用无机颗粒成形(例如,从模具中取出)团聚物颗粒之后混合成形磨料团聚物颗粒来制造。也可加入少量的以下物质中的至少一种:水、溶剂或临时有机粘结剂前体(例如,基于团聚物前体的重量,范围为5重量%至15重量%或6重量%至12重量%的量),以有助于将无机颗粒固定到团聚物前体的表面。
然后可对所得团聚物进行热加工以优化粘结性能。热加工包括在范围为300℃至900℃的温度下加热,在一些实施方案中,在范围为350℃至800℃或400℃至700℃的温度下加热。
成形磨料团聚物颗粒可为多孔或无孔的。孔隙率可通过促进所用成形磨粒的释放来影响研磨过程期间团聚物颗粒的侵蚀。如上所述,团聚物中的孔隙率可由临时有机粘结剂产生。也可通过使用填料生成经设计的孔隙率。例如,玻璃料可包含有玻璃泡以将孔结合到玻璃状基质中。可用于形成孔的其它填料包括软木、压碎的壳或聚合物材料。如本文所用,术语“经设计的孔隙率”是指通过使用填料或其它成孔剂进行设计而结合到成形磨料团聚物颗粒中的孔隙率。经设计的孔隙率不包括例如在玻璃状基质的形成期间将固有地发生的孔隙率。在一些实施方案中,通过扫描电子显微镜观察,成形磨料团聚物颗粒包括按体积计约0%至约60%的孔,在一些情况下包括按体积计约0%至约25%的孔。
根据本公开的成形磨料团聚物颗粒可用于例如涂覆的磨料、非织造磨料、研磨刷和粘结磨料。涂覆的磨料可包含粘结到背衬的多个成形磨料团聚物颗粒。非织造磨料可包含粘结到蓬松的多孔非织造基底上和粘结到其中的多个成形磨料团聚物颗粒。一般来讲,磨料制品包含保留在粘结剂中的多个成形磨料团聚物颗粒。用于涂覆的和非织造的磨料的粘结剂材料通常为有机粘结剂。
在一些实施方案中,磨料制品中的多个根据本公开的成形磨料团聚物颗粒具有相同的形状。在一些实施方案中,磨料制品内的至少50%、60%、75%、80%、90%或95%的成形磨料团聚物颗粒具有相同的形状。此外,在一些实施方案中,磨料制品内的成形磨料团聚物颗粒具有大致相似的厚度。在一些实施方案中,磨料制品内的至少50%、60%、75%、80%、90%或95%的成形磨料团聚物颗粒具有在成形磨料团聚物颗粒的平均厚度的10%、5%或2.5%之内的厚度。厚度是根据本公开的团聚物中最短团聚物尺寸。
包含根据本公开的团聚物颗粒的涂覆的磨料的实施方案示于图8中。在图8所示的实施方案中,涂覆的磨料制品800包括背衬802和磨料层803。磨料层803包括通过底胶层805和复胶层806固定至背衬802的主表面的成形磨料团聚物颗粒804。在一些情况下,使用顶胶涂层(未示出)。
多种背衬802适用于根据本公开的涂覆的磨料制品。合适的背衬802的示例包括聚合物膜、涂底漆的聚合物膜、坯布、布、纸、硫化纤维、非织造物、这些的经处理型式,以及它们的组合。背衬802可包含任选的添加剂,例如填料、纤维、抗静电剂、润滑剂、润湿剂、表面活性剂、颜料、染料、偶联剂、增塑剂和悬浮剂。这些任选材料的量取决于所需的性质。背衬可被选择成使得其具有足够的强度和耐热性,以承受其在研磨下的工艺和使用条件。另外,如果磨料制品旨在用于湿或润滑环境中,则背衬可被选择成使得其具有足够的耐水性和/或耐油性,通过用热固性树脂处理背衬来获得,使得其在研磨期间不会劣化。可用的树脂包括可任选地用橡胶改性的酚醛树脂;可任选地用芴化合物改性的环氧树脂;和双马来酰亚胺树脂。
在涂覆的磨料中,底胶层805和复胶层806可统称为粘结剂,并且它们可由相同或不同的粘结剂前体制成。在制造涂覆的磨料制品期间,粘结剂前体暴露于能量源,该能量源有助于引发粘结剂前体的聚合或固化。能量源的示例包括热能和辐射能(例如电子束、紫外光和可见光)。在该聚合过程期间,将粘结剂前体聚合或固化,并转化成固化粘结剂。
粘结剂可由可固化(例如,经由能量诸如紫外光或热)有机材料形成。示例包括氨基树脂、烷基化脲醛树脂、三聚氰胺-甲醛树脂和烷基化苯并胍胺-甲醛树脂;丙烯酸酯树脂(包括丙烯酸酯和甲基丙烯酸酯),诸如丙烯酸乙烯酯、丙烯酸酯化环氧树脂、丙烯酸酯化氨基甲酸酯、丙烯酸酯化聚酯、丙烯酸酯化丙烯酸树脂、丙烯酸酯化聚醚、乙烯基醚、丙烯酸酯化油和丙烯酸酯化有机硅;醇酸树脂,诸如氨基甲酸酯醇酸树脂、聚酯树脂、反应性氨基甲酸酯树脂;酚醛树脂,诸如可溶酚醛树脂和线型酚醛树脂、酚醛/胶乳树脂;环氧树脂,诸如双酚环氧树脂、异氰酸酯、异氰脲酸酯;聚硅氧烷树脂(包括烷基烷氧基硅烷树脂)、反应性乙烯基树脂、和酚醛树脂(可溶酚醛树脂和线型酚醛树脂)。所述树脂可作为单体、低聚物、聚合物或它们的组合而提供。
粘结剂前体可为缩合可固化树脂、加成可聚合树脂、自由基可固化树脂,和/或此类树脂的组合和共混物。一种粘结剂前体为经由自由基机制聚合的树脂或树脂混合物。通过将粘结剂前体以及适当的催化剂暴露于能量源(诸如热能或辐射能)来引发聚合过程。辐射能的示例包括电子束、紫外光或可见光。
合适的粘结剂前体的示例包括酚醛树脂、脲醛树脂、氨基塑料树脂、氨基甲酸酯树脂、三聚氰胺甲醛树脂、氰酸酯树脂、异氰脲酸酯树脂、(甲基)丙烯酸酯树脂(例如,(甲基)丙烯酸酯化氨基甲酸酯、(甲基)丙烯酸酯化环氧树脂、烯键式不饱和自由基可聚合化合物、具有α,β-不饱和羰基侧基的氨基塑料衍生物、具有至少一个丙烯酸酯侧基的异氰脲酸酯衍生物、以及具有至少一个丙烯酸酯侧基的异氰酸酯衍生物)、乙烯基醚、环氧树脂,以及它们的混合物和组合。如本文所用,术语“(甲基)丙烯酰基”涵盖丙烯酰基或甲基丙烯酰基。烯键式不饱和单体或低聚物、或者(甲基)丙烯酸酯单体或低聚物可为单官能、双官能、三官能或四官能、或甚至更高官能。
酚醛树脂具有良好的热特性、可得性和相对较低的成本,而且易于处理。酚醛树脂有两种类型:可溶酚醛树脂和线型酚醛树脂。可溶酚醛树脂具有大于或等于1:1,通常在1.5:1.0至3.0:1.0的范围内的甲醛与酚的摩尔比。线型酚醛树脂具有小于1:1的甲醛与酚的摩尔比。可商购获得的酚醛树脂的示例包括:以商品名“DUREZ”和“VARCUM”得自德克萨斯州达拉斯的奥克西化学公司(Occidental Chemicals Corp.,Dallas,Texas);以商品名“RESINOX”得自密苏里州圣路易斯的孟山都公司(Monsanto Co.,Saint Louis,Missouri);以及以商品名“AEROFENE”和“AROTAP”得自俄亥俄州都柏林的亚什兰专用化学品公司(Ashland Specialty Chemical Co.,Dublin,Ohio)的已知的那些。
(甲基)丙烯酸酯化氨基甲酸酯包括羟基封端的NCO扩链的聚酯或聚醚的二(甲基)丙烯酸酯。可商购获得的丙烯酸酯化氨基甲酸酯的示例包括可以CMD 6600、CMD 8400和CMD8805得自新泽西州西帕特森的氰特工业公司(Cytec Industries,West Paterson,NewJersey)的那些。
(甲基)丙烯酸酯化环氧树脂包括环氧树脂的二(甲基)丙烯酸酯,诸如双酚A环氧树脂的二丙烯酸酯。可商购获得的丙烯酸酯化环氧树脂的示例包括可以CMD 3500、CMD3600和CMD 3700得自氰特工业公司(Cytec Industries)的那些。
烯键式不饱和自由基可聚合化合物包括含有碳原子、氢原子和氧原子以及任选氮和卤素的单体和聚合物化合物两者。氧原子或氮原子或两者通常存在于醚、酯、氨基甲酸酯、酰胺和脲基中。烯键式不饱和自由基可聚合化合物通常具有低于约4,000克/摩尔的分子量,并且通常为由含有单个脂族羟基基团或多个脂族羟基基团的化合物与不饱和羧酸(诸如丙烯酸、甲基丙烯酸、衣康酸、巴豆酸、异巴豆酸和马来酸等)反应制成的酯。(甲基)丙烯酸酯树脂的代表性示例包括甲基丙烯酸甲酯、甲基丙烯酸乙酯苯乙烯、二乙烯基苯、乙烯基甲苯、乙二醇二丙烯酸酯、乙二醇甲基丙烯酸酯、己二醇二丙烯酸酯、三乙二醇二丙烯酸酯、三羟甲基丙烷三丙烯酸酯、甘油三丙烯酸酯、季戊四醇三丙烯酸酯、季戊四醇甲基丙烯酸酯、季戊四醇四丙烯酸酯和季戊四醇四丙烯酸酯。其它烯键式不饱和树脂包括单烯丙基、聚烯丙基和聚甲基烯丙基酯和羧酸的酰胺,例如二烯丙基邻苯二甲酸酯、二烯丙基己二酸酯和N,N-二烯丙基己二酰二胺。还有其它烯键式不饱和化合物是含氮化合物,诸如三(2-丙烯酰-氧乙基)异氰脲酸酯、1,3,5-三(2-甲基丙烯酰氧乙基)均三嗪、丙烯酰胺、N-甲基丙烯酰胺、N,N-二甲基丙烯酰胺、N-乙烯基吡咯烷酮和N-乙烯基哌啶酮。
可用的氨基塑料树脂具有每个分子或每个低聚物至少一个α,β-不饱和羰基侧基基团。这些不饱和羰基基团可以是丙烯酸酯、甲基丙烯酸酯或丙烯酰胺型基团。此类材料的示例包括N-羟甲基丙烯酰胺、N,N'-氧基二亚甲基双丙烯酰胺、邻位丙烯酰胺甲基化苯酚及对位丙烯酰胺甲基化苯酚、丙烯酰胺甲基化线型酚醛树脂、以及它们的组合。这些材料在美国专利4,903,440和5,236,472(均授予科克(Kirk)等人)中进一步描述。
具有至少一个丙烯酸酯侧基基团的异氰酸酯衍生物在美国专利4,652,274(Boettcher等人)进一步描述。一种异氰脲酸酯材料的示例为三(羟乙基)异氰脲酸酯的三丙烯酸酯。
环氧树脂具有一个或多个环氧基基团,并且可以通过环氧基基团的开环反应聚合。此类环氧树脂包括单体环氧树脂和低聚环氧树脂。可用的环氧树脂的示例包括2,2-双[4-(2,3-环氧丙氧基)-苯丙烷](双酚的二缩水甘油醚)和以EPON 828、EPON 1004和EPON1001F得自俄亥俄州哥伦布的迈图特种化学品公司(Momentive Specialty Chemicals,Columbus,Ohio);以及以DER-331、DER-332和DER-334得自密歇根州米德兰的陶氏化学公司(Dow Chemical Co.,Midland,Michigan)的材料。其它合适的环氧树脂包括以商品名DEN-431和DEN-428从陶氏化学公司(Dow Chemical Co.)商购获得的苯酚甲醛酚醛清漆的缩水甘油醚。
环氧树脂可通过添加合适阳离子固化剂的阳离子机理来聚合。阳离子固化剂产生酸源以引发环氧树脂的聚合。这些阳离子固化剂可包括具有鎓阳离子和包含金属或准金属的络合物阴离子的卤素的盐。还可使用用于环氧树脂和酚醛树脂的其它固化剂(例如,胺硬化剂和胍)。
其它阳离子固化剂包括具有有机金属络合物阳离子和包含金属或准金属的络合物阴离子的卤素的盐,所述固化剂在美国专利4,751,138(Tumey等人)中进一步描述。其它示例包括有机金属盐和鎓盐,如在美国专利4,985,340(Palazzotto等人);5,086,086(Brown-Wensley等人);和5,376,428(Palazzotto等人)中有所描述。其它阳离子固化剂包括有机金属络合物的离子型盐,其中金属选自在美国专利5,385,954(Palazzotto等人)中描述的元素周期表中第IVB、VB、VIB、VIIB和VIIIB族元素。
自由基可聚合烯键式不饱和化合物在暴露于通过自由基热引发剂和/或光引发剂的分解而形成的自由基时、或通过暴露于微粒(电子束)或高能辐射(γ射线)而聚合。在暴露于光化电磁辐射(例如,紫外线或可见光电磁辐射)的情况下,产生自由基源的化合物通常称为光引发剂。
自由基热引发剂的示例包括过氧化物,例如,过氧化苯甲酰和偶氮化合物。
光引发剂的示例包括苯偶姻及其衍生物诸如α-甲基苯偶姻;α-苯基苯偶姻;α-烯丙基苯偶姻;α-苄基苯偶姻;苯偶姻醚,诸如苯偶酰二甲基缩酮(可以IRGACURE 651从纽约州塔里敦的汽巴精化公司(Ciba Specialty Chemicals,Tarrytown,NY)商购获得)、苯偶姻甲基醚、苯偶姻乙基醚、苯偶姻正丁基醚;苯乙酮及其衍生物,诸如,2-羟基-2-甲基-1-苯基-1-丙酮(可以DAROCUR 1173得自汽巴精化公司(Ciba Specialty Chemicals))和1-羟基环己基苯基酮(可以IRGACURE 184得自汽巴精化公司(Ciba Specialty Chemicals));2-甲基-1-[4-(甲硫基)苯基]-2-(4-吗啉基)-1-丙酮(可以IRGACURE 907得自汽巴精化公司(Ciba Specialty Chemicals));2-苄基-2-(二甲基氨基)-1-[4-(4-吗啉基)苯基]-1-丁酮(可以IRGACURE 369得自汽巴精化公司(Ciba Specialty Chemicals));其它可用的光引发剂包括例如新戊偶姻乙醚、茴香偶姻乙醚、蒽醌(例如,蒽醌、2-乙基蒽醌、1-氯蒽醌、1,4-二甲基蒽醌、1-甲氧基蒽醌或苯并蒽醌)、卤代甲基三嗪、二苯甲酮及其衍生物、碘鎓盐和锍盐、钛络合物诸如双(η5-2,4-环戊二烯-1-基)-双[2,6-二氟-3-(1H-吡咯-1-基)苯基]钛(例如以CGI 784DC得自汽巴精化公司(Ciba Specialty Chemicals));卤代硝基苯(例如,4-溴甲基硝基苯)、单-和双-酰基膦(例如,均来自汽巴精化公司(Ciba SpecialtyChemicals)的IRGACURE 1700、IRGACURE 1800、IRGACURE 1850、DAROCUR 4263和DAROCUR4265),以及可以LUCIRIN TPO得自北卡罗来纳州夏洛特的巴斯夫公司(BASF Corporation,Charlotte,North Carolina)的2,4,6-三甲基苯甲酰基-二苯基氧化膦)。可使用光引发剂的组合。
通常,基于粘结剂材料前体的重量,固化剂(例如,自由基引发剂(光或热)或阳离子固化催化剂)以0.1重量%至10重量%、优选地2重量%至4重量%范围内的量使用,但也可使用其它量。另外,优选的是在加入任何微粒材料(诸如磨粒和/或填料颗粒)之前将引发剂均匀地分散或溶解在粘结剂基质前体中。可与一种或多种光引发剂一起使用一种或多种光谱敏化剂(例如,染料),例如,以便提高光引发剂对具体光化辐射源的灵敏度。合适的敏化剂的示例包括噻吨酮和9,10-蒽醌。通常,基于粘结剂材料前体的重量,光敏剂的量可从约0.01重量%变为10重量%、更优选地从0.25重量%变为4.0重量%。光敏剂的示例包括可以QUANTICURE ITX、QUANTICURE QTX、QUANTICURE PTX、QUANTICURE EPD购自纽约州纽约市的比德索耶公司(Biddle Sawyer Corp.,New York,New York)的那些。
为了促进粘结剂和成形磨料团聚物颗粒之间的联接,可以在成形磨料团聚物颗粒和粘结剂前体的浆料中包含硅烷偶联剂;通常,量为约0.01重量%至5重量%,更典型地量为约0.01重量%至3重量%,更典型地量为约0.01重量%至1重量%,虽然也可使用其它量,例如取决于磨粒的尺寸。合适的硅烷偶联剂包括例如甲基丙烯酰氧基丙基三甲氧基硅烷、乙烯基三乙氧基硅烷、乙烯基三(2-甲氧基乙氧基)硅烷、3,4-环氧环己基甲基三甲氧基硅烷、γ-缩水甘油氧基丙基三甲氧基硅烷和γ-巯丙基三甲氧基硅烷(例如,以相应商品名A-174、A-151、A-172、A-186、A-187和A-189购自康涅狄格州格林威治的维特克公司(WitcoCorp.of Greenwich,Connecticut))、烯丙基三乙氧基硅烷、二烯丙基二氯硅烷、二乙烯基二乙氧基硅烷和间、对-苯乙烯基乙基三甲氧基硅烷(例如,以相应商品名A0564、D4050、D6205和S 1588从宾夕法尼亚州布里斯托尔的联合化学工业公司(United ChemicalIndustries,Bristol,Pennsylvania)商购获得)、二甲基二乙氧基硅烷、二羟基二苯基硅烷、三乙氧基硅烷、三甲氧基硅烷、三乙氧基硅烷醇、3-(2-氨基乙基氨基)丙基三甲氧基硅烷、甲基三甲氧基硅烷、乙烯基三乙酰氧基硅烷、甲基三乙氧基硅烷、正硅酸四乙酯、正硅酸四甲酯、乙基三乙氧基硅烷、戊基三乙氧基硅烷、乙基三氯硅烷、戊基三氯硅烷、苯基三氯硅烷、苯基三乙氧基硅烷、甲基三氯硅烷、甲基二氯硅烷、二甲基二氯硅烷、二甲基二乙氧基硅烷,以及它们的组合。
粘结剂和/或粘结剂前体可任选地包含添加剂,诸如,例如着色剂、助磨剂、填料、粘度调节剂、润湿剂、分散剂、光稳定剂和抗氧化剂。
可用于粘结剂中的填料通常具有0.1微米至50微米,通常1微米至30微米的平均粒度范围。可用的填料的示例包括金属碳酸盐(例如碳酸钙,诸如白垩、方解石、泥灰岩、石灰华、大理石和石灰石;碳酸钙镁;碳酸钠;和碳酸镁)、二氧化硅(例如石英、玻璃珠、玻璃泡和玻璃纤维)、硅酸盐(例如滑石、粘土如蒙脱石、长石、云母、硅酸钙、偏硅酸钙、铝硅酸钠、硅酸钠、硅酸锂、以及含水和无水硅酸钾)、金属硫酸盐(例如硫酸钙、硫酸钡、硫酸钠、硫酸铝钠、硫酸铝)、石膏、蛭石、木粉、三水合铝、炭黑、金属氧化物(例如氧化钙诸如石灰、氧化铝、氧化锡诸如二氧化锡、二氧化钛)、亚硫酸盐(例如亚硫酸钙)、热塑性颗粒(例如聚碳酸酯、聚醚酰亚胺、聚酯、聚乙烯、聚砜、聚苯乙烯、丙烯腈-丁二烯-苯乙烯嵌段共聚物、聚丙烯、缩醛聚合物、聚氨酯、尼龙颗粒)和热固性颗粒(例如酚醛气泡、酚醛珠、聚氨酯泡沫颗粒)。该填料还可为盐,诸如卤化物盐。卤化物盐的示例包括氯化钠、钾冰晶石、钠冰晶石、氯化铵、四氟硼酸钾、四氟硼酸钠、氟化硅、氯化钾和氯化镁。其它杂类填料包括硫、有机硫化合物、石墨和金属硫化物。
在一些实施方案中,聚合物粘结剂具有小于60的努普硬度。例如,通过选择填料和偶联剂可以影响聚合物粘结剂的努普硬度。在一些实施方案中,基于所述聚合物粘结剂组合物的总重量,该聚合物粘结剂包含小于50重量%的上述填料中的任一种。在一些实施方案中,基于聚合物粘结剂组合物的总重量,聚合物粘结剂不包含填料或者包含小于5重量%、4重量%、3重量%、2重量%或1重量%的上述填料中的任一种。不含填料的聚合物粘结剂的努普硬度值通常在20至50的范围内。努普硬度可使用ASTM D 1474-85(方法A)测量。在一些实施方案中,基于聚合物粘结剂组合物的总重量,聚合物粘结剂不包含硅烷偶联剂或包含小于0.5重量%、0.2重量%或0.1重量%的硅烷偶联剂。
多种方法可适于制造根据本公开的涂覆的磨料制品。再次参见图8,可以通过任何合适的技术,诸如喷涂、辊涂、模涂、粉末涂覆、热熔涂覆或刮涂,将包含第一有机基粘结剂前体的底胶层805施加到背衬802的主表面。可以如上所述制备的成形磨料团聚物颗粒804可以投射在底胶层前体上并粘附在底胶层前体中。在一些实施方案中,成形磨料团聚物颗粒是滴涂的。在一些实施方案中,团聚物颗粒804在背衬802上形成单层。
在一些实施方案中,成形磨料团聚物颗粒804被静电涂覆到底胶层前体上。静电涂覆的成形磨料团聚物颗粒最佳地附接到底胶树脂涂覆的背衬802,使得它们的最长轴垂直于背衬802,如图8所示。对于更多块状形状的团聚物,例如立方体形状,这种附接是不可观察到的。
所得构造然后暴露于第一能量源,诸如如上所述的热或辐射,以至少部分地固化第一粘结剂前体,以形成不流动的底胶层。例如,所得的构造可被暴露以在50℃至130℃之间的温度下进行加热,在一些实施方案中在80℃至110℃之间的温度下进行加热,持续范围为30分钟至3小时的时间段。在此之后,通过任何常规技术,例如通过喷涂、辊涂和幕涂,将包含可与第一粘结剂前体相同或不同的第二粘结剂前体的复胶层施加在团聚物颗粒上。最后,将所得磨料制品暴露于第二能量源,该第二能量源可与第一能量源相同或不同,以使底胶层和第二粘结剂前体完全固化或聚合成热固性聚合物。
对于涂覆的磨料制品,例如图8中所示的那些,金属粘结剂也可用于代替底胶层805和/或复胶层806。例如,电沉积金属可用于将成形磨料团聚物颗粒固定到背衬802。这种涂覆的磨料制品可以通过例如将金属沉积到基底上直到达到所需的厚度来制造。然后可以将根据本公开的成形磨料团聚物颗粒引入镀浴中并沉积在镀覆金属上。金属的进一步电沉积可用于将成形磨料团聚物颗粒附连到背衬。由于这种电沉积方法,可以通过电沉积金属涂层将单层成形磨料团聚物颗粒附连到基材。关于金属粘结磨料制品的进一步细节可以在美国专利第6,319,108号(Adefris等人)中找到。在其他实施方案中,玻璃状粘结剂也可用于代替底胶层805和/或复胶层806。上述任何玻璃组合物都可以是有用的。
粘结磨料制品通常包括成形的磨粒块体,这些磨粒通过有机粘结剂、金属粘结剂或玻璃化粘结剂而保持在一起。此类成形块体可以为例如轮的形式(例如诸如磨削轮或切割轮)、磨石或磨刀石。磨削轮的直径通常为约1cm至1米以上;切割轮的直径为约1cm至80cm以上(更通常为3cm至约50cm)。切割轮的厚度通常为约0.5mm至约5cm,更通常为约0.5mm至约2cm。成形块体还可以为例如珩磨石、砂瓦、磨头、圆盘(例如,双盘磨床)或其他常规粘结磨料形状的形式。粘结磨料制品通常包含约3体积%至50体积%的粘结材料,约30体积%至90体积%的磨粒(或磨粒共混物),至多50体积%的添加剂(包括助磨剂),和至多70体积%的孔隙,所述体积%是基于粘结磨料制品的总体积计的。有机粘结剂可包括上述用于涂覆的磨料制品的那些中的任一种。可以调节有机粘结剂的量以适应成形磨料团聚物颗粒中的孔隙率。
磨削轮的实施方案如图9所示。参照图9,描绘了磨削轮900,该磨削轮900包括根据本公开的成形磨料团聚物颗粒911,其模制在轮子中并安装在轮毂912上。
非织造磨料制品通常包括开放的多孔膨松聚合物长丝结构,其具有分布在整个结构中并且通过有机粘结剂粘附性地粘结在其中的磨粒。长丝的示例包括聚酯纤维、聚酰胺纤维和聚芳族聚酰胺纤维。根据本公开的非织造磨料制品的实施方案示于图10中。参见图10,其示出典型非织造磨料制品1000的多倍放大的示意图,其包括作为基底的膨松开放纤维垫1050,根据本公开制造的成形磨料团聚物颗粒1052通过粘结剂1054粘附到该垫上。
根据本公开的非织造磨料包括适用于磨料中的非织造纤维网。术语“非织造”指的是具有单独纤维或丝线的结构的材料,这些纤维或丝线是夹层的,但不是以可识别方式诸如以针织物进行夹层的。通常,非织造纤维网包括缠结的纤维网。纤维可包括连续纤维、短纤维或它们的组合。例如,非织造纤维网可以包括具有至少约20mm、至少约30mm或至少约40mm以及小于约110mm、小于约85mm或小于约65mm的长度的短纤维,但也可以使用更短和更长的纤维(例如连续长丝)。纤维可以具有至少约1.7分特(dtex,即,克/10000米)、至少约6dtex或至少约17dtex,并且小于约560dtext、小于约280dtex或小于约120dtex的细度或线密度,但也可以使用具有更小和/或更大线密度的纤维。具有不同线密度的纤维的混合物可以用于例如提供磨料制品,所述磨料制品在使用时将会产生尤其优选的表面光洁度。如果使用的是纺粘非织造物,那么细丝可以具有大得多的直径,例如,直径为至多2mm或更大。
可例如通过常规的气流成网、梳理、缝编、纺粘、湿法成网和/或熔喷过程制造非织造纤维网。可使用设备,诸如,例如可商品名“RANDO WEBBER”从纽约州马其顿的兰多机器公司(Rando Machine Company,Macedon,N.Y)商购获得的设备来制备气流成网非织造纤维网。
通常选择这样的非织造纤维网:所述非织造纤维网与粘附粘结剂和磨粒适宜地相容、同时还可与制品的其它部件组合地加工,并且通常可以承受加工条件(例如温度),例如在可固化组合物的施加和固化期间采用的那些条件。可挑选该纤维,以影响磨料制品的特性,诸如例如为柔韧性、弹性、耐久性或保质期、磨损性以及精加工特性。可为合适的纤维的示例包括天然纤维、合成纤维以及天然纤维和/或合成纤维的混合物。合成纤维的示例包括由聚酯(例如,聚对苯二甲酸乙二醇酯)、尼龙(例如,六亚甲基己二酰胺、聚己内酰胺)、聚丙烯、丙烯腈(即,丙烯酸类树脂)、人造丝、醋酸纤维素、聚偏二氯乙烯-氯乙烯共聚物、以及氯乙烯-丙烯腈共聚物制成的那些。合适的天然纤维的示例包括棉花、羊毛、黄麻和大麻。纤维可为天然的材料或例如从服装碎料、地毯制造、纤维制造或纺织物加工中回收的再循环材料或废料。纤维可以是均一化的或可以是复合材料,诸如双组分纤维(例如,共纺的皮-芯纤维)。这些纤维可以是拉伸的和卷曲的,但是也可为连续长丝,诸如通过挤出工艺形成的那些长丝。也可以使用纤维的组合。
可用于将根据本公开的成形磨料团聚物颗粒粘结到非织造纤维网上和粘结到非织造纤维网中的粘结剂可包括上述那些中的任一种。在用粘结剂前体浸渍之前,在进行任何涂覆(例如,用可固化组合物或任选的预粘结树脂)之前测量时,非织造纤维网通常具有至少约50克/平方米(gsm),至少约100gsm,或至少约200gsm;和/或小于约400gsm、小于约350gsm或小于约300gsm的每单位面积的重量(即,基重),尽管也可以使用更大和更小的基重。另外,在用粘结剂前体浸渍之前,纤维网通常具有至少约5mm、至少约6mm或至少约10mm;和/或小于约200mm、小于约75mm,或小于约30mm的厚度,尽管也可以使用更大和更小的厚度。
与非织造磨料制品、砂轮和它们的制造方法相关的其它细节可见于例如美国专利2,958,593(Hoover等人)、美国专利5,591,239(Larson等人);美国专利6,017,831(Beardsley等人);和美国专利申请公布2006/0041065A1(Barber,Jr.)中。
很多情况下,在用粘结剂前体涂覆之前将预粘结树脂施加到非织造纤维网是可用的。预粘结树脂用于例如在处理期间帮助保持非织造纤维网的完整性,并且还可以促进粘结剂与非织造纤维网的粘结。预粘结树脂的示例包括酚醛树脂、氨基甲酸酯树脂、皮胶、丙烯酸类树脂、脲醛树脂、三聚氰胺甲醛树脂、环氧树脂以及它们的组合。通常将以这种方式使用的预粘结树脂的量朝符合在纤维的交叉接触点处将纤维粘结在一起的最小量进行调节。如果非织造纤维网包括可热粘结的纤维,那么非织造纤维网的热粘结也可以有助于在加工过程中保持纤维网的完整性。
根据本公开的磨料制品可例如被转换成带、带卷、盘或片材。它们可以手工使用或与诸如带式磨削机的机器组合使用。对于带应用,将磨料片材的两个自由端接合在一起并拼接,从而形成环形带。也可使用无接头皮带,例如,如WO 93/12911(Benedict)中所述。一般来讲,环形磨料带可横贯至少一个惰辊和压板或接触轮。调整压板或接触轮的硬度以获得所需的切割速率和工件表面光洁度。磨料带速度取决于所需切割速率和表面光洁度,并且通常范围在约20表面米/秒至100表面米/秒的任何位置,通常在30表面米/秒至70表面米/秒之间。带尺寸的范围可以是约0.5cm至100cm宽或1.0cm至30cm宽,以及约5cm至1,000cm长或50cm至500cm长。磨料带是连续长度的磨料制品,并且其宽度范围可为约1mm至1,000mm或约5mm至250mm。磨料带通常是展开的,横贯支撑垫,该支撑垫迫使带抵靠工件,然后重绕。磨料带可以连续地通过研磨界面进给并且可以被分度。磨料盘也可以包括在磨料领域中称为“菊花”形状的磨料盘,其直径的范围可以为约50mm至1,000mm或约50mm至约100mm。通常,磨料盘通过附接装置固定到支撑垫,并且可以在100转/分钟至20,000转/分钟之间,通常在1,000转/分钟至15,000转/分钟之间旋转。
可用的磨料刷包括具有与背衬成一体的多根刷毛的那些(参见如美国专利No.5,427,595(Pihl等人)、美国专利No.5,443,906(Pihl等人)、美国专利No.5,679,067(Johnson等人)和美国专利No.5,903,951(Ionta等人))。有利地,通过注塑聚合物和磨粒的混合物来制造此类刷。
磨料制品可被用于研磨工件。工件可以是任何类型的材料,诸如金属、金属合金、异金属合金、陶瓷、玻璃、木材、木材类材料、复合材料、涂漆表面、塑料、增强塑料、石头以及它们的组合。工件可为平坦的或可具有与其相关联的形状或轮廓。工件的示例包括玻璃眼镜、塑料眼镜、塑料镜片、玻璃电视屏幕、金属汽车部件(例如,离合器片和其它平坦汽车部件)、不锈钢线圈、塑料部件、刨花板、涂漆汽车部件、磁性介质、管道、板、液压杆和电梯井。
在研磨期间,磨料制品和工件相对于彼此移动,使得磨料制品磨损工件。磨料制品相对于工件移动,或反之亦然。根据应用情况,研磨界面处力的范围可以为约0.1kg至超过1000kg。一般来讲,研磨界面处力的此范围在1kg至500kg之间。此外,研磨还可在湿条件下进行。湿条件可包括水和/或液体有机化合物。典型的液体有机化合物的示例包括润滑剂、油、乳化有机化合物、切割流体和皂。这些液体还可以包含其它添加剂,诸如消泡剂,脱脂剂和抗蚀剂。磨料制品在使用期间可在研磨界面处振荡,这可导致工件上的精细表面被研磨。
对于许多研磨工艺而言,在研磨工具的寿命期间一致的材料去除率是期望的。然而,研磨工具的使用寿命可能受到使用开始时所需的磨合时间和/或在显著磨损后达到特定材料去除率的较高所需力的限制,这可能导致不合格的表面处理或工件烧伤。
为了获得一致的材料去除率,可以通过影响晶粒内的微观结构和二次相来确定磨料矿物的特定硬度、化学性质和破坏/破裂行为。然而,这种方法并不总能导致材料去除率的期望一致性。
以下实施例中的实施例6和7以及比较例A的研磨结果表明,当与在单层中具有相同形状的磨粒的构造相比,包含根据本公开的成形磨料团聚物颗粒的涂覆的磨料制品在该寿命期间可表现出意想不到的延长寿命和稳定的切割速率。此外,实施例6和7以及说明例5的研磨结果表明,包含根据本公开的成形磨料团聚物颗粒的涂覆的磨料制品可以表现出比具有相同团聚物形状但包含熔融氧化铝而不是成形磨粒的其它团聚物颗粒出乎意料地更高的切割速率。
此外,实施例2与说明例2、实施例3与说明例3、和实施例10和11与说明例7的研磨结果的比较表明,根据本公开的成形磨料团聚物颗粒可用于提供这样的磨料制品,该磨料制品与具有更多块状形状(例如,更多立方体形状)的成形团聚物相比,可以在该延长的寿命期间表现出意想不到的研磨性能、延长的寿命和稳定的切割速率。
本公开的一些实施方案
在第一实施方案中,本公开提供成形磨料团聚物颗粒,该成形磨料团聚物颗粒包含粘结在玻璃状基质中的成形磨粒,其中成形磨粒具有在表面上的最长颗粒线性尺寸和垂直于最长颗粒线性尺寸的最短颗粒尺寸,其中最长颗粒线性尺寸是最短颗粒尺寸的至少两倍,其中成形磨料团聚物颗粒具有在表面上的最长团聚物线性尺寸和垂直于最长团聚物线性尺寸的最短团聚物尺寸,并且其中最长团聚物线性尺寸是最短聚集尺寸的至少两倍。
在第二实施方案中,本公开提供根据第一实施方案所述的成形磨料团聚物颗粒,其中最长颗粒线性尺寸是最短颗粒尺寸的至少三倍。
在第三实施方案中,本公开提供根据第一或第二实施方案所述的成形磨料团聚物颗粒,其中最长团聚物线性尺寸是最短团聚物尺寸的至少三倍。
在第四实施方案中,本公开提供根据第一至第三实施方案中任一项所述的成形磨料团聚物颗粒,其中成形磨粒具有倾斜侧壁。
在第五实施方案中,本公开提供根据第一至第四实施方案中任一项所述的成形磨料团聚物颗粒,其中成形磨料团聚物颗粒具有倾斜侧壁。
在第六实施方案中,本公开提供了根据第三至第五实施方案中任一项所述的成形磨料团聚物颗粒,其中成形磨粒在第一面和倾斜侧壁之间具有95度至130度范围内的角。
在第七实施方案中,本公开提供了根据第四至第六实施方案中任一项所述的成形磨料团聚物颗粒,其中成形磨料团聚物颗粒在第一面和倾斜侧壁之间具有95度至130度范围内的角。
在第八实施方案中,本公开提供根据第一至第七实施方案中任一项所述的成形磨料团聚物颗粒,其中成形磨粒具有截头棱锥体形状。
在第九实施方案中,本公开提供根据第一至第八实施方案中任一项所述的成形磨料团聚物颗粒,其中成形磨料团聚物颗粒具有截头棱锥体形状。
在第十实施方案中,本公开提供根据第一至第九实施方案中任一项所述的成形磨料团聚物颗粒,其中成形磨粒或成形磨料团聚物颗粒中的至少一者具有三角形截头体形状。
在第十一实施方案中,本公开提供根据第一至第七实施方案中任一项所述的成形磨料团聚物颗粒,其中成形磨料团聚物颗粒或成形磨粒中的至少一者具有周边,该周边具有小于60°的内角。
在第十二实施方案中,本公开提供根据第一至第七或第十一实施方案中任一项所述的成形磨料团聚物颗粒,其中成形磨料团聚物颗粒或成形磨粒中的至少一者具有箭头形状。
在第十三实施方案中,本公开提供根据第一至第十二实施方案中任一项所述的成形磨料团聚物颗粒,其中成形磨粒和成形磨料团聚物颗粒具有相同的形状。
在第十四实施方案中,本公开提供根据第一至第七实施方案中任一项所述的成形磨料团聚物颗粒,其中成形磨粒包括磨料碎片。
在第十五实施方案中,本发公开提供根据第一至第十四实施方案中任一项所述的成形磨料团聚物颗粒,其中成形磨粒包含陶瓷。
在第十六实施方案中,本公开提供根据第一至第十五实施方案中任一项所述的成形磨料团聚物颗粒,其中成形磨粒包含α氧化铝。
在第十七实施方案中,本公开提供根据第一至第十六实施方案中任一项所述的成形磨料团聚物颗粒,其中基于成形磨料团聚物颗粒的重量,成形磨粒以70重量%至95重量%的范围存在,并且玻璃状基质以至少5重量%存在。
在第十八实施方案中,本公开提供根据第一至第十七实施方案中任一项所述的成形磨料团聚物颗粒,其中基于磨料团聚物颗粒的重量,成形磨粒以70重量%至85重量%的范围存在,并且玻璃状基质以至少15重量%存在。
在第十九实施方案中,本公开提供根据第一至第十八实施方案中任一项所述的成形磨料团聚物颗粒,其中最长颗粒线性尺寸为至多1600微米。
在第二十实施方案中,本公开提供根据第十九实施方案所述的成形磨料团聚物颗粒,其中最长颗粒线性尺寸为至多500微米。
在第二十一实施方案中,本公开提供根据第一至第二十实施方案中任一项所述的成形磨料团聚物颗粒,其中最长团聚物线性尺寸为至多5毫米。
在第二十二实施方案中,本公开提供根据第一至第二十一实施方案中任一项所述的成形磨料团聚物颗粒,其中最长团聚物线性尺寸为至多2毫米。
在第二十三实施方案中,本公开提供根据第一至第二十二实施方案中任一项所述的成形磨料团聚物颗粒,其中玻璃状基质具有4×10-6/K至16×10-6/K范围内的热膨胀系数。
在第二十四实施方案中,本公开提供根据第一至第二十三实施方案中任一项所述的成形磨料团聚物颗粒,其中磨料团聚物颗粒具有具有经设计的孔隙率。
在第二十五实施方案中,本公开提供制造多个根据第一至第二十四实施方案中任一项所述的成形磨料团聚物颗粒的方法,该方法包括:
用包含玻璃料、成形磨粒和挥发性液体的浆料填充具有多个腔体的模具;
去除挥发性液体的至少一部分以提供成形前体团聚物颗粒;以及
烧制成形前体团聚物颗粒以提供成形磨料团聚物颗粒。
在第二十六实施方案中,本公开提供根据第二十五实施方案所述的方法,其中浆料还包含临时有机粘结剂。
在第二十七实施方案中,本公开提供根据第二十五或第二十六实施方案所述的方法,其中浆料还包含流变改性剂。
在第二十八实施方案中,本公开提供根据第二十七实施方案所述的方法,其中流变改性剂是热解法二氧化硅。
在第二十九实施方案中,本公开提供制造多个根据第一至第二十四实施方案中任一项所述的成形磨料团聚物颗粒的方法,该方法包括:
用含有玻璃料、成形磨粒和临时有机粘结剂的混合物填充具有多个腔体的模具;
对混合物进行加热或照射中的至少一种以提供成形前体团聚物颗粒;和
烧制成形前体团聚物颗粒以提供成形磨料团聚物颗粒。
在第三十实施方案中,本公开提供磨料制品,该磨料制品包含保留在粘结剂中的多个根据第一至第二十四实施方案中任一项所述的成形磨料团聚物颗粒。
在第三十一实施方案中,本公开提供根据第三十实施方案所述的磨料制品,其中磨料制品是涂覆的磨料制品,其包括背衬和用聚合物粘结剂附接到背衬的多个成形磨料团聚物颗粒。
在第三十二实施方案中,本公开提供根据第三十一实施方案所述的磨料制品,其中聚合物粘结剂包括酚醛粘结剂。
在第三十三实施方案中,本公开提供根据第三十实施方案所述的磨料制品,其中磨料制品包括非织造磨料制品。
在第三十四实施方案中,本公开提供根据第三十至第三十三实施方案中任一项所述的磨料制品,其中磨料制品是带、带卷、盘或片材。
在第三十五实施方案中,本公开提供根据第三十实施方案所述的磨料制品,其中磨料制品包括粘结的磨料制品。
在第三十六实施方案中,本公开提供根据第三十五实施方案所述的磨料制品,其中粘结磨料制品包括粘结砂轮。
在第三十七实施方案中,本公开提供研磨工件的方法,该方法包括:
使工件与第二十六至第三十二实施方案中任一项的磨料制品接触,以及
使所述工件和所述磨料制品相对于彼此移动以研磨所述工件。
在第三十八实施方案中,本公开提供根据第三十七实施方案所述的方法,其中工件包括不锈钢、碳钢或钛中的至少一种。
为了可以更全面地理解本公开,给出以下实施例。应当理解,这些实施例仅为了进行示意性的说明,而不应被理解为是以任何方式限制本公开。例如,这些实施例中所提到的具体材料及其量以及其它条件和细节,均不应被解释为对本公开的不当限制。
实施例
除非另有说明,否则实施例及本说明书的其余部分中的所有份数、百分比、比等均按重量计。除非另外说明,否则所有其它试剂均得自或购自精细化学品供应商诸如密苏里州圣路易斯的西格玛奥德里奇公司(Sigma-Aldrich Company,St.Louis,Missouri),或者可通过已知的方法合成。在示例中,使用以下单位缩写:℃表示摄氏度,cm表示厘米,g/m2表示克/平方米,以及mm表示毫米。实施例中使用的材料描述于下表1中。
表1
性能测试
使用以下程序测试研磨盘片。将待评估的研磨盘附接到配有7英寸(17.8cm)有棱纹的盘垫面板(以“80514 EXTRA HARD RED”得自明尼苏达州圣保罗的3M公司)的旋转磨削机。然后启动磨削机,并且磨削机在12磅(4.5kg)的负载下抵靠在0.75英寸×0.75英寸(1.9cm×1.9cm)的预称重的1045中碳钢条的端面。将盘垫面板在上述负载条件下抵靠工件的旋转速度维持在5000转/分钟。使工件在这些条件下研磨多个10秒的磨削间隔(循环)。每个10秒循环后,使工件冷却至室温并称重,以确定研磨操作的切割。将测试结果报告为累积切割量或切割增量对循环次数。
实施例1至3和说明例1至3
实施例1
通过混合表2中列出的组分制备浆料。使用高剪切混合器将组分混合30分钟。将所得浆料涂覆到具有0.42mm深度和1.56mm边长的等边三角形腔体的聚丙烯模具中。模具中腔体的侧壁和底部之间的脱模角为98度。然后将浆料在23℃下干燥1小时并在110℃的烘箱中干燥30分钟以形成成形团聚物。
表2
组分 | 重量,克 |
水 | 65 |
SAP1 | 75 |
GP | 25 |
25%的DEX1在水中的溶液 | 20 |
总计 | 185 |
使用超声变幅杆将干燥成形团聚物从工具中释放,然后在箱式窑中的耐火段中在更高温度下烧制(条件如表3中所计划)。
表3
所得烧制团聚物由75份SAP1和25份GP组成。
说明例1
重复实施例1中一般描述的程序,不同之处在于将浆料涂覆到聚丙烯模具中,该聚丙烯模具具有腔体,该腔体具有长和宽为大约0.87mm的正方形开口以及长和宽为大约0.65mm的正方形基部。这些腔体的深度为0.76毫米。
实施例2
直径为7英寸(17.8厘米)的纤维盘(以“DYNOS VULCANIZED FIBER”得自德国特罗斯多夫的Dynos GmbH(Dynos GmbH,Troisdorf Germany))涂覆有143g/m2的由49.15份PR、40.56份碳酸钙(以商品名“HUBERCARB Q325”得自乔治亚州亚特兰大的胡贝尔碳酸盐有限公司(Huber Carbonates LLC,Atlanta,Georgia))、10.19份水和0.10%EMU组成的底胶树脂,使用刀填充背衬编织物并去除多余的树脂。通过静电涂覆将由实施方案1制造的团聚物施加到底胶树脂涂覆的背衬。在样品上,团聚物的涂层重量为10克。将磨料涂覆的背衬置于90℃的烘箱中90分钟,并置于105℃下60分钟以使底胶树脂部分固化。将由29.42份PR、18.12份水、50.65份冰晶石(德克萨斯州休斯顿的索尔维氟化物有限公司(SolvayFluorides,LLC,Houston,Texas))和1.81份EMU组成的复胶树脂以409g/m2的基重施加到每个背衬材料条,并且将涂覆的纤维盘置于90℃的烘箱中90分钟并置于105℃下12小时以固化。
实施例3
重复实施例2中一般描述的程序,不同之处在于样品上的团聚物的涂层重量为15克。
说明例2
重复实施例2中一般描述的程序,不同的是施加10克由说明例1制造的团聚物。
说明例3
重复说明例2中一般描述的程序,不同之处在于样品上团聚物的涂层重量为15克。
根据性能测试的描述测试由实施例2和3以及说明例2和3制造的涂覆的纤维盘。累积切割量对循环次数的测试结果示出在表4中。
表4
实施例4至7、说明例4和5以及比较例A
实施例4
通过混合下表5中列出的组分制备浆料。使用高剪切混合器将组分混合30分钟。将所得浆料涂覆到具有0.42mm深度和1.68mm边长的等边三角形腔体的聚丙烯模具中。模具中腔体的侧壁和底部之间的脱模角为98度。然后将浆料在23℃下干燥1小时并在110℃的烘箱中干燥30分钟以形成成形团聚物。
表5
组分 | 重量,克 |
水 | 65 |
SAP2 | 75 |
GP | 25 |
25%的DEX1在水中的溶液 | 20 |
总计 | 185 |
使用超声变幅杆将干燥成形团聚物从工具中释放,然后在箱式窑中的耐火段中在更高温度下烧制(条件如表3中所计划)。所得的烧制团聚物由75份SAP2和25份GP组成。实施例4的所得团聚物的照片示于图6中。
实施例5
重复实施例4中一般描述的程序,不同之处在于将浆料涂覆到聚丙烯模具中,该聚丙烯模具具有腔体,该腔体具有长和宽为大约1.40mm的正方形开口以及长和宽为大约1.40mm的正方形基部。这些腔体的深度为0.42毫米。实施例5的所得团聚物的照片示于图7中。
说明例4
重复实施例4中一般描述的程序,不同之处在于在浆料中使用得自3M公司的“P120级321陶瓷颗粒”代替SAP2。
实施例6
直径为7英寸(17.8厘米)的纤维盘(以“DYNOS VULCANIZED FIBER”得自德国特罗斯多夫的Dynos GmbH(Dynos GmbH,Troisdorf Germany))涂覆有143g/m2的由49.15份PR、40.56份碳酸钙(以商品名“HUBERCARB Q325”得自乔治亚州亚特兰大的胡贝尔碳酸盐有限公司(Huber Carbonates LLC,Atlanta,Georgia))、10.19份水和0.10%EMU组成的底胶树脂,使用刀填充背衬编织物并去除多余的树脂。通过静电涂覆将由实施例4制造的团聚物施加到底胶树脂涂覆的背衬。在样品上,团聚物的涂层重量为10克。将磨料涂覆的背衬置于90℃的烘箱中90分钟,并置于105℃下60分钟以使底胶树脂部分固化。将由29.42份PR、18.12份水、50.65份冰晶石(德克萨斯州休斯顿的索尔维氟化物有限公司(Solvay Fluorides,LLC,Houston,Texas))和1.81份EMU组成的复胶树脂以409g/m2的基重施加到每个背衬材料条,并且将涂覆的纤维盘置于90℃的烘箱中90分钟,并置于105℃下12小时以固化。
实施例7
重复实施例6中一般描述的程序,不同之处在于施加15克由实施例5制造的团聚物。
说明例5
重复实施例6中一般描述的程序,不同的是施加10克由说明例4制造的团聚物。
比较例A
重复实施例6中一般描述的程序,不同的是使用4克磨粒SAP2代替团聚物。
根据性能测试的描述测试由实施例9至10和比较例B至C制造的涂覆的纤维盘。切割增量对循环次数和总切割量的测试结果如表6所示。
表6
实施例8至11和说明例6至8
实施例8
通过混合表7中列出的组分制备浆料。使用高剪切混合器将组分混合30分钟。将所得浆料涂覆到具有0.26mm深度和1.56mm边长的等边三角形腔体的聚丙烯模具中。模具中腔体的侧壁和底部之间的脱模角为98度。然后将浆料在110℃的烘箱中干燥20分钟以形成成形团聚物。
表7
组分 | 重量,克 |
水 | 133.5 |
SAP3 | 230 |
V601 | 77.5 |
DEX2 | 9.2 |
使用超声变幅杆将干燥成形团聚物从工具中释放,并随后与细级氧化铝粉末(以商品名“G52”得自纽约州尼亚加拉大瀑布的Washington Mills(Washington Mills,Niagara Falls,New York)(符合P600的FEPA标准))混合,然后在箱式窑中的耐火段中在更高温度下烧制(条件如表8中所计划)。烧制后,使耐火段自然冷却至接近23℃。所得的烧制团聚物由75份SAP3和25份V601组成。
表8
实施例9
重复实施例8中一般描述的程序,不同的是将浆料涂覆到具有0.42mm深度和1.56mm边长的等边三角形腔体的聚丙烯模具中。模具中腔体的侧壁和底部之间的脱模角为98度。
说明例6
重复实施例8中一般描述的程序,不同之处在于将浆料涂覆到聚丙烯模具中,该聚丙烯模具具有腔体,该腔体具有长和宽为大约0.87mm的正方形开口以及长和宽为大约0.65mm的正方形基部。这些腔体的深度为0.76毫米。
实施例10
使直径为7英寸(17.8厘米)的纤维盘(以“DYNOS VULCANIZED FIBER”得自德国特罗斯多夫的Dynos GmbH(Dynos GmbH,Troisdorf Germany))涂覆有143g/m2的由49.15份PR、40.56份碳酸钙(以商品名“HUBERCARB Q325”得自乔治亚州亚特兰大的胡贝尔碳酸盐有限公司(Huber Carbonates LLC,Atlanta,Georgia))、10.19份水和0.10%EMU组成的底胶树脂,使用刀填充背衬编织物并去除多余的树脂。通过静电涂覆将由实施方案8制造的团聚物施加到底胶树脂涂覆的背衬。在样品上,团聚物的涂层重量为10克。将磨料涂覆的背衬置于90℃的烘箱中90分钟,并置于105℃下60分钟以使底胶树脂部分固化。将由29.42份PR、18.12份水、50.65份冰晶石(德克萨斯州休斯顿的索尔维氟化物有限公司(SolvayFluorides,LLC,Houston,Texas))和1.81份EMU组成的复胶树脂以409g/m2的基重施加到每个背衬材料条,并且将涂覆的纤维盘置于90℃的烘箱中90分钟,并置于105℃下12小时以固化。
实施例11
重复实施例10中一般描述的程序,不同之处在于施加10克由实施例9制造的团聚物。
说明例7
重复实施例10中一般描述的程序,不同的是施加10克由说明例6制造的团聚物。
说明例8
重复实施例10中一般描述的程序,不同的是施加15克由说明例6制造的团聚物。
根据性能测试的描述测试由实施例10和11以及说明例7和8制造的涂覆的纤维盘。累积切割量对循环次数的测试结果示出在表9中。
表9
本公开不限于上述实施方案,但应受以下权利要求书和权利要求书的任何等同物中示出的限制条件的约束。本公开可在不存在本公开中未具体公开的任何要素的情况下以适当方式实施。
Claims (15)
1.一种成形磨料团聚物颗粒,其包含粘结在玻璃状基质中的成形磨粒,其中所述成形磨粒具有在表面上的最长颗粒线性尺寸和垂直于所述最长颗粒线性尺寸的最短颗粒尺寸,其中所述最长颗粒线性尺寸是所述最短颗粒尺寸的至少两倍,其中所述成形磨料团聚物颗粒具有在表面上的最长团聚物线性尺寸和垂直于所述最长团聚物线性尺寸的最短团聚物尺寸,并且其中所述最长团聚物线性尺寸是所述最短团聚物尺寸的至少两倍。
2.根据权利要求1所述的成形磨料团聚物颗粒,其中满足以下限制中的至少一个:
所述最长颗粒线性尺寸是所述最短颗粒尺寸的至少三倍,或
所述最长团聚物线性尺寸是所述最短团聚物尺寸的至少三倍。
3.根据权利要求1所述的成形磨料团聚物颗粒,其中所述成形磨粒或所述成形磨料团聚物颗粒中的至少一者具有倾斜侧壁。
4.根据权利要求3所述的成形磨料团聚物颗粒,其中所述成形磨粒或所述成形磨料团聚物颗粒中的至少一者在第一面和所述倾斜侧壁之间具有95度至130度范围内的角。
5.根据权利要求1所述的成形磨料团聚物颗粒,其中所述成形磨粒或所述成形磨料团聚物颗粒中的至少一者具有截头棱锥体形状。
6.根据权利要求1所述的成形磨料团聚物颗粒,其中所述成形磨粒包含α氧化铝。
7.根据权利要求1所述的成形磨料团聚物颗粒,其中基于所述成形磨料团聚物颗粒的重量,所述成形磨粒以70重量%至95重量%的范围存在,并且所述玻璃状基质以至少5重量%存在。
8.根据权利要求1所述的成形磨料团聚物颗粒,其中所述最长颗粒线性尺寸为至多1600微米。
9.根据权利要求1所述的成形磨料团聚物颗粒,其中所述最长团聚物线性尺寸为至多5毫米。
10.一种制造多个根据权利要求1至9中任一项所述的成形磨料团聚物颗粒的方法,所述方法包括:
用包含玻璃料、所述成形磨粒、挥发性液体和任选的流变改性剂的浆料填充具有多个腔体的模具;
去除所述挥发性液体的至少一部分以提供成形前体团聚物颗粒;以及
烧制所述成形前体团聚物颗粒以提供所述成形磨料团聚物颗粒。
11.一种磨料制品,其包含保留在粘结剂中的多个根据权利要求1至9中任一项所述的成形磨料团聚物颗粒。
12.根据权利要求11所述的磨料制品,其中所述磨料制品是涂覆的磨料制品,所述涂覆的磨料制品包括背衬和用聚合物粘结剂附接到所述背衬的多个所述成形磨料团聚物颗粒。
13.根据权利要求12所述的磨料制品,其中所述聚合物粘结剂包括酚醛树脂粘结剂。
14.根据权利要求11所述的磨料制品,其中所述磨料制品包括非织造磨料制品。
15.根据权利要求11所述的磨料制品,其中所述磨料制品包括粘结磨料制品。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201662412552P | 2016-10-25 | 2016-10-25 | |
US62/412,552 | 2016-10-25 | ||
PCT/US2017/058254 WO2018081246A1 (en) | 2016-10-25 | 2017-10-25 | Shaped vitrified abrasive agglomerate with shaped abrasive particles, abrasive articles, and related methods |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109890564A CN109890564A (zh) | 2019-06-14 |
CN109890564B true CN109890564B (zh) | 2022-04-29 |
Family
ID=60269965
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201780066390.4A Active CN109890564B (zh) | 2016-10-25 | 2017-10-25 | 具有成形磨粒的成形玻璃化磨料团聚物、磨料制品和相关方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11478899B2 (zh) |
EP (1) | EP3532246B1 (zh) |
CN (1) | CN109890564B (zh) |
WO (1) | WO2018081246A1 (zh) |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104125875B (zh) | 2011-12-30 | 2018-08-21 | 圣戈本陶瓷及塑料股份有限公司 | 成形磨粒及其形成方法 |
CN104114327B (zh) | 2011-12-30 | 2018-06-05 | 圣戈本陶瓷及塑料股份有限公司 | 复合成型研磨颗粒及其形成方法 |
BR112014017050B1 (pt) | 2012-01-10 | 2021-05-11 | Saint-Gobain Ceramics & Plastics, Inc. | partícula abrasiva moldada |
BR112014029317B1 (pt) | 2012-05-23 | 2022-05-31 | Saint-Gobain Ceramics & Plastics, Inc | Partículas abrasivas moldadas e métodos de formação das mesmas |
CN104411459B (zh) | 2012-06-29 | 2018-06-15 | 圣戈本陶瓷及塑料股份有限公司 | 具有特定形状的磨粒和形成这种粒子的方法 |
CN108015685B (zh) | 2012-10-15 | 2020-07-14 | 圣戈班磨料磨具有限公司 | 具有特定形状的磨粒 |
JP6155384B2 (ja) | 2013-03-29 | 2017-06-28 | サンーゴバン アブレイシブズ,インコーポレイティド | 特定の形状を有する研磨粒子およびこのような粒子の形成方法 |
CA3114978A1 (en) | 2013-09-30 | 2015-04-02 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particles and methods of forming same |
JP6290428B2 (ja) | 2013-12-31 | 2018-03-07 | サンーゴバン アブレイシブズ,インコーポレイティド | 成形研磨粒子を含む研磨物品 |
US9771507B2 (en) | 2014-01-31 | 2017-09-26 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particle including dopant material and method of forming same |
EP3131706B8 (en) | 2014-04-14 | 2024-01-10 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US9914864B2 (en) | 2014-12-23 | 2018-03-13 | Saint-Gobain Ceramics & Plastics, Inc. | Shaped abrasive particles and method of forming same |
TWI634200B (zh) | 2015-03-31 | 2018-09-01 | 聖高拜磨料有限公司 | 固定磨料物品及其形成方法 |
CN116967949A (zh) | 2015-03-31 | 2023-10-31 | 圣戈班磨料磨具有限公司 | 固定磨料制品和其形成方法 |
CN115781499A (zh) | 2015-06-11 | 2023-03-14 | 圣戈本陶瓷及塑料股份有限公司 | 包括经成形研磨颗粒的研磨制品 |
EP4071224A3 (en) | 2016-05-10 | 2023-01-04 | Saint-Gobain Ceramics and Plastics, Inc. | Methods of forming abrasive articles |
US20170335155A1 (en) | 2016-05-10 | 2017-11-23 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive particles and methods of forming same |
JP2019527148A (ja) | 2016-07-20 | 2019-09-26 | スリーエム イノベイティブ プロパティズ カンパニー | 成形ガラス化研磨凝集体、研磨物品、及び研磨方法 |
US11230653B2 (en) | 2016-09-29 | 2022-01-25 | Saint-Gobain Abrasives, Inc. | Fixed abrasive articles and methods of forming same |
US10759024B2 (en) | 2017-01-31 | 2020-09-01 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
US10563105B2 (en) | 2017-01-31 | 2020-02-18 | Saint-Gobain Ceramics & Plastics, Inc. | Abrasive article including shaped abrasive particles |
CN110719946B (zh) | 2017-06-21 | 2022-07-15 | 圣戈本陶瓷及塑料股份有限公司 | 颗粒材料及其形成方法 |
EP3759191B1 (en) | 2018-03-01 | 2022-05-04 | 3M Innovative Properties Company | Shaped siliceous abrasive agglomerate with shaped abrasive particles, abrasive articles, and related methods |
EP3898088A1 (en) * | 2018-12-18 | 2021-10-27 | 3M Innovative Properties Company | Abrasive article with microparticle-coated abrasive grains |
CN113423536B (zh) * | 2019-02-11 | 2024-06-07 | 3M创新有限公司 | 磨料制品 |
CN114829069A (zh) * | 2019-12-09 | 2022-07-29 | 3M创新有限公司 | 磨料制品 |
KR20220116556A (ko) | 2019-12-27 | 2022-08-23 | 세인트-고바인 세라믹스 앤드 플라스틱스, 인크. | 연마 물품 및 이의 형성 방법 |
KR20220120669A (ko) | 2019-12-27 | 2022-08-30 | 세인트-고바인 세라믹스 앤드 플라스틱스, 인크. | 연마 물품 및 이의 형성 방법 |
WO2023209518A1 (en) * | 2022-04-26 | 2023-11-02 | 3M Innovative Properties Company | Abrasive articles, methods of manufacture and use thereof |
Family Cites Families (69)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1694594C3 (de) | 1960-01-11 | 1975-05-28 | Minnesota Mining And Manufacturing Co., Saint Paul, Minn. (V.St.A.) | Reinigungs- und Polierkörper |
US4314827A (en) | 1979-06-29 | 1982-02-09 | Minnesota Mining And Manufacturing Company | Non-fused aluminum oxide-based abrasive mineral |
US4518397A (en) | 1979-06-29 | 1985-05-21 | Minnesota Mining And Manufacturing Company | Articles containing non-fused aluminum oxide-based abrasive mineral |
US5191101A (en) | 1982-11-22 | 1993-03-02 | Minnesota Mining And Manufacturing Company | Energy polymerizable compositions containing organometallic initiators |
US4623364A (en) | 1984-03-23 | 1986-11-18 | Norton Company | Abrasive material and method for preparing the same |
CA1254238A (en) | 1985-04-30 | 1989-05-16 | Alvin P. Gerk | Process for durable sol-gel produced alumina-based ceramics, abrasive grain and abrasive products |
US4652274A (en) | 1985-08-07 | 1987-03-24 | Minnesota Mining And Manufacturing Company | Coated abrasive product having radiation curable binder |
US4770671A (en) | 1985-12-30 | 1988-09-13 | Minnesota Mining And Manufacturing Company | Abrasive grits formed of ceramic containing oxides of aluminum and yttrium, method of making and using the same and products made therewith |
US4751138A (en) | 1986-08-11 | 1988-06-14 | Minnesota Mining And Manufacturing Company | Coated abrasive having radiation curable binder |
US4960441A (en) | 1987-05-11 | 1990-10-02 | Norton Company | Sintered alumina-zirconia ceramic bodies |
US4881951A (en) | 1987-05-27 | 1989-11-21 | Minnesota Mining And Manufacturing Co. | Abrasive grits formed of ceramic containing oxides of aluminum and rare earth metal, method of making and products made therewith |
AU604899B2 (en) | 1987-05-27 | 1991-01-03 | Minnesota Mining And Manufacturing Company | Abrasive grits formed of ceramic, impregnation method of making the same and products made therewith |
US4950696A (en) | 1987-08-28 | 1990-08-21 | Minnesota Mining And Manufacturing Company | Energy-induced dual curable compositions |
US5086086A (en) | 1987-08-28 | 1992-02-04 | Minnesota Mining And Manufacturing Company | Energy-induced curable compositions |
US4985340A (en) | 1988-06-01 | 1991-01-15 | Minnesota Mining And Manufacturing Company | Energy curable compositions: two component curing agents |
US4903440A (en) | 1988-11-23 | 1990-02-27 | Minnesota Mining And Manufacturing Company | Abrasive product having binder comprising an aminoplast resin |
US5139978A (en) | 1990-07-16 | 1992-08-18 | Minnesota Mining And Manufacturing Company | Impregnation method for transformation of transition alumina to a alpha alumina |
US5236472A (en) | 1991-02-22 | 1993-08-17 | Minnesota Mining And Manufacturing Company | Abrasive product having a binder comprising an aminoplast binder |
DE69228487T2 (de) | 1991-12-20 | 1999-09-02 | Minnesota Mining And Mfg. Co. | Ueberzogenes schleifband mit endlosem, verbandfreiem traeger und herstellungsverfahren |
TW307801B (zh) | 1992-03-19 | 1997-06-11 | Minnesota Mining & Mfg | |
US5201916A (en) | 1992-07-23 | 1993-04-13 | Minnesota Mining And Manufacturing Company | Shaped abrasive particles and method of making same |
US5366523A (en) | 1992-07-23 | 1994-11-22 | Minnesota Mining And Manufacturing Company | Abrasive article containing shaped abrasive particles |
RU95105160A (ru) | 1992-07-23 | 1997-01-10 | Миннесота Майнинг энд Мануфакчуринг Компани (US) | Способ приготовления абразивной частицы, абразивные изделия и изделия с абразивным покрытием |
US5213591A (en) | 1992-07-28 | 1993-05-25 | Ahmet Celikkaya | Abrasive grain, method of making same and abrasive products |
BR9307095A (pt) | 1992-09-25 | 1999-03-30 | Minnesota Mining & Mfg | Processo para preparar grãos de abrasivo |
CA2142466A1 (en) | 1992-09-25 | 1994-04-14 | Henry A. Larmie | Abrasive grain including rare earth oxide therin |
DE69309478T2 (de) | 1992-09-25 | 1997-07-10 | Minnesota Mining & Mfg | Aluminiumoxid und zirconiumoxid enthaltendes schleifkorn |
DE69417570T2 (de) * | 1993-11-12 | 1999-11-18 | Minnesota Mining And Mfg. Co., Saint Paul | Schleifkorn und verfahren zur herstellung desselben |
WO1995018192A1 (en) | 1993-12-28 | 1995-07-06 | Minnesota Mining And Manufacturing Company | Alpha alumina-based abrasive grain having an as sintered outer surface |
US5551959A (en) * | 1994-08-24 | 1996-09-03 | Minnesota Mining And Manufacturing Company | Abrasive article having a diamond-like coating layer and method for making same |
US5591239A (en) | 1994-08-30 | 1997-01-07 | Minnesota Mining And Manufacturing Company | Nonwoven abrasive article and method of making same |
WO1996010471A1 (en) | 1994-09-30 | 1996-04-11 | Minnesota Mining And Manufacturing Company | Coated abrasive article, method for preparing the same, and method of using |
US6054093A (en) | 1994-10-19 | 2000-04-25 | Saint Gobain-Norton Industrial Ceramics Corporation | Screen printing shaped articles |
US5725162A (en) | 1995-04-05 | 1998-03-10 | Saint Gobain/Norton Industrial Ceramics Corporation | Firing sol-gel alumina particles |
US5679067A (en) | 1995-04-28 | 1997-10-21 | Minnesota Mining And Manufacturing Company | Molded abrasive brush |
US5903951A (en) | 1995-11-16 | 1999-05-18 | Minnesota Mining And Manufacturing Company | Molded brush segment |
JP2000509663A (ja) | 1996-05-03 | 2000-08-02 | ミネソタ・マイニング・アンド・マニュファクチャリング・カンパニー | 不織研磨製品 |
EP1094918B1 (en) | 1998-02-19 | 2005-05-04 | Minnesota Mining And Manufacturing Company | Abrasive article and method for grinding glass |
US6458018B1 (en) * | 1999-04-23 | 2002-10-01 | 3M Innovative Properties Company | Abrasive article suitable for abrading glass and glass ceramic workpieces |
US6319108B1 (en) | 1999-07-09 | 2001-11-20 | 3M Innovative Properties Company | Metal bond abrasive article comprising porous ceramic abrasive composites and method of using same to abrade a workpiece |
US6277161B1 (en) | 1999-09-28 | 2001-08-21 | 3M Innovative Properties Company | Abrasive grain, abrasive articles, and methods of making and using the same |
ATE302094T1 (de) | 2000-05-09 | 2005-09-15 | 3M Innovative Properties Co | Poröser schleifgegenstand mit keramischen schleifcomposites, verfahren zur herstellung und verfahren zur verwendung |
US6609951B1 (en) | 2000-06-30 | 2003-08-26 | 3M Innovative Properties Company | Method of making a surface treating article |
EP1770142A3 (en) | 2000-10-06 | 2008-05-07 | 3M Innovative Properties Company | A method of making agglomerate abrasive grain |
US6645624B2 (en) | 2000-11-10 | 2003-11-11 | 3M Innovative Properties Company | Composite abrasive particles and method of manufacture |
US6797023B2 (en) * | 2002-05-14 | 2004-09-28 | Saint-Gobain Abrasives Technology Company | Coated abrasives |
US6979713B2 (en) | 2002-11-25 | 2005-12-27 | 3M Innovative Properties Company | Curable compositions and abrasive articles therefrom |
US6951504B2 (en) | 2003-03-20 | 2005-10-04 | 3M Innovative Properties Company | Abrasive article with agglomerates and method of use |
US7344574B2 (en) | 2005-06-27 | 2008-03-18 | 3M Innovative Properties Company | Coated abrasive article, and method of making and using the same |
US7399330B2 (en) | 2005-10-18 | 2008-07-15 | 3M Innovative Properties Company | Agglomerate abrasive grains and methods of making the same |
WO2009085841A2 (en) * | 2007-12-27 | 2009-07-09 | 3M Innovative Properties Company | Shaped, fractured abrasive particle, abrasive article using same and method of making |
US8123828B2 (en) | 2007-12-27 | 2012-02-28 | 3M Innovative Properties Company | Method of making abrasive shards, shaped abrasive particles with an opening, or dish-shaped abrasive particles |
KR101602001B1 (ko) | 2008-08-28 | 2016-03-17 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | 구조화된 연마 용품, 그 제조 방법, 및 웨이퍼 평탄화에서의 사용 |
PL2174751T3 (pl) | 2008-10-10 | 2014-12-31 | Center For Abrasives And Refractories Res & Development C A R R D Gmbh | Aglomeraty ziaren ściernych, sposób ich wytwarzania, jak również ich zastosowanie do produkcji materiałów ściernych |
US8142531B2 (en) | 2008-12-17 | 2012-03-27 | 3M Innovative Properties Company | Shaped abrasive particles with a sloping sidewall |
CA3081239C (en) | 2008-12-17 | 2022-09-20 | 3M Innovative Properties Company | Shaped abrasive particles with grooves |
US8142532B2 (en) | 2008-12-17 | 2012-03-27 | 3M Innovative Properties Company | Shaped abrasive particles with an opening |
US8142891B2 (en) | 2008-12-17 | 2012-03-27 | 3M Innovative Properties Company | Dish-shaped abrasive particles with a recessed surface |
US10137556B2 (en) | 2009-06-22 | 2018-11-27 | 3M Innovative Properties Company | Shaped abrasive particles with low roundness factor |
PL2697416T3 (pl) | 2011-04-14 | 2017-09-29 | 3M Innovative Properties Company | Artykuł ścierny z włókniny zawierający aglomeraty ukształtowanych ziaren ściernych wiązanych elastomerem |
EP2834040B1 (en) | 2012-04-04 | 2021-04-21 | 3M Innovative Properties Company | Abrasive particles, method of making abrasive particles, and abrasive articles |
DE102012017969B4 (de) | 2012-09-12 | 2017-06-29 | Center For Abrasives And Refractories Research & Development C.A.R.R.D. Gmbh | Agglomerat-Schleifkorn mit eingelagerten Mikrohohlkugeln |
JP6550335B2 (ja) * | 2012-10-31 | 2019-07-24 | スリーエム イノベイティブ プロパティズ カンパニー | 成形研磨材粒子、その製造方法、及びそれを含む研磨材物品 |
US10315289B2 (en) * | 2013-12-09 | 2019-06-11 | 3M Innovative Properties Company | Conglomerate abrasive particles, abrasive articles including the same, and methods of making the same |
SG11201608996TA (en) | 2014-05-02 | 2016-11-29 | 3M Innovative Properties Co | Interrupted structured abrasive article and methods of polishing a workpiece |
EP3221087B1 (en) | 2014-11-21 | 2020-02-19 | 3M Innovative Properties Company | Bonded abrasive articles and methods of manufacture |
EP3458227A4 (en) | 2016-05-20 | 2020-01-08 | 3M Innovative Properties Company | Pore inductor and porous abrasive shape made with it |
JP2019527148A (ja) | 2016-07-20 | 2019-09-26 | スリーエム イノベイティブ プロパティズ カンパニー | 成形ガラス化研磨凝集体、研磨物品、及び研磨方法 |
EP3759191B1 (en) | 2018-03-01 | 2022-05-04 | 3M Innovative Properties Company | Shaped siliceous abrasive agglomerate with shaped abrasive particles, abrasive articles, and related methods |
-
2017
- 2017-10-25 WO PCT/US2017/058254 patent/WO2018081246A1/en unknown
- 2017-10-25 CN CN201780066390.4A patent/CN109890564B/zh active Active
- 2017-10-25 US US16/344,697 patent/US11478899B2/en active Active
- 2017-10-25 EP EP17795152.2A patent/EP3532246B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN109890564A (zh) | 2019-06-14 |
EP3532246B1 (en) | 2022-11-30 |
WO2018081246A1 (en) | 2018-05-03 |
EP3532246A1 (en) | 2019-09-04 |
US11478899B2 (en) | 2022-10-25 |
US20200047313A1 (en) | 2020-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109890564B (zh) | 具有成形磨粒的成形玻璃化磨料团聚物、磨料制品和相关方法 | |
CN112055737B (zh) | 具有成型磨料颗粒的成型硅质磨料团聚物、磨料制品及相关方法 | |
US20190240808A1 (en) | Conglomerate abrasive particles, abrasive articles including the same, and methods of making the same | |
CN109475998B (zh) | 成形玻璃化磨料团聚物、磨料制品和研磨方法 | |
JP6899219B2 (ja) | 複数の研磨要素の異なるセットを有する研磨材 | |
USRE35709E (en) | Reduced viscosity slurries, abrasive articles made therefrom and methods of making said articles | |
AU724347B2 (en) | Structured abrasives with adhered functional powders | |
KR100733948B1 (ko) | 유리 연삭을 위한 연마 제품 및 방법 | |
US6881483B2 (en) | Ceramic aggregate particles | |
CA2867350C (en) | Abrasive products and methods for finishing surfaces | |
KR20010113890A (ko) | 유리를 연삭하는 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |