CN108428444B - 一种补偿次级声源近场影响的紧凑有源吸声方法 - Google Patents

一种补偿次级声源近场影响的紧凑有源吸声方法 Download PDF

Info

Publication number
CN108428444B
CN108428444B CN201810185813.0A CN201810185813A CN108428444B CN 108428444 B CN108428444 B CN 108428444B CN 201810185813 A CN201810185813 A CN 201810185813A CN 108428444 B CN108428444 B CN 108428444B
Authority
CN
China
Prior art keywords
signal
noise
microphone
source
sound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810185813.0A
Other languages
English (en)
Other versions
CN108428444A (zh
Inventor
王军
卢晶
邱小军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN201810185813.0A priority Critical patent/CN108428444B/zh
Publication of CN108428444A publication Critical patent/CN108428444A/zh
Application granted granted Critical
Publication of CN108428444B publication Critical patent/CN108428444B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17821Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the input signals only
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1787General system configurations
    • G10K11/17879General system configurations using both a reference signal and an error signal
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/321Physical
    • G10K2210/3216Cancellation means disposed in the vicinity of the source
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/321Physical
    • G10K2210/3226Sensor details, e.g. for producing a reference or error signal
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/50Miscellaneous
    • G10K2210/504Calibration

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

本发明公开了一种补偿次级声源近场影响的紧凑有源吸声方法,包括如下步骤:(1)在紧凑有源吸声系统的误差传声器A的降噪区域内,临时放置校准传声器B;(2)校准过程:首先只有次级声源发声,计算次级声源发声的信号s到传声器A的信号pA的脉冲响应wsA,以及信号s到传声器B的信号pB的脉冲响应wsB;然后只有噪声源发声,计算信号pA到信号pB的脉冲响应wAB;(3)控制过程:噪声源和次级声源同时发声,传声器B处的声压pB通过次级声源信号s和传声器A的信号pA计算获得。本发明的方法能在特殊场景下有效地对降噪区域进行降噪,尤其适用于降噪区域不允许长时间布放传声器,或对有源控制系统尺寸有严格要求的场景。

Description

一种补偿次级声源近场影响的紧凑有源吸声方法
技术领域
本发明涉及一种补偿次级声源近场影响的紧凑有源吸声方法。
背景技术
有源控制技术在消声降噪上的应用广泛,对通用的FxLMS(filtered-x leastmean square)算法的原理介绍和性能分析的研究很多。
在管道紧凑有源控制系统中,如果次级声源距离误差传声器很近,则误差传声器处受到的次级声源的近场影响很大,误差传声器处的声场与需要控制区域的声场有很大差异。文献(P.M.Morse and K.U.Ingard,Chap.9,p.492-498in Theoretical acoustics,Princeton university press,New Jersey,(1968).)证明了在管道中,声源发出的零阶模态的声波随着传播距离不衰减,而其它模态的声波随着传播距离其衰减系数均不同。在房间或者其他复杂场景下,不同位置处的声场分布差异更大。
常见的有源控制技术通过控制误差传声器处的声压,只能达到误差传声器附近区域的降噪,所以误差传声器在整个控制过程中需要一直布放在降噪区域。如果降噪区域不能长时间布放传声器或对有源控制系统的尺寸有严格要求时,由于不同区域的声场分布不同,通过现有的有源控制方法来降低误差传声器位置处的声压并不能代表降噪区域噪声的降低。
发明内容
针对以上现有技术中存在的缺陷,本发明提供一种补偿次级声源近场影响的紧凑有源吸声方法,能在特殊场景下有效地对降噪区域进行降噪,尤其适用于降噪区域不允许长时间布防传声器,或对有源控制系统尺寸有严格要求的场景。
本发明采用的技术方案为:
一种补偿次级声源近场影响的紧凑有源吸声方法,包括如下步骤:
(1)在紧凑有源吸声系统的误差传声器A的降噪区域内,临时放置校准传声器B;
(2)校准过程:
首先,只有次级声源发声,实时记录误差传声器A获取的信号pA、校准传声器B获取的信号pB和次级声源发声的信号s,并计算信号s到信号pA的脉冲响应wsA和信号s到信号pB的脉冲响应wsB
然后,只有噪声源发声,实时记录信号pA和信号pB,并计算信号pA到信号pB的脉冲响应wAB
(3)控制过程:
噪声源和次级声源同时发声,首先,根据信号s和脉冲响应wsA计算次级声源发声对误差传声器A影响的声压ps A,则误差传声器A处只和噪声源有关的信号pnoise A为pA-ps A
然后,根据信号pnoise A和脉冲响应wAB可以计算校准传声器B处只和噪声源有关的信号pnoise B;根据信号s和脉冲响应wsB计算次级声源发声对校准传声器B影响的声压ps B,则降噪区域的声压pB=pnoise B+ps B
最后,以声压pB作为FxLMS有源噪声控制的误差信号对降噪区域的声压进行控制。
本发明的方法在校准过程中利用额外的校准传声器获取相关校准滤波器,这些校准滤波器在控制过程中可以补偿声源近场影响。利用本发明可以通过紧凑有源控制系统计算降噪区域的声压并对其进行控制,不影响降噪区域的原来场景布放;并且校准传声器只在校准过程中使用,能保持有源控制系统依然紧凑。经过本发明的方法校准后,紧凑系统与降噪区域在空间上可以不重叠,双方不影响对方区域的布放设置,却依然可以有效降低降噪区域的声压。
附图说明
图1是实现本发明方法的系统结构示意图,1-误差传声器A,2-校准传声器B,3参考传声器,4次级声源,5噪声源,6紧凑有源控制系统,7降噪区域,8管道。
图2是本发明实施例中利用LMS自适应算法计算脉冲响应的流程图。
图3是本发明实施例有源噪声控制技术中的FxLMS自适应算法的流程图。
具体实施方式
1、校准过程
仅有次级声源4发声时,实时记录次级声源信号s、传声器A的信号pA和传声器B的信号pB,通过LMS(Least Mean Square)自适应算法或其他方法可以计算出信号s到pA的脉冲响应{wSA(n),n=0,1,…,LSA-1}、信号s到pB的脉冲响应{wSB(n),n=0,1,…,LSB-1}。其中,LSA和LSB分别为{wSA(n)}和{wSB(n)}的滤波器长度。
下面以{wSA(n)}的计算为例,介绍LMS自适应算法计算脉冲响应的过程,如图2所示。其中e为LMS自适应算法的误差信号。第n时刻滤波器输出为:
Figure BDA0001590220220000031
则第n时刻的误差为
e(n)=d(n)-y(n) (2)
定义矢量
wSA=[wSA(0),wSA(1),…,wSA(LSA-1)] (3)
s(n)=[s(n),s(n-1),…,s(n-LSA+1)] (4)
则滤波器的迭代公式为
wSA(n)=wSA(n-1)+μe(n)s(n) (5)
其中,μ为收敛步长。随着自适应迭代的进行,e(n)达到最小,则{wSA(n)}计算完成。
仅有噪声源5发声时,实时记录传声器A的信号pA和传声器B的信号pB,通过LMS自适应算法或其他方法可以计算出信号pA到信号pB的脉冲响应{wAB(n),n=0,1,…,LAB-1},其中,LAB为{wAB(n)}的滤波器长度。
2、有源噪声控制的控制过程
在有源噪声控制的控制过程,噪声源5和次级声源4同时发声,传声器B处的信号pB可以通过次级声源信号s和传声器A的信号pA计算获得。
Figure BDA0001590220220000032
Figure BDA0001590220220000033
Figure BDA0001590220220000034
Figure BDA0001590220220000035
Figure BDA0001590220220000041
ps A为次级声源4发声对传声器A影响的声压,pnoise A为传声器A处只和噪声源有关的信号,pnoise B为传声器B处只和噪声源5有关的信号。ps B为次级声源4发声对传声器B影响的声压。pB为需要降噪的降噪区域7的声压。以声压pB作为FxLMS有源噪声控制的误差信号可以对降噪区域7的声压进行控制。
下面以图1的情况为例,对FxLMS有源噪声控制技术简介如下。
FxLMS分为次级通路建模过程和控制过程,如图3所示。在FxLMS建模过程只有次级声源4发声,实时记录次级声源4的信号s和pB,根据LMS自适应算法计算s到pB的脉冲响应{wSB(n)},这部分在校准过程中已经完成。
在FxLMS控制过程,噪声源5和次级声源4同时发声。假设参考传声器3接收到的参考信号为xrefer,定义控制滤波器系数为{w(n),n=0,1,…,L-1},参考输入矢量
xrefer=[xrefer(n),xrefer(n-1),…,xrefer(n-L+1)] (11)
其中,L为控制滤波器长度。次级声源信号s为滤波器输出,为
Figure BDA0001590220220000042
将参考信号xrefer通过次级通路模型{wSB(n)},得到滤波-x(filter-x)信号,为
Figure BDA0001590220220000043
定义矢量
r(n)=[rrefer(n),rrefer(n-1),…,rrefer(n-L+1)] (14)
则滤波器的迭代公式为
w(n)=w(n-1)+μe(n)r(n) (15)
其中,μ为收敛步长。随着自适应迭代的进行,e(n)达到最小,则{w(n)}计算完成。实际上,e(n)即为传声器B测到的信号,代表降噪区域的声压已降到最低。

Claims (1)

1.一种补偿次级声源近场影响的紧凑有源吸声方法,其特征在于,包括如下步骤:
(1)在紧凑有源吸声系统的误差传声器A的降噪区域内,临时放置校准传声器B;
(2)校准过程:
首先,只有次级声源发声,实时记录误差传声器A获取的信号pA、校准传声器B获取的信号pB和次级声源发声的信号s,并计算信号s到信号pA的脉冲响应wsA和信号s到信号pB的脉冲响应wsB
然后,只有噪声源发声,实时记录信号pA和信号pB,并计算信号pA到信号pB的脉冲响应wAB
(3)控制过程:
噪声源和次级声源同时发声,首先,根据信号s和脉冲响应wsA计算次级声源发声对误差传声器A影响的声压ps A,则误差传声器A处只和噪声源有关的信号pnoise A为pA-ps A
然后,根据信号pnoise A和脉冲响应wAB可以计算校准传声器B处只和噪声源有关的信号pnoise B;根据信号s和脉冲响应wsB计算次级声源发声对校准传声器B影响的声压ps B,则降噪区域的声压pB=pnoise B+ps B
最后,以声压pB作为FxLMS有源噪声控制的误差信号对降噪区域的声压进行控制。
CN201810185813.0A 2018-03-07 2018-03-07 一种补偿次级声源近场影响的紧凑有源吸声方法 Active CN108428444B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810185813.0A CN108428444B (zh) 2018-03-07 2018-03-07 一种补偿次级声源近场影响的紧凑有源吸声方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810185813.0A CN108428444B (zh) 2018-03-07 2018-03-07 一种补偿次级声源近场影响的紧凑有源吸声方法

Publications (2)

Publication Number Publication Date
CN108428444A CN108428444A (zh) 2018-08-21
CN108428444B true CN108428444B (zh) 2021-06-22

Family

ID=63157437

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810185813.0A Active CN108428444B (zh) 2018-03-07 2018-03-07 一种补偿次级声源近场影响的紧凑有源吸声方法

Country Status (1)

Country Link
CN (1) CN108428444B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111710325B (zh) * 2020-06-22 2023-02-28 西北工业大学 一种基于有源降噪的误差传声及次级声源的故障检测方法
CN113284480B (zh) * 2020-12-11 2024-03-26 西安艾科特声学科技有限公司 一种有源噪声控制系统降噪效果估计方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2701143A1 (en) * 2012-08-21 2014-02-26 ST-Ericsson SA Model selection of acoustic conditions for active noise control
CN103827959A (zh) * 2011-08-08 2014-05-28 高通股份有限公司 用于控制噪声的电子装置
EP3026664A1 (de) * 2014-11-28 2016-06-01 Helmut-Schmidt-Universität Verfahren und System zur aktiven Schallunterdrückung
CN106251855A (zh) * 2016-07-22 2016-12-21 南京大学 一种用于变压器降噪的非集中式虚拟声屏障
CN106448645A (zh) * 2015-07-01 2017-02-22 泽皮洛股份有限公司 噪声消除系统和技术

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100495533C (zh) * 2006-05-22 2009-06-03 南京大学 声强有源声屏障
WO2011137762A2 (zh) * 2011-05-09 2011-11-10 华为技术有限公司 转动装置噪声控制方法及控制器
TWI511579B (zh) * 2013-09-30 2015-12-01 C Media Electronics Inc 具主動噪音消除功能之耳機及其自動校正方法
CN106469551A (zh) * 2015-08-19 2017-03-01 中兴通讯股份有限公司 一种管道降噪系统及方法
US9779719B2 (en) * 2015-12-03 2017-10-03 Panasonic Automotive Systems Company Of America, Division Of Panasonic Corporation Of North America ANC convergence factor estimation as a function of frequency
CN106340290A (zh) * 2016-11-09 2017-01-18 国家电网公司 一种有源降噪方法及其装置
CN107767855B (zh) * 2017-09-15 2021-12-17 南京大学 一种用于墙体通风的有源宽频带隔声装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103827959A (zh) * 2011-08-08 2014-05-28 高通股份有限公司 用于控制噪声的电子装置
EP2701143A1 (en) * 2012-08-21 2014-02-26 ST-Ericsson SA Model selection of acoustic conditions for active noise control
EP3026664A1 (de) * 2014-11-28 2016-06-01 Helmut-Schmidt-Universität Verfahren und System zur aktiven Schallunterdrückung
CN106448645A (zh) * 2015-07-01 2017-02-22 泽皮洛股份有限公司 噪声消除系统和技术
CN106251855A (zh) * 2016-07-22 2016-12-21 南京大学 一种用于变压器降噪的非集中式虚拟声屏障

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A compact active sound absorption system compensating near-field effect of the secondary source;Jun Wang,Jing Lu,et al.;《Noise control Engineering Journal》;INCE/USA in conjunction with KSNVE;20171031;第65卷(第5期);第482-487页 *
A Simplified Subband ANC Algorithm Without Secondary Path Modeling;Min Gao、Jing Lu、Xiaojun Qiu;《IEEE/ACM Transactions on Audio, Speech, and Language Processing 》;IEEE;20160730;第24卷(第7期);第1164-1174页 *
Adaptive feedback ANC system using virtual microphones;Nobuhiro Miyazaki;《2013 IEEE International Conference on Acoustics, Speech and Signal Processing》;IEEE;20131021;第383-384页 *
参量阵扬声器在管道噪声控制中的研究;武帅兵等;《应用声学》;20131115;第32卷(第06期);第439-445页 *
虚拟声屏障的数值及实验分析;邹海山、邱小军等;《声学学报》;CNKI;20070130;第26-33页 *

Also Published As

Publication number Publication date
CN108428444A (zh) 2018-08-21

Similar Documents

Publication Publication Date Title
US11818561B1 (en) Spatial headphone transparency
CN104303227B (zh) 通过结合有源噪音消除及感知噪音补偿改善声音重现的感知质量的装置和方法
EP0836736A1 (en) Digital feed-forward active noise control system
Iwai et al. Multichannel feedforward active noise control system combined with noise source separation by microphone arrays
JP7374595B2 (ja) 対角化フィルタ行列を利用した能動騒音消去システム
Zhang et al. Deep MCANC: A deep learning approach to multi-channel active noise control
JPH09501779A (ja) 適応フィードフォワード及びフィードバック制御装置
Buck et al. Performance evaluation of an active headrest considering non-stationary broadband disturbances and head movement
CN108428444B (zh) 一种补偿次级声源近场影响的紧凑有源吸声方法
Luo et al. Implementation of multi-channel active noise control based on back-propagation mechanism
JPS59133595A (ja) 能動音響減衰装置
Shi et al. Multichannel active noise control with spatial derivative constraints to enlarge the quiet zone
EP1074971B1 (en) Digital feed-forward active noise control system
Tang et al. Stability guaranteed active noise control: Algorithms and applications
CN113096629B (zh) 用于单通道反馈有源噪声控制系统的相对路径虚拟传感方法
KR101329180B1 (ko) 멀티 채널 능동방음벽
Zhao et al. Adaptive personal sound zones systems with online plant modelling
Libianchi et al. A review of techniques and challenges in outdoor sound field control
JP3654980B2 (ja) 能動騒音制御装置及び波形変換装置
Habib et al. Open IEN issues of active noise control applications
Kuo et al. Active noise control systems with optimized secondary path
JP7189637B2 (ja) フィードフォワード型能動騒音制御システムの設計方法
Nagi et al. Active noise cancellation with TMS320C5402 DSP starter kit
US20230282196A1 (en) Active noise cancellation device and method
Manikandan Literature survey of active noise control systems

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant