CN107437083B - 一种自适应池化的视频行为识别方法 - Google Patents
一种自适应池化的视频行为识别方法 Download PDFInfo
- Publication number
- CN107437083B CN107437083B CN201710703259.6A CN201710703259A CN107437083B CN 107437083 B CN107437083 B CN 107437083B CN 201710703259 A CN201710703259 A CN 201710703259A CN 107437083 B CN107437083 B CN 107437083B
- Authority
- CN
- China
- Prior art keywords
- video
- frame
- feature description
- prediction
- importance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 43
- 238000011176 pooling Methods 0.000 title claims abstract description 21
- 230000006399 behavior Effects 0.000 claims description 19
- 238000012549 training Methods 0.000 claims description 14
- 238000004364 calculation method Methods 0.000 claims description 11
- 230000003044 adaptive effect Effects 0.000 claims description 10
- 238000009825 accumulation Methods 0.000 claims description 6
- 230000006870 function Effects 0.000 claims description 6
- 238000000605 extraction Methods 0.000 claims description 5
- 230000004913 activation Effects 0.000 claims description 3
- 238000010606 normalization Methods 0.000 claims description 3
- 238000001228 spectrum Methods 0.000 claims description 3
- ORILYTVJVMAKLC-UHFFFAOYSA-N Adamantane Natural products C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 claims 1
- 230000003247 decreasing effect Effects 0.000 claims 1
- 238000005457 optimization Methods 0.000 claims 1
- 238000012360 testing method Methods 0.000 abstract description 3
- 238000012545 processing Methods 0.000 abstract description 2
- 238000013528 artificial neural network Methods 0.000 description 6
- 238000013461 design Methods 0.000 description 6
- 238000013135 deep learning Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000012512 characterization method Methods 0.000 description 2
- 238000007637 random forest analysis Methods 0.000 description 2
- 238000012706 support-vector machine Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/40—Scenes; Scene-specific elements in video content
- G06V20/46—Extracting features or characteristics from the video content, e.g. video fingerprints, representative shots or key frames
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Image Analysis (AREA)
Abstract
Description
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710703259.6A CN107437083B (zh) | 2017-08-16 | 2017-08-16 | 一种自适应池化的视频行为识别方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710703259.6A CN107437083B (zh) | 2017-08-16 | 2017-08-16 | 一种自适应池化的视频行为识别方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107437083A CN107437083A (zh) | 2017-12-05 |
CN107437083B true CN107437083B (zh) | 2020-09-22 |
Family
ID=60459972
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710703259.6A Active CN107437083B (zh) | 2017-08-16 | 2017-08-16 | 一种自适应池化的视频行为识别方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107437083B (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107909602A (zh) * | 2017-12-08 | 2018-04-13 | 长沙全度影像科技有限公司 | 一种基于深度学习的运动边界估计方法 |
CN109522822A (zh) * | 2018-10-30 | 2019-03-26 | 北京奇虎科技有限公司 | 一种视频检测方法及装置 |
CN109753906B (zh) * | 2018-12-25 | 2022-06-07 | 西北工业大学 | 基于域迁移的公共场所异常行为检测方法 |
CN110008900B (zh) * | 2019-04-02 | 2023-12-12 | 北京市遥感信息研究所 | 一种由区域到目标的可见光遥感图像候选目标提取方法 |
CN110008899B (zh) * | 2019-04-02 | 2021-02-26 | 北京市遥感信息研究所 | 一种可见光遥感图像候选目标提取与分类方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102763407A (zh) * | 2009-11-13 | 2012-10-31 | Jvc建伍株式会社 | 视频处理装置、视频处理方法及视频处理程序 |
WO2012167616A1 (en) * | 2011-06-09 | 2012-12-13 | The Hong Kong University Of Science And Technology | Image based tracking |
US9152860B2 (en) * | 2013-05-10 | 2015-10-06 | Tantrum Street LLC | Methods and apparatus for capturing, processing, training, and detecting patterns using pattern recognition classifiers |
US9576214B1 (en) * | 2012-01-23 | 2017-02-21 | Hrl Laboratories, Llc | Robust object recognition from moving platforms by combining form and motion detection with bio-inspired classification |
CN106462744A (zh) * | 2014-06-12 | 2017-02-22 | 微软技术许可有限责任公司 | 基于规则的视频重要性分析 |
CN106709461A (zh) * | 2016-12-28 | 2017-05-24 | 中国科学院深圳先进技术研究院 | 基于视频的行为识别方法及装置 |
CN106844573A (zh) * | 2017-01-05 | 2017-06-13 | 天津大学 | 基于流形排序的视频摘要方法 |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4153202B2 (ja) * | 2001-12-25 | 2008-09-24 | 松下電器産業株式会社 | 映像符号化装置 |
CN102026001B (zh) * | 2011-01-06 | 2012-07-25 | 西安电子科技大学 | 基于运动信息的视频帧重要性评估方法 |
CN103150373A (zh) * | 2013-03-08 | 2013-06-12 | 北京理工大学 | 一种高满意度视频摘要生成方法 |
CN103310193B (zh) * | 2013-06-06 | 2016-05-25 | 温州聚创电气科技有限公司 | 一种记录体操视频中运动员重要技术动作时刻的方法 |
CN103632372B (zh) * | 2013-12-05 | 2016-02-24 | 宁波大学 | 一种视频显著图提取方法 |
CN104079925B (zh) * | 2014-07-03 | 2016-05-18 | 中国传媒大学 | 基于视觉感知特性的超高清视频图像质量客观评价方法 |
US20160267669A1 (en) * | 2015-03-12 | 2016-09-15 | James W. Justice | 3D Active Warning and Recognition Environment (3D AWARE): A low Size, Weight, and Power (SWaP) LIDAR with Integrated Image Exploitation Processing for Diverse Applications |
CN104966104B (zh) * | 2015-06-30 | 2018-05-11 | 山东管理学院 | 一种基于三维卷积神经网络的视频分类方法 |
CN105279769B (zh) * | 2015-07-16 | 2017-06-13 | 北京理工大学 | 一种联合多特征的层次粒子滤波跟踪方法 |
CN105550699B (zh) * | 2015-12-08 | 2019-02-12 | 北京工业大学 | 一种基于cnn融合时空显著信息的视频识别分类方法 |
CN106203283A (zh) * | 2016-06-30 | 2016-12-07 | 重庆理工大学 | 基于三维卷积深度神经网络和深度视频的动作识别方法 |
CN106650655A (zh) * | 2016-12-16 | 2017-05-10 | 北京工业大学 | 一种基于卷积神经网络的动作检测模型 |
CN106650674B (zh) * | 2016-12-27 | 2019-09-10 | 广东顺德中山大学卡内基梅隆大学国际联合研究院 | 一种基于混合池化策略的深度卷积特征的动作识别方法 |
-
2017
- 2017-08-16 CN CN201710703259.6A patent/CN107437083B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102763407A (zh) * | 2009-11-13 | 2012-10-31 | Jvc建伍株式会社 | 视频处理装置、视频处理方法及视频处理程序 |
WO2012167616A1 (en) * | 2011-06-09 | 2012-12-13 | The Hong Kong University Of Science And Technology | Image based tracking |
US9576214B1 (en) * | 2012-01-23 | 2017-02-21 | Hrl Laboratories, Llc | Robust object recognition from moving platforms by combining form and motion detection with bio-inspired classification |
US9152860B2 (en) * | 2013-05-10 | 2015-10-06 | Tantrum Street LLC | Methods and apparatus for capturing, processing, training, and detecting patterns using pattern recognition classifiers |
CN106462744A (zh) * | 2014-06-12 | 2017-02-22 | 微软技术许可有限责任公司 | 基于规则的视频重要性分析 |
CN106709461A (zh) * | 2016-12-28 | 2017-05-24 | 中国科学院深圳先进技术研究院 | 基于视频的行为识别方法及装置 |
CN106844573A (zh) * | 2017-01-05 | 2017-06-13 | 天津大学 | 基于流形排序的视频摘要方法 |
Non-Patent Citations (1)
Title |
---|
《Video Action Recognition Based on Deeper Convolution Networks with Pair-Wise Frame Motion Concatenation》;Y. Han, etal;《2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)》;20171231;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN107437083A (zh) | 2017-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107437083B (zh) | 一种自适应池化的视频行为识别方法 | |
US10891524B2 (en) | Method and an apparatus for evaluating generative machine learning model | |
CN109492612B (zh) | 基于骨骼点的跌倒检测方法及其跌倒检测装置 | |
Kim et al. | Deep convolutional neural models for picture-quality prediction: Challenges and solutions to data-driven image quality assessment | |
CN109891897B (zh) | 用于分析媒体内容的方法 | |
Li et al. | No-reference image quality assessment with deep convolutional neural networks | |
CN112861635B (zh) | 一种基于深度学习的火灾及烟雾实时检测方法 | |
AU2020306013A1 (en) | Machine learning systems and methods for improved localization of image forgery | |
CN111738054B (zh) | 一种基于时空自编码器网络和时空cnn的行为异常检测方法 | |
US20190236738A1 (en) | System and method for detection of identity fraud | |
KR102132407B1 (ko) | 점진적 딥러닝 학습을 이용한 적응적 영상 인식 기반 감성 추정 방법 및 장치 | |
CN109657582A (zh) | 人脸情绪的识别方法、装置、计算机设备及存储介质 | |
Liu et al. | Visual smoke detection based on ensemble deep cnns | |
CN107967442A (zh) | 一种基于无监督学习和深层网络的指静脉识别方法及系统 | |
CN111259838B (zh) | 服务机器人服务环境下深度理解人体行为的方法及系统 | |
CN117155706A (zh) | 网络异常行为检测方法及其系统 | |
Salem et al. | Semantic image inpainting using self-learning encoder-decoder and adversarial loss | |
Kancharlapalli et al. | A Novel Approach for Age and Gender Detection using Deep Convolution Neural Network | |
CN107633527B (zh) | 基于全卷积神经网络的目标追踪方法及装置 | |
Jebur et al. | Abnormal Behavior Detection in Video Surveillance Using Inception-v3 Transfer Learning Approaches | |
CN109409224A (zh) | 一种自然场景火焰检测的方法 | |
CN116958769A (zh) | 基于融合特征的翻越行为检测方法及相关装置 | |
CN113807541B (zh) | 决策系统的公平性修复方法、系统、设备及存储介质 | |
CN115731620A (zh) | 检测对抗攻击的方法和训练对抗攻击检测模型的方法 | |
CN112052881B (zh) | 基于多尺度近端特征拼接的高光谱图像分类模型的装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20200825 Address after: Room d1-35, block C, 7 / F, building 1, electronic industrial park, 8 Gaoke Road, high tech Zone, Nanning City, Guangxi Zhuang Autonomous Region Applicant after: Guangxi Hefu Intelligent Technology Co.,Ltd. Address before: Room 101, Building 11, No. 1158 Central Road, Songjiang District, Songjiang District, Shanghai 201600 Applicant before: SHANGHAI HEFU ARTIFICIAL INTELLIGENCE TECHNOLOGY (Group) Co.,Ltd. Applicant before: CHENGDU JISHENG INTELLIGENTIZE ENGINEERING Co.,Ltd. |
|
TA01 | Transfer of patent application right | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240416 Address after: 201600 Room 101, building 11, 1158 Zhongxin Road, Songjiang District, Shanghai Patentee after: SHANGHAI HEFU ARTIFICIAL INTELLIGENCE TECHNOLOGY (Group) Co.,Ltd. Country or region after: China Address before: Building 1, Electronics Industry Park, No. 8 Gaoke Road, High tech Zone, Nanning City, Guangxi Zhuang Autonomous Region, 530000, North of Building C, Building 7, D1-35 Patentee before: Guangxi Hefu Intelligent Technology Co.,Ltd. Country or region before: China |
|
TR01 | Transfer of patent right |