CN107832737A - 基于人工智能的心电图干扰识别方法 - Google Patents
基于人工智能的心电图干扰识别方法 Download PDFInfo
- Publication number
- CN107832737A CN107832737A CN201711203069.4A CN201711203069A CN107832737A CN 107832737 A CN107832737 A CN 107832737A CN 201711203069 A CN201711203069 A CN 201711203069A CN 107832737 A CN107832737 A CN 107832737A
- Authority
- CN
- China
- Prior art keywords
- data
- heartbeat
- sampling
- heartbeat data
- interference
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 38
- 238000013473 artificial intelligence Methods 0.000 title claims abstract description 21
- 238000005070 sampling Methods 0.000 claims abstract description 43
- 230000002159 abnormal effect Effects 0.000 claims abstract description 17
- 238000005520 cutting process Methods 0.000 claims abstract description 15
- 238000012549 training Methods 0.000 claims description 20
- 230000002452 interceptive effect Effects 0.000 claims description 4
- 238000003860 storage Methods 0.000 claims description 4
- 238000000718 qrs complex Methods 0.000 claims description 3
- 238000004422 calculation algorithm Methods 0.000 description 10
- 238000013135 deep learning Methods 0.000 description 8
- 230000006870 function Effects 0.000 description 7
- 238000013527 convolutional neural network Methods 0.000 description 6
- 238000002565 electrocardiography Methods 0.000 description 6
- 239000012634 fragment Substances 0.000 description 6
- 230000008859 change Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000003068 static effect Effects 0.000 description 4
- 230000004913 activation Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000032798 delamination Effects 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 230000002526 effect on cardiovascular system Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 241001269238 Data Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000013136 deep learning model Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000009432 framing Methods 0.000 description 1
- 230000001121 heart beat frequency Effects 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 230000001524 infective effect Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 238000007477 logistic regression Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000011176 pooling Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000033764 rhythmic process Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2218/00—Aspects of pattern recognition specially adapted for signal processing
- G06F2218/12—Classification; Matching
- G06F2218/16—Classification; Matching by matching signal segments
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/30—Input circuits therefor
- A61B5/307—Input circuits therefor specially adapted for particular uses
- A61B5/308—Input circuits therefor specially adapted for particular uses for electrocardiography [ECG]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
- A61B5/346—Analysis of electrocardiograms
- A61B5/349—Detecting specific parameters of the electrocardiograph cycle
- A61B5/352—Detecting R peaks, e.g. for synchronising diagnostic apparatus; Estimating R-R interval
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
- A61B5/346—Analysis of electrocardiograms
- A61B5/349—Detecting specific parameters of the electrocardiograph cycle
- A61B5/366—Detecting abnormal QRS complex, e.g. widening
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7221—Determining signal validity, reliability or quality
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7264—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
- A61B5/7267—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2218/00—Aspects of pattern recognition specially adapted for signal processing
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Cardiology (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Animal Behavior & Ethology (AREA)
- Pathology (AREA)
- Medical Informatics (AREA)
- Heart & Thoracic Surgery (AREA)
- Biomedical Technology (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- Public Health (AREA)
- Data Mining & Analysis (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Evolutionary Biology (AREA)
- Evolutionary Computation (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Signal Processing (AREA)
- Psychiatry (AREA)
- Physiology (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
Description
干扰 | 正常 | |
敏感率(Sensitivity) | 99.14% | 99.32% |
阳性预测率(Positive Predicitivity) | 96.44% | 99.84% |
Claims (9)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711203069.4A CN107832737B (zh) | 2017-11-27 | 2017-11-27 | 基于人工智能的心电图干扰识别方法 |
PCT/CN2018/072349 WO2019100561A1 (zh) | 2017-11-27 | 2018-01-12 | 基于人工智能的心电图干扰识别方法 |
EP18880831.5A EP3614301A4 (en) | 2017-11-27 | 2018-01-12 | ARTIFICIAL INTELLIGENCE BASED INTERFERENCE DETECTION PROCESS FOR AN ELECTROCARDIOGRAM |
JP2020519166A JP6986724B2 (ja) | 2017-11-27 | 2018-01-12 | 人工知能に基づく心電図干渉識別方法 |
US16/615,690 US11324455B2 (en) | 2017-11-27 | 2018-01-12 | Artificial intelligence-based interference recognition method for electrocardiogram |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711203069.4A CN107832737B (zh) | 2017-11-27 | 2017-11-27 | 基于人工智能的心电图干扰识别方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107832737A true CN107832737A (zh) | 2018-03-23 |
CN107832737B CN107832737B (zh) | 2021-02-05 |
Family
ID=61645913
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711203069.4A Active CN107832737B (zh) | 2017-11-27 | 2017-11-27 | 基于人工智能的心电图干扰识别方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11324455B2 (zh) |
EP (1) | EP3614301A4 (zh) |
JP (1) | JP6986724B2 (zh) |
CN (1) | CN107832737B (zh) |
WO (1) | WO2019100561A1 (zh) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108564167A (zh) * | 2018-04-09 | 2018-09-21 | 杭州乾圆科技有限公司 | 一种数据集之中异常数据的识别方法 |
CN109009074A (zh) * | 2018-07-19 | 2018-12-18 | 上海工程技术大学 | 一种基于深度学习的心脏性猝死辅助预警装置 |
CN109893121A (zh) * | 2019-03-26 | 2019-06-18 | 深圳理邦智慧健康发展有限公司 | 心电信号的采集方法、装置、终端和计算机可读存储介质 |
CN110495872A (zh) * | 2019-08-27 | 2019-11-26 | 中科麦迪人工智能研究院(苏州)有限公司 | 基于图片及心搏信息的心电分析方法、装置、设备及介质 |
CN110693483A (zh) * | 2019-09-02 | 2020-01-17 | 乐普智芯(天津)医疗器械有限公司 | 一种动态心电图自动分析的方法 |
CN111310572A (zh) * | 2020-01-17 | 2020-06-19 | 上海优加利健康管理有限公司 | 利用心搏时间序列生成心搏标签序列的处理方法和装置 |
CN113712566A (zh) * | 2020-05-12 | 2021-11-30 | 深圳市科瑞康实业有限公司 | 一种生成心搏间期差值数据序列的方法和装置 |
CN114533082A (zh) * | 2020-11-26 | 2022-05-27 | 深圳市科瑞康实业有限公司 | 一种基于心搏间期数据对qrs波类型进行标记的方法 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110840443B (zh) * | 2019-11-29 | 2022-06-10 | 京东方科技集团股份有限公司 | 心电信号处理方法、心电信号处理装置和电子设备 |
KR102386896B1 (ko) * | 2019-12-26 | 2022-04-15 | 강원대학교산학협력단 | 인공지능 기반 심전도 자동 분석 장치 및 방법 |
CN111680785B (zh) * | 2020-05-29 | 2021-09-24 | 山东省人工智能研究院 | 基于稀疏特性与对抗神经网络相结合的ecg信号处理方法 |
CN112883803B (zh) * | 2021-01-20 | 2023-09-01 | 武汉中旗生物医疗电子有限公司 | 一种基于深度学习的心电信号分类方法、装置及存储介质 |
KR20220120922A (ko) * | 2021-02-24 | 2022-08-31 | 주식회사 바디프랜드 | 딥러닝 알고리즘을 기반으로 하는 심전도 생성 시스템 및 그 방법 |
CN113080996B (zh) * | 2021-04-08 | 2022-11-18 | 大同千烯科技有限公司 | 一种基于目标检测的心电图分析方法及装置 |
CN113647908B (zh) * | 2021-08-06 | 2024-11-01 | 东软集团股份有限公司 | 波形识别模型的训练、心电波形识别方法、装置及设备 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102028459A (zh) * | 2010-12-02 | 2011-04-27 | 广东宝莱特医用科技股份有限公司 | 一种心电图机通道起搏信号检测方法 |
CN102551701A (zh) * | 2010-12-28 | 2012-07-11 | 财团法人工业技术研究院 | 通过周期性信号分析检测实体物件异常运作的系统及方法 |
CN105380620A (zh) * | 2014-08-22 | 2016-03-09 | 精工爱普生株式会社 | 生物体信息检测装置以及生物体信息检测方法 |
CN106214123A (zh) * | 2016-07-20 | 2016-12-14 | 杨平 | 一种基于深度学习算法的心电图综合分类方法 |
CN107203782A (zh) * | 2017-05-23 | 2017-09-26 | 哈尔滨工业大学 | 基于卷积神经网络的大动态信噪比下通信干扰信号识别方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7783354B2 (en) * | 2002-04-29 | 2010-08-24 | Medtronic, Inc. | Method and apparatus for identifying cardiac and non-cardiac oversensing using intracardiac electrograms |
CN201912077U (zh) * | 2010-12-10 | 2011-08-03 | 中国人民解放军广州军区武汉总医院 | 高性能窦房结电图检测仪 |
JP6598306B2 (ja) * | 2014-07-07 | 2019-10-30 | ゾール メディカル コーポレイション | 心電図(ecg)信号において心イベントをノイズと区別する、心臓モニタ機器、装着型除細動器及び、そのための方法 |
CN104127194B (zh) * | 2014-07-14 | 2016-05-04 | 华南理工大学 | 一种基于心率变异性分析方法的抑郁症的评估系统 |
JP2018504148A (ja) * | 2014-10-31 | 2018-02-15 | アイリズム・テクノロジーズ・インコーポレイテッドiRhythm Technologies,Inc. | 無線式生体モニタリングデバイス及びシステム |
US10610162B2 (en) * | 2016-05-31 | 2020-04-07 | Stmicroelectronics S.R.L. | Method for the detecting electrocardiogram anomalies and corresponding system |
CN107358196B (zh) | 2017-07-12 | 2020-11-10 | 北京卫嘉高科信息技术有限公司 | 一种心搏类型的分类方法、装置及心电仪 |
-
2017
- 2017-11-27 CN CN201711203069.4A patent/CN107832737B/zh active Active
-
2018
- 2018-01-12 EP EP18880831.5A patent/EP3614301A4/en not_active Withdrawn
- 2018-01-12 US US16/615,690 patent/US11324455B2/en active Active
- 2018-01-12 WO PCT/CN2018/072349 patent/WO2019100561A1/zh unknown
- 2018-01-12 JP JP2020519166A patent/JP6986724B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102028459A (zh) * | 2010-12-02 | 2011-04-27 | 广东宝莱特医用科技股份有限公司 | 一种心电图机通道起搏信号检测方法 |
CN102551701A (zh) * | 2010-12-28 | 2012-07-11 | 财团法人工业技术研究院 | 通过周期性信号分析检测实体物件异常运作的系统及方法 |
CN105380620A (zh) * | 2014-08-22 | 2016-03-09 | 精工爱普生株式会社 | 生物体信息检测装置以及生物体信息检测方法 |
CN106214123A (zh) * | 2016-07-20 | 2016-12-14 | 杨平 | 一种基于深度学习算法的心电图综合分类方法 |
CN107203782A (zh) * | 2017-05-23 | 2017-09-26 | 哈尔滨工业大学 | 基于卷积神经网络的大动态信噪比下通信干扰信号识别方法 |
Non-Patent Citations (1)
Title |
---|
杨福生等: "《生物医学信号的处理和识别》", 31 December 1997, 天津科技翻译出版公司 * |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108564167A (zh) * | 2018-04-09 | 2018-09-21 | 杭州乾圆科技有限公司 | 一种数据集之中异常数据的识别方法 |
CN108564167B (zh) * | 2018-04-09 | 2020-07-31 | 杭州乾圆科技有限公司 | 一种数据集之中异常数据的识别方法 |
CN109009074A (zh) * | 2018-07-19 | 2018-12-18 | 上海工程技术大学 | 一种基于深度学习的心脏性猝死辅助预警装置 |
CN109893121A (zh) * | 2019-03-26 | 2019-06-18 | 深圳理邦智慧健康发展有限公司 | 心电信号的采集方法、装置、终端和计算机可读存储介质 |
CN110495872A (zh) * | 2019-08-27 | 2019-11-26 | 中科麦迪人工智能研究院(苏州)有限公司 | 基于图片及心搏信息的心电分析方法、装置、设备及介质 |
CN110693483A (zh) * | 2019-09-02 | 2020-01-17 | 乐普智芯(天津)医疗器械有限公司 | 一种动态心电图自动分析的方法 |
CN111310572A (zh) * | 2020-01-17 | 2020-06-19 | 上海优加利健康管理有限公司 | 利用心搏时间序列生成心搏标签序列的处理方法和装置 |
CN111310572B (zh) * | 2020-01-17 | 2023-05-05 | 上海乐普云智科技股份有限公司 | 利用心搏时间序列生成心搏标签序列的处理方法和装置 |
CN113712566A (zh) * | 2020-05-12 | 2021-11-30 | 深圳市科瑞康实业有限公司 | 一种生成心搏间期差值数据序列的方法和装置 |
CN113712566B (zh) * | 2020-05-12 | 2024-02-06 | 深圳市科瑞康实业有限公司 | 一种生成心搏间期差值数据序列的方法和装置 |
CN114533082A (zh) * | 2020-11-26 | 2022-05-27 | 深圳市科瑞康实业有限公司 | 一种基于心搏间期数据对qrs波类型进行标记的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107832737B (zh) | 2021-02-05 |
EP3614301A4 (en) | 2021-01-13 |
WO2019100561A1 (zh) | 2019-05-31 |
US20200121255A1 (en) | 2020-04-23 |
JP2020524065A (ja) | 2020-08-13 |
JP6986724B2 (ja) | 2021-12-22 |
US11324455B2 (en) | 2022-05-10 |
EP3614301A1 (en) | 2020-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107832737A (zh) | 基于人工智能的心电图干扰识别方法 | |
CN107951485B (zh) | 基于人工智能自学习的动态心电图分析方法和装置 | |
CN107837082A (zh) | 基于人工智能自学习的心电图自动分析方法和装置 | |
EP3692900B1 (en) | Artificial intelligence self-learning-based static electrocardiography analysis method and apparatus | |
US11564612B2 (en) | Automatic recognition and classification method for electrocardiogram heartbeat based on artificial intelligence | |
CN107822622A (zh) | 基于深度卷积神经网络的心电图诊断方法和系统 | |
Luo et al. | Multi-classification of arrhythmias using a HCRNet on imbalanced ECG datasets | |
CN110619322A (zh) | 一种基于多流态卷积循环神经网络的多导联心电异常信号识别方法及系统 | |
CN113095302B (zh) | 用于心律失常分类的深度模型、利用该模型的方法及装置 | |
CN110420019A (zh) | 一种心冲击图信号的深度回归心率估计方法 | |
CN107480637B (zh) | 基于心音特征的心衰分期方法 | |
CN106725376B (zh) | 体征信号检测方法及装置 | |
CN109431492A (zh) | 基于神经网络算法的心电图导联数据模拟重建方法 | |
CN109411042A (zh) | 心电信息处理方法和心电工作站 | |
CN109222963A (zh) | 一种基于卷积神经网络的心电异常识别分类方法 | |
CN106446765A (zh) | 一种基于多维生理大数据深度学习的健康状态评价系统 | |
CN110491506A (zh) | 心房颤动预测模型及其预测系统 | |
CN112842355B (zh) | 基于深度学习目标检测的心电信号心搏检测识别方法 | |
CN114521900B (zh) | 一种基于迁移学习心律失常分类识别的方法 | |
CN116982952A (zh) | 一种基于分数阶导数的无创血压测量方法及系统 | |
CN112022149B (zh) | 一种基于心电信号的房颤检测方法 | |
CN112686091A (zh) | 基于深度神经网络的两步骤心律失常分类方法 | |
Lu et al. | Method to annotate arrhythmias by deep network | |
CN113171102A (zh) | 基于持续深度学习的ecg数据分类方法 | |
CN114595731B (zh) | 基于持续学习的非线性医疗传感器数据的语义分割方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20190110 Address after: 518108 North of 9 buildings and 4 floors of Baiwangxin Industrial Zone, Songbai Road, Xili Street, Nanshan District, Shenzhen City, Guangdong Province Applicant after: Kai Woer Electronics Co., Ltd. of Shenzhen Address before: 102200 Building No. 37 Qianqian Road, Changping Science and Technology Park, Changping District, Beijing Applicant before: Lepu (Beijing) Medical Equipment Co.,Ltd. |
|
TA01 | Transfer of patent application right |
Effective date of registration: 20190614 Address after: 102200 Building No. 37 Qianqian Road, Changping Science and Technology Park, Changping District, Beijing Applicant after: Lepu (Beijing) Medical Equipment Co.,Ltd. Address before: 518108 North of 9 buildings and 4 floors of Baiwangxin Industrial Zone, Songbai Road, Xili Street, Nanshan District, Shenzhen City, Guangdong Province Applicant before: Kai Woer Electronics Co., Ltd. of Shenzhen |
|
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20200511 Address after: 16th Floor, Block A, 668 Shenzhuan Highway, Songjiang District, Shanghai, 20112 Applicant after: YOCALY INFORMATION SCIENCE & TECHNOLOGY Co.,Ltd. Address before: 102200, Beijing Changping Changping District science and Technology Park, super Road, No. 3, building 37 Applicant before: Lepu Medical Technology (Beijing) Co.,Ltd. |
|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP01 | Change in the name or title of a patent holder | ||
CP01 | Change in the name or title of a patent holder |
Address after: 201612 16 / F, block a, no.668, Xinzhuan Road, Songjiang District, Shanghai Patentee after: Shanghai Lepu Yunzhi Technology Co.,Ltd. Address before: 201612 16 / F, block a, no.668, Xinzhuan Road, Songjiang District, Shanghai Patentee before: YOCALY INFORMATION SCIENCE & TECHNOLOGY Co.,Ltd. |