发明详述
本申请的以下描述只为说明本申请的多种实施方式。因此,此处讨论的具体修改方式不应理解为对申请范围的限制。本领域的技术人员在不偏离本申请范围的情况下即可很容易地得出多种等同方式,变化和修改,应理解这样的等同实施方式包括在本发明范围内。在本申请中引用的所有文献,包括公开出版物、专利和专利申请都通过引用的方式全文并入。
定义
本发明中的“抗体”一词包括任意可结合某特定抗原的免疫球蛋白、单克隆抗体、多克隆抗体、多特异性抗体或双特异性(双价)抗体。一个天然的完整抗体包含两条重链和两条轻链。每条重链由一可变区和第一、第二、第三恒定区组成;每条轻链由一可变区和一恒定区组成。哺乳动物的重链可分为α、δ、ε、γ和μ,哺乳动物的轻链可分为λ或κ。抗体呈“Y”型,“Y”型结构的颈部由两条重链的第二和第三恒定区组成,其通过二硫键结合。“Y”型结构的每条臂包括其中一条重链的可变区和第一恒定区,其与一条轻链的可变区和恒定区结合。轻链和重链的可变区决定抗原的结合。每条链的可变区均含有三个高变区,称互补决定区(CDR)(轻链(L)的CDR包含LCDR1、LCDR2、LCDR3,重链(H)的CDR包含HCDR1、HCDR2、HCDR3)。本发明中公开的抗体和抗原结合片段的CDR边界可通过Kabat,Chothia或Al-Lazikani命名法命名或识别。(Al-Lazikani,B.,Chothia,C.,Lesk,A.M.,J.Mol.Biol.,273(4),927(1997);Chothia,C.等,J Mol Biol.Dec 5;186(3):651-63(1985);Chothia,C.and Lesk,A.M.,J.Mol.Biol.,196,901(1987);Chothia,C.等,Nature.Dec21-28;342(6252):877-83(1989);Kabat E.A.等,National Institutes of Health,Bethesda,Md.(1991))。其中,三个CDR由被称为框架区(FR)的侧面连续部分间隔开,框架区比CDR 更加高度保守并形成一个支架支撑超变环。重链和轻链的恒定区与抗原结合无关,但具有多种效应功能。抗体依据重链恒定区的氨基酸序列可以分成几类。根据是否含有α、δ、ε、γ和μ重链,抗体可分别分为五个主要的分类或异构体:IgA、IgD、IgE、IgG和IgM。几个主要的抗体分类还可分为亚类,如IgG1(γ1重链)、IgG2(γ2重链)、IgG3(γ3重链)、IgG4(γ4重链)、IgA1(α1重链)或IgA2(α2重链)等。
本申请中的“抗原结合片段”一词,指由含有一个或多个CDR的抗体部分或者任何其他结合抗原但不具有完整抗体结构的抗体片段所形成的一种抗体片段。抗原结合片段的例子包括,但不限于,如双功能抗体(diabody)、Fab、Fab'、F(ab')2、Fv片段、二硫键稳定的Fv片段(dsFv)、(dsFv)2、双特异性dsFv(dsFv-dsFv')、二硫键稳定的双功能抗体(dsdiabody)、单链抗体分子(scFv)、scFv二聚体(双价的双功能抗体)、双价单链抗体(BsFv)、多特异性抗体、骆驼化单域抗体(camelized single domain antibody)、纳米抗体、域抗体和双价域抗体。抗原结合片段可以与母体抗体结合相同的抗原。在某些实施方式中,抗原结合片段可以含有来自某特定人抗体的一个或多个CDR,移接至来自一个或多个不同人抗体的框架区。
抗体的“Fab”片段是指由一条轻链(包括可变区和恒定区)和一条重链的可变区和恒定区经二硫键结合起来的那部分抗体分子。
“Fab'”片段是指包含了部分铰链区的Fab片段。
“F(ab')2”指的是Fab的二聚体。
抗体的“Fc”指的是由重链的第二、第三恒定区经二硫键结合组成的那部分抗体。抗体的Fc段负责多种不同的效应功能如ADCC和CDC,但不参与抗原的结合。
抗体的“Fv”段指的是含有完整抗原结合位点的最小抗体片段。Fv片段由一条轻链的可变区和一条重链的可变区组成。
“单链Fv抗体”或“scFv”是指由轻链可变区与重链可变区直接相连或通过一个肽链连接而成的工程抗体(Huston JS等,Proc Natl Acad Sci USA,85:5879(1988))。
“单链抗体Fv-Fc”或“scFv-Fc”是指由连接到某抗体Fc段的scFv组成的工程抗体。
“骆驼化单域抗体(Camelized single domain antibody)”、“重链抗体”或“HCAb(Heavy-chain-only antibodies,HCAb)”都是指含有两个VH域而不含有轻链的抗体(Riechmann L.和Muyldermans S.,J Immunol Methods.Dec 10;231(1-2):25-38(1999);Muyldermans S.,J Biotechnol.Jun;74(4):277-302(2001);WO94/04678;WO94/25591;U.S.Patent No.6,005,079)。重链抗体最初从驼科(骆驼、单峰驼和美洲驼)衍生得到。虽然缺失轻链,骆驼化抗体(camelized antibodies)有确证的抗原结合全部功能(Hamers-Casterman C.等,Nature.Jun 3;363(6428):446-8(1993);Nguyen VK.等,“Heavy-chainantibodies in Camelidae;a case of evolutionary innovation,”Immunogenetics.Apr;54(1):39-47(2002);Nguyen VK.等,Immunology.May;109(1):93-101(2003))。重链抗体的可变区(VHH域)是最小的已知的获得性免疫产生的抗原结合单位(Koch-Nolte F.等,FASEB J.Nov;21(13):3490-8.Epub 2007Jun 15(2007))。
“纳米抗体”是指一种抗体片段,其由一个来自重链抗体的VHH域和两个恒定区CH2和CH3组成。
“双功能抗体(diabody)”包括带有两个抗原结合位点的小抗体片段,其中该片段含有在同一条多肽链上相连的VH域和VL域(VH-VL或VH-VL)(请参见,Holliger P.等,ProcNatl Acad Sci U S A.Jul 15;90(14):6444-8(1993);EP404097;WO93/11161)。两个域之间衔接物很短,使同一条链上的两个域不能互相配对,从而迫使两个域与另一条链的互补域配对,形成两个抗体结合位点。这两个抗体结合位点可靶向结合相同或不同的抗原(或抗原表位)。
“域抗体”是指仅含有一条重链可变区或一条轻链可变区的抗体片段。在某些情况下,两个或多个VH域由一个多肽衔接物共价结合并形成双价域抗体。双价域抗体的两个VH域可靶向作用于相同或不同的抗原。
在某些实施方式中,“(dsFv)2”含有三条肽链:两个VH基团间通过一条多肽衔接物相连,并通过二硫键与两个VL基团结合。
在某些实施方式中,“双特异性ds双功能抗体”含有VL1-VH2(由一个多肽衔接物相连)和VH1-VL2(也是由一个多肽衔接物相连),两者在VH1和VL1间通过二硫键结合。
“双特异性dsFv”或“dsFv-dsFv”含有三条多肽链:VH1-VH2基团,其中两者的重链通过多肽衔接物(如:长的弹性衔接物)相连,并通过二硫键分别与VL1和VL2基团结合,每对通过二硫键配对的重链轻链具有不同的抗原特异性。
在某些实施方式中,“scFv二聚体”是双价双功能抗体或双价单链抗体(BsFv),含有二聚化的两个VH-VL(由多肽衔接物连接)基团,其中一个基团的VH与另一个基团的VL协作形成两个结合位点,这两个结合位点可靶向结合相同抗原(或抗原表位)或不同抗原(或抗原表位)。在另一些实施方式中,“scFv二聚体”是双特异性双功能抗体,含有相互连接的VL1-VH2(由多肽衔接物连接)和VH1-VL2(由多肽衔接物连接),其中VH1和VL1协作,VH2和VL2协作,且每个协作的配对具有不同的抗原特异性。
本申请中使用的术语“全人源”当用于抗体或抗原结合片段时,是指所述抗体或抗原结合片段具有某氨基酸序列或由所述氨基酸序列组成,所述氨基酸序列对应于由人或人免疫细胞生产的、或从例如利用人源抗体库的转基因非人动物等非人来源衍生的抗体的氨基酸序列,或者其他编码人源抗体的序列。在某些实施方式中,全人源抗体不包含来源于非人抗体的氨基酸残基(特别是抗原结合残基)。
本申请中使用的术语“人源化”当用于抗体或抗原结合片段时,是指包括来源于非人动物的CDR、来源于人的FR区,以及来源于人的恒定区(当适用时)的抗体或抗原结合片段。由于人源化的抗体或抗原结合片段具有降低的免疫原性,其在某些实施方式中可用作人的治疗剂。在一些实施方式中,所述非人动物是哺乳动物例如小鼠、大鼠、兔、山羊、绵羊、豚鼠或仓鼠。在一些实施方式中,所述人源化抗体或抗原结合片段除了CDR序列是非人源的以外,基本上全部由人源序列组成。在一些实施方式中,所述来源于人的FR区可以包括与其来自的人源抗体相同的氨基酸序列,或其可以包括一些氨基酸改变,例如,不超过10、9、8、7、6、5、4、3、2或1个氨基酸改变。在一些实施方式中,该氨基酸改变可以仅存在于重链FR区、仅存在于轻链FR区或同时存在于两个链中。在一些优选实施方式中,所述人源化抗体包括人源FR1-3和人源JH和Jκ。
本申请中使用的术语“嵌合”是指具有来源于一种物种的重链和/或轻链的一部分,和所述重链和/或轻链其余部分来源于不同物种的抗体或抗原结合片段。在一个示例性的例子中,嵌合抗体可以包括来源于人的恒定区和来源于非人动物例如小鼠的可变区。
本申请中使用的“PD-L1”是指程序性细胞死亡配体1(PD-L1,参见例如Freeman etal.(2000)J.Exp.Med.192:1027)。代表性的人源PD-L1的氨基酸序列为NCBI登记号:NP_054862.1,且代表性的人源PD-L1的核酸序列为NCBI登记号:NM_014143.3。PD-L1表达于胎盘,脾,淋巴结,胸腺,心脏,胎儿肝脏,并且还发现存在于许多肿瘤或癌细胞上。PD-L1与在活化的T细胞、B细胞和骨髓细胞上表达的受体PD-1或B7-1结合。PD-L1与其受体的结合可引发信号转导来抑制TCR介导的对细胞因子生产的激活和T细胞增殖。因此,PD-L1在特定事件中,例如在怀孕、自身免疫性疾病、组织移植中对抑制免疫系统起着主要作用,并且其被认为允许肿瘤或癌细胞规避免疫检查点并逃避免疫应答。
本申请中使用的“抗-PD-L1抗体”是指能够以足以提供诊断和/或治疗用途的亲和性与PD-L1(例如人或猴PD-L1)特异性结合的抗体。
本申请中的“特异性结合”或“特异性的结合”是指,指两分子间的非随机结合反应,如抗体和抗原间的反应。在某些实施方式中,本申请的抗体或其抗原结合片段与人和/或猴PD-L1特异性结合,并且其结合亲和力(KD)≤10-6M(如:≤5x10-7M,≤2x10-7M,≤10-7M,≤5x10-8M,≤2x10-8M,≤10-8M,≤5x10-9M,≤2x10-9M,≤10-9M,≤10-10M,约10-10M、10-10M至10-9M、10-10M至10-8.5M或10-10M至10-8M)。本申请中的KD是指解离速度与结合速度的比值(koff/kon),可通过表面等离子共振的方法测定,例如使用如Biacore的仪器。
本申请中的“阻断结合”或“竞争性同样的表位”的能力是指抗体或其抗原结合片段将两个分子间结合(例如人PD-L1和抗-PD-L1抗体)的相互作用抑制到任何可检测的程度的能力。在某些实施方式中,阻断两个分子间结合的抗体或抗原结合片段可将两个分子间结合的相互作用抑制至少50%。在某些实施方式中,这样的抑制作用可以大于60%,大于70%,大于80%,或大于90%。
本申请中使用的“表位”是指抗原分子中与抗体结合的那部分氨基酸或原子基团。如果两种抗体表现出对抗原的竞争性结合,则可能结合抗原上的相同表位。例如,如果本申请提供的抗体或其抗原结合片段阻断示例抗体,例如1.4.1、1.14.4、1.20.15和1.46.11与人PD-L1的结合,那么所述抗体或其抗原结合片段可以被认为与那些示例的抗体结合相同的表位。
将在表位中特定的氨基酸残基通过例如丙氨酸扫描突变(alanine scanningmutagenesis)而进行突变,鉴定了降低或阻止蛋白结合的突变。“丙氨酸扫描突变”是可以用于鉴定影响表位与其他与其结合的化合物或蛋白质相互作用的蛋白质的某些残基或区域的方法。将蛋白质中的残基或一组目标残基通过中性或负性电荷氨基酸取代(最优选丙氨酸或多聚丙氨酸,或保守的氨基酸取代)。任何降低所述蛋白质的结合的氨基酸残基突变或编码其的密码子突变的程度超过阈值或与其他突变相比最大化降低所述蛋白质结合的突变都有可能在所述蛋白结合的表位中。在本申请的某些实施方式中,对PD-L1抗体重要的表位包括以下至少一个氨基酸残基E58、E60、D61、K62、N63和R113。
本申请中使用的“1.4.1”是指具有如SEQ ID NO:43所示的重链可变区、如SEQ IDNO:45所示的轻链可变区和人源IgG4同种型恒定区的全人源单克隆抗体。
本申请中使用的“1.14.4”是指具有如SEQ ID NO:47所示的重链可变区、如SEQ IDNO:49所示的轻链可变区和人源IgG4同种型恒定区的全单克隆人源抗体。
本申请中使用的“1.20.15”是指具有如SEQ ID NO:51所示的重链可变区、如SEQID NO:53所示的轻链可变区和人源IgG4同种型恒定区的全单克隆人源抗体。
本申请中使用的“1.46.11”是指具有如SEQ ID NO:55所示的重链可变区、如SEQID NO:49所示的轻链可变区和人源IgG4同种型恒定区的全单克隆人源抗体。
在本申请中当“保守替代”用于氨基酸序列时,是指将一个氨基酸残基用另一个具有相似理化性质的侧链的氨基酸残基替代。例如,可以在疏水侧链氨基酸残基间(例如Met、Ala、Val、Leu和Ile)、中性亲水侧链残基间(例如Cys、Ser、Thr、Asn和Gln)、酸性侧链残基间(例如Asp、Glu)、碱性侧链氨基酸间(例如His、Lys和Arg)或方向侧链残基间(例如Trp、Tyr和Phe)进行保守替代。本领域已知保守替代通常不会引起蛋白构象结构的显著变化,因此能够保留蛋白质的生物活性。
当“百分比序列同一性”用于氨基酸序列(或核酸序列)时,是指在进行序列比对,并且必要时引入间隔使相同氨基酸(或核酸)数目达到最多后,在候选序列中,与参比序列相同的氨基酸(或核酸)残基占所述候选序列的氨基酸(或核酸)残基的百分比。所述氨基酸残基的保守替代可以认为或可以不认为是相同残基。可以通过本领域公开的工具,例如BLASTN,BLASTp(美国国家生物技术信息中心网站(NCBI),也可参见,Altschul S.F.等、J.Mol.Biol.,215:403–410(1990);Stephen F.等,Nucleic Acids Res.,25:3389–3402(1997))、ClustalW2(欧洲生物信息研究所网站,可参见,Higgins D.G.等,Methods inEnzymology,266:383-402(1996);Larkin M.A.等,Bioinformatics(Oxford、England),23(21):2947-8(2007))和ALIGN或Megalign(DNASTAR)软件,对序列进行比对以确定氨基酸(或核酸)序列的百分比序列同一性。本领域技术人员可以使用所述工具的默认参数或根据比对的需要适当调整参数,例如通过挑选合适的算法。
本申请中使用的“T细胞”包括CD4+T细胞、CD8+T细胞、T辅助1型T细胞、T辅助2型T细胞、T辅助17型T细胞和抑制性T细胞。
本申请中使用的“效应功能”是指抗体的Fc区与其效应器例如C1复合物和Fc受体结合的生物活性。示例性的效应功能包括抗体与C1复合物上的C1q相互作用诱导的补体依赖性细胞毒性(CDC)、抗体的Fc区与效应细胞上的Fc受体结合诱导的抗体依赖性细胞介导的细胞毒性(ADCC)以及吞噬。
本申请中的“癌症”或“癌状况”是指任何由肿瘤或恶性细胞生长、增殖或转移所介导,并引发实体瘤和非实体瘤如白血病的医学状况。本发明中的“肿瘤”是指肿瘤和/或恶性细胞的实体物质。
对某种状况的“治疗”或“疗法”包括预防或减轻某种状况,降低某种状况兴起或发展的速度,减少发展出某种状况的风险,预防或延迟与某种状况相关的症状发展,减少或终止与某种状况相关的症状,产生某种状况的完全或部分的逆转,治愈某种状况,或以上的组合。对于癌症来说,“治疗”或“疗法”可以指抑制或减缓肿瘤或恶性细胞生长,繁殖,或转移,或以上的某些组合。对于肿瘤来说,“治疗”或“疗法”包括清除全部或部分的肿瘤,抑制或减缓肿瘤生长和转移,预防或延缓肿瘤的发展,或以上的某些组合。
“被分离”的物质已经经人工由自然状态改变。如果自然界中出现某种“被分离”的物质或成分,那么其已经被改变或脱离其原始状态,或二者均有发生。例如,某一活体动物体内天然存在的多核苷酸或多肽是未被分离的,但如果这些多核苷酸或多肽与之在天然状态下共存的物质足够分离并以足够纯的状态存在,则可以认为是“被分离”。在某些实施方式中,抗体和抗原结合片段的纯度为至少90%、93%、95%、96%、97%、98%、99%,其由电泳方法(如SDS-PAGE、等电聚焦、毛细管电泳),或色谱法(如离子交换色谱或反相HPLC)确定。
本发明中“载体”是指,可将编码某蛋白的多核苷酸操作性地插入其中并使该蛋白获得表达的一种运载工具。载体可用于转化、转导或转染宿主细胞,使其携带的遗传物质元件在宿主细胞内得以表达。举例来说,载体包括:质粒、噬菌粒、柯斯质粒、人工染色体如酵母人工染色体(YAC)、细菌人工染色体(BAC)或P1衍生的人工染色体(PAC)、噬菌体如λ噬菌体或M13噬菌体,以及动物病毒等。用作载体的动物病毒种类有逆转录病毒(包括慢病毒)、腺病毒、腺相关病毒、疱疹病毒(如单纯疱疹病毒)、痘病毒、杆状病毒、乳头瘤病毒、乳头多瘤空泡病毒(如SV40)。载体可含有多种控制表达的元件,包括启动子序列、转录起始序列、增强子序列、选择元件及报告基因。另外,载体还可含有复制起始位点。载体还可包括协助其进入细胞的成分,包括但不限于,病毒颗粒、脂质体或蛋白外壳。
本发明中“宿主细胞”是指导入外源多核苷酸和/或载体的细胞。
本发明中的“与PD-L1相关或有关联的疾病”是指,任何由于PD-L1(如:人PD-L1)表达或活性升高或降低而导致、加剧或其他相关的状况。
本发明中的“治疗有效量”或“有效剂量”是指,某种药物有效治疗与人PD-L1相关疾病或状况的剂量或浓度。例如,对于本发明中公开的抗体或其抗原结合片段的用途来说,治疗有效量是在该剂量或浓度下,该抗体或抗原结合物可以清除全部或部分肿瘤、抑制或减缓肿瘤生长、抑制介导癌状况的细胞的生长或繁殖、抑制肿瘤细胞转移、减轻任何与肿瘤或癌状况相关的症状或标记,预防或延缓肿瘤或癌状况的发展,或以上的某些组合。
“药用可接受的”是指所指的载剂、溶媒、稀释剂、辅料和/或盐,总的来说在化学上和/或在物理上与制剂中的其他配料相兼容,并在生理上与接受者相兼容。
抗-PD-L1抗体
在一个方面,本发明提供了抗-PD-L1抗体和其抗原结合片段。PD-1,也称为CD279,是已知的由活化T细胞表达的关键免疫检查点受体,其调节免疫抑制作用。PD-1配体1(PD-L1)是表达在多种肿瘤细胞、基质细胞或两者上的40kDa的跨膜蛋白,其与PD-1结合。抑制PD-1和PD-L1间的相互作用能够提高T细胞应答由此介导抗癌活性。
在某些实施方式中,本申请提供了示例性的全人源单克隆抗体1.4.1、1.14.4、1.20.15和1.46.11,其CDR序列如表1中所示,并且重链或轻链可变区序列也如下列出。
表1
1.4.1-VH(30511):(SEQ ID NO:43为氨基酸,SEQ ID NO:44为核酸)重链CDR1-3:SEQ ID NO:1、3、5为氨基酸序列和SEQ ID NO:2、4、6为核酸序列。
V区段:IGHV4-39*01
D区段:IGHD1-26*01
J区段:IGHJ4*02
1.4.1-VL(30027):(SEQ ID NO:45为氨基酸和SEQ ID NO:46为核酸)轻链CDR1-3:SEQ ID NOs:7、9、11为氨基酸序列和SEQ ID NO:8、10、12为核酸序列:
V区段:IGLV3-1*01
J区段:IGLJ2*01
1.14.4-VH(29812):(SEQ ID NO:47为氨基酸,SEQ ID NO:48为核酸)重链CDR1-3:SEQ ID NOs:13、15、17为氨基酸序列和SEQ ID NO:14、16、18为核酸序列:
V区段:IGHV3-23*01
D区段:IGHD5-5*01
J区段:IGHJ4*02
1.14.4-VL和1.46.11-VL(29841):(SEQ ID NO:49为氨基酸,SEQ ID NO:50为核酸)轻链CDR1-3:SEQ ID NOs:19、21、23为氨基酸序列和SEQ ID NO:20、22、24为核酸序列:
V区段:IGLV3-21*02
J区段:IGLJ2*01
1.20.15-VH(30712):(SEQ ID NO:51为氨基酸,SEQ ID NO:52为核酸)轻链CDR1-3:SEQ ID NOs:25、27、29为氨基酸序列和SEQ ID NO:26、28、30为核酸序列:
V区段:IGHV4-39*01
D区段:未确定
J区段:IGHJ4*02
1.20.15-VL(29907):(SEQ ID NO:53为氨基酸,SEQ ID NO:54为核酸)轻链CDR1-3:SEQ ID NOs:31、33、35为氨基酸序列和SEQ ID NO:32、34、36为核酸序列:
V区段:IGLV3-1*01
J区段:IGLJ2*01
1.46.11-VH(30626):(SEQ ID NO:55为氨基酸,SEQ ID NO:56为核酸)轻链CDR1-3:SEQ ID NOs:37、39、41为氨基酸序列和SEQ ID NO:38、40、42为核酸序列:
V区段:IGHV3-23*01
D区段:IGHD5-5*01
J区段:IGHJ4*02
1.46.11-VL(29841):(SEQ ID NO:49为氨基酸,SEQ ID NO:50为核酸)轻链CDR1-3:SEQ ID NOs:19、21、23为氨基酸序列和SEQ ID NO:20、22、24为核酸序列:
V区段:IGLV3-21*02
J区段:IGLJ2*01
在一些实施方式中,所述抗-PD-1抗体和其抗原结合片段包括选自下组的重链CDR序列:SEQ ID NO:1、3、5、13、15、17、25、27、29、37、39和41。在一些实施方式中,所述抗-PD-L1抗体和其抗原结合片段包括选自下组的轻链CDR序列:SEQ ID NO:7、9、11、19、21、23、31、33和35。
在一些实施方式中,所述抗-PD-L1抗体和其抗原结合片段包括选自下组的重链可变区:重链可变区,其包括SEQ ID NO:1、SEQ ID NO:3、和/或SEQ ID NO:5;重链可变区,其包括SEQ ID NO:13、SEQ ID NO:15、和/或SEQ ID NO:17;重链可变区,其包括SEQ ID NO:25、SEQ ID NO:27和/或SEQ ID NO:29;以及重链可变区,其包括SEQ ID NO:37、SEQ ID NO:39和/或SEQ ID NO:41。
在一些实施方式中,所述抗-PD-L1抗体和其抗原结合片段包括选自下组的轻链可变区:轻链可变区,其包括SEQ ID NO:7、SEQ ID NO:9和/或SEQ ID NO:11;轻链可变区,其包括SEQ ID NO:19、SEQ ID NO:21和/或SEQ ID NO:23;以及轻链可变区,其包括SEQ IDNO:31、SEQ ID NO:33和/或SEQ ID NO:35。
在一些实施方式中,所述抗-PD-L1抗体和其抗原结合片段包括:a)重链可变区,其包括SEQ ID NO:1、SEQ ID NO:3、和/或SEQ ID NO:5;和轻链可变区,其包括SEQ ID NO:7、SEQ ID NO:9和/或SEQ ID NO:11;b)重链可变区,其包括SEQ ID NO:13、SEQ ID NO:15和/或SEQ ID NO:17;和轻链可变区,其包括SEQ ID NO:19、SEQ ID NO:21和/或SEQ ID NO:23;c)重链可变区,其包括SEQ ID NO:25、SEQ ID NO:27和/或SEQ ID NO:29;和轻链可变区,其包括SEQ ID NO:31、SEQ ID NO:33和/或SEQ ID NO:35;以及d)重链可变区,其包括SEQ IDNO:37、SEQ ID NO:39和/或SEQ ID NO:41;和轻链可变区,其包括SEQ ID NO:19、SEQ IDNO:21和/或SEQ ID NO:23。
本领域技术人员应理解可以将表1中提供的CDR序列进行修饰以包含一个或更多氨基酸的取代,由此得到提高的生物学活性例如提高的与人PD-L1的结合亲和性。例如,可以利用噬菌体展示技术生产并表达抗体变体库(例如Fab或FcFv变体),随后筛选与人PD-L1有亲和性的抗体。另一个例子中,可以用计算机软件模拟所述抗体与人PD-L1的结合并鉴别抗体上形成结合界面的氨基酸残基。可以避免这些残基的替代以防止结合亲和性降低,或可以靶向这些残基进行替代以形成更强的结合。在某些实施方式中,CDR序列中的至少一个(或全部)取代是保守替代。
在某些实施方式中,所述抗体和抗原结合片段包括一个或多个CDR序列,这些序列具有与表1中所列的序列至少80%(例如至少85%、88%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%)的序列同一性,并且同时保留了与其亲本抗体相似或甚至高于其的与人PD-L1的结合亲和性,所述亲本抗体具有基本相同的序列,但其相应的CDR序列与表1所列的序列具有100%序列同一性。
在某些实施方式中,所述抗-PD-1抗体和其抗原结合片段是全人源的。所述全人源抗体在人体中没有如经常在人源化的抗体中观察到的免疫原性或降低的结合亲和性等问题。
在一些实施方式中,所述全人源抗-PD-L1抗体和其抗原结合片段包括重链可变区,其中所述重链可变区选自SEQ ID NO:43、SEQ ID NO:47、SEQ ID NO:51、SEQ ID NO:55,和与之具有至少80%(例如至少85%、88%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%)序列同一性的同源序列;和/或轻链可变区,其中所述轻链可变区选自SEQ IDNO:45、SEQ ID NO:49、SEQ ID NO:53,和与之具有至少80%(例如至少85%、88%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%)序列同一性的同源序列。这些全人源抗体保留了与人PD-L1的结合亲和性,优选地与示例性抗体:1.4.1、1.14.4、1.20.15和1.46.11的水平相似。
在一些实施方式中,所述全人源抗-PD-L1抗体和其抗原结合片段包括a)重链可变区,其包括SEQ ID NO:43;和轻链可变区,其包括SEQ ID NO:45;b)重链可变区,其包括SEQID NO:47;和轻链可变区,其包括SEQ ID NO:49;c)重链可变区,其包括SEQ ID NO:51;和轻链可变区,其包括SEQ ID NO:53;或d)重链可变区,其包括SEQ ID NO:55;和轻链可变区,其包括SEQ ID NO:49。
本申请还包括了与本申请抗-PD-L1抗体和其抗原结合片段竞争相同表位的抗体和其抗原结合片段。在某些实施方式中,所述抗体以低于10-6M、低于10-7M、低于10-7.5M、低于10-8M、低于10-8.5M或低于10-9M或低于10-10M的IC50值(即半数抑制浓度)阻断1.4.1、1.14.4、1.20.15和1.46.11与人或猴PD-L1的结合。IC50值通过竞争性测试例如ELISA测定,放射性配体竞争结合测定法,和FACS分析确定。
在一些实施方式中,本申请所述抗-PD-L1抗体和其抗原结合片段能够以≤10-6M(e.g.,≤5x10-7M、≤2x10-7M、≤10-7M、≤5x10-8M、≤2x10-8M、≤10-8M、≤5x10-9M、≤2x10-9M、≤10-9M、10-10M,约10-10M、10-10M至10-8.5M或10-10M至10-8M)的结合亲和性(Kd)与人PD-L1特异性结合,其通过等离子共振结合法测量。结合亲和性可以用KD值表示,其通过当抗原和抗原结合分子的结合达到平衡时的解离速率与结合速率的比值(koff/kon)计算得到。所述抗原结合亲和性(例如KD)可以通过本领域已知的适宜方法适宜地确定,所述方法包括使用仪器如如Biacore的等离子共振结合法(参加例如Murphy,M.et al,Current protocols inprotein science,Chapter 19,unit19.14,2006)。
在某些实施方式中,本申请所述抗体和其抗原结合片段与人PD-L1以0.1nM-100nM(例如0.1nM-50nM、0.1nM-30nM、0.1nM-20nM或0.1nM-10nM或0.1nM-1nM)的EC50(即半数结合浓度)结合。所述抗体与人PD-L1的结合可以通过本领域已知的方法如夹心法如ELISA,Western印迹,FACS或其他结合试验测定。在示例性的例子中,将待测抗体(即一抗)与固定化的人PD-L1或表达人PD-L1的细胞结合,随后洗掉未结合抗体,引入标记的二抗,其能够与一抗结合因此能够检测出结合的一抗。当使用固定化的PD-L1时可在酶标仪板上进行所述检测,或当使用表达人PD-L1的细胞时可使用FACS分析进行所述检测。在某些实施方式中,本申请所述抗体和其抗原结合片段以1nM至10nM或1nM至5nM(使用FACS分析测定)的EC50(即50%的有效浓度)与人PD-L1结合。
在某些实施方式中,本申请所述抗体和其抗原结合片段以0.2nM-100nM(例如0.2nM-50nM、0.2nM-30nM、0.2nM-20nM、0.2nM-10nM或1nM-10nM)的IC50抑制人PD-L1与其受体的结合,其通过竞争性测试测得。
在某些实施方式中,本申请所述抗体和其抗原结合片段抑制人PD-L1与其受体的结合,并由此提供了包括例如诱导活化的T细胞产生细胞因子(如CD4+T细胞和CD8+T细胞)、诱导活化的T细胞的增殖(如CD4+T细胞和CD8+T细胞)和逆转调节性Treg的抑制性功能的生物学活性。示例性的细胞因子包括IL-2和IFNγ。术语“IL-2”是指白细胞介素2,其是细胞因子信号传导分子,在免疫系统中调节的白血细胞(例如白细胞)的活性的。术语“干扰素γ(IFNγ)”是由天然杀伤(NK)细胞,NK T细胞,CD4+和CD8+T细胞产生的细胞因子,其是巨噬细胞的重要的活化剂和主要组织相容性复合物诱导体(MHC)分子表达的诱发剂。细胞因子的产生可以通过本领域已知的方法确定,如ELISA。这些方法也可以用来检测T细胞增殖,包括[3H]胸苷掺入测定。
所述抗-PD-L1抗体和其抗原结合片段是人PD-L1特异性的。在某些实施方式中,所述抗体和其抗原结合片段不与PD-L2结合(如人PD-L2)。例如,与PD-L2的结合亲和性比人PD-L1的结合亲和性的15%、10%、9%、8%、7%、6%、5%、4%、3%、2%或1%还要低。
在某些实施方式中,所述抗体和其抗原结合片段以不高于100nM,例如,不高于10nM、9nM、8nM、7nM、6nM、5nM、4nM、3nM、2nM、1nM、0.9nM、0.8nM、0.7nM、0.6nM、0.5nM、0.4nM、0.3nM、0.2nM、0.1nM、0.09nM、0.08nM、0.07nM、0.06nM、0.05nM、0.04nM、0.03nM、0.02nM或0.01nM的EC50(通过ELISA测定)与猴PD-L1结合。在某些实施方式中,所述抗体和其抗原结合片段以约1nM-10nM的EC50与猴PD-L1结合。
在某些实施方式中,所述抗体和其抗原结合片段不与鼠PD-L1结合,但与猴PD-L1以与人PD-L1相似的结合亲和性结合。例如,示例性抗体1.4.1、1.14.4、1.20.15和1.46.11与鼠PD-L1的结合用常用结合测定如ELISA或FACS分析无法检出,而ELISA或FACS检测出这些抗体与猴PD-L1以与人PD-L1相似的亲和性或EC50值结合。
在一些实施方式中,所述的抗-PD-L1抗体和其抗原结合片段具有降低的或消除的效应功能。在一些实施方式中,所述的抗-PD-L1抗体和其抗原结合片段具有IgG4同种型的恒定区,其具有降低的或消除的效应功能。例如ADCC和CDC等效应功能能够导致对表达PD-L1的细胞的细胞毒性。许多细胞包括正常的细胞能够表达PD-L1。为了避免对这些正常的细胞产生潜在的不希望的毒性,本发明所述的抗体和其抗原结合片段的某些实施方式具有降低的或甚至消除的效应功能。已知有许多测试用来估测ADCC或CDC活性,例如Fc受体结合试验、补体C1q结合实验和细胞裂解法,本领域技术人员能够容易选择。不希望受到理论的束缚,但据信具有降低的或消除的效应功能如ADCC和CDC的抗体不会引起对表达PD-L1的细胞(例如那些正常的细胞)的细胞毒性或将之降低到最小程度,因此避免了不希望的副作用。而与此同时,表达PD-L1的肿瘤细胞会与抗-PD-L1抗体结合,因此无法逃过免疫检查点,由此其可被识别出并被免疫系统消除。
在一些实施方式中,本申请所述的抗-PD-L1抗体和其抗原结合片段具有降低的副作用。例如所述的抗-PD-L1抗体和其抗原结合片段可以具有全人源IgG序列,因此其免疫原性低于人源化的抗体。再例如,所述的抗-PD-L1抗体和其抗原结合片段可以具有IgG4形式以消除ADCC和CDC。
在一些实施方式中,本申请所述的抗-PD-L1抗体和其抗原结合片段的优势在于其能与具有免疫原性的物质联用,如肿瘤细胞、纯化的肿瘤抗原和用编码免疫刺激因子转染的细胞、肿瘤疫苗。此外,所述抗-PD-L1抗体和其抗原结合片段可以包括在联用治疗中,包括标准化学疗法和放射疗法、基于靶点的小分子疗法、其他新兴免疫检查点调节剂疗法。在一些实施方式中,所述抗体和其抗原结合片段可以用作抗体-药物缀合物、双特异性或多价抗体的基础分子。
本申请所述的抗-PD-L1抗体和其抗原结合片段可以是单克隆抗体、多克隆抗体、全人源抗体、人源化抗体、嵌合抗体、重组抗体、双特异性抗体、标记抗体、二价抗体或抗独特型抗体。重组抗体是在体外使用重组方法而非动物制备的抗体。双特异性抗体或双价抗体是具有两种不同的单克隆抗体的片段的人工抗体,其能结合两种不同的抗原。“二价”的抗体和其抗原结合片段包括两个抗原结合位点。两个抗原结合位点可以结合相同抗原,或者可以各自结合到不同的抗原,在这种情况下,抗体或抗原结合片段为“双特异性”。
在一些实施方式中,本申请所述的抗-PD-1抗体和其抗原结合片段是全人源抗体。在一些实施方式中,使用重组方法制备所述全人源抗体。例如,可以制备转基因动物如小鼠,使其携带人源免疫球蛋白基因的转基因或转染色体,并因此在用适宜的抗原如人源PD-1免疫后能够生产全人源抗体。全人源抗体可以从这样的转基因动物中分离,或另选地,可以通过杂交瘤技术制备,将所述转基因动物的脾细胞与永生细胞系融合以生成分泌所述全人源抗体的杂交瘤细胞。示例性的转基因动物包括但不限于,Omni大鼠,其内源性大鼠免疫球蛋白基因的表达被失活并同时被基因工程化以包含功能性的重组人源免疫球蛋白基因座;Omni小鼠,其内源性小鼠免疫球蛋白基因的表达被失活并同时被基因工程化以包含具有J-基因座缺失和C-kappa突变的重组人源免疫球蛋白基因座。OmniFilc,其为转基因大鼠,其内源性大鼠免疫球蛋白基因的表达被失活,并同时被基因工程化以包含具有单个的共有的、重组的VkJk轻链和功能性重链的重组人源免疫球蛋白基因座。具体信息请进一步参见:Osborn M.et al,Journal of Immunology,2013,190:1481-90;Ma B.et al,Journalof Immunological Methods 400–401(2013)78-86;Geurts A.et al,Science,2009,325:433;美国专利8,907,157;欧洲专利2152880B1;欧洲专利2336329B1,其均通过引用整体并入本申请。也可使用其他适宜的转基因动物,例如,HuMab小鼠(具体参见Lonberg,N.etal.Nature 368(6474):856 859(1994)),Xeno-小鼠(Mendez et al.Nat Genet.,1997,15:146–156),TransChromo小鼠(Ishida et al.Cloning Stem Cells,2002,4:91–102)和VelocImmune小鼠(Murphy et al.Proc Natl Acad Sci USA,2014,111:5153–5158),Kymouse转基因小鼠(Lee et al.Nat Biotechnol,2014,32:356–363),和转基因兔(Flisikowska et al.PLoS One,2011,6:e21045)。
在一些实施方式中,本申请所述的抗-PD-L1抗体和其抗原结合片段是骆驼化单域抗体(camelized single chain domain antibody)、双功能抗体(diabody)、scFv、scFv二聚体、BsFv、dsFv、(dsFv)2、dsFv-dsFv'、Fv片段、Fab、Fab'、F(ab')2、ds双功能抗体(dsdiabody)、纳米抗体、域抗体或双价域抗体。
在一些实施方式中,本申请所述的抗-PD-L1抗体和其抗原结合片段进一步包括免疫球蛋白恒定区。在一些实施方式中,免疫球蛋白恒定区包括重链和/或轻链恒定区。所述重链恒定区包括CH1、CH1-CH2或CH1-CH3区。在一些实施方式中,免疫球蛋白恒定区可以进一步包括一个或多个修饰以获得所需的性质。例如,可以将所述恒定区修饰以降低的或消除一种或多种效应功能以增强FcRn受体结合或引入一个或多个半胱氨酸残基。
在某些实施方式中,所述抗-PD-L1抗体及其抗原结合片段进一步包含缀合物。可以设想,本发明中的抗体或其抗原结合片段可与多种缀合物连接(见例如"ConjugateVaccines"、Contributions to Microbiology and Immunology、J.M.Cruse andR.E.Lewis、Jr.(eds.)、Carger Press、New York、(1989))。这些缀合物可以通过共价结合、亲和结合、嵌入、同等结合(coordinate binding)、络合、结合、混合或加入等其他方式与所述抗体或抗原结合物连接。在某些实施方式中,本发明公开的抗体和抗原结合片段可以通过工程的方法使其含有表位结合部分以外的特定位点,这些位点可用来结合一种或多种缀合物。例如,这样的位点可包含一种或多种反应性氨基酸残基,例如半胱氨酸残基和组氨酸残基,用于协助与结合物的共价连接。在某些实施方式中,抗体可间接连于缀合物,或通过另一个缀合物相连。例如,所述抗体或其抗原结合片段可结合生物素,然后间接结合第二个缀合物,其与亲和素相连。所述缀合物可以是可检测的标记、药代动力学修饰部分、纯化部分或细胞毒性部分。可检测的标记的例子可以包括荧光标记(例如荧光素、罗丹明、丹酰、藻红蛋白或德克萨斯红)、酶-底物标记物(例如辣根过氧化物酶、碱性磷酸酶、荧光素酶、葡糖淀粉酶、溶菌酶、糖氧化酶或β-D-半乳糖苷酶)、放射性同位素(例如、123I、124I、125I、131I、35S、3H、111In、112In、14C、64Cu、67Cu、86Y、88Y、90Y、177Lu、211At、186Re、188Re、153Sm、212Bi、and 32P、其他镧系元素、发光标记)、发色团部分、地高辛、生物素/亲和素、DNA分子或金以进行检测。在某些实施方式中,所述缀合物可以是药代动力学修饰部分如PEG,其帮助延长抗体的半衰期。其他适宜的聚合物包括例如羧甲基纤维素、葡聚糖、聚乙烯醇、聚乙烯吡咯烷酮、乙二醇/丙二醇共聚物等。在某些实施方式中,所述缀合物可以是纯化部分例如磁珠。“细胞毒性部分”可以是对细胞有害的或可能损坏或杀死细胞的任何试剂。细胞毒性部分的示例包括,但不限于,紫杉醇、细胞松弛素B、短杆菌肽D、溴化乙锭、吐根碱、丝裂霉素、依托泊苷、替尼泊苷、长春新碱、长春碱、秋水仙碱、阿霉素、柔红霉素、二羟基炭疽菌素二酮、米托蒽醌、光神霉素、放线菌素D、1-去氢睾酮、糖皮质激素、普鲁卡因、丁卡因、利多卡因、普萘洛尔、嘌呤霉素及其类似物、抗代谢物(例如,甲氨蝶呤、6-巯基嘌呤、6-硫鸟嘌呤、阿糖胞苷、5-氟尿嘧啶达卡巴)、烷化剂(例如氮芥、塞替派苯丁酸氮芥、美法仑、卡莫司汀(BSNU)和洛莫司汀(CCNU)、环磷酰胺、白消安、二溴甘露醇、链脲霉素、丝裂霉素C和顺-二氯二胺铂(II)(DDP)顺铂)、蒽环类抗生素(例如柔红霉素(以前的道诺霉素)和阿霉素)、抗生素(例如更生霉素(以前称为放线菌素)、博来霉素、光神霉素和氨茴霉素(AMC))以及抗有丝分裂剂(例如长春新碱和长春碱)。
多核苷酸和重组方法
本申请提供了编码抗-PD-L1抗体和其抗原结合片段的分离的多核苷酸。在某些实施方式中,所述分离的多核苷酸包括一个或多个如表1中的核苷酸序列,其编码如表1中的CDR序列。
在一些实施方式中,所述分离的多核苷酸编码重链可变区并包括选自下组的序列:SEQ ID NO:44、SEQ ID NO:48、SEQ ID NO:52、SEQ ID NO:56,以及与之具有至少80%(例如至少85%、88%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%)的序列同一性的同源序列。在一些实施方式中,所述分离的多核苷酸编码轻链可变区并包括选自下组的序列:SEQ ID NO:46、SEQ ID NO:50、SEQ ID NO:54,以及与之具有至少80%(例如至少85%、88%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%)的序列同一性的同源序列。在某些实施方式中,所述同一性的百分比是源自遗传密码的简并性,而编码的蛋白序列保持不变。
使用本领域公知的重组技术,可以将包括编码所述抗-PD-L1抗体和其抗原结合片段(例如包括表1所示的序列)的多核苷酸的载体引入宿主细胞用于克隆(扩增DNA)或基因表达。在另一实施方式中,所述抗体可通过本领域公知的同源重组的方法制得。编码所述单克隆抗体的DNA可以通过常规的方法分离和测序(如可以使用寡核苷酸探针,该探针可特异性与编码所述抗体的重链和轻链的基因结合)。多种载体可供选择。载体组分通常包括,但不限于,以下的一种或多种:信号序列、复制起始点、一种或多种标记基因、增强序列、启动子(例如:SV40,CMV,EF-1α)和转录终止序列。
在一些实施方式中,所述载体系统包括哺乳动物、细菌、酵母系统等,并将包括质粒例如但不限于pALTER、pBAD、pcDNA、pCal、pL、pET、pGEMEX、pGEX、pCI、pCMV、pEGFP、pEGFT、pSV2、pFUSE、pVITRO,pVIVO、pMAL、pMONO、pSELECT、pUNO、pDUO、Psg5L、pBABE、pWPXL、pBI、p15TV-L、pPro18、pTD、pRS420、pLexA、pACT2等其他可从实验室获得或市售的载体。适宜的载体可以包括质粒或病毒载体(例如,复制缺陷型逆转录病毒、腺病毒和腺相关病毒)。
可以将包括编码所述抗体和其抗原结合片段的多核苷酸的载体引入宿主细胞用于克隆或基因表达。本发明中适用于克隆或表达所述载体中的DNA的宿主细胞为原核细胞、酵母或上述高级真核细胞。适用于本发明用途的原核细胞包括真细菌如,革兰氏阴性菌或革兰氏阳性菌,例如,肠杆菌科,如,大肠杆菌,肠杆菌属,欧文氏菌属,克雷白氏杆菌属,变形杆菌属,沙门氏菌属,如,鼠伤寒沙门(氏)杆菌,沙雷氏菌属,如,粘质沙雷氏菌,以及志贺氏菌属,及杆菌属如,枯草芽孢杆菌和地衣芽孢杆菌,假单胞菌如,绿脓杆菌和链霉菌。
除了原核细胞以外,真核微生物如丝状真菌或酵母也可作宿主细胞克隆或表达编码抗PD-L1抗体的载体。酿酒酵母,或面包酵母是最常用的低等真核宿主微生物。但是,许多其他属、种和株都比较常用且在本发明中适用,如粟酒裂殖酵母;克鲁维酵母属宿主如,乳酸克鲁维酵母、脆壁克鲁维酵母(ATCC 12,424)、保加利亚克鲁维酵母(ATCC 16,045)、魏氏克鲁维酵母(ATCC 24,178)、克鲁雄酵母(ATCC 56,500)、果蝇克鲁维酵母(ATCC36,906)、耐热克鲁维酵母和马克斯克鲁维酵母;解脂耶氏酵母(EP 402,226);巴斯德毕赤酵母(EP183,070);假丝酵母;里氏木霉(EP 244,234);链孢霉;西方许旺酵母,如:西方许旺酵母;和丝状真菌,如:脉孢菌、青霉菌、弯颈霉和曲霉菌,如:钩巢曲霉和黑曲霉。
本发明中提供的适用于表达糖基化抗体或其抗原结合片段的宿主细胞由多细胞生物衍生得到。无脊椎细胞的实例包括植物和昆虫细胞。已发现多种杆状病毒株(baculoviral strains)及其变体以及对应的许可性昆虫宿主细胞(permissive insecthost cells),来自于诸如以下的宿主:草地夜蛾(毛虫)、埃及斑蚊(蚊子)、白纹伊蚊(蚊子)、黑腹果蝇(果蝇)及家蚕。多种用于转染的病毒株为公众可得,例如苜蓿银纹夜蛾核型多角体病毒和家蚕核型多角体病毒的Bm-5变种,这些病毒都可在本发明中使用,特别是用于转染草地夜蛾细胞。棉花、玉米、土豆、大豆、矮牵牛花、西红柿和烟草的植物细胞培养也可用作宿主。
但是,最感兴趣的是脊椎细胞,且脊椎细胞的培养(组织培养)已经成为常规操作。可用的哺乳动物宿主细胞实例有,SV40转化的猴肾细胞CV1系(COS-7,ATCC CRL 1651);人胚胎肾细胞系(293或悬浮培养的293细胞亚克隆,Graham et al.,J.Gen Virol.36:59(1977));幼地鼠肾细胞(BHK,ATCC CCL 10);中国仓鼠卵巢细胞/-DHFR(CHO,Urlaub etal.,Proc.Natl.Acad.Sci.USA 77:4216(1980));小鼠睾丸支持细胞(TM4,Mather,Biol.Reprod.23:243-251(1980));猴肾细胞(CV1ATCC CCL 70);非洲绿猴肾细胞(VERO-76,ATCC CRL-1587);人宫颈癌细胞(HELA,ATCC CCL 2);犬肾细胞(MDCK,ATCC CCL 34);布法罗大鼠肝细胞(BRL 3A,ATCC CRL 1442);人肺细胞(W138,ATCC CCL75);人肝细胞(HepG2,HB 8065);小鼠乳腺瘤(MMT 060562,ATCC CCL51);TRI细胞(Mather等,AnnalsN.Y.Acad.Sci.383:44-68(1982));MRC 5细胞;FS4细胞;及人肝癌细胞系(Hep G2)。在某些优选的实施方式中,所述宿主细胞是293F细胞。
用上述的可产生抗PD-L1抗体的表达或克隆载体转化宿主细胞,并将其在常规的营养培养基中培养,所述营养培养基经修饰后适宜于诱导启动子、选择转化细胞或扩增编码目的序列的基因。
本发明中用于产生所述抗体或其抗原结合片段的宿主细胞可在多种培养基中培养。市售的培养基如Ham's F10(Sigma)、最低基本培液(MEM,(Sigma))、RPMI-1640(Sigma)及Dulbecco's Modified Eagle's Medium(DMEM),Sigma)可用于培养所述宿主细胞。另外,任何在Ham et al.,Meth.Enz.58:44(1979),Barnes et al.,Anal.Biochem.102:255(1980),美国专利号4,767,704;4,657,866;4,927,762;4,560,655;或5,122,469;WO 90/03430;WO 87/00195;或美国专利申请Re.30,985中说明的培养基都可以用作所述宿主细胞的培养基。这些培养基都可添加必要的激素和/或其他生长因子(如胰岛素、转铁蛋白或表皮生长因子)、盐类(如氯化钠、氯化钙、氯化镁和磷酸盐)、缓冲液(如HEPES)、核苷酸(如腺苷酸和胸腺嘧啶)、抗生素(如庆大霉素)、微量元素(定义为终浓度通常在微摩尔范围无机化合物),和葡萄糖或与之等同的能量源。所述培养基还可含有本领域公知的适当浓度的任何其他必要的添加剂。所述培养基的条件,如温度、pH值等类似条件,为选择用于表达的宿主细胞此前所使用的条件,为普通技术人员所熟知。
在使用重组技术时,所述抗体可在胞内、壁膜空间生成,或直接分泌到培养基中。如果所述抗体在胞内生成,首先除去宿主细胞或裂解片断的颗粒残骸,例如,可通过离心或超声的方法。Carter et al.,Bio/Technology 10:163-167(1992)描述了将分泌到大肠杆菌壁膜空间的抗体分离的方法。简要地说,在醋酸钠(pH 3.5)、EDTA和苯甲磺酰氟(PMSF)存在的条件下化开细胞糊(cell paste)约30分钟以上。离心除去细胞碎片。如所述抗体分泌到培养基中,则通常首先使用市售的蛋白浓度过滤器,如Amicon或Millipore Pelliconultrafiltration unit,浓缩该表达系统的上清液。在任何前述的步骤中都可加入蛋白酶抑制剂如PMSF以抑制蛋白降解,以及抗生素以防止偶然污染物的生长。
从所述细胞中制得的抗体可采用纯化方法进行纯化,例如羟磷灰石色谱、凝胶电泳、透析、DEAE-纤维素离子交换色谱柱、硫酸铵沉淀、盐析以及亲和色谱,其中亲合色谱为优选的纯化技术。所述抗体的种类以及所述抗体中存在任何免疫球蛋白的Fc结构域决定了蛋白A作为亲和配体是否适合。蛋白A可用于纯化基于人γ1,γ2或γ4重链的抗体(Lindmark et al.,J.Immunol.Meth.62:1-13(1983))。蛋白G适用于所有鼠源异构体和人γ3(Guss et al.,EMBO J.5:1567 1575(1986))。琼脂糖是最常用的亲和配体附着基质,但也可选用其他基质。机械力稳定的基质如可控孔度玻璃或聚(苯乙烯)苯与用琼脂糖相比可实现更快的流速和更短的处理时间。如该抗体含有CH3结构域,则可用Bakerbond ABX.TM树脂进行纯化(J.T.Baker,Phillipsburg,N.J.)。也可根据需要获得的抗体确定其他蛋白纯化的技术,如离子交换柱中的分馏、乙醇沉淀、反相HPLC、硅胶色谱、基于阴离子或阳离子交换树脂的肝素琼脂糖凝胶色谱(如聚天冬氨酸柱)、层析聚焦、SDS-PAGE、以及硫酸铵沉淀。
在任意初步纯化步骤之后,可用低pH疏水相互作用色谱的方法处理含有感兴趣的抗体和杂质的混合物,用pH约2.5-4.5的洗脱缓冲液,优选地在低盐浓度下进行(例如,从约0到0.25M盐浓度)。
试剂盒
本申请提供了包括所述抗-PD-L1抗体和其抗原结合片段的试剂盒。在一些实施方式中,所述试剂盒用于检测在生物样品中的PD-L1的存在情况或水平。所述生物样品可以包括细胞或组织。
在一些实施方式中,所述试剂盒包括与可检测标记缀合的抗-PD-L1抗体和其抗原结合片段。在一些实施方式中,所述试剂盒包括未标记的抗-PD-L1抗体和其抗原结合片段,并进一步包括能够与未标记的抗-PD-L1抗体和其抗原结合片段结合标记的二抗。所述试剂盒可以进一步包括使用说明和在试剂盒中将每个组件分隔开的包装。
在一些实施方式中,所述抗-PD-L1抗体和其抗原结合片段与底物或仪器连接用于夹心测定如ELISA或免疫色谱测定。适用的底物或仪器可以是例如微孔板和试纸。
药物组合物和治疗方法
本申请进一步提供了包括所述抗-PD-L1抗体和其抗原结合片段的药物组合物和一个或多个药学上可接受的载体。
用在本申请公开的药物组合物中的药用可接受载剂可包括,例如,药用可接受的液体、凝胶或固体载剂、水相介质、非水相介质、抗微生物物质、等渗物质、缓冲液、抗氧剂、麻醉剂、悬浮剂/分散剂、螯合剂、稀释剂、佐剂、辅料或无毒辅助物质,其他本领域公知的组分或以上的多种组合。
适用的组分可包括,例如,抗氧剂、填充剂、粘合剂、崩解剂、缓冲液、防腐剂、润滑剂、搅味剂、增稠剂、着色剂、乳化剂或稳定剂例如糖和环糊精。适用的抗氧剂可包括,例如,甲硫氨酸、抗坏血酸、EDTA、硫代硫酸钠、铂、过氧化氢酶、柠檬酸、半胱氨酸、巯基甘油、巯基乙酸、巯基山梨醇、丁基甲基茴香醚、丁基化羟基甲苯和/或没食子酸丙酯。如本发明所公开,在一种含有本发明公开的抗体或其抗原结合片段的组合物中包括一种或多种抗氧剂如甲硫氨酸,可将降低所述抗体或其抗原结合片段的氧化。对氧化作用的减少可防止或减少结合亲和力的降低,从而提高抗体稳定性并延长保质期。因此,在某些实施方式中,本发明提供的组合物中含有一种或多种所述的抗体或其抗原结合片段以及一种或多种抗氧剂例如甲硫氨酸。本发明进一步提供了多种方法,通过将本发明中提供的抗体或其抗原结合片段与一种或多种抗氧剂混合,例如甲硫氨酸,可防止所述抗体或其抗原结合片段氧化、延长其保质期和/或提高其活性。
进一步的说,药用可接受的载剂可包括,例如,水相介质如氯化钠注射液、林格氏液注射液、等渗葡萄糖注射液、无菌水注射液、或葡萄糖和乳酸林格注射液、非水介质例如:植物来源的不挥发性油、棉花子油、玉米油、芝麻油、或者花生油、细菌抑制或真菌抑制浓度下的抗菌物质、等渗剂如:氯化钠或葡萄糖、缓冲液如:磷酸盐或枸橼酸酸盐缓冲液,抗氧化剂如:硫酸氢钠,局部麻醉剂如:盐酸普鲁卡因,助悬剂和分散剂如:羧甲基纤维素钠、羟丙基甲基纤维素或聚乙烯吡咯烷酮,乳化剂如:聚山梨醇酯80(吐温-80)、螯合试剂如EDTA(乙二胺四乙酸)或EGTA(乙二醇双(2-氨基乙基醚)四乙酸)、乙醇、聚乙二醇、丙二醇、氢氧化钠、盐酸、柠檬酸或乳酸。作为载剂的抗菌剂可加入多次剂量容器中的药物组合物中,其包括酚类或甲酚、汞制剂、苯甲醇、氯代丁醇、甲基和丙基对羟基苯甲酸酯、噻汞撒、氯苯甲烷铵和氯苯乙铵。适用的辅料可包括,例如,水、盐、葡萄糖、甘油或乙醇。适用的无毒辅助物质可包括,例如,乳化剂、pH值缓冲剂、稳定剂、增溶剂,或者醋酸钠、去水山梨糖醇月桂酸酯、三乙醇胺油酸酯或者环糊精之类的物质。
所述药物组合物可以是液体溶液、悬浮液、乳剂、丸剂、胶囊、片剂、持续释放制剂或粉末。口服制剂可以包括标准载体如药物级的甘露醇、乳糖、淀粉、硬脂酸镁、聚乙烯吡咯烷酮、糖精钠、纤维素、碳酸镁等。
在某些实施方式中,所述药物组合物被制剂成可注射的组合物。可注射的药物组合物可以任何常规的形式制备,例如,液体溶剂、悬浮剂、乳化剂或适用于产生液体溶剂、悬浮剂或乳化剂的固体形式。注射制剂可包括现用的无菌和/或无热原溶液、使用前现与溶剂结合的无菌干燥的可溶物,如冻干粉,包括皮下片、注射即用的无菌悬浮剂、使用前现与介质结合的无菌干燥不溶产品,和无菌和/或无热原的乳剂。溶剂可以为水相或非水相。
在某些实施方式中,单位剂量的注射制剂包装在一个安瓿、一支管或一支带有针的针筒中。本领域习知,所有注射给药的制剂应为无菌无热原。
在某些实施方式中,通过将本申请公开的抗体或其抗原结合片段溶解于某适当的溶剂中可制备无菌冻干的粉末。所述溶剂可含有一种可提高粉或由粉末制得的重组溶液的稳定性,或改善粉末或重组溶液的其他药理组分。适用的辅料包括,但不限于,水、葡萄糖、三梨糖醇、果糖、玉米糖浆、木糖醇、甘油、葡萄糖、蔗糖或其他适用的物质。溶剂可含有缓冲液,如枸橼酸缓冲液、磷酸钠或磷酸钾缓冲液或其他本技术熟练人员公知的缓冲液,在一种实施方式中,缓冲液的pH为中性。在本领域公知的标准条件下进行对所述溶解进行随后的过滤除菌,然后冻干制得理想的制剂。在一种实施方式中,将所得的溶剂分装至小管中冻干。每支小管可容纳单次剂量或多次剂量的所述抗-PD-L1抗体或其抗原结合片段或其组合物。每支小管中的装入量可略微高于每次剂量所需或多次剂量所需(例如10%过量),从而保证取样精确和给药精确。冻干粉可在适当的条件下储存,如在约4℃到室温范围。
用注射用水将冻干粉重溶得到用于注射给药的制剂。在一种实施方式中,可将冻干粉加至无菌无热原水或其他适用的液体载剂中重溶。精确的量由选择的疗法决定,可根据经验值决定。
还提供了治疗方法,包括将治疗有效量的本申请所述的抗体或其抗原结合片段施用给需要其的受试者,由此治疗或预防与PD-L1相关的状况或病症。在另一方面,还提供了治疗会从上调的免疫响应获益的受试者的状况的方法,包括对所述需要其的受试者施用治疗有效量的本申请所述的抗体或其抗原结合片段。
本申请中提供的抗体或其抗原结合片段的治疗有效剂量依赖于本领域公知的多种因素,例如体重、年龄、过往病史、现用治疗、对象的健康状况和交叉感染的潜力、过敏、超敏和副作用,以及给药途径和肿瘤发展的程度。本领域熟练人员(例如医生或兽医)可根据这些或其它条件或要求按比例降低或升高剂量。
在某些实施方式中,本发明提供的抗体或其抗原结合片段可在治疗有效剂量约0.01mg/kg到约100mg/kg之间给药(例如,约0.01mg/kg、约0.5mg/kg、约1mg/kg、约2mg/kg、约5mg/kg、约10mg/kg、约15mg/kg、约20mg/kg、约25mg/kg、约30mg/kg、约35mg/kg、约40mg/kg、约45mg/kg、约50mg/kg、约55mg/kg、约60mg/kg、约65mg/kg、约70mg/kg、约75mg/kg、约80mg/kg、约85mg/kg、约90mg/kg、约95mg/kg或约100mg/kg)。在某些实施方式中,所述抗体或其抗原结合片段以约50mg/kg或更少的剂量给药,在某些实施方式中,给药剂量为10mg/kg或更少、5mg/kg或更少、1mg/kg或更少、0.5mg/kg或更少或0.1mg/kg或更少。某特定剂量可在多个间隔给药,例如每天一次、每天两次或更多、每月两次或更多、每周一次、每两周一次、每三周一次、每月一次或每两月或更多月一次。在某些实施方式中,给药剂量可随治疗进程变化。例如,在某些实施方式中,初始给药剂量可比后续给药剂量高。在某些实施方式中,给药剂量在治疗进程中根据给药对象的反应进行调整。
给药方案可通过调整达到最优反应(如治疗反应)。例如,可进行单剂量给药或在一段时间分多个分隔的剂量给药。
本发明中公开的抗体和抗原结合片段可通过本领域公知的给药方式给药,例如注射给药(如,皮下注射、腹腔注射、静脉注射,包括静脉滴注,肌肉注射或皮内注射)或非注射给药(如,口服给药、鼻腔给药、舌下给药、直肠给药或外用给药)。
与PD-L1相关的状况和病症可以是免疫相关的疾病或病症。在某些实施方式中,所述与PD-L1相关的状况和病症包括肿瘤和癌症、例如非小细胞肺癌、小细胞肺癌、肾细胞癌、结肠直肠癌、卵巢癌、乳癌、胰脏癌、胃癌、膀胱癌、食管癌、间皮瘤、黑色素瘤、头颈部癌、甲状腺癌、肉瘤、前列腺癌、成胶质细胞瘤、子宫颈癌、胸腺癌、白血病、淋巴瘤、骨髓瘤、蕈样肉芽肿(mycoses fungoids)、默克尔细胞癌和其它恶性血液病、如经典型霍奇金淋巴瘤(CHL)、原发性纵隔大B细胞淋巴瘤、T细胞/组织细胞的富B细胞淋巴瘤、EBV阳性和阴性PTLD和EBV相关弥漫性大B细胞淋巴瘤(DLBCL)、浆母细胞性淋巴瘤、结外NK/T细胞淋巴瘤、鼻咽癌和HHV8相关原发性渗出性淋巴瘤、霍奇金淋巴瘤,中枢神经系统(CNS)肿瘤,例如原发性CNS淋巴瘤,脊轴肿瘤,脑干神经胶质瘤。在某些实施方式中,所述肿瘤和癌症是转移性的,尤其是表达PD-L1的转移性肿瘤。在某些实施方式中,所述与PD-L1相关的状况和病症包括自体免疫疾病、如系统性红斑狼疮(SLE)、银屑病、系统性硬皮病、自身免疫性糖尿病。在某些实施方式中,所述与PD-L1相关的状况和病症包括慢性病毒感染,例如乙型肝炎,丙型肝炎,疱疹病毒,Epstein-Barr病毒,艾滋病毒,巨细胞病毒,单纯疱疹病毒I型,单纯疱疹病毒2型,人乳头状瘤病毒,腺病毒的病毒感染,卡波西西肉瘤相关的疱疹病毒流行病,薄环病毒(Torquetenovirus),JC病毒或BK病毒等。
使用方法
本申请进一步提供了使用所述抗-PD-L1抗体或其抗原结合片段的方法。
在一些实施方式中,本申请提供了在个体中治疗与PD-L1相关的状况或病症的方法,包括施用治疗有效量的本申请所述的PD-L1抗体或其抗原结合片段。在一些实施方式中,所述个体被鉴定为患有可能对PD-L1拮抗剂响应的病症或状况。
在目标生物组织中PD-L1的存在情况和水平可以指示所述生物样品来源的个体是否可能对PD-L1拮抗剂响应。可以使用多种方法在来自所述个体的待测生物样品中确定PD-L1的存在情况或水平。例如,可以将所述待测生物样品暴露于抗-PD-L1抗体或其抗原结合片段,其与表达的PD-L1蛋白结合并检测表达的PD-L1蛋白。另选地,可以使用如qPCR、反转录PCR、微阵列、SAGE、FISH等在核酸表达水平检测PD-L1。在一些实施方式中,所述待测样品来源于癌细胞或组织,或进入肿瘤的免疫细胞。在一些实施方式中,在所述待测生物样品中PD-L1的存在或水平上调表示响应的可能性。本申请使用的术语“上调”是指与使用相同抗体检测的参照样品中PD-L1蛋白水平相比,使用本申请所述的抗体或其抗原结合片段在待测样品中检测的PD-L1蛋白水平的总的增加不少于10%、15%、20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%或更多。所述参照样品可以是从健康或无疾病的个体中获得的对照样品,或从待测样品来源的个体中获得的健康或无疾病的样品。例如,所述参照样品可以是在待测样品(如肿瘤)附近或相邻的无疾病样品。
本发明公开的抗体和抗原结合片段可单独给药或与一种或多种其他治疗手段或物质联合给药。例如,本发明公开的抗体和抗原结合片段可与化疗、放疗、癌症治疗手术(如肿瘤切除术)、一种或多种抗呕吐药或其他化疗导致的并发症的疗法、或任何其他用于癌症的治疗物质或任何由PD-L1介导的病症的治疗物质进行联用。在某些这样的实施方式中,本发明公开的抗体和抗原结合片段与一种或多种治疗物质联用时,可与所述的一种或多种治疗物质同时给药,在某些这样的实施方式中,所述的抗体和抗原结合片段可作为同一个药物组合物的一部分同时给药。但是,与其他治疗物质“联用”的抗体和抗原结合物不需要同时给药或与该治疗物质在同一组合物中给药。本发明中“联用”的含义还包括在另一个治疗物质之前或之后给药的抗体和抗原结合物也被认为是与该治疗物质“联用”,即使所述抗体或其抗原结合片段与第二种物质通过不同给药方式给药。在可能的情况下,与本发明公开的抗体或其抗原结合片段联用的其他治疗物质可参照该其他治疗物质的产品说明书的方法用药,或参照外科医生的案头参考书2003(Physicians'Desk Reference,57th Ed;Medical Economics Company;ISBN:1563634457;第57版(2002年11月)),或参照其他本领域公知的方法。
在某些实施方式中,所述治疗物质能够诱导或增强针对癌症的免疫反应。例如,肿瘤疫苗可以用于诱导对某些肿瘤或癌症的免疫应答。细胞因子治疗可以用于提高将肿瘤抗原向免疫系统的递呈。细胞因子治疗的示例包括但不限于干扰素如干扰素α、β和γ,集落刺激因子如巨噬细胞CSF、粒细胞巨噬细胞CSF和粒细胞-CSF,白介素如IL-1、IL-1α、IL-2、IL-3、IL-4、IL-5、IL-6、IL-7、IL-8、IL-9、IL-10、IL-11和IL-12,肿瘤坏死因子如TNF-α和TNF-β。还可以使用灭活免疫抑制目标的试剂,如TGF-β抑制剂、IL-10抑制剂和Fas配体抑制剂。另一组试剂包括激活针对肿瘤或癌细胞的免疫响应的那些试剂,例如,提高T细胞激活(如T细胞共刺激分子激动剂如CTLA-4、ICOS和OX-40)的那些,以及提高树突细胞功能和抗原递呈的那些。
本申请进一步提供了在用PD-L1拮抗剂治疗的受试者中监测治疗反应或疾病进展的方法,包括用本申请所述抗-PD-L1抗体或其抗原结合片段在来自所述个体的待测生物样品中确定PD-L1的存在情况或水平。在某些实施方式中,所述方法进一步包括将待测生物样品中的PD-L1水平与此前从同一个体上获得的可比样品中的PD-L1水平进行比较,其中在测试生物样品中PD-L1水平的增加减少或减慢或停止,表明积极的治疗反应或受控的疾病进展。所述可比样品可以与待测样品是同一类型的样品,但其是在治疗前或在治疗初期阶段从相同个体中获得的。
以下实施例旨在更好地说明本发明,且不应理解为限制本发明的范围。所有下述的特定组合物、材料和方法,其整体或部分,都在本发明的范围内。这些特定的组合物、材料和方法不是为了限制本发明,而只是为说明特定的实施方式在本发明的范围内。本领域熟练技术人员可不添加创造性及不偏离本发明范围而开发出等同的组合物、材料和方法。应理解,在对本发明的方法作出的多种改动可以仍然包括在本发明范围内。发明人意在将这样的变动包括在本发明的范围内。
实施例1:抗体杂交瘤的生成
1.1免疫:~8周龄的雌性OMT大鼠(获自Open Monoclonal Technology,Inc.,帕罗奥多,美国)经由足垫注射在10μg TiterMax中的人PD-L1ECD蛋白致敏,随后每3天用在磷酸铝凝胶佐剂中的PD-L1ECD蛋白经足垫激发直至适合融合。每两周通过ELISA或FACS检测抗-PD-L1抗体血清滴度。
1.2细胞融合:在融合前3天,动物经腹腔注射接受了10μg的PBS中人PD-L1ECD蛋白的最后的激发。在融合当天,收获淋巴结细胞并制备得到单细胞悬液。将获得的淋巴细胞与骨髓瘤细胞(P3)以适宜的比例混合。将细胞混合物洗涤并在ECF溶液中以2.0x106cells/mL的密度重悬。使用BTX 2000电融合仪进行细胞融合。
1.3第一次和第二次杂交瘤上清液筛选:于37℃培养7-14天后,将一部分杂交瘤上清液通过Mirrorball分析检测。简要地,将杂交瘤上清液用1XPBS稀释5倍。表达PD-L1的CHO-K1细胞与二级荧光标记的抗体和DraQ5混合。在384孔板的每个孔中加入20μL的细胞混合物和20μL的稀释的杂交瘤上清液样品并在室温下避光孵育至少2小时直至准备在
高灵敏度微孔板细胞仪上进行分析。通过使用表达PD-L1的CHO-K1细胞经FACS验证阳性细胞。用杂交瘤上清液样品对细胞染色,随后用与FITC连接的山羊抗-小鼠IgG Fc进行二抗结合。用相应的母本细胞系作为阴性对照。使用BD Biosciences的FACSCanto IIand FlowJo版软件对结合的细胞进行分析。
1.4亚克隆:使用被验证为与PD-L1表达细胞阳性结合的杂交瘤细胞系进行亚克隆。简要地,对于每株杂交瘤细胞系,将细胞计数并在克隆培养基中稀释成每200μL5个或1个细胞。在96孔板中以200μL/孔进行铺板。将板置于37℃、5%CO2孵育直至后续分析。
1.5同型测试:用50μL/孔的山羊抗-大鼠IgG1,IgG2a,IgG2b,IgG3,IgA和IgM 抗体以1μg/mL分别包被ELISA板。在封闭后,将50μL的杂交瘤上清液样品加入每孔,室温下孵育2小时。使用山羊抗-大鼠kappa轻链-HRP作为检测抗体。使用TMB底物孵育10min显色,用2MHCl终止反应。在ELISA酶标仪上450nm处读板。
1.6基于细胞的结合实验:为检验全人源抗体与目标的结合活性,将表达人PD-L1的CHO-K1或成熟的树突细胞(mDC)用全人源抗体结合,随后用与FITC连接的山羊抗-人IgGFc结合的二抗结合。使用对应的母本细胞系作为阴性对照。使用BD Biosciences的FACSCanto II and FlowJo版软件对结合的细胞进行分析。
用来自大鼠杂交瘤细胞的针对人PD-L1的抗体结合转染了全长人PD-L1的CHO细胞,随后用与FITC连接的山羊抗-大鼠IgG Fc结合的二抗结合并用FACS分析。如图1所示,抗体1.4.1、1.14.4、1.20.15和1.46.11以约1nM的EC50特异性地与CHO细胞上表达的PD-L1结合。
实施例2:改变Fc部分和纯化
在293F细胞培养上清液中的抗体使用蛋白A亲和层析柱纯化。
实施例3:全人源抗体的表征
3.1FACS测定的竞争性测试:为了检验全人源抗体是否能够阻断PD-L1与PD-1的结合,将表达人PD-L1的CHO-K1细胞在4℃下与不同浓度的全人源抗体孵育1小时。将未结合的抗体洗脱,然后将小鼠Fc-标记的人PD-1加入细胞中。使用FITC连接的山羊抗-小鼠IgG检测人PD-1与表达PD-L1的细胞的结合,随后使用BD Biosciences的FACSCanto II and FlowJo版软件进行分析。
将表达人PD-L1的CHO细胞与不同浓度的全人源抗体(1.4.1、1.14.4、1.20.15和1.46.11)或对照抗体孵育,随后将小鼠Fc-标记的人PD-1加入细胞中。使用FITC连接的山羊抗-小鼠IgG检测人PD-1与表达PD-L1的细胞的结合,随后通过FACS分析。如图2所示,所有待测的全人源PD-L1抗体阻断了PD-1与转化的CHO细胞上表达的PD-L1的结合,且1.4.1、1.14.4、1.20.15和1.46.11显示出约10nM的IC50值。
3.2表面等离子体共振(SPR)测定的亲和性测试:通过SPR法使用ProteOn XPR36(Bio-Rad)对抗体与PD-L1的亲和性和结合动力学进行表征。将蛋白A蛋白(Sigma)通过胺偶联固定于GLM传感芯片上(Bio-Rad)。使纯化的抗体流过传感器芯片并被蛋白A捕获。将芯片旋转90°并用电泳缓冲液洗涤(1XPBS/0.01%Tween20,Bio-Rad)直至基线稳定。使5个浓度的人PD-L1和电泳缓冲液以流速100μL/min流经所述抗体流动单元,先为结合相流动240s,随后解离相600s。在每次运行后用pH 1.7的H3PO4再生所述芯片。使用ProteOn软件将结合和解离曲线拟合至1:1的Langmiur结合模型。
如图5所示,通过使用表面等离子体共振检测的全人源PD-L1抗体对重组人PD-L1的亲和性为从4.78E-10到2.26E-10mol/L。
3.3 FACS测定的亲和性测试:通过使用表达人PD-L1的CHO-K1细胞,经FACS分析,进行与细胞表面PD-L1的抗体结合亲和性测定。待测抗体用洗脱缓冲液以1比2的倍数系列稀释(1XPBS/1%BSA)并在4℃下孵育1小时。加入二抗山羊抗-人IgG Fc FITC(JacksonImmunoresearch Lab)并在4℃下避光孵育1小时。随后洗涤一次细胞并在1XPBS/1%BSA中重悬,使用流式细胞术(BD)分析。基于quantitative beads QuantumTM MESF Kit(BangsLaboratories,Inc.),荧光强度将被转换为与分子/细胞相关。使用Graphpad Prism5计算KD。
3.4体外功能测定:为了估测全人源抗体调节T细胞响应(包括细胞因子生产和细胞增殖)的能力,进行了以下三个实验。
3.4.1同种异体MLR:使用人单核细胞富集试剂盒,根据说明从健康供体中分离单核细胞。将细胞培养5-7天以分化成树突细胞(DC)。在使用18至24小时前,将1μg/mL LPS加入细胞培养物中诱导DC成熟。
使用人CD4+T细胞富集试剂盒,根据说明书分离CD4+T细胞,随后在有或没有全人源抗-PD-L1抗体或对照抗体的情况下,使用成熟或不成熟的同种异体的DC进行刺激。分别在第3天和第5天用ELISA测定培养上清液中的IL-2和IFNγ水平。通过[3H]胸苷掺入测定T细胞增殖。
如图9所示,所有待测的全人源PD-L1抗体(1.4.1、1.14.4、1.20.15和1.46.11)以剂量依赖的方式增加了IL-2的分泌。如图8所示,所有待测的全人源PD-L1抗体(1.4.1、1.14.4、1.20.15和1.46.11)以剂量依赖的方式增加了IFNγ的分泌。如图10所示,所有待测的全人源PD-L1抗体(1.4.1、1.14.4、1.20.15和1.46.11)均能增加浓度依赖的T细胞增殖。
3.4.2自体抗原特异性免疫应答:从相同的供体中分离PBMC和单核细胞。在CMVpp65肽和低剂量IL2(20U/ml)存在下培养PBMC。同时依照前述方法通过培养单核细胞生产DC。5天后,用pp65肽脉冲式加入DC,随后在全人源抗体或对照抗体存在或不存在条件下,将DC加入至CD4+T细胞。在第3天用ELISA测定培养上清液中的IL-2和IFNγ水平。CMVpp65特异性CD4+T细胞的增殖通过[3H]胸苷掺入测定。
如图6所示,通过全人源PD-L1抗体(1.4.1、1.14.4、1.20.15和1.46.11)提高了在特异性T细胞响应中IFNγ的产生。图7显示了全人源PD-L1抗体增加了使用CMV pp65肽负载的自体DC浓度依赖的CMV+-CD4+T细胞增殖。
3.4.3 Treg抑制试验:调节性T细胞(Treg)是关键免疫调节子在维持自身耐受中起到重要作用。CD4+CD25+Treg与肿瘤相关,这是由于在多发性癌症患者中发现Treg数量增加,并与较差的预后相关。为了直接估测抗人PD-L1全人源抗体在抑制Treg抑制功能中的作用,在全人源抗体或对照抗体存在或不存在条件下,比较Treg的功能。简言之,CD4+CD25+Tregs和CD4+CD25-T细胞通过MACS分离。在不同浓度的全人源抗体或对照抗体存在或不存在条件下,比较Treg的功能。简言之,CD4+CD25+Tregs和CD4+CD25-T细胞通过MACS分离,用同种异体mDC共培养CD4+CD25+Tregs和CD4+CD25-T细胞(Treg:Teff比例为1:1)。将不含抗体或同型抗体作为阴性对照。用前述方法测量细胞因子的产生和T细胞增殖。
如图11所示,PD-L1抗体1.20.15废除了Treg的抑制功能,并恢复了反应性T细胞的增殖和IFNγ的分泌。
3.5抗体依赖的细胞介导的细胞毒性(ADCC)和补体依赖的细胞毒性(CDC)测试:由于人PD-L1表达于多种细胞类型,在健康和肿瘤细胞中为了将对健康PD-L1+细胞的不希望的毒性减小到最低,验证了选择的抗-PD-L1全人源抗体没有ADCC和CDC功能。
3.5.1 ADCC:将靶细胞(mDC)和不同浓度的全人源抗体在96孔板中预孵育30min,随后以效应器/靶标的比例50:1加入IL-1活化的PBMC(效应器)。将所述板在37℃、5%CO2孵育器中孵育6小时。通过细胞毒性检测试剂盒(罗氏)测定靶细胞的裂解。使用MolecularDevices SpectraMax M5e微孔板检测仪测定光学密度。对照hAb(IgG1)和对照hAb(IgG4)分别作为阳性和阴性对照。
图12显示,使用的IL-2-激活的PBMC作为天然杀伤(NK)细胞的来源并将表达高水平的细胞表面的PD-L1的mDC作为靶细胞,全人源PD-L1抗体(1.4.1、1.14.4、1.20.15和1.46.11)不介导ADCC。
3.5.2 CDC:将靶细胞(mDC)、稀释的人血清补体(Quidel-A112)和不同浓度的全人源抗体在96孔板中混合。将所述板在37℃、5%CO2孵育器中孵育4小时。使用CellTiter glo(Promega-G7573)测定靶细胞裂解。利妥昔单抗(罗氏)和人B细胞淋巴瘤细胞系Raji(CD20阳性)作为阳性对照。如图13所示,全人源PD-L1抗体不介导CDC。
3.6通过FACS确定的分类(Binning)测试:为了检查全人源抗体与基准抗体是否具有相同的表位分类,将表达人PD-L1的CHO-K1细胞与不同浓度的全人源抗体在4℃孵育1小时。洗脱未结合抗体,向细胞中加入生物素标记的对照抗体。使用PE连接的链霉素检测生物素标记的对照抗体与PD-L1表达细胞的结合,随后使用BD Biosciences的FACSCanto IIand FlowJo版软件进行分析。
分类测试的结果表明全人源PD-L1抗体(即1.4.1、1.14.4、1.20.15和1.46.11)在人源PD-L1上的结合表位与已知PD-L1抗体(即基准抗体)不同。
3.7跨物种结合测定:抗体对食蟹猴和鼠科PD-L1的交叉反应通过ELISA测定。将人、食蟹猴和小鼠的PD-L1分别包被在ELISA平板上。封闭后,将全人源抗体加入板中并在室温下孵育至少2小时。用山羊抗-人IgG Fc-HRP检测抗体与包被的抗原的结合。使用TMB底物孵育10min显色,用2M HCl终止反应。使用Molecular Device M5e酶标仪上450nm处读板。
如图4所示,ELISA实验结果表明待测的全人源PD-L1与食蟹猴PD-L1以剂量依赖的形式结合。然而,待测抗体(1.4.1、1.14.4、1.20.15和1.46.11)都不与鼠科PD-L1结合(数据未显示)。
3.8 FACS跨家族结合测定:为检测全人源抗体的跨家族结合活性,用全人源抗体结合表达PD-L2的细胞系,随后用与FITC连接的山羊抗-人IgG Fc进行二抗结合。PD-L1表达细胞作为阳性对照。相应的母细胞系作为阴性对照。使用BD Biosciences的FACSCanto IIand FlowJo版软件对结合的细胞进行分析。
使用全人源的PD-L1抗体对转染了PD-L1或PD-L2的CHO细胞进行染色,并用FACS分析。如图3所示,全人源的PD-L1抗体特异性结合PD-L1,但不与PD-1配体家族的PD-L2结合。
实施例4:全人源PD-L1抗体的表位鉴定
为了确定本申请所述的抗体1.14.4的表位,使用1.14.4进行了针对hPD-L1的丙氨酸扫描突变实验(alanine scanning experiment)和抗体结合的效果评估。
将hPD-L1中的丙氨酸残基突变成甘氨酸密码子,且将所有其他残基突变为丙氨酸密码子。针对hPD-L1胞外结构域(ECD)的每个残基,使用两步连续PCR(sequential PCR)进行氨基酸的点取代。将编码人PD-L1的ECD和C末端His-标签的pcDNA3.3-hPD-1_ECD.His质粒作为模板,使用一套诱变引物作为第一步PCR,并使用QuikChangeLighting多点定点突变试剂盒(Agilent technologies,Palo Alto,CA)。使用Dpn I内切酶在突变联合成反应后消化母体模板。在第二步PCR中,线性DNA表达盒包含CMV启动子、PD-L1胞外结构域(ECD)、His-标签和单纯疱疹病毒胸苷激酶(TK)的多聚腺苷酸化,将所述线性DNA表达盒进行扩增并在HEK293F细胞中瞬时表达(Life Technologies,Gaithersburg,MD)。
将单克隆抗体1.14.4包被在板上用于ELISA结合测定。在与包含定量的PD-L1突变或人/小鼠PD-L1_ECD.His蛋白(Sino Biological,中国)的上清液反应后,将HRP偶联的抗-His抗体(1:5000;Rockland Immunochemicals,Pottstown,PA)作为检测抗体加入。根据对照突变的平均值对吸光度进行基准化。在对结合倍数变化(<0.55)进行额外临界值设定后,鉴定最终确定的表位残基。
进行了抗体1.14.4针对人和小鼠PD-L1的结合活性(图14)。发现抗体1.14.4结合人PD-L1(图14A),但不与小鼠PD-L1结合(图14B)。
在表2中列出131个点取代的hPD-L1点突变对抗体结合的影响。在hPD-L1晶体结构(PDB码3RRQ和4ZQK)上对所有这些残基的位置进行核对,显示出一些氨基酸(e.g.Gly159、Tyr160、Pro161)不太可能直接与任何抗体接触。观察到的结合降低最可能是由于丙氨酸取代后的hPD-L1结构的不稳定或甚至结构坍塌。在对结合倍数变化(<0.55)进行另外的临界值设定后,最终确定的表位残基列于表3。他们是针对1.14.4的6个位置。
将表3中的所有数据在hPD-L1的晶体结构上作图以更好的进行视觉化和比较(图15)。
表2.PD-L1点突变对抗体结合的影响
1.14.4
a结合中的倍数变化是相对于若干沉默的丙氨酸取代的结合而言。
表3.识别的潜在表位
临界值:倍数变化<0.55
如图15所示,负责hPD-L1结合的所述热点残基全部集中在C链、CC’环和F链(图15)。在hPD-1/hPD-L1复合物的晶体结构上对残基的位置进行核查(PDB code 4ZQK,
)显示出这些残基主要位于A、C、F和G链。抗体1.14.4的表位主要由在C链上的残基贡献,这些残基与hPD-1和hPD-L1相互作用位点直接重叠,表明了结合hPD-L1和阻断hPD-1的机制。
实施例5:全人源PD-L1抗体对肿瘤生长的体内抑制作用
为评估全人源抗体hPD-L1对肿瘤生长的抑制作用,将MC38-B7H1肿瘤细胞5×105个/0.1mL接种于雄性B-hPD-1人源化小鼠右侧前胁肋部皮下,共转接42只动物。待肿瘤生长到约100mm3时进行分组给药,每组7只,共5组,分别为:溶剂对照组、BMK6抗体对照组(参见WO2011066389A1中的描述)、1.14.4抗体3mg/kg组、1.14.4抗体10mg/kg组、和1.14.4抗体30mg/kg组。所有组给药途径为腹腔注射,每两天1次,连续给药6次,给药结束后再继续观测2周。每周测量肿瘤体积及体重2次,记录小鼠体重和肿瘤体积的变化与给药时间的关系。实验结束时,计算治疗组与溶剂对照组肿瘤体积比值(T/C)和肿瘤生长抑制率(TGI)并做统计学分析。应用Graphpad Prism 5软件进行T-test检验,对肿瘤体积进行统计学分析。P<0.05认为有显著性差异。
使用游标卡尺对肿瘤体积进行每周2次测量,测量肿瘤的长径和短径,其体积计算公式为:肿瘤体积=0.5×长径×短径2。根据测量结果计算肿瘤增值率T/C(%)=治疗组肿瘤体积/阴性对照组肿瘤体积x100%。肿瘤抑制率TGI(%)=[1-(Ti-T0)/(Vi-V0)]x100
(Ti:治疗组在给药第i天的肿瘤体积均值,T0:治疗组在给药第0天的肿瘤体积均值;Vi:对照组在给药第i天的肿瘤体积均值,V0:对照组在给药第0天的肿瘤体积均值)。
表4.全人源PD-L1抗体1.14.4对MC38-B7H1鼠源结肠癌移植hPD-1人源化小鼠的抑瘤作用
注:a.均数±标准误;b.与对照组比较
在整个实验过程中,各组实验动物体重均未见明显降低(表4和图16),表明对受试化合物耐受良好。给药19天结束后(肿瘤细胞接种25天后),溶剂对照组肿瘤体积生长到2359mm3,1.14.4低、中、高剂量组与对照组相比,肿瘤体积均有明显的降低(肿瘤体积均值分别为949mm3,1416mm3和1115mm3),三个剂量均显示出显著的抗肿瘤作用(瘤抑制率分别为62.8%,42.0%和55.4%)(表4和图17)。对照抗体BMK6也产生明显的抗肿瘤作用(肿瘤体积均值为1241mm3,肿瘤抑制率为49.7%)。结果显示,1.14.4抗体有显著的抗肿瘤作用,低、中、高剂量组对肿瘤的抑制率均在40%以上。
虽然本公开已经具体示出并参考具体实施方式(其中一些是优选的实施方式)进行了描述,但本领域的技术人员应理解如本申请所示可以在不脱离本发明的精神和范围内,可以进行各种形式上和细节上的改变。