CN106006946A - Electrolytically modified quartz sand filter bed and application thereof - Google Patents
Electrolytically modified quartz sand filter bed and application thereof Download PDFInfo
- Publication number
- CN106006946A CN106006946A CN201610356443.3A CN201610356443A CN106006946A CN 106006946 A CN106006946 A CN 106006946A CN 201610356443 A CN201610356443 A CN 201610356443A CN 106006946 A CN106006946 A CN 106006946A
- Authority
- CN
- China
- Prior art keywords
- quartz sand
- filter bed
- sand filter
- electrolysis
- phosphorus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical class O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 99
- 239000006004 Quartz sand Substances 0.000 claims abstract description 56
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 45
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 44
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 44
- 239000011574 phosphorus Substances 0.000 claims abstract description 44
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 42
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 22
- 239000002245 particle Substances 0.000 claims description 18
- 239000000919 ceramic Substances 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 10
- 238000001914 filtration Methods 0.000 claims description 8
- 238000005276 aerator Methods 0.000 claims description 5
- 230000001105 regulatory effect Effects 0.000 claims description 5
- 229910001385 heavy metal Inorganic materials 0.000 claims description 3
- 229910001051 Magnalium Inorganic materials 0.000 claims description 2
- 239000010453 quartz Substances 0.000 claims description 2
- 239000004576 sand Substances 0.000 claims description 2
- 230000000694 effects Effects 0.000 abstract description 12
- 238000005516 engineering process Methods 0.000 abstract description 12
- 238000005273 aeration Methods 0.000 abstract description 9
- 238000012986 modification Methods 0.000 abstract description 7
- 230000004048 modification Effects 0.000 abstract description 7
- 238000001179 sorption measurement Methods 0.000 abstract description 5
- 230000008901 benefit Effects 0.000 abstract description 4
- 229910000000 metal hydroxide Inorganic materials 0.000 abstract description 3
- 150000004692 metal hydroxides Chemical class 0.000 abstract description 3
- 230000014759 maintenance of location Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 23
- LDHBWEYLDHLIBQ-UHFFFAOYSA-M iron(3+);oxygen(2-);hydroxide;hydrate Chemical compound O.[OH-].[O-2].[Fe+3] LDHBWEYLDHLIBQ-UHFFFAOYSA-M 0.000 description 12
- 239000010865 sewage Substances 0.000 description 10
- 238000010521 absorption reaction Methods 0.000 description 8
- -1 ferrum Modified Quartz Sand Chemical class 0.000 description 8
- 244000005700 microbiome Species 0.000 description 8
- 230000009286 beneficial effect Effects 0.000 description 7
- 229910052742 iron Inorganic materials 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 6
- 210000004027 cell Anatomy 0.000 description 6
- 230000001276 controlling effect Effects 0.000 description 6
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 5
- 229910019142 PO4 Inorganic materials 0.000 description 5
- 150000002505 iron Chemical class 0.000 description 5
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 5
- 241000196324 Embryophyta Species 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 229910001448 ferrous ion Inorganic materials 0.000 description 4
- 239000000706 filtrate Substances 0.000 description 4
- 230000036647 reaction Effects 0.000 description 4
- 159000000013 aluminium salts Chemical class 0.000 description 3
- 229910000329 aluminium sulfate Inorganic materials 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000009388 chemical precipitation Methods 0.000 description 3
- 239000003651 drinking water Substances 0.000 description 3
- 239000003344 environmental pollutant Substances 0.000 description 3
- 238000005189 flocculation Methods 0.000 description 3
- 230000016615 flocculation Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 239000010452 phosphate Substances 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 231100000719 pollutant Toxicity 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000013049 sediment Substances 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- JXBAVRIYDKLCOE-UHFFFAOYSA-N [C].[P] Chemical compound [C].[P] JXBAVRIYDKLCOE-UHFFFAOYSA-N 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 230000002599 biostatic effect Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 239000000645 desinfectant Substances 0.000 description 2
- 235000020188 drinking water Nutrition 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 241000208340 Araliaceae Species 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- 206010012735 Diarrhoea Diseases 0.000 description 1
- 241000692870 Inachis io Species 0.000 description 1
- 206010068052 Mosaicism Diseases 0.000 description 1
- 235000005035 Panax pseudoginseng ssp. pseudoginseng Nutrition 0.000 description 1
- 235000003140 Panax quinquefolius Nutrition 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052586 apatite Inorganic materials 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 238000011953 bioanalysis Methods 0.000 description 1
- 239000003124 biologic agent Substances 0.000 description 1
- 235000012206 bottled water Nutrition 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000011118 depth filtration Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 235000008434 ginseng Nutrition 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000011964 heteropoly acid Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000007269 microbial metabolism Effects 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 235000019796 monopotassium phosphate Nutrition 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 description 1
- PJNZPQUBCPKICU-UHFFFAOYSA-N phosphoric acid;potassium Chemical compound [K].OP(O)(O)=O PJNZPQUBCPKICU-UHFFFAOYSA-N 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000009287 sand filtration Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 210000003765 sex chromosome Anatomy 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000035924 thermogenesis Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000003403 water pollutant Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/10—Packings; Fillings; Grids
- C02F3/104—Granular carriers
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/463—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrocoagulation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/46—Apparatus for electrochemical processes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biodiversity & Conservation Biology (AREA)
- Microbiology (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
The invention discloses an electrolytically modified quartz sand filter bed in which a bio-ceramsite layer and a quartz sand layer are sequentially arranged from the bottom up, wherein an aeration device is arranged in the bio-ceramsite layer; a cathode plate and an anode plate are arranged in the quartz sand layer, and are respectively connected with the cathode and the anode of a DC stabilized power supply. Compared with the prior art, the electrolytically modified quartz sand filter bed has the advantages that as the quartz sand filter bed technology and the electrolysis technology are used in a combined manner, loading of metal hydroxide on the surface of quartz sand is realized under the action of short-term electrolysis, the modification of the quartz sand filter bed is realized, no secondary pollution is generated, the environment friendliness is high, and the adsorption efficiency of a trace amount of phosphorus in water is improved. According to the electrolytically modified quartz sand filter bed technology, the phosphorus removing function of the quartz sand filter bed is strengthened, the trace amount of phosphorus can be removed effectively in a relatively short hydraulic retention time, the phosphorus concentration of outlet water is remarkably lower than that of the quartz sand filter bed, the effect is continuous and efficient, the electrolytically modified quartz sand filter bed is not easy to block, and a new technology is provided for effectively improving the biological stability of urban water supply plants.
Description
Technical field
The invention belongs to water treatment field, be specifically related to a kind of electrolysis Modified Quartz Sand filter bed and application thereof.
Background technology
China's major part water source is polluted by organic matter seriously, even if passing through the drinking water that sterilization is qualified in urban water plant,
During urban district carries, the heterotrophic bacterial in water still has the phenomenon increased, and this is considered as instability biology of water
Property causes.Biology, the potable water network tube wall of instability can form certain thickness biomembrane, corrodes pipeline, reduction
Pipe network conveyance power of water, causes the secondary pollution of water quality, and constitutes a threat to the health of the mankind.Developing country has every year
Child's morbidity or dead of less than 12200000 five years old, dies from diarrhoea more than 3,000,000 people, is wherein mostly due to drink and is subject to
Caused by the water that microorganism is polluted.
For the phenomenon of the pipe network instability that difference bacterium is caused, the most conventional measure controlling pipe network difference bacterium mainly has:
(1) rinse pipe network, increase the injected volume of disinfectant or use other disinfectant instead;(2) corrosion inhibitor is used;(3)
Controlling the nutrient inventory in water body, the factor controlling nutrient mainly has: organic carbon controlling elements, phosphorus controlling elements.
Phosphorus is one of element required in microbial metabolism, it is considered that the carbon-phosphorus ratio needed for growth of microorganism is 100:1,
In drinking water, required carbon-phosphorus ratio is lower slightly for 100:(1.7~2.0).For this situation, using phosphorus as controlling elements, reduce
Phosphorus content in tap water, can effectively control the content of microorganisms in water body, from not up to Biostatic.
The method that conventional phosphorus processes has chemical precipitation method (such as iron salt, aluminium salt and calcium salt etc.), bioanalysis and absorption method.
The chemical precipitation of phosphorus is divided into 4 steps: precipitation, cohesion, flocculation and solid-liquid separation.Chemical precipitation method
Dephosphorization efficiency higher, water outlet TP content can meet the requirement of 1mg/L.In Water purification, the removal of phosphorus is mainly by mixed
Retrogradation is formed sediment and filters two stages, and what coagulation effect was good can remove major part phosphorus, and another small part phosphorus relies on filtering technique and goes
Remove.Absorption method has that sludge output is few, reusable and the advantage such as economical and efficient, and to the micropollution removed in water
Thing has the advantage of uniqueness.Therefore, the method removing trace amounts of phosphorus is filtered in research, selects high-quality filtrate, optimizes filtercondition,
It is an important channel for ensureing the biological stability of water outlet.
The adsorbent of research mainly has at present: red mud, flyash, apatite, zeolite, biomass carbon etc..Quartz sand is made
Also being widely used in sewage disposal for a kind of material simple and easy to get, at present, conventional quartz sand material is the most right
It is applied after being modified again, and general method of modifying is to enter at surface metal oxide and the hydroxide of quartz sand
Row surface modification, it is possible to change the quantity of its surface potential and adsorption functional group, improves the filtrate removal to water pollutant
Efficiency.The method of quartz sand modification mainly has iron salt, magnesium salt, aluminium salt etc., different according to its process pollutant purpose.With
In remove trace amounts of phosphorus quartz sand method of modifying mainly based on iron salt and aluminium salt, wherein iron salt is to quartz sand study on the modification relatively
Many, it is coated with ferrum Modified Quartz Sand, as a kind of filtrate, there is stronger absorption property, be widely used to remove respectively during water processes
Plant pollutant.Wang Junling etc. (2007) have studied the painting ferrum Modified Quartz Sand Filtration Adsorption performance to trace amounts of phosphorus, research knot
Fruit proves that the quartz sand of ferrum modification has good removal effect to trace amounts of phosphorus hydrochlorate, and the clearance of phosphorus is changed by Modified Quartz Sand
More than 90%, wherein use is material modified for iron chloride.Xu Guangmei etc. (2007) are with Fe (NO3)·9H2O is modifying agent,
It is prepared as modified sand filtering material at 110 DEG C, and the adsorption isotherm and thermokinetics to its adsorption and dephosphorization is studied.Lu
Build and utilize ferrum Modified Quartz Sand filtering technique to carry out the regeneration technology of Treating Municipal Sewage in (2008) years such as ripple, find it
Preferable to the clearance of phosphorus, after its filtration, the aqueous concentration of phosphorus is below 1mg/L.Described in document above, quartz sand is changed
Property method, usually utilizes iron chloride, aluminum chloride etc. to soak, and modified can produce certain pollution waste liquid.Therefore,
It is applied on a large scale and need nonetheless remain for further being improved.
For the problems referred to above, electrochemical techniques are applied among the modification of quartz sand by the present invention, through electrolysis produced
Quartz sand surface is carried out loaded modified by metal hydroxides, utilizes the Modified Quartz Sand filtering technique strengthening suction to trace amounts of phosphorus
Attached removal, forms efficient electrolysis Modified Quartz Sand depth filtration, deep bed filtration technology, Modified Quartz Sand have bigger specific surface area and
Ion-exchange capacity, has bigger exchange capacity of absorption to the phosphorus in water body, and its surface can form stable biology simultaneously
Film.The absorption making microorganism goes dephosphorization to combine utilization with quartz sand absorption exchange interaction, and reach stability and high efficiency removes eliminating minute
The ability of phosphorus.This electrolysis Modified Quartz Sand filter bed technology can effectively remove the trace amounts of phosphorus in water body, and process is simple
Environmental friendliness, is conducive to the upgrading in filter tank in existing water treatment technology, thus has good using value.
Summary of the invention
The technical problem to be solved in the present invention is to provide a kind of electrolysis Modified Quartz Sand filter bed, with solve prior art exist right
The problem that in water body, the removal effect of trace amounts of phosphorus is the best.
The present invention also to solve the technical problem that the application being to provide above-mentioned electrolysis Modified Quartz Sand filter bed.
For solving above-mentioned technical problem, the technical solution used in the present invention is as follows:
A kind of electrolysis Modified Quartz Sand filter bed, in filter bed, paving is sequentially provided with biological ceramic particle layer and quartz sand layer from bottom to up;
Wherein, it is provided with aerator in biological ceramic particle layer;Being provided with minus plate and positive plate in quartz sand layer, positive plate is with cloudy
Pole plate intersects to be placed, and minus plate is connected with negative pole and the positive pole of D.C. regulated power supply respectively with positive plate.
Wherein, preferably positive plate immediate with biological ceramic particle layer.
Wherein, the thickness of biological ceramic particle layer and quartz sand layer is than for 1:9~14.
Wherein said electrolysis Modified Quartz Sand filter bed, it is characterised in that in described biological ceramic particle layer, biological ceramic particle
Particle diameter is 3~5mm;In described quartz sand layer, the particle diameter of quartz sand is 1~1.5mm.
Wherein said electrolysis Modified Quartz Sand filter bed, it is characterised in that the plate spacing between adjacent minus plate and positive plate
With the gross thickness of quartz sand filter than for 1:3~5.
Wherein said electrolysis Modified Quartz Sand filter bed, it is characterised in that be equipped with diameter on minus plate and positive plate
The limbers of 0.5~1cm, the distance between adjacent two limbers is 1~2cm.
Wherein said electrolysis Modified Quartz Sand filter bed, it is characterised in that the material of described positive plate is ferrum or magnalium conjunction
Gold, the material of described minus plate is ferrum.
Wherein said electrolysis Modified Quartz Sand filter bed, it is characterised in that minus plate and positive plate in filter bed total effectively
Volume is 0.00008~0.005:1 with the volume ratio of quartz sand filtering layer in filter bed.
Wherein said electrolysis Modified Quartz Sand filter bed, it is characterised in that the aeration rate of described aerator is
2~18L/min.
Wherein, the effect of the aeration aerating bottom filter bed mainly has:
(1) it is beneficial to ferrous oxidising one-tenth ferric iron in electrolysis, thus promotes the generation of hydrated ferric oxide. in water body;
(2) the distribution ratio making hydrated ferric oxide. in water body after aeration is more uniform, is beneficial to hydrated ferric oxide. at quartz sand table
The appendix in face;
(3) environment that maintenance is the most aerobic, it is to avoid the reduction of three rank ferrum, thus inhibit the secondary of phosphorus to discharge.
Wherein said electrolysis Modified Quartz Sand filter bed, it is characterised in that the voltage of described D.C. regulated power supply is
2~20V.
Above-mentioned electrolysis Modified Quartz Sand filter bed in the application removed in water body in phosphorus and heavy metal also at the protection model of the present invention
Within enclosing.
When utilizing above-mentioned electrolysis Modified Quartz Sand filter bed to remove the phosphorus in water body or heavy metal, by treatment sewage from the bottom of filter bed
Portion is injected in filter bed;When filter bed runs, the ferrous ion that positive plate is electrolysed out is easier to generate trivalent in the case of aeration
Ferrum, ferric iron and the OH in water body-Generating hydroxide, this hydrated ferric oxide. can be supported on quartz sand surface, be electrolysed simultaneously
The ferrous ion gone out and three rank iron ions also can form precipitation with phosphate, and hydrated ferric oxide. also can be to the phosphorus in water body simultaneously
Hydrochlorate carries out flocculation sediment.Quartz sand after load iron, can significantly improve the specific surface area of quartz sand, is beneficial to poly-
The attachment of phosphorus microorganism also forms stable biomembrane.In a word, the quartz sand after ferrum is loaded modified and quartz sand surface
Biomembrane and water body in hydrated ferric oxide. etc., by settling, filter, adsorbing, the physics such as the Absorption And Metabolism of microorganism
Chemical thermogenesis so that quartz sand filter can efficiently remove trace amounts of phosphorus in shorter hydraulic detention time.
Beneficial effect: compared with prior art, the present invention has the advantage that
1, by quartz sand filter technology is used in conjunction with electrolysis tech, under the electrolysis of short time, it is achieved that quartz
The load of sand surface metal hydroxide, it is achieved that the modifying function of quartz sand filter, does not produce secondary pollution simultaneously,
Environmental friendliness, improves the effect of trace amounts of phosphorus in its adsorbed water body.
2, electrolysis Modified Quartz Sand filter bed technology, enhances quartz sand filter and goes the effect of dephosphorization, it is achieved that trace
The phosphorus effective removal in shorter hydraulic detention time, and in water outlet, the concentration of phosphorus is substantially less than quartz sand filter, continues
Efficiently, and it is not easily blocked, provides new technology for the effective biological stability solving urban water plant.
Accompanying drawing explanation
Fig. 1 is electrolysis Modified Quartz Sand filter bed system structure schematic diagram in embodiment 1;
Fig. 2 is the electrolysis Modified Quartz Sand filter bed clearance to trace amounts of phosphorus in embodiment 1.
Detailed description of the invention
According to following embodiment, the present invention be may be better understood.But, as it will be easily appreciated by one skilled in the art that reality
Execute the content described by example and be merely to illustrate the present invention, and should be also without limitation on not described in detail in claims
The present invention.
Sewage used in following embodiment configures with reference to urban water plant low phosphorus.Simulation sewage is by analytically pure
Potassium dihydrogen phosphate prepare, pollutant mainly based on the phosphorus of low concentration, its PO4 3--P concentration is 50 μ g/L, the stream of sewage
Dynamic direction is from bottom to top, and sewage hydraulic detention time in electrolysis filter bed device is 2h.
In following embodiment, the pH of Inlet and outlet water, dissolved oxygen (DO), oxidation-reduction potential (ORP), temperature (DEG C) are respectively
Use the portable dissolved oxygen instrument of HachHQ30-d (LDO101 standard type dissolved oxygen electrode), the portable pH meter of Hach
(PHC101 standard type pH electrode), soil redox potential meter (DMP-2 digital display MV/pH/ thermometer) and water temperature
Meter (JZLCWQG-17) is measured.The mensuration of low concentration phosphoric acid uses peacock green phosphato-molybdic heteropolyacid spectrophotography (ginseng
See the standard in " water and effluent monitoring analyze method (fourth edition) ") at 620nm, measure concentration;Iron ion uses neighbour
Phenanthroline spectrophotography (seeing the standard in " water and effluent monitoring analyze method (fourth edition) ") is surveyed at 510nm
Determine concentration.Each sample uses ultraviolet spectrophotometry (V1800, SHIMADZU) point through standardization program after processing
Analysis measures.
Embodiment 1
As it is shown in figure 1, the analog being electrolysed Modified Quartz Sand filter bed that laboratory builds, it is by filter bed 1, electrolysis system
2-3 and aerating system 3 form;There is biological ceramic particle layer 1-2 the bottom of filter bed as bed course, and particle diameter is 3~5mm, and volume accounts for filter
The 7% of bed cumulative volume;Filter bed top is quartz sand layer 1-1, and particle diameter is 1~1.5mm, and volume accounts for the 93% of filter bed cumulative volume.
The bottom of filter bed is provided with water inlet, and the sidewall of device upper end arranges outlet.Identical electroless system is set simultaneously
Device is matched group.
Be provided with one piece of positive plate and one piece of minus plate in the inside of the quartz sand filter media of filter bed, its material is ferrum, and anode
Plate is positioned at the top of filter bed, and minus plate is positioned at the bottom of filter bed, and plate spacing is 10cm.Negative electrode and positive plate surface every
1cm is covered with the limbers of 0.5cm.Anode is by producing iron ion under the effect of electrolysis, it is provided that for quartz sand filter
The modified hydrated ferric oxide. used.Positive plate effective volume in quartz sand filter with the volume ratio processing filtrate is
0.0036.Minus plate is connected with D.C. regulated power supply with positive plate, and during cell reaction, voltage is 5V, and electric current is
0.001A.The sewage being beneficial to conduction is first full of filter bed as electrolyte before starting by cell reaction, then connects power supply and carries out
Cell reaction, the cell reaction time is 48h.Carry out during cell reaction bottom aeration, its aeration rate be 2~
3L/min, is uniformly attached to the surface of quartz sand by the iron ion produced in aeration beneficially electrolytic process.Carry out dirt afterwards
The dephosphorization treatment of water, in its processing procedure, the time of staying of low-concentration phosphorus-containing sewage is 2h, and the cell reaction time is 1h/d,
Aerator works 2h continuously.
After pending low-concentration phosphorus-containing sewage flows into electrolysis modification biological filter bed, the ferrous ion that positive plate is electrolysed out exists
It is easier to generate ferric iron, ferric iron and the OH in water body in the case of aeration-Generating hydroxide, this hydrated ferric oxide. can be born
Being loaded in quartz sand surface, the ferrous ion being simultaneously electrolysed out and three rank iron ions also can form precipitation, simultaneously with phosphate
Hydrated ferric oxide. also can carry out flocculation sediment effect to the phosphate in water body.Having aeration head bottom filter bed, its effect is main
Have: (1) is beneficial to ferrous oxidising one-tenth ferric iron in electrolysis, thus promotes the generation of hydrated ferric oxide.;(2) make in water body
The distribution ratio of hydrated ferric oxide. is more uniform, is beneficial to ferrum at the appendix of quartz sand surface;(3) environment that maintenance is the most aerobic,
Avoid the reduction of three rank ferrum, thus inhibit the secondary of phosphorus to discharge.Quartz sand after load iron, can significantly improve
The specific surface area of quartz sand, the attachment of the most poly-phosphorus microorganism also forms stable biomembrane.In a word, change through ferrum load
Hydrated ferric oxide. etc. in the biomembrane of the quartz sand after property and quartz sand surface and water body, by settling, filter, adsorbing,
The physical chemistry biological agents such as the Absorption And Metabolism of microorganism so that quartz sand filter can be in shorter hydraulic detention time
Efficiently remove trace amounts of phosphorus, efficiently solve Biostatic sex chromosome mosaicism.
Result of the test is as shown in Figure 2.In process group, the phosphatic removal effect of low concentration is apparently higher than matched group.PO4 3--P
Content in process group is only 0.76ug/L, and clearance is 98.4%, and the content in matched group is by the initial stage
20.9ug/L, clearance is 58.2%, differs 40.2% between the two.Its clearance in quartz sand filter is the lowest
In the modified filter bed group of electrolysis, it is therefore evident that, the quartz sand filter after being loaded by electrolysis Modified Iron is in water outlet
The removal effect of phosphorus is substantially better than matched group.
Claims (10)
1. an electrolysis Modified Quartz Sand filter bed, it is characterised in that in filter bed, paving is sequentially provided with biological ceramic particle from bottom to up
Layer and quartz sand layer;Wherein, it is provided with aerator in biological ceramic particle layer;The minus plate that intersection is placed it is provided with in quartz sand layer
With positive plate, minus plate and positive plate are connected with negative pole and the positive pole of D.C. regulated power supply respectively.
Electrolysis Modified Quartz Sand filter bed the most according to claim 1, it is characterised in that biological ceramic particle layer and quartz
The thickness of layer of sand is than for 1:9~14.
Electrolysis Modified Quartz Sand filter bed the most according to claim 1, it is characterised in that described biological ceramic particle layer
In, the particle diameter of biological ceramic particle is 3~5mm;In described quartz sand layer, the particle diameter of quartz sand is 1~1.5mm.
Electrolysis Modified Quartz Sand filter bed the most according to claim 1, it is characterised in that adjacent minus plate and sun
The gross thickness of the plate spacing between pole plate and quartz sand filter is than for 1:3~5.
Electrolysis Modified Quartz Sand filter bed the most according to claim 1, it is characterised in that on minus plate and positive plate
Being equipped with the limbers of diameter 0.5~1cm, the distance between adjacent two limbers is 1~2cm.
Electrolysis Modified Quartz Sand filter bed the most according to claim 1, it is characterised in that the material of described positive plate
Material is ferrum or magnalium, and the material of described minus plate is ferrum.
Electrolysis Modified Quartz Sand filter bed the most according to claim 1, it is characterised in that minus plate and positive plate are in filter
Total effective volume in Chuan is 0.00008~0.005:1 with the volume ratio of quartz sand filtering layer in filter bed.
Electrolysis Modified Quartz Sand filter bed the most according to claim 1, it is characterised in that the exposure of described aerator
Tolerance is 2~18L/min.
Electrolysis Modified Quartz Sand filter bed the most according to claim 1, it is characterised in that described D.C. regulated power supply
Voltage be 2~20V.
10. the electrolysis Modified Quartz Sand filter bed described in claim 1 is in the application removed in water body in phosphorus and heavy metal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610356443.3A CN106006946A (en) | 2016-05-26 | 2016-05-26 | Electrolytically modified quartz sand filter bed and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610356443.3A CN106006946A (en) | 2016-05-26 | 2016-05-26 | Electrolytically modified quartz sand filter bed and application thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106006946A true CN106006946A (en) | 2016-10-12 |
Family
ID=57094435
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610356443.3A Pending CN106006946A (en) | 2016-05-26 | 2016-05-26 | Electrolytically modified quartz sand filter bed and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106006946A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113772890A (en) * | 2021-09-22 | 2021-12-10 | 桂林理工大学 | Sewage treatment system and method based on AO-MBBR-inductive coupling filter tank |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1483126A (en) * | 1975-01-03 | 1977-08-17 | Electricity Council | Electrolytic treatment of dilute cyanide solution and cell therefor |
CN201325897Y (en) * | 2008-11-18 | 2009-10-14 | 南京赛佳环保科技有限责任公司 | Waste water treatment equipment of multi-dimensional electrode electrical catalytic reactor of horizontal electrode plate |
CN102976472A (en) * | 2012-11-28 | 2013-03-20 | 中国地质大学(武汉) | Groundwater remediation method by Electro-Fenton reaction using iron cathode |
CN103041775A (en) * | 2013-01-17 | 2013-04-17 | 山东大学 | Graphene oxidation reactor based on graphene macro-body and application of graphene oxidation reactor |
CN103922446A (en) * | 2014-04-25 | 2014-07-16 | 中国地质大学(武汉) | Electrochemical oxidation method for trivalent arsenic in underground water |
CN104030405A (en) * | 2014-06-25 | 2014-09-10 | 中国地质大学(武汉) | Electrochemical enhanced sand filter tank arsenic removal method |
CN104815611A (en) * | 2015-04-13 | 2015-08-05 | 北京工业大学 | Preparation method of iron oxide modified quartz sand filter material for adsorption removal of arsenic and phosphorus |
CN105000722A (en) * | 2015-06-17 | 2015-10-28 | 西安建筑科技大学 | System for preparing active filtering materials used for removing ammonia and nitrogen in water in catalysis and oxidation mode |
-
2016
- 2016-05-26 CN CN201610356443.3A patent/CN106006946A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1483126A (en) * | 1975-01-03 | 1977-08-17 | Electricity Council | Electrolytic treatment of dilute cyanide solution and cell therefor |
CN201325897Y (en) * | 2008-11-18 | 2009-10-14 | 南京赛佳环保科技有限责任公司 | Waste water treatment equipment of multi-dimensional electrode electrical catalytic reactor of horizontal electrode plate |
CN102976472A (en) * | 2012-11-28 | 2013-03-20 | 中国地质大学(武汉) | Groundwater remediation method by Electro-Fenton reaction using iron cathode |
CN103041775A (en) * | 2013-01-17 | 2013-04-17 | 山东大学 | Graphene oxidation reactor based on graphene macro-body and application of graphene oxidation reactor |
CN103922446A (en) * | 2014-04-25 | 2014-07-16 | 中国地质大学(武汉) | Electrochemical oxidation method for trivalent arsenic in underground water |
CN104030405A (en) * | 2014-06-25 | 2014-09-10 | 中国地质大学(武汉) | Electrochemical enhanced sand filter tank arsenic removal method |
CN104815611A (en) * | 2015-04-13 | 2015-08-05 | 北京工业大学 | Preparation method of iron oxide modified quartz sand filter material for adsorption removal of arsenic and phosphorus |
CN105000722A (en) * | 2015-06-17 | 2015-10-28 | 西安建筑科技大学 | System for preparing active filtering materials used for removing ammonia and nitrogen in water in catalysis and oxidation mode |
Non-Patent Citations (1)
Title |
---|
许光眉等: "石英砂负载氧化铁吸附除锑、磷的XRD、FTIR以及XPS研究", 《环境科学学报》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113772890A (en) * | 2021-09-22 | 2021-12-10 | 桂林理工大学 | Sewage treatment system and method based on AO-MBBR-inductive coupling filter tank |
CN113772890B (en) * | 2021-09-22 | 2024-02-27 | 桂林理工大学 | Sewage treatment system and treatment method based on AO-MBBR-inductively coupled filter tank |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Corpuz et al. | Wastewater treatment and fouling control in an electro algae-activated sludge membrane bioreactor | |
Shen et al. | A study of ferric-carbon micro-electrolysis process to enhance nitrogen and phosphorus removal efficiency in subsurface flow constructed wetlands | |
Ju et al. | Intensified nitrogen and phosphorus removal in a novel electrolysis-integrated tidal flow constructed wetland system | |
CN101264946B (en) | Iron-carbon pipe component capable of purifying waste water, integrated magnetoelectric oxidation biological filter chamber and application system | |
Ju et al. | How the novel integration of electrolysis in tidal flow constructed wetlands intensifies nutrient removal and odor control | |
Lu et al. | Assessment of the treatment of domestic sewage by a vertical-flow artificial wetland at different operating water levels | |
CN102603132B (en) | Sludge treatment device based on electrolysis and pressure filtration technologies and method thereof | |
CN105152351A (en) | Photoelectric artificial wetland and application thereof | |
Kermet-Said et al. | Optimization of Turbidity and COD Removal from Pharmaceutical Wastewater by Electrocoagulation. Isotherm Modeling and Cost Analysis. | |
CN109467287B (en) | Mineralized denitrification and dephosphorization and sludge reduction and ecological filter tank coupling treatment system | |
CN106800356A (en) | A kind of advanced treatment of wastewater regeneration device based on biochemical and electrolysis tech | |
CN101302053A (en) | Phosphorus removing method for municipal sewage plant | |
CN103936106A (en) | Electrochemical synchronous nitrogen and phosphorus removal apparatus and municipal sewage treatment method | |
Cast et al. | An evaluation of two cathode materials and the impact of copper on bioelectrochemical denitrification | |
Zhong et al. | Effects of front aeration on the purification process in horizontal subsurface flow constructed wetlands shown with 2D contour plots | |
CN107285435A (en) | Double electrolysis remove the method and apparatus of the phosphorus in organophosphorus pesticide production waste water | |
García-Orozco et al. | Electrocoagulation of a chocolate industry wastewater in a Downflow column electrochemical reactor | |
Huang et al. | Tertiary denitrification and organic matter variations of secondary effluent from wastewater treatment plant by the 3D-BER system | |
Al-Othman et al. | Modified bio-electrocoagulation system to treat the municipal wastewater for irrigation purposes | |
He et al. | The efficient treatment of mature landfill leachate using tower bipolar electrode flocculation-oxidation combined with electrochemical biofilm reactors | |
Mielcarek et al. | Single-stage or two-stages bio-electrochemical treatment process of drainage from soilless tomato cultivation with alternating current | |
CN106006946A (en) | Electrolytically modified quartz sand filter bed and application thereof | |
CN103539322A (en) | Method for removing nitrogen and phosphorus from sewage and special equipment for implementing method | |
CN115477388B (en) | Ammonium nitrate wastewater treatment device and method | |
CN111362425A (en) | Method for treating acid mine wastewater by using micro-electrolysis-enhanced sulfate reducing bacteria and micro-electrolysis bioreactor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20161012 |