CN107086568A - A kind of optimal support unit localization method of power system decomposed based on forecast failure - Google Patents

A kind of optimal support unit localization method of power system decomposed based on forecast failure Download PDF

Info

Publication number
CN107086568A
CN107086568A CN201710347116.6A CN201710347116A CN107086568A CN 107086568 A CN107086568 A CN 107086568A CN 201710347116 A CN201710347116 A CN 201710347116A CN 107086568 A CN107086568 A CN 107086568A
Authority
CN
China
Prior art keywords
mrow
msubsup
msub
munder
bus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710347116.6A
Other languages
Chinese (zh)
Other versions
CN107086568B (en
Inventor
罗志浩
尹峰
陈波
丁宁
苏烨
丁俊宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YINENG ELECTRIC TECHNOLOGY Co Ltd HANGZHOU
State Grid Corp of China SGCC
Electric Power Research Institute of State Grid Zhejiang Electric Power Co Ltd
Original Assignee
YINENG ELECTRIC TECHNOLOGY Co Ltd HANGZHOU
State Grid Corp of China SGCC
Electric Power Research Institute of State Grid Zhejiang Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YINENG ELECTRIC TECHNOLOGY Co Ltd HANGZHOU, State Grid Corp of China SGCC, Electric Power Research Institute of State Grid Zhejiang Electric Power Co Ltd filed Critical YINENG ELECTRIC TECHNOLOGY Co Ltd HANGZHOU
Priority to CN201710347116.6A priority Critical patent/CN107086568B/en
Publication of CN107086568A publication Critical patent/CN107086568A/en
Application granted granted Critical
Publication of CN107086568B publication Critical patent/CN107086568B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/001Methods to deal with contingencies, e.g. abnormalities, faults or failures

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The invention discloses a kind of optimal support unit localization method of power system decomposed based on forecast failure.For electric power grid frequency stabilization, some units that decisive role is played to electricity net safety stable need to be chosen.The present invention considers the different forecast failures of power network, sets up to minimize power system security constrained optimum tide model of the generating set climbing capacity as target;Use forecast failure decomposition method by the model decomposition for normal operating mode under subproblem under primal problem and each forecast failure method of operation;The solution of above-mentioned security constraint optimal load flow model is realized by the subproblem under the primal problem under iterative normal operating mode and each forecast failure method of operation;The minimum generating set climbing capacity transformation amount of gained is solved according to step, the generating set of transformation amount non-zero is subjected to sort descending accordingly, the optimal support unit of decreasing priority is designated as successively in order, exports as a result.The present invention has preferable applicability, preferably meets actual demand.

Description

A kind of optimal support unit localization method of power system decomposed based on forecast failure
Technical field
The invention belongs to technical field of power systems, specifically a kind of power system decomposed based on forecast failure is most Excellent support unit localization method.
Background technology
Current power builds fast-developing, one side various regions power source construction projects still rapid growth, wind-powered electricity generation, the proportion of nuclear power Rise year by year;On the other hand a plurality of extra high voltage line is built up, it is transregional come capacitance accounting improve constantly.While national economy is Structural adjustment is carried out, society's electricity consumption structure there occurs larger change therewith.The increasingly increase of power network daily load curve, thermoelectricity Unit is declined to a great extent using hourage, and when unit operation load reduction, unit heat consumption is substantially increased, unit efficiency significantly under Drop.Therefore when fired power generating unit is declined to a great extent using hourage, the underrun of Large-scale fire-electricity unit long-time turns into electricity market New normality when, it is necessary to consider the fm capacity of large-scale thermal power machine group.
Under the demand background, thermal power generation unit requirement ensures the safety of oneself first, while occurring in major network different Ability with certain aid in treatment accident during reason condition.Primary frequency function exactly thermal power generation unit occurs different in power network The spinning reserve capacity quick response frequency of steam turbine and boiler heat storage and unit is made full use of to change in the case of often, to make up electricity Net generates electricity with load difference away from electric power grid frequency stabilization.Therefore, some machines that decisive role is played to electricity net safety stable need to be chosen Group, is used as the subject of implementation of above-mentioned support function.
The content of the invention
In consideration of it, it is an object of the present invention to according to the different power networks in the case of each extra-high voltage landing point failure in power network Response characteristic, the position of the optimal power supply strong point in each region when providing electric network fault according to region, to determine depth frequency modulation The optimal unit optimum selection supported, is the transformation target of frequency modulation function as possessing height plus going out.
The present invention is realized using following scheme:It is a kind of to be positioned based on the optimal unit of supporting of power system that forecast failure is decomposed Method, it is characterised in that comprise the following steps:
Step 1):Load the steady-state load flow data of power system, the security constraint data of generator, bus and circuit, hair Motor climbing capacity data and power network forecast failure set data;
Step 2):Load flow calculation under power network normal mode, obtains initial launch point;
Step 3):Based on step 1) -2) the data obtained, set up to minimize electric power of the generating set climbing capacity as target System security constraint optimal load flow model;
Step 4):Based on step 3) gained model, use forecast failure decomposition method by the model decomposition for normal operation Primal problem and the subproblem under each forecast failure method of operation, solve the primal problem under normal operating mode under mode;
Step 5):Based on step 4) acquired results, the subproblem under each forecast failure method of operation is solved successively, and is generated Corresponding additional inequality constraints, adds step 4) described in primal problem in;
Step 6):Calculate step 4 in adjacent two-wheeled iteration) solve primal problem optimum results increment size, if its Less than given threshold value, then to step 7);Otherwise return to step 5) continue iterative;
Step 7):According to step 4) the minimum generating set climbing capacity transformation amount of gained, by the generator of transformation amount non-zero Group carries out sort descending accordingly, is designated as the optimal support unit of decreasing priority successively in order, exports as a result.
Further, the step 3) particular content be:To minimize generating set climbing capacity transformation amount as optimization Power flow equation after target, and the transformation of generating set climbing capacity under power network normal operating mode and all forecast failure modes For equality constraint, with the generator Climing constant under power network normal operating mode and all forecast failure methods of operation, generator Active power output constraint, generator reactive units limits, node voltage amplitude, which are constrained, and circuit is thermally-stabilised is constrained to inequality constraints, Set up one group of Non-linear Optimal Model.
Further, described Non-linear Optimal Model is specific as follows:
1) object function
In formula,The respectively transformation amount of the positive and negative climbing capacities of generating set i;For normal operation side The active power output of balancing generator group under formula;wi, p is respectively the weight coefficient of climbing capacity transformation amount and network loss;SGFor generator The set of group;
2) equality constraint
Equality constraint is the power flow equation under different running method:
In formula, variable subscript represents the method for operation, wherein 0 represents normal operating mode, other represent forecast failure operation Mode;SkFor the set of the forecast failure method of operation;SBFor the set of bus;
UiFor bus i voltage magnitude, i ∈ SB;UjFor bus j voltage magnitude;PGi, QGiRespectively generating set i's It is active and it is idle exert oneself, i ∈ SG;PLi, QLiRespectively bus i active and load or burden without work, i ∈ SG;δijFor between bus ij Phase angle difference;λkFor the load growth factor under method of operation k, for describing the fluctuation of load and its with the growth of national economy;The real and imaginary parts of corresponding element respectively in bus admittance matrix;
3) inequality constraints
Inequality constraints includes generating set Climing constant
In formula,The original positive and negative climbing capacities of respectively generating set i;Issued for normal operating mode Group of motors i active power output,For the active power output of generating set i under method of operation k;
And other operation constraints, including node voltage constraint, generated power and idle units limits and Line Flow Constraint
In formula, FijFor the trend between bus i to bus j on circuit;The upper and lower line of each variable is represented to strain respectively The upper and lower bound of amount.
Further, the step 4) particular content be:By step 3) Non-linear Optimal Model set up is decomposed into 1 The primal problem of individual correspondence normal operating mode and the subproblem of some forecast failure methods of operation of correspondence.
Further, the particular content of primal problem is:
1) object function
In formula,The respectively transformation amount of the positive and negative climbing capacities of generating set i;For normal operation side The active power output of balancing generator group under formula;wi, p is respectively the weight coefficient of climbing capacity transformation amount and network loss;SGFor generator The set of group;
2) equality constraint
Equality constraint is the power flow equation under normal operating mode
In formula, variable subscript 0 represents normal operating mode, SBFor the set of bus;
UiFor bus i voltage magnitude, i ∈ SB;UjFor bus j voltage magnitude;PGi, QGiRespectively generating set i's It is active and it is idle exert oneself, i ∈ SG;PLi, QLiRespectively bus i active and load or burden without work, i ∈ SG;δijFor between bus ij Phase angle difference;λ0For the load growth factor under normal operating mode, for describing the fluctuation of load and its with the increasing of national economy It is long;Gij, BijThe real and imaginary parts of corresponding element respectively in bus admittance matrix;
3) inequality constraints
Inequality constraints includes node voltage constraint, generated power and idle units limits, Line Flow constraint:
In formula, FijFor the trend between bus i to bus j on circuit;The upper and lower line of each variable is represented to strain respectively The upper and lower bound of amount.
The step 5) in, the particular content of subproblem is corresponding to k-th of forecast failure:
1) object function
In formula,The positive and negative climbing capacity slack variables of respectively generating set i;
2) equality constraint
Equality constraint is the power flow equation under forecast failure method of operation k
In formula, SBFor the set of bus;UiFor bus i voltage magnitude, i ∈ SB;UjFor bus j voltage magnitude;PGi, QGiThe active and idle of respectively generating set i is exerted oneself, i ∈ SG;PLi, QLiRespectively bus i active and load or burden without work, i ∈ SG;δijFor the phase angle difference between bus ij;λkFor the load growth factor under method of operation k, for describe load fluctuation and Its with national economy growth; The real and imaginary parts of corresponding element respectively in bus admittance matrix;
3) inequality constraints
Inequality constraints includes the unit ramp loss after relaxation
In formula,The original positive and negative climbing capacities of respectively generating set i;
Unit climbing capacity slack variable is constrained:
And other operation constraints, including the constraint of forecast failure method of operation k lower nodes voltage, generated power and idle Units limits and Line Flow constraint:
In formula, FijFor the trend between bus i to bus j on circuit;The upper and lower line of each variable is represented to strain respectively The upper and lower bound of amount.
Further, optimization problem corresponding to above-mentioned forecast failure method of operation k is solved, if optimization aim J non-zeros, give birth to Into following inequality constraints, add step 4) in primal problem inequality constraints in:
In formula, u0,To control variable (including busbar voltage amplitude etc.) and step 4 under normal operating mode) in ask The numerical value for the corresponding control variable that solution primal problem is obtained;T represents transposition;
Respectively step 4) in solve the transformations of the positive and negative climbing capacities of generating set i that primal problem is obtained The numerical value of amount;
μ,The respectively dual variable of equality constraint, the inequality that the constraint of climbing capacity lower limit and the upper limit are constrained is about The dual variable of beam.
By implementing above-mentioned steps, the unit that decisive role is played to electricity net safety stable can be accurately positioned, phase is set up The priority orders of unit are answered, the optimal support unit in the case of power network different faults are located, and give unit climbing energy The optimal modification scheme of power, the security feature after electric network fault is met with minimum cost.
Brief description of the drawings
Fig. 1 is FB(flow block) of the invention.
Embodiment
Below in conjunction with the accompanying drawings and embodiment the present invention will be further described.
The present embodiment provides a kind of method of electrical power system transient catastrophe failure screening, as shown in figure 1, including following step Suddenly:
Step (1):Load the steady-state load flow data of power system, the security constraint number of the element such as generator, bus, circuit According to, existing generator climbing capacity data, and power network forecast failure set data;
Step (2):Load flow calculation under power network normal mode, obtains initial launch point;
Step (3):Based on step (1)-(2) the data obtained, set up to minimize generating set climbing capacity as target Power system security constrained optimum tide model;
Step (4):Based on model obtained by step (3), use forecast failure decomposition method by the model decomposition for normal fortune Primal problem and the subproblem under each forecast failure method of operation under line mode;Solve the primal problem under normal operating mode;
Step (5):Based on step (4) acquired results, the subproblem under each forecast failure method of operation is solved successively, and it is raw Into corresponding additional inequality constraints, add in step (4) described primal problem;
Step (6):The increment size that step (4) in adjacent 2 wheel iteration solves the optimum results of primal problem is calculated, if its Less than given threshold value, then to step (7);Otherwise return to step (5) continues iterative;
Step (7):According to minimum generating set climbing capacity transformation amount obtained by step (4), by the generating of transformation amount non-zero Unit carries out sort descending accordingly, is designated as the optimal support unit of decreasing priority successively in order, exports as a result.
In the present embodiment, the step (3) is specifically, to minimize generating set climbing capacity transformation amount as optimization mesh Mark, the power flow equation in terms of and after the transformation of generating set climbing capacity under power network normal operating mode and all forecast failure modes For equality constraint, with the generator Climing constant under power network normal operating mode and all forecast failure methods of operation, generator The security constraints such as active power output constraint, the constraint of generator reactive units limits, node voltage amplitude, the thermally-stabilised constraint of circuit is not Equality constraint, sets up one group of Non-linear Optimal Model, specific as follows:
1) object function
In formula,The respectively transformation amount of the positive and negative climbing capacities of generating set i;For normal operation side The active power output of balancing generator group under formula;wi, p is respectively the weight coefficient of climbing capacity transformation amount and network loss;SGFor generator The set of group.
2) equality constraint
Equality constraint is the power flow equation under different running method
In formula, variable subscript represents the method for operation, wherein 0 represents normal operating mode, other represent forecast failure operation Mode;SkFor the set of the forecast failure method of operation;SBFor the set of bus;
UiFor bus i voltage magnitude, i ∈ SB;UjFor bus j voltage magnitude;PGi, QGiRespectively generating set i's It is active and it is idle exert oneself, i ∈ SG;PLi, QLiRespectively bus i active and load or burden without work, i ∈ SG;δijFor between bus ij Phase angle difference;λkFor the load growth factor under method of operation k, for describing the fluctuation of load and its with the growth of national economy;The real and imaginary parts of corresponding element respectively in bus admittance matrix.
3) inequality constraints
Inequality constraints includes unit ramp loss
In formula,The original positive and negative climbing capacities of respectively generating set i;Issued for normal operating mode Group of motors i active power output,For the active power output of generating set i under method of operation k;
And other operation constraints, including node voltage constraint, generated power and idle units limits, Line Flow are about Beam etc.:
In formula, FijFor the trend between bus i to bus j on circuit;The upper and lower line of each variable is represented to strain respectively The upper and lower bound of amount.
In the present embodiment, the step (4) is specially:The Non-linear Optimal Model that step (3) is set up is decomposed into 1 The primal problem of individual correspondence normal operating mode and the subproblem of some forecast failure methods of operation of correspondence.Wherein, primal problem is specific For:
1) object function
In formula, variable implication is same as described above.
2) equality constraint
Equality constraint is the power flow equation under normal operating mode
In formula, variable subscript 0 represents normal operating mode, SBFor the set of bus;
UiFor bus i voltage magnitude, i ∈ SB;UjFor bus j voltage magnitude;PGi, QGiRespectively generating set i's It is active and it is idle exert oneself, i ∈ SG;PLi, QLiRespectively bus i active and load or burden without work, i ∈ SG;δijFor between bus ij Phase angle difference;λ0For the load growth factor under normal operating mode, for describing the fluctuation of load and its with the increasing of national economy It is long;Gij, BijThe real and imaginary parts of corresponding element respectively in bus admittance matrix.
3) inequality constraints
Inequality constraints includes node voltage constraint, generated power and idle units limits, Line Flow constraint etc.:
In formula, FijFor the trend between bus i to bus j on circuit;The upper and lower line of each variable is represented to strain respectively The upper and lower bound of amount;
And a series of inequality constraints generated by step (5).
In the present embodiment, the step (5) is specially:Subproblem corresponding to k-th of forecast failure is specially:
1) object function
In formula,The positive and negative climbing capacity slack variables of respectively generating set i;
2) equality constraint
Equality constraint is the power flow equation under forecast failure method of operation k.
In formula, SBFor the set of bus;UiFor bus i voltage magnitude, i ∈ SB;UjFor bus j voltage magnitude;PGi, QGiThe active and idle of respectively generating set i is exerted oneself, i ∈ SG;PLi, QLiRespectively bus i active and load or burden without work, i ∈ SG;δijFor the phase angle difference between bus ij;λkFor the load growth factor under method of operation k, for describe load fluctuation and Its with national economy growth; The real and imaginary parts of corresponding element respectively in bus admittance matrix.
3) inequality constraints
Inequality constraints includes the unit ramp loss after relaxation
In formula,The original positive and negative climbing capacities of respectively generating set i;
Unit climbing capacity slack variable is constrained:
And other operation constraints, including the constraint of forecast failure method of operation k lower nodes voltage, generated power and idle Units limits, Line Flow constraint etc.:
In formula, FijFor the trend between bus i to bus j on circuit;The upper and lower line of each variable is represented to strain respectively The upper and lower bound of amount.
Optimization problem corresponding to above-mentioned forecast failure method of operation k is solved, if optimization aim J non-zeros, generation is following not Equality constraint, is added in step (4) in the inequality constraints set of primal problem:
In formula, u0,To control variable and step 4 under normal operating mode) in solve that primal problem obtains it is corresponding Control the numerical value of variable;T represents transposition;
Respectively step 4) in solve the transformations of the positive and negative climbing capacities of generating set i that primal problem is obtained The numerical value of amount;
μ,The respectively dual variable of equality constraint, the inequality that the constraint of climbing capacity lower limit and the upper limit are constrained is about The dual variable of beam.
By implementing above-mentioned steps, the optimal modification scheme of unit climbing capacity is given, and it is full with minimum cost accordingly Security feature after foot electric network fault.As a result, above-mentioned specific implementation step give it is optimal under power network different faults Support unit.
It the foregoing is only presently preferred embodiments of the present invention, all equalizations done according to claims of the present invention protection domain Change and modification, should all belong to the covering scope of the present invention.

Claims (7)

1. a kind of optimal support unit localization method of power system decomposed based on forecast failure, it is characterised in that including following step Suddenly:
Step 1):Load the steady-state load flow data of power system, the security constraint data of generator, bus and circuit, generator Climbing capacity data and power network forecast failure set data;
Step 2):Load flow calculation under power network normal mode, obtains initial launch point;
Step 3):Based on step 1) -2) the data obtained, set up to minimize power system of the generating set climbing capacity as target Security constraint optimal load flow model;
Step 4):Based on step 3) gained model, use forecast failure decomposition method by the model decomposition for normal operating mode Lower primal problem and the subproblem under each forecast failure method of operation, solve the primal problem under normal operating mode;
Step 5):Based on step 4) acquired results, the subproblem under each forecast failure method of operation is solved successively, and is generated corresponding Additional inequality constraints, add step 4) described in primal problem in;
Step 6):Calculate step 4 in adjacent two-wheeled iteration) solve primal problem optimum results increment size, if it is less than Given threshold value, then to step 7);Otherwise return to step 5) continue iterative;
Step 7):According to step 4) the minimum generating set climbing capacity transformation amount of gained, by the generating set evidence of transformation amount non-zero This carries out sort descending, is designated as the optimal support unit of decreasing priority successively in order, exports as a result.
2. the power system optimal support unit localization method according to claim 1 decomposed based on forecast failure, it is special Levy and be,
The step 3) particular content be:To minimize generating set climbing capacity transformation amount as optimization aim, and generate electricity Power flow equation after the transformation of unit climbing capacity under power network normal operating mode and all forecast failure modes is equality constraint, with Power network normal operating mode and generator Climing constant under all forecast failure methods of operation, generated power units limits, Generator reactive units limits, node voltage amplitude, which are constrained, and circuit is thermally-stabilised is constrained to inequality constraints, sets up one group of non-thread Property Optimized model.
3. the power system optimal support unit localization method according to claim 2 decomposed based on forecast failure, it is special Levy and be,
Described Non-linear Optimal Model is specific as follows:
1) object function
<mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mrow> <mo>(</mo> <munder> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>&amp;Element;</mo> <msub> <mi>S</mi> <mi>G</mi> </msub> </mrow> </munder> <msub> <mi>w</mi> <mi>i</mi> </msub> <mo>(</mo> <mrow> <msubsup> <mi>&amp;Delta;&amp;Pi;</mi> <mrow> <mi>G</mi> <mi>i</mi> </mrow> <mo>+</mo> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;Delta;&amp;Pi;</mi> <mrow> <mi>G</mi> <mi>i</mi> </mrow> <mo>-</mo> </msubsup> </mrow> <mo>)</mo> <mo>+</mo> <msubsup> <mi>pP</mi> <mrow> <mi>G</mi> <mi>s</mi> </mrow> <mn>0</mn> </msubsup> <mo>)</mo> </mrow> <mo>,</mo> </mrow>
In formula,The respectively transformation amount of the positive and negative climbing capacities of generating set i;For under normal operating mode The active power output of balancing generator group;wi, p is respectively the weight coefficient of climbing capacity transformation amount and network loss;SGFor generating set Set;
2) equality constraint
Equality constraint is the power flow equation under different running method:
<mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>&amp;lambda;</mi> <mi>k</mi> </msup> </mrow> <mo>)</mo> </mrow> <msubsup> <mi>P</mi> <mrow> <mi>G</mi> <mi>i</mi> </mrow> <mi>k</mi> </msubsup> <mo>-</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>&amp;lambda;</mi> <mi>k</mi> </msup> </mrow> <mo>)</mo> </mrow> <msubsup> <mi>P</mi> <mrow> <mi>L</mi> <mi>i</mi> </mrow> <mi>k</mi> </msubsup> <mo>-</mo> <msubsup> <mi>U</mi> <mi>i</mi> <mi>k</mi> </msubsup> <munder> <mi>&amp;Sigma;</mi> <mrow> <mi>j</mi> <mo>&amp;Element;</mo> <msub> <mi>S</mi> <mi>B</mi> </msub> </mrow> </munder> <msubsup> <mi>U</mi> <mi>j</mi> <mi>k</mi> </msubsup> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>G</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mi>k</mi> </msubsup> <msubsup> <mi>cos&amp;delta;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mi>k</mi> </msubsup> <mo>+</mo> <msubsup> <mi>B</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mi>k</mi> </msubsup> <msubsup> <mi>sin&amp;delta;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mi>k</mi> </msubsup> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mi>k</mi> <mo>&amp;Element;</mo> <msub> <mi>S</mi> <mi>k</mi> </msub> <mo>,</mo> </mrow>
<mrow> <msubsup> <mi>Q</mi> <mrow> <mi>G</mi> <mi>i</mi> </mrow> <mi>k</mi> </msubsup> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msup> <mi>&amp;lambda;</mi> <mi>k</mi> </msup> <mo>)</mo> </mrow> <msubsup> <mi>Q</mi> <mrow> <mi>L</mi> <mi>i</mi> </mrow> <mi>k</mi> </msubsup> <mo>-</mo> <msubsup> <mi>U</mi> <mi>i</mi> <mi>k</mi> </msubsup> <munder> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>&amp;Element;</mo> <msub> <mi>S</mi> <mi>B</mi> </msub> </mrow> </munder> <msubsup> <mi>U</mi> <mi>j</mi> <mi>k</mi> </msubsup> <mrow> <mo>(</mo> <msubsup> <mi>G</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mi>k</mi> </msubsup> <msubsup> <mi>sin&amp;delta;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mi>k</mi> </msubsup> <mo>-</mo> <msubsup> <mi>B</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mi>k</mi> </msubsup> <msubsup> <mi>cos&amp;delta;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mi>k</mi> </msubsup> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mi>k</mi> <mo>&amp;Element;</mo> <msub> <mi>S</mi> <mi>k</mi> </msub> <mo>,</mo> </mrow>
In formula, variable subscript represents the method for operation, wherein 0 represents normal operating mode, other represent the forecast failure method of operation; SkFor the set of the forecast failure method of operation;SBFor the set of bus;
UiFor bus i voltage magnitude, i ∈ SB;UjFor bus j voltage magnitude;PGi, QGiRespectively generating set i active and It is idle to exert oneself, i ∈ SG;PLi, QLiRespectively bus i active and load or burden without work, i ∈ SG;δijFor the phase angle difference between bus ij; λkFor the load growth factor under method of operation k, for describing the fluctuation of load and its with the growth of national economy; The real and imaginary parts of corresponding element respectively in bus admittance matrix;
3) inequality constraints
Inequality constraints includes generating set Climing constant
<mrow> <msubsup> <mi>&amp;Pi;</mi> <mrow> <mi>G</mi> <mi>i</mi> </mrow> <mo>-</mo> </msubsup> <mo>-</mo> <msubsup> <mi>&amp;Delta;&amp;Pi;</mi> <mrow> <mi>G</mi> <mi>i</mi> </mrow> <mo>-</mo> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>P</mi> <mrow> <mi>G</mi> <mi>i</mi> </mrow> <mi>k</mi> </msubsup> <mo>-</mo> <msubsup> <mi>P</mi> <mrow> <mi>G</mi> <mi>i</mi> </mrow> <mn>0</mn> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>&amp;Pi;</mi> <mrow> <mi>G</mi> <mi>i</mi> </mrow> <mo>+</mo> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;Delta;&amp;Pi;</mi> <mrow> <mi>G</mi> <mi>i</mi> </mrow> <mo>+</mo> </msubsup> <mo>,</mo> <mi>i</mi> <mo>&amp;Element;</mo> <msub> <mi>S</mi> <mi>G</mi> </msub> <mo>,</mo> <mi>k</mi> <mo>&amp;Element;</mo> <msub> <mi>S</mi> <mi>k</mi> </msub> <mo>,</mo> </mrow>
In formula,The original positive and negative climbing capacities of respectively generating set i;For generator under normal operating mode Group i active power output,For the active power output of generating set i under method of operation k;
And other operation constraints, including node voltage constraint, generated power and idle units limits and Line Flow constraint
<mrow> <msubsup> <munder> <mi>U</mi> <mo>&amp;OverBar;</mo> </munder> <mi>i</mi> <mi>k</mi> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>U</mi> <mi>i</mi> <mi>k</mi> </msubsup> <mo>&amp;le;</mo> <msubsup> <mover> <mi>U</mi> <mo>&amp;OverBar;</mo> </mover> <mi>i</mi> <mi>k</mi> </msubsup> <mo>,</mo> <mi>i</mi> <mo>&amp;Element;</mo> <msub> <mi>S</mi> <mi>B</mi> </msub> <mo>,</mo> <mi>k</mi> <mo>&amp;Element;</mo> <msub> <mi>S</mi> <mi>k</mi> </msub> <mo>,</mo> </mrow>
<mrow> <msub> <munder> <mi>P</mi> <mo>&amp;OverBar;</mo> </munder> <mrow> <mi>G</mi> <mi>i</mi> </mrow> </msub> <mo>&amp;le;</mo> <msubsup> <mi>P</mi> <mrow> <mi>G</mi> <mi>i</mi> </mrow> <mi>k</mi> </msubsup> <mo>&amp;le;</mo> <msub> <mover> <mi>P</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>G</mi> <mi>i</mi> </mrow> </msub> <mo>,</mo> <mi>i</mi> <mo>&amp;Element;</mo> <msub> <mi>S</mi> <mi>G</mi> </msub> <mo>,</mo> <mi>k</mi> <mo>&amp;Element;</mo> <msub> <mi>S</mi> <mi>k</mi> </msub> <mo>,</mo> </mrow>
<mrow> <msub> <munder> <mi>Q</mi> <mo>&amp;OverBar;</mo> </munder> <mrow> <mi>G</mi> <mi>i</mi> </mrow> </msub> <mo>&amp;le;</mo> <msubsup> <mi>Q</mi> <mrow> <mi>G</mi> <mi>i</mi> </mrow> <mi>k</mi> </msubsup> <mo>&amp;le;</mo> <msub> <mover> <mi>Q</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>G</mi> <mi>i</mi> </mrow> </msub> <mo>,</mo> <mi>i</mi> <mo>&amp;Element;</mo> <msub> <mi>S</mi> <mi>G</mi> </msub> <mo>,</mo> <mi>k</mi> <mo>&amp;Element;</mo> <msub> <mi>S</mi> <mi>k</mi> </msub> <mo>,</mo> </mrow>
<mrow> <msub> <munder> <mi>F</mi> <mo>&amp;OverBar;</mo> </munder> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>&amp;le;</mo> <msubsup> <mi>F</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mi>k</mi> </msubsup> <mo>&amp;le;</mo> <msub> <mover> <mi>F</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>,</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>&amp;Element;</mo> <msub> <mi>S</mi> <mi>B</mi> </msub> <mo>,</mo> <mi>k</mi> <mo>&amp;Element;</mo> <msub> <mi>S</mi> <mi>k</mi> </msub> <mo>,</mo> </mrow>
In formula, FijFor the trend between bus i to bus j on circuit;The upper and lower line of each variable is represented to dependent variable respectively Upper and lower bound.
4. the power system optimal support unit localization method according to claim 3 decomposed based on forecast failure, it is special Levy and be,
The step 4) particular content be:By step 3) Non-linear Optimal Model set up is decomposed into 1 correspondence and normally transports The primal problem of line mode and the subproblem of some forecast failure methods of operation of correspondence.
5. the power system optimal support unit localization method according to claim 4 decomposed based on forecast failure, it is special Levy and be,
The particular content of primal problem is:
1) object function
<mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mrow> <mo>(</mo> <munder> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>&amp;Element;</mo> <msub> <mi>S</mi> <mi>G</mi> </msub> </mrow> </munder> <msub> <mi>w</mi> <mi>i</mi> </msub> <mo>(</mo> <mrow> <msubsup> <mi>&amp;Delta;&amp;Pi;</mi> <mrow> <mi>G</mi> <mi>i</mi> </mrow> <mo>+</mo> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;Delta;&amp;Pi;</mi> <mrow> <mi>G</mi> <mi>i</mi> </mrow> <mo>-</mo> </msubsup> </mrow> <mo>)</mo> <mo>+</mo> <msubsup> <mi>pP</mi> <mrow> <mi>G</mi> <mi>s</mi> </mrow> <mn>0</mn> </msubsup> <mo>)</mo> </mrow> <mo>,</mo> </mrow>
In formula,The respectively transformation amount of the positive and negative climbing capacities of generating set i;For under normal operating mode The active power output of balancing generator group;wi, p is respectively the weight coefficient of climbing capacity transformation amount and network loss;SGFor generating set Set;
2) equality constraint
Equality constraint is the power flow equation under normal operating mode
<mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>&amp;lambda;</mi> <mn>0</mn> </msup> </mrow> <mo>)</mo> </mrow> <msubsup> <mi>P</mi> <mrow> <mi>G</mi> <mi>i</mi> </mrow> <mn>0</mn> </msubsup> <mo>-</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>&amp;lambda;</mi> <mn>0</mn> </msup> </mrow> <mo>)</mo> </mrow> <msubsup> <mi>P</mi> <mrow> <mi>L</mi> <mi>i</mi> </mrow> <mn>0</mn> </msubsup> <mo>-</mo> <msubsup> <mi>U</mi> <mi>i</mi> <mn>0</mn> </msubsup> <munder> <mi>&amp;Sigma;</mi> <mrow> <mi>j</mi> <mo>&amp;Element;</mo> <msub> <mi>S</mi> <mi>B</mi> </msub> </mrow> </munder> <msubsup> <mi>U</mi> <mi>j</mi> <mn>0</mn> </msubsup> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>G</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mn>0</mn> </msubsup> <msubsup> <mi>cos&amp;delta;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mn>0</mn> </msubsup> <mo>+</mo> <msubsup> <mi>B</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mn>0</mn> </msubsup> <msubsup> <mi>sin&amp;delta;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mn>0</mn> </msubsup> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mrow> 2
<mrow> <msubsup> <mi>Q</mi> <mrow> <mi>G</mi> <mi>i</mi> </mrow> <mn>0</mn> </msubsup> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msup> <mi>&amp;lambda;</mi> <mn>0</mn> </msup> <mo>)</mo> </mrow> <msubsup> <mi>Q</mi> <mrow> <mi>L</mi> <mi>i</mi> </mrow> <mn>0</mn> </msubsup> <mo>-</mo> <msubsup> <mi>U</mi> <mi>i</mi> <mn>0</mn> </msubsup> <munder> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>&amp;Element;</mo> <msub> <mi>S</mi> <mi>B</mi> </msub> </mrow> </munder> <msubsup> <mi>U</mi> <mi>j</mi> <mn>0</mn> </msubsup> <mrow> <mo>(</mo> <msubsup> <mi>G</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mn>0</mn> </msubsup> <msubsup> <mi>sin&amp;delta;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mn>0</mn> </msubsup> <mo>-</mo> <msubsup> <mi>B</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mn>0</mn> </msubsup> <msubsup> <mi>cos&amp;delta;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mn>0</mn> </msubsup> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mrow>
In formula, variable subscript 0 represents normal operating mode, SBFor the set of bus;
UiFor bus i voltage magnitude, i ∈ SB;UjFor bus j voltage magnitude;PGi, QGiRespectively generating set i active and It is idle to exert oneself, i ∈ SG;PLi, QLiRespectively bus i active and load or burden without work, i ∈ SG;δijFor the phase angle difference between bus ij; λ0For the load growth factor under normal operating mode, for describing the fluctuation of load and its with the growth of national economy;Gij, Bij The real and imaginary parts of corresponding element respectively in bus admittance matrix;
3) inequality constraints
Inequality constraints includes node voltage constraint, generated power and idle units limits, Line Flow constraint:
<mrow> <msubsup> <munder> <mi>U</mi> <mo>&amp;OverBar;</mo> </munder> <mi>i</mi> <mi>k</mi> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>U</mi> <mi>i</mi> <mi>k</mi> </msubsup> <mo>&amp;le;</mo> <msubsup> <mover> <mi>U</mi> <mo>&amp;OverBar;</mo> </mover> <mi>i</mi> <mi>k</mi> </msubsup> <mo>,</mo> <mi>i</mi> <mo>&amp;Element;</mo> <msub> <mi>S</mi> <mi>B</mi> </msub> <mo>,</mo> <mi>k</mi> <mo>&amp;Element;</mo> <msub> <mi>S</mi> <mi>k</mi> </msub> <mo>,</mo> </mrow>
<mrow> <msub> <munder> <mi>P</mi> <mo>&amp;OverBar;</mo> </munder> <mrow> <mi>G</mi> <mi>i</mi> </mrow> </msub> <mo>&amp;le;</mo> <msubsup> <mi>P</mi> <mrow> <mi>G</mi> <mi>i</mi> </mrow> <mi>k</mi> </msubsup> <mo>&amp;le;</mo> <msub> <mover> <mi>P</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>G</mi> <mi>i</mi> </mrow> </msub> <mo>,</mo> <mi>i</mi> <mo>&amp;Element;</mo> <msub> <mi>S</mi> <mi>G</mi> </msub> <mo>,</mo> <mi>k</mi> <mo>&amp;Element;</mo> <msub> <mi>S</mi> <mi>k</mi> </msub> <mo>,</mo> </mrow>
<mrow> <msub> <munder> <mi>Q</mi> <mo>&amp;OverBar;</mo> </munder> <mrow> <mi>G</mi> <mi>i</mi> </mrow> </msub> <mo>&amp;le;</mo> <msubsup> <mi>Q</mi> <mrow> <mi>G</mi> <mi>i</mi> </mrow> <mi>k</mi> </msubsup> <mo>&amp;le;</mo> <msub> <mover> <mi>Q</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>G</mi> <mi>i</mi> </mrow> </msub> <mo>,</mo> <mi>i</mi> <mo>&amp;Element;</mo> <msub> <mi>S</mi> <mi>G</mi> </msub> <mo>,</mo> <mi>k</mi> <mo>&amp;Element;</mo> <msub> <mi>S</mi> <mi>k</mi> </msub> <mo>,</mo> </mrow>
<mrow> <msub> <munder> <mi>F</mi> <mo>&amp;OverBar;</mo> </munder> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>&amp;le;</mo> <msubsup> <mi>F</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mi>k</mi> </msubsup> <mo>&amp;le;</mo> <msub> <mover> <mi>F</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>,</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>&amp;Element;</mo> <msub> <mi>S</mi> <mi>B</mi> </msub> <mo>,</mo> <mi>k</mi> <mo>&amp;Element;</mo> <msub> <mi>S</mi> <mi>k</mi> </msub> <mo>,</mo> </mrow>
In formula, FijFor the trend between bus i to bus j on circuit;The upper and lower line of each variable is represented to dependent variable respectively Upper and lower bound.
6. the power system optimal support unit localization method according to claim 5 decomposed based on forecast failure, it is special Levy and be,
The step 5) in, the particular content of subproblem is corresponding to k-th of forecast failure:
1) object function
<mrow> <mi>min</mi> <mi> </mi> <mi>J</mi> <mo>=</mo> <munder> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>&amp;Element;</mo> <msub> <mi>S</mi> <mi>G</mi> </msub> </mrow> </munder> <mrow> <mo>(</mo> <msubsup> <mi>&amp;beta;</mi> <mi>i</mi> <mrow> <mi>k</mi> <mo>+</mo> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;beta;</mi> <mi>i</mi> <mrow> <mi>k</mi> <mo>-</mo> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>,</mo> </mrow>
In formula,The positive and negative climbing capacity slack variables of respectively generating set i;
2) equality constraint
Equality constraint is the power flow equation under forecast failure method of operation k
<mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>&amp;lambda;</mi> <mi>k</mi> </msup> </mrow> <mo>)</mo> </mrow> <msubsup> <mi>P</mi> <mrow> <mi>G</mi> <mi>i</mi> </mrow> <mi>k</mi> </msubsup> <mo>-</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>&amp;lambda;</mi> <mi>k</mi> </msup> </mrow> <mo>)</mo> </mrow> <msubsup> <mi>P</mi> <mrow> <mi>L</mi> <mi>i</mi> </mrow> <mi>k</mi> </msubsup> <mo>-</mo> <msubsup> <mi>U</mi> <mi>i</mi> <mi>k</mi> </msubsup> <munder> <mi>&amp;Sigma;</mi> <mrow> <mi>j</mi> <mo>&amp;Element;</mo> <msub> <mi>S</mi> <mi>B</mi> </msub> </mrow> </munder> <msubsup> <mi>U</mi> <mi>j</mi> <mi>k</mi> </msubsup> <mrow> <mo>(</mo> <mrow> <msubsup> <mi>G</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mi>k</mi> </msubsup> <msubsup> <mi>cos&amp;delta;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mi>k</mi> </msubsup> <mo>+</mo> <msubsup> <mi>B</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mi>k</mi> </msubsup> <msubsup> <mi>sin&amp;delta;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mi>k</mi> </msubsup> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mrow>
<mrow> <msubsup> <mi>Q</mi> <mrow> <mi>G</mi> <mi>i</mi> </mrow> <mi>k</mi> </msubsup> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msup> <mi>&amp;lambda;</mi> <mi>k</mi> </msup> <mo>)</mo> </mrow> <msubsup> <mi>Q</mi> <mrow> <mi>L</mi> <mi>i</mi> </mrow> <mi>k</mi> </msubsup> <mo>-</mo> <msubsup> <mi>U</mi> <mi>i</mi> <mi>k</mi> </msubsup> <munder> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>&amp;Element;</mo> <msub> <mi>S</mi> <mi>B</mi> </msub> </mrow> </munder> <msubsup> <mi>U</mi> <mi>j</mi> <mi>k</mi> </msubsup> <mrow> <mo>(</mo> <msubsup> <mi>G</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mi>k</mi> </msubsup> <msubsup> <mi>sin&amp;delta;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mi>k</mi> </msubsup> <mo>-</mo> <msubsup> <mi>B</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mi>k</mi> </msubsup> <msubsup> <mi>cos&amp;delta;</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mi>k</mi> </msubsup> <mo>)</mo> </mrow> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mrow>
In formula, SBFor the set of bus;UiFor bus i voltage magnitude, i ∈ SB;UjFor bus j voltage magnitude;PGi, QGiPoint Not Wei the active and idle of generating set i exert oneself, i ∈ SG;PLi, QLiRespectively bus i active and load or burden without work, i ∈ SG;δij For the phase angle difference between bus ij;λkFor the load growth factor under method of operation k, for describing the fluctuation of load and its with state The growth of people's economy; The real and imaginary parts of corresponding element respectively in bus admittance matrix;
3) inequality constraints
Inequality constraints includes the unit ramp loss after relaxation
<mrow> <msubsup> <mi>&amp;Pi;</mi> <mrow> <mi>G</mi> <mi>i</mi> </mrow> <mo>-</mo> </msubsup> <mo>-</mo> <msubsup> <mi>&amp;Delta;&amp;Pi;</mi> <mrow> <mi>G</mi> <mi>i</mi> </mrow> <mo>-</mo> </msubsup> <mo>-</mo> <msubsup> <mi>&amp;beta;</mi> <mi>i</mi> <mrow> <mi>k</mi> <mo>-</mo> </mrow> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>P</mi> <mrow> <mi>G</mi> <mi>i</mi> </mrow> <mi>k</mi> </msubsup> <mo>-</mo> <msubsup> <mi>P</mi> <mrow> <mi>G</mi> <mi>i</mi> </mrow> <mn>0</mn> </msubsup> <mo>&amp;le;</mo> <msubsup> <mi>&amp;Pi;</mi> <mrow> <mi>G</mi> <mi>i</mi> </mrow> <mo>+</mo> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;Delta;&amp;Pi;</mi> <mrow> <mi>G</mi> <mi>i</mi> </mrow> <mo>+</mo> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;beta;</mi> <mi>i</mi> <mrow> <mi>k</mi> <mo>+</mo> </mrow> </msubsup> <mo>,</mo> <mi>i</mi> <mo>&amp;Element;</mo> <msub> <mi>S</mi> <mi>G</mi> </msub> <mo>,</mo> </mrow> 3
In formula,The original positive and negative climbing capacities of respectively generating set i;
Unit climbing capacity slack variable is constrained:
<mrow> <mn>0</mn> <mo>&amp;le;</mo> <msubsup> <mi>&amp;beta;</mi> <mi>i</mi> <mrow> <mi>k</mi> <mo>-</mo> </mrow> </msubsup> <mo>,</mo> <mn>0</mn> <mo>&amp;le;</mo> <msubsup> <mi>&amp;beta;</mi> <mi>i</mi> <mrow> <mi>k</mi> <mo>+</mo> </mrow> </msubsup> <mo>,</mo> <mi>i</mi> <mo>&amp;Element;</mo> <msub> <mi>S</mi> <mi>G</mi> </msub> <mo>,</mo> </mrow>
And other operation constraints, including the constraint of forecast failure method of operation k lower nodes voltage, generated power and idle exert oneself Constraint and Line Flow constraint:
<mrow> <msub> <munder> <mi>P</mi> <mo>&amp;OverBar;</mo> </munder> <mrow> <mi>G</mi> <mi>i</mi> </mrow> </msub> <mo>&amp;le;</mo> <msubsup> <mi>P</mi> <mrow> <mi>G</mi> <mi>i</mi> </mrow> <mi>k</mi> </msubsup> <mo>&amp;le;</mo> <msub> <mover> <mi>P</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>G</mi> <mi>i</mi> </mrow> </msub> <mo>,</mo> <mi>i</mi> <mo>&amp;Element;</mo> <msub> <mi>S</mi> <mi>G</mi> </msub> <mo>,</mo> </mrow>
<mrow> <msub> <munder> <mi>Q</mi> <mo>&amp;OverBar;</mo> </munder> <mrow> <mi>G</mi> <mi>i</mi> </mrow> </msub> <mo>&amp;le;</mo> <msubsup> <mi>Q</mi> <mrow> <mi>G</mi> <mi>i</mi> </mrow> <mi>k</mi> </msubsup> <mo>&amp;le;</mo> <msub> <mover> <mi>Q</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>G</mi> <mi>i</mi> </mrow> </msub> <mo>,</mo> <mi>i</mi> <mo>&amp;Element;</mo> <msub> <mi>S</mi> <mi>G</mi> </msub> <mo>,</mo> </mrow>
<mrow> <msub> <munder> <mi>F</mi> <mo>&amp;OverBar;</mo> </munder> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>&amp;le;</mo> <msubsup> <mi>F</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> <mi>k</mi> </msubsup> <mo>&amp;le;</mo> <msub> <mover> <mi>F</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>,</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>&amp;Element;</mo> <msub> <mi>S</mi> <mi>B</mi> </msub> <mo>,</mo> </mrow>
In formula, FijFor the trend between bus i to bus j on circuit;The upper and lower line of each variable is represented to dependent variable respectively Upper and lower bound.
7. the power system optimal support unit localization method according to claim 6 decomposed based on forecast failure, it is special Levy and be,
Optimization problem corresponding to above-mentioned forecast failure method of operation k is solved, if optimization aim J non-zeros, generation such as lower inequality Constraint, add step 4) in primal problem inequality constraints in:
In formula, u0,To control variable and step 4 under normal operating mode) in solve the corresponding control that primal problem is obtained The numerical value of variable;T represents transposition;
Respectively step 4) in solve the transformation amounts of positive and negative climbing capacities of generating set i that primal problem is obtained Numerical value;
μ,The respectively dual variable of equality constraint, the inequality constraints that the constraint of climbing capacity lower limit and the upper limit are constrained Dual variable.
CN201710347116.6A 2017-05-17 2017-05-17 A kind of optimal support unit localization method of electric system decomposed based on forecast failure Active CN107086568B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710347116.6A CN107086568B (en) 2017-05-17 2017-05-17 A kind of optimal support unit localization method of electric system decomposed based on forecast failure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710347116.6A CN107086568B (en) 2017-05-17 2017-05-17 A kind of optimal support unit localization method of electric system decomposed based on forecast failure

Publications (2)

Publication Number Publication Date
CN107086568A true CN107086568A (en) 2017-08-22
CN107086568B CN107086568B (en) 2019-11-12

Family

ID=59609037

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710347116.6A Active CN107086568B (en) 2017-05-17 2017-05-17 A kind of optimal support unit localization method of electric system decomposed based on forecast failure

Country Status (1)

Country Link
CN (1) CN107086568B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108808738A (en) * 2018-05-29 2018-11-13 国电南瑞科技股份有限公司 A kind of power grid security Corrective control method considering constraint priority
CN109586275A (en) * 2018-10-18 2019-04-05 清华大学 The quick start method and device of alternating current-direct current combined hybrid system electromagnetic transient simulation
CN110336590A (en) * 2019-07-23 2019-10-15 广东电网有限责任公司 A kind of Fault Locating Method of power telecom network, device and equipment
CN110556824A (en) * 2019-08-23 2019-12-10 广西电网有限责任公司 Power transmission capacity improving method based on bus splitting

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102684224A (en) * 2012-05-25 2012-09-19 浙江大学 Unit combination method for resolving and considering wind power volatility
CN106096751A (en) * 2016-05-15 2016-11-09 国电南瑞科技股份有限公司 Consider that new forms of energy access and participate in Short Term Generation Schedules arrangement and standby Optimal Configuration Method with Demand Side Response

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102684224A (en) * 2012-05-25 2012-09-19 浙江大学 Unit combination method for resolving and considering wind power volatility
CN106096751A (en) * 2016-05-15 2016-11-09 国电南瑞科技股份有限公司 Consider that new forms of energy access and participate in Short Term Generation Schedules arrangement and standby Optimal Configuration Method with Demand Side Response

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108808738A (en) * 2018-05-29 2018-11-13 国电南瑞科技股份有限公司 A kind of power grid security Corrective control method considering constraint priority
CN108808738B (en) * 2018-05-29 2021-07-13 国电南瑞科技股份有限公司 Power grid safety correction control method considering constraint priority
CN109586275A (en) * 2018-10-18 2019-04-05 清华大学 The quick start method and device of alternating current-direct current combined hybrid system electromagnetic transient simulation
CN109586275B (en) * 2018-10-18 2020-07-07 清华大学 Quick starting method and device for electromagnetic transient simulation of alternating current-direct current hybrid system
CN110336590A (en) * 2019-07-23 2019-10-15 广东电网有限责任公司 A kind of Fault Locating Method of power telecom network, device and equipment
CN110556824A (en) * 2019-08-23 2019-12-10 广西电网有限责任公司 Power transmission capacity improving method based on bus splitting
CN110556824B (en) * 2019-08-23 2024-08-23 广西电网有限责任公司 Power transmission capacity improving method based on bus splitting

Also Published As

Publication number Publication date
CN107086568B (en) 2019-11-12

Similar Documents

Publication Publication Date Title
Joos Wind turbine generator low voltage ride through requirements and solutions
Kim et al. Supercapacitor to provide ancillary services with control coordination
CN107086568A (en) A kind of optimal support unit localization method of power system decomposed based on forecast failure
Le et al. Operating compressed‐air energy storage as dynamic reactive compensator for stabilising wind farms under grid fault conditions
Sheikh et al. Smoothing control of wind generator output fluctuations by PWM voltage source converter and chopper controlled SMES
Rezaei et al. Impacts of integration of very large‐scale photovoltaic power plants on rotor angle and frequency stability of power system
Hasan et al. Virtual inertial support extraction using a super‐capacitor for a wind‐PMSG application
Chivukula et al. Analysis and control of modular multilevel converter‐based E‐STATCOM to integrate large wind farms with the grid
Canever et al. Model validation and coordinated operation of a photovoltaic array and a diesel power plant for distributed generation
CN106374453A (en) Electric power system reconstruction method
Kong et al. Modeling and coordinated control strategy of large scale grid‐connected wind/photovoltaic/energy storage hybrid energy conversion system
Chowdhury et al. Optimal placement and sizing of renewable distributed generation in electricity networks considering different load models
Murray et al. Applications of supercapacitor energy storage for a wave energy converter system
Sharma et al. Control of reactive power of autonomous wind-diesel hybrid power systems
Li et al. A research on the operational characteristics of WPT considering reliability limitation
CN116707023A (en) Active power distribution network layering and partitioning comprehensive optimization method based on source-load correlation clustering
Guo et al. Energy curtailment analysis of offshore wind farms with DC series-parallel collection systems
Efe et al. A novel approach to power flow analysis for grid connected micro grid
Zhao et al. Inverter‐side robust damping controller design of hybrid HVDC with cascaded multi‐infeed MMC converters in asynchronous situation
Dakovic et al. Effectiveness of wind turbine fast frequency response control on electrically distanced active power disturbance mitigation
Li et al. Wind farms reactive power optimization using genetic/tabu hybrid algorithm
Ramírez‐González et al. Assessment of inertial and primary frequency control from wind power plants in the Mexican electric power grid
Li et al. The Simplified Model of Back-To-Back PWM Converter
Qudaih et al. Simulation studies on ECS application in a clean power distribution system
Shamraiz Optimal Volt Var control in Smart Distribution Networks

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant