CN105968744A - 一种机械性能增强的全降解塑料薄膜及其制备方法 - Google Patents

一种机械性能增强的全降解塑料薄膜及其制备方法 Download PDF

Info

Publication number
CN105968744A
CN105968744A CN201610114677.7A CN201610114677A CN105968744A CN 105968744 A CN105968744 A CN 105968744A CN 201610114677 A CN201610114677 A CN 201610114677A CN 105968744 A CN105968744 A CN 105968744A
Authority
CN
China
Prior art keywords
plastic film
fully
1mol
china
hemp fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610114677.7A
Other languages
English (en)
Inventor
李峰
郑志龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ANHUI MENGNIU COLOR PRINTING PACKAGING Co Ltd
Original Assignee
ANHUI MENGNIU COLOR PRINTING PACKAGING Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ANHUI MENGNIU COLOR PRINTING PACKAGING Co Ltd filed Critical ANHUI MENGNIU COLOR PRINTING PACKAGING Co Ltd
Priority to CN201610114677.7A priority Critical patent/CN105968744A/zh
Publication of CN105968744A publication Critical patent/CN105968744A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B31/00Preparation of derivatives of starch
    • C08B31/08Ethers
    • C08B31/12Ethers having alkyl or cycloalkyl radicals substituted by heteroatoms, e.g. hydroxyalkyl or carboxyalkyl starch
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/045Reinforcing macromolecular compounds with loose or coherent fibrous material with vegetable or animal fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2403/00Characterised by the use of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08J2403/04Starch derivatives
    • C08J2403/08Ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2497/00Characterised by the use of lignin-containing materials
    • C08J2497/02Lignocellulosic material, e.g. wood, straw or bagasse
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/06Biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

本发明公开了一种机械性能增强的全降解塑料薄膜,其特征在于,由下列重量份的原料制备制成:聚乳酸80‑85、汉麻纤维25‑30、硅烷偶联剂kh‑550 0.8‑1、玉米淀粉20‑25、甘油12‑14、环氧氯丙烷1.6‑2、1mol/L的氢氧化钠溶液适量、1mol/L的盐酸适量、蒸馏水适量、环氧大豆油1‑1.5、天然胶乳5‑7、乳酸丁酯2‑3、竹纤维3‑5;本发明制成的全降解塑料薄膜,具有良好的韧性以及机械性能,在自然条件下容易降解,安全环保,工艺创新且便于工业化控制,具有广泛的用途,如作为食品、日用品包装物等,安全环保,可完全生物降解,且速度快。

Description

一种机械性能增强的全降解塑料薄膜及其制备方法
技术领域
本发明涉及塑料薄膜技术领域,特别是一种机械性能增强的全降解塑料薄膜及其制备方法。
背景技术
为了减少石油基塑料材料的使用,保护环境,缓解当下日益严峻的石油资源短缺的问题,开发和利用生物基可降解的环保型塑料材料成了包装材料领域的研究重点。
聚乳酸材料是目前应用最为广泛的可降解塑料材料之一,作为包装薄膜材料,PLA具有很好的透明度、机械性能和生物相容性,高强度、热塑性、疏水性、成型加工容易、可完全降解,降解产物对人体无毒无害,来源于可再生资源,易于回收利用等优点,但是聚乳酸价格昂贵、高脆性、低韧性的缺陷影响了其在更广泛领域的应用。聚乳酸作为单一单体合成的可降解材料在机械性能,加工性能以及其他功能特性上不能达到社会对材料性能的广泛要求,所以我们要对生物可降解材料采取一些方法进行改性,对其不足的性能进行补强,从而使环境友好型的生物可降解材料适用范围更加广泛。
近期天然纤维的研究也广受关注,与碳纤维、玻璃纤维相比,天然纤维(如木纤维、麻纤维、竹纤维等)由于具有价格低,可再生,可降解等一系列优点而在增强复合材料中得到广泛应用,而且天然纤维与生物可降解材料的复合既可以增强生物可降解材料的力学性能又保证了复合材料的可再生可降解性能。其中麻纤维由于纤维素含量高、强度高,因此可作为良好的增强组分制备复合材料。在麻纤维中,汉麻纤维有较高的比强度和比模量等力学性能,同时我国的汉麻产量居世界之首,具有潜在的工业应用价值。
本发明拟将汉麻-淀粉-聚乳酸共混制成可降解塑料薄膜,综合了聚乳酸的高性能,淀粉的低成本,汉麻的韧性高等优点,不但能够部分替代传统石油基塑料,更解决了单纯聚乳酸存在的缺陷,是一种极具开发前景的新型可降解塑料产品。
发明内容
本发明的目的是提供一种机械性能增强的全降解塑料薄膜及其制备方法。本发明首先利用硅烷偶联剂kh-550对汉麻纤维进行预处理,从而改善界面接触效果以及相容性,能够提高材料的机械性能;再通过一系列的工艺对玉米淀粉进行改性后添加到整体产品中,解决了与聚乳酸形容性不好的问题,同时配合天然胶乳、乳酸丁酯等成分的添加,能够进一步提高复合材料的强度以及韧性,同时可大大降低产品的整体成本,有助于完全生物降解塑料的推广和应用。
为了实现本发明的目的,本发明通过以下方案实施:
一种机械性能增强的全降解塑料薄膜,由下列重量份的原料制备制成:聚乳酸80-85、汉麻纤维25-30、硅烷偶联剂kh-550 0.8-1、玉米淀粉20-25、甘油12-14、环氧氯丙烷1.6-2、1mol/L的氢氧化钠溶液适量、1mol/L的盐酸适量、蒸馏水适量、环氧大豆油1-1.5、天然胶乳5-7、乳酸丁酯2-3、竹纤维3-5;
本发明所述一种机械性能增强的全降解塑料薄膜,由以下具体步骤制成:
(1)将汉麻纤维放入倍量的1mol/L的氢氧化钠溶液中,常压下,加热至100℃,蒸煮2.5-3小时,冷去后取出用1mol/L的盐酸洗至中性,放入烘箱中烘干后放入粉碎机中粉碎成200目粉末待用;将硅烷偶联剂kh-550溶于蒸馏水中,形成浓度为1%的硅烷偶联剂kh-550水溶液,将粉碎成200目的汉麻纤维浸泡其中,加热至40-50℃,浸泡40-60分钟后过滤出沉淀物,然后让入烘箱中,以90-100℃干燥3-4小时即得表面处理的汉麻纤维粉料;
(2)将玉米淀粉溶于3倍量的蒸馏水中,边搅拌边滴入1mol/L的氢氧化钠溶液,直到pH值为9.5,然后在水浴条件下缓慢滴入环氧氯丙烷,控制水浴温度为50℃,搅拌反应4-5小时后,用1mol/L的盐酸调节pH值到6.5,静置30分钟后弃去上清液,用蒸馏水洗涤,放入烘箱中烘干待用;
(3)将步骤(1)得到的表面处理的汉麻纤维粉料与步骤(2)得到的烘干后的玉米淀粉混合后与甘油混合,放入捏合机中,在100-120℃的条件下捏合30-40分钟后挤出,然后将挤出的混合物放入球磨机中球磨6-8小时,然后放入烘箱中,在130-140℃条件下烘干即得增强母料;
(4)将竹纤维干燥后剪碎成1厘米小段,然后放入粉碎机中粉碎成400目粉末待用,将天然胶乳与环氧大豆油混合,加热至40-50℃,以600转/分的速度搅拌30分钟后加入乳酸丁酯,继续搅拌15分钟后加入粉碎的竹纤维,降速至400转/分搅拌60-90分钟,得到混合浆料;
(5)将聚乳酸加入密炼机中,以150℃的温度塑炼3分钟,然后加入步骤(3)得到的增强母料以及步骤(4)得到的混合浆料,继续混炼15-18分钟后进行热熔挤出吹塑成膜,最后定性收卷、包装即得。
本发明的有益效果是:本发明添加甘油与环氧氯丙烷对玉米淀粉进行改性,能够解决淀粉与聚乳酸形容性不好的问题,同时添加改性后的天然胶乳与乳酸丁酯等成分,进一步提高了复合材料的强度以及韧性,同时能够降低产品的整体成本;利用KH550硅烷偶联剂对汉麻纤维进行预处理,从而改善界面接触效果以及相容性,能够提高材料的机械性能。
本发明制成的全降解塑料薄膜,具有良好的韧性以及机械性能,在自然条件下容易降解,安全环保,工艺创新且便于工业化控制,具有广泛的用途,如作为食品、日用品包装物等,安全环保,可完全生物降解,且速度快。
具体实施方案
下面通过具体实例对本发明进行详细说明。
一种机械性能增强的全降解塑料薄膜,由下列重量份(公斤)的原料制备制成:聚乳酸80、汉麻纤维25、硅烷偶联剂kh-550 0.8、玉米淀粉20、甘油12、环氧氯丙烷1.6、1mol/L的氢氧化钠溶液适量、1mol/L的盐酸适量、蒸馏水适量、环氧大豆油1、天然胶乳5、乳酸丁酯2、竹纤维3;
本发明所述一种机械性能增强的全降解塑料薄膜,由以下具体步骤制成:
(1)将汉麻纤维放入倍量的1mol/L的氢氧化钠溶液中,常压下,加热至100℃,蒸煮2.5小时,冷去后取出用1mol/L的盐酸洗至中性,放入烘箱中烘干后放入粉碎机中粉碎成200目粉末待用;将硅烷偶联剂kh-550溶于蒸馏水中,形成浓度为1%的硅烷偶联剂kh-550水溶液,将粉碎成200目的汉麻纤维浸泡其中,加热至40-50℃,浸泡40分钟后过滤出沉淀物,然后让入烘箱中,以90-100℃干燥3小时即得表面处理的汉麻纤维粉料;
(2)将玉米淀粉溶于3倍量的蒸馏水中,边搅拌边滴入1mol/L的氢氧化钠溶液,直到pH值为9.5,然后在水浴条件下缓慢滴入环氧氯丙烷,控制水浴温度为50℃,搅拌反应4小时后,用1mol/L的盐酸调节pH值到6.5,静置30分钟后弃去上清液,用蒸馏水洗涤,放入烘箱中烘干待用;
(3)将步骤(1)得到的表面处理的汉麻纤维粉料与步骤(2)得到的烘干后的玉米淀粉混合后与甘油混合,放入捏合机中,在100-120℃的条件下捏合30分钟后挤出,然后将挤出的混合物放入球磨机中球磨6小时,然后放入烘箱中,在130-140℃条件下烘干即得增强母料;
(4)将竹纤维干燥后剪碎成1厘米小段,然后放入粉碎机中粉碎成400目粉末待用,将天然胶乳与环氧大豆油混合,加热至40-50℃,以600转/分的速度搅拌30分钟后加入乳酸丁酯,继续搅拌15分钟后加入粉碎的竹纤维,降速至400转/分搅拌60分钟,得到混合浆料;
(5)将聚乳酸加入密炼机中,以150℃的温度塑炼3分钟,然后加入步骤(3)得到的增强母料以及步骤(4)得到的混合浆料,继续混炼15分钟后进行热熔挤出吹塑成膜,最后定性收卷、包装即得。
将本发明产品进行堆肥实验,结果表明,在81天后的生物分解率﹥60%。按照 GB/T 1040.3-2006进行力学性能测试,横向拉伸负荷为4.25N,横向断裂伸长率为820.9%;纵向拉伸负荷为4.12N,纵向断裂伸长率为672.9%,检测结果说明本发明产品已达到普通塑料膜的要求,相关指标优于国家对生物可降解材料的规定要求。

Claims (2)

1.一种机械性能增强的全降解塑料薄膜,其特征在于,由下列重量份的原料制备制成:聚乳酸80-85、汉麻纤维25-30、硅烷偶联剂kh-550 0.8-1、玉米淀粉20-25、甘油12-14、环氧氯丙烷1.6-2、1mol/L的氢氧化钠溶液适量、1mol/L的盐酸适量、蒸馏水适量、环氧大豆油1-1.5、天然胶乳5-7、乳酸丁酯2-3、竹纤维3-5。
2.根据权利要求1所述一种机械性能增强的全降解塑料薄膜,其特征在于,由以下具体步骤制成:
(1)将汉麻纤维放入倍量的1mol/L的氢氧化钠溶液中,常压下,加热至100℃,蒸煮2.5-3小时,冷去后取出用1mol/L的盐酸洗至中性,放入烘箱中烘干后放入粉碎机中粉碎成200目粉末待用;将硅烷偶联剂kh-550溶于蒸馏水中,形成浓度为1%的硅烷偶联剂kh-550水溶液,将粉碎成200目的汉麻纤维浸泡其中,加热至40-50℃,浸泡40-60分钟后过滤出沉淀物,然后让入烘箱中,以90-100℃干燥3-4小时即得表面处理的汉麻纤维粉料;
(2)将玉米淀粉溶于3倍量的蒸馏水中,边搅拌边滴入1mol/L的氢氧化钠溶液,直到pH值为9.5,然后在水浴条件下缓慢滴入环氧氯丙烷,控制水浴温度为50℃,搅拌反应4-5小时后,用1mol/L的盐酸调节pH值到6.5,静置30分钟后弃去上清液,用蒸馏水洗涤,放入烘箱中烘干待用;
(3)将步骤(1)得到的表面处理的汉麻纤维粉料与步骤(2)得到的烘干后的玉米淀粉混合后与甘油混合,放入捏合机中,在100-120℃的条件下捏合30-40分钟后挤出,然后将挤出的混合物放入球磨机中球磨6-8小时,然后放入烘箱中,在130-140℃条件下烘干即得增强母料;
(4)将竹纤维干燥后剪碎成1厘米小段,然后放入粉碎机中粉碎成400目粉末待用,将天然胶乳与环氧大豆油混合,加热至40-50℃,以600转/分的速度搅拌30分钟后加入乳酸丁酯,继续搅拌15分钟后加入粉碎的竹纤维,降速至400转/分搅拌60-90分钟,得到混合浆料;
(5)将聚乳酸加入密炼机中,以150℃的温度塑炼3分钟,然后加入步骤(3)得到的增强母料以及步骤(4)得到的混合浆料,继续混炼15-18分钟后进行热熔挤出吹塑成膜,最后定性收卷、包装即得。
CN201610114677.7A 2016-03-01 2016-03-01 一种机械性能增强的全降解塑料薄膜及其制备方法 Pending CN105968744A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610114677.7A CN105968744A (zh) 2016-03-01 2016-03-01 一种机械性能增强的全降解塑料薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610114677.7A CN105968744A (zh) 2016-03-01 2016-03-01 一种机械性能增强的全降解塑料薄膜及其制备方法

Publications (1)

Publication Number Publication Date
CN105968744A true CN105968744A (zh) 2016-09-28

Family

ID=56988569

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610114677.7A Pending CN105968744A (zh) 2016-03-01 2016-03-01 一种机械性能增强的全降解塑料薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN105968744A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110183859A (zh) * 2019-05-30 2019-08-30 李全峰 一种抗拉防水淀粉膜的制备方法
CN111218123A (zh) * 2020-03-09 2020-06-02 福建省睿星纺织科技有限公司 一种可降解塑料薄膜填料及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104693707A (zh) * 2015-03-11 2015-06-10 宁波家联塑料科技有限公司 一种聚乳酸/淀粉/麻纤维生物基可降解复合材料及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104693707A (zh) * 2015-03-11 2015-06-10 宁波家联塑料科技有限公司 一种聚乳酸/淀粉/麻纤维生物基可降解复合材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
徐鼐: "《通用级聚乳酸的改性与加工成型》", 31 January 2016, 中国科学技术大学出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110183859A (zh) * 2019-05-30 2019-08-30 李全峰 一种抗拉防水淀粉膜的制备方法
CN111218123A (zh) * 2020-03-09 2020-06-02 福建省睿星纺织科技有限公司 一种可降解塑料薄膜填料及其制备方法

Similar Documents

Publication Publication Date Title
CN105968743A (zh) 一种抗菌型聚乳酸与淀粉复合全降解塑料薄膜及其制备方法
CN105968746A (zh) 一种氧化石墨烯阻隔性能增强的全降解塑料薄膜及其制备方法
CN105968749A (zh) 一种热稳定性良好的彩印包装用全降解塑料薄膜及其制备方法
CN105968751A (zh) 一种具有保鲜作用的包装用全降解塑料薄膜及其制备方法
CN103265716B (zh) 一种秸秆纤维/pbs/pbat复合材料及其制备方法
CN101538401A (zh) 耐热型二元纤维/聚乳酸基复合材料及其制备方法
CN104479385A (zh) 强化秸秆纤维复合材料的制备方法
CN105968748A (zh) 一种阻燃型聚乳酸与淀粉复合全降解塑料薄膜及其制备方法
CN104403134A (zh) 一种生物基复合材料的制备方法
CN105968745A (zh) 一种疏水型聚乳酸与淀粉复合全降解塑料薄膜及其制备方法
CN107652533A (zh) 一种植物纤维填充改性聚丙烯复合材料及其制备方法
CN104177662A (zh) 一种生物降解材料及其制备方法和应用
CN104910426A (zh) 一种以表面疏水改性淀粉为基料的全降解塑料薄膜及其制备方法
CN109081955A (zh) 一种添加改性纳米碳酸钙的淀粉基生物可降解仿生鱼饵
CN108129746A (zh) 一种高性能植物纤维改性聚丙烯复合材料及其制备方法
CN106349669A (zh) 一种甘蔗渣可生物降解塑料及其制备方法
CN102134380B (zh) 一种可完全生物降解复合材料及其制备方法
CN105968747A (zh) 一种新型聚乳酸淀粉复合型全降解塑料薄膜及其制备方法
CN107312295A (zh) 一种高透明低成本的聚乳酸复合材料及其制备方法
CN113717505A (zh) 一种可降解塑料及其制备方法
CN105968752A (zh) 一种彩印包装用综合性能高的全降解塑料薄膜及其制备方法
CN103102663A (zh) 漆籽壳纤维增强聚乳酸复合材料及其制备方法、应用
CN105968744A (zh) 一种机械性能增强的全降解塑料薄膜及其制备方法
CN104910427A (zh) 一种抗拉强度高的双降解塑料薄膜及其制备方法
CN104194287A (zh) 一种含椰壳粉的改性聚己二酸/对苯二甲酸丁二酯复合材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160928