CN104241837A - Plane coplanar bowtie antenna of dual-band trapped wave antenna - Google Patents
Plane coplanar bowtie antenna of dual-band trapped wave antenna Download PDFInfo
- Publication number
- CN104241837A CN104241837A CN201410516943.XA CN201410516943A CN104241837A CN 104241837 A CN104241837 A CN 104241837A CN 201410516943 A CN201410516943 A CN 201410516943A CN 104241837 A CN104241837 A CN 104241837A
- Authority
- CN
- China
- Prior art keywords
- line
- transmission line
- feeding transmission
- antenna
- trap
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Aerials With Secondary Devices (AREA)
Abstract
The invention relates to a plane coplanar bowtie antenna of a dual-band trapped wave antenna. The plane coplanar bowtie antenna comprises two bowtie radiation patches (1), a feed transmission line (2), a medium substrate (5) and a trapped wave reflector (6), wherein the bowtie radiation patches (1) are printed on the same side of the medium substrate and are connected with a conduction band (3) and a ground (4) of the feed transmission line at the transmission line end (10), the trapped wave reflector (6) is composed of a left double-line open-circuit line (11) and a right double-line open-circuit line (12) of an open circuit of a terminal, the left double-line open-circuit line (11) and the right double-line open-circuit line (12) are unequal in length, and conduction bands and grounds of the left and right double-line open-circuit lines are connected with the conduction band (3) and the ground (4) of the feed transmission line on a loading point (9) of the trapped wave reflector respectively. The trapped wave reflector loaded in the antenna serves as a reflector within the working frequency band of the antenna, gain of the antenna can be improved, two trapped wave frequency bands lower than the working frequency band are used as a filter, and radiation of the antenna is suppressed.
Description
Technical field
The present invention relates to a kind of antenna, especially a kind of co-planar Bow―tie antenna of double frequency trap reflector, belong to the technical field that antenna manufactures.
?
Background technology
Antenna, not only can radiation or receive useful radiofrequency signal as front-end devices important in wireless communication system, and for other the useless or unwanted signals dropped in its working frequency range, antenna also can carry out indiscriminate radiation or reception.In some cases, this situation can cause larger interference to antenna receive-transmit system, the image frequency signal interference such as, existed in superheterodyne receiver.Super heterodyne architectures is owing to having higher sensitivity and selectivity, and it has a wide range of applications in Modern Communication System and radar system, and therefore image frequency braking measure is essential.Conventional solution for insert mirror filter in radio circuit, thus filters out the image frequency signal in Received signal strength.This reduces the performance of system to a certain extent, has increased the weight of the burden of system, has added cost needs simultaneously.Having the antenna of trap or filtering characteristic, can carry out filtering to some special frequency channel, had the function of antenna and filter concurrently, is the effective ways addressed this problem.
Bow―tie antenna, as a kind of microstrip antenna, has possessed that the low section of microstrip antenna, low cost, volume are little, lightweight, the easy advantage such as integrated with circuit board, while knot radiation patch size less, apply widely in modern wireless communication systems.But its gain is lower, be not suitable for the occasion that some gain requirements is high.
?
Summary of the invention
technical problem:the present invention seeks to the co-planar Bow―tie antenna proposing a kind of double frequency trap reflector, the trap reflector of this antenna had both had the effect of reflector, gain in Antenna Operation frequency range is improved, also there is trap characteristic simultaneously, the aerial radiation of certain two frequency range lower than operating frequency of antenna is inhibited, and antenna structure is simple, size is less.
technical scheme:the co-planar Bow―tie antenna of double frequency trap reflector of the present invention comprises two panels knot radiation patch, feeding transmission line, medium substrate and trap reflector; Knot radiation patch, feeding transmission line and trap reflector are all on medium substrate; The shape of two panels knot radiation patch is triangle, two panels knot radiation patch is printed on the same face of medium substrate, a slice knot radiation patch is directly connected with the conduction band of feeding transmission line, and another sheet knot paster is connected at the end of feeding transmission line with the ground of the feeding transmission line of medium substrate another side through metalized ground via hole; The two-wire line that trap reflector is not waited by two segment length, the left side two-wire open-circuit line of open-end and the right two-wire open-circuit line form is formed; The conduction band of two-wire line and be printed on the two sides of medium substrate, left side two-wire open-circuit line and the right two-wire open-circuit line are placed in the both sides of feeding transmission line respectively, and its direction of extension is parallel with the direction that knot radiation patch stretches; The load(ing) point of trap reflector is between the input and the end of feeding transmission line of feeding transmission line, and at trap reflector load(ing) point, the conduction band of two-wire line is connected with the ground of feeding transmission line with the conduction band of feeding transmission line respectively with ground.
The width on the ground of described feeding transmission line is the widest at the input of feeding transmission line, then narrows gradually, between the input and the load(ing) point of trap reflector of feeding transmission line, becomes the width the same with the conduction band of feeding transmission line.
The length of described left side two-wire open-circuit line is about 1/4th of the first trap band wavelength, and the length of the right two-wire open-circuit line is about 1/4th of the second trap band wavelength, to realize the radiation of suppressing antenna in two trap frequency ranges.
The left side two-wire open-circuit line of described two-wire line and the length of the right two-wire open-circuit line all long than the length of knot radiation patch, to realize the effect of reflector; And spacing between the load(ing) point of trap reflector and the end of feeding transmission line be about carry out near 1/4th operation wavelengths tuning, to realize better reflector characteristic and matching performance simultaneously.
In two trap frequency ranges lower than operating frequency of antenna, because left side two-wire open-circuit line and the right two-wire open-circuit line are all open-end, and the length of left side two-wire open-circuit line is about 1/4th of the first trap band wavelength, the length of the right two-wire open-circuit line is about 1/4th of the second trap band wavelength, therefore the load(ing) point of trap reflector on feeding transmission line, in two trap frequency ranges, the input impedance of left side two-wire open-circuit line and the right two-wire open-circuit line is respectively zero, therefore the load(ing) point place of trap reflector on feeding transmission line, total input impedance is zero.Therefore the co-planar Bow―tie antenna of double frequency trap reflector is equivalent to the transmission line of terminal short circuit two trap frequency ranges, input signal load(ing) point place of trap reflector on feeding transmission line of antenna is totally reflected and is fed back into end, thus inhibit the aerial radiation of these two frequency ranges, form trap characteristic.At the working frequency range of antenna, the length of left side two-wire open-circuit line and the right two-wire open-circuit line is all greater than 1/4th operation wavelengths, thus be greater than the length of antenna knot radiation patch, therefore trap reflector can realize the characteristic of its reflector, and antenna gain is improved.
The length of left side two-wire open-circuit line and the right two-wire open-circuit line determines operating frequency corresponding to trap characteristic, and therefore, the length of adjustment difference left side two-wire open-circuit line and the right two-wire open-circuit line, can distinguish two trap frequencies directly regulating trap reflector.
The operating frequency of Bow―tie antenna, is determined by the length of its knot radiation patch, and therefore, the length of adjustment knot radiation patch, directly can regulate the operating frequency of antenna.
Corresponding to the operating frequency of Bow―tie antenna, the spacing between the load(ing) point of trap reflector and the end of feeding transmission line be about carry out near 1/4th operation wavelengths tuning, to realize better reflector characteristic and matching performance simultaneously.
beneficial effect:the invention has the beneficial effects as follows, the co-planar Bow―tie antenna of the double frequency trap reflector proposed, its trap reflector can as reflector in the working frequency range of antenna, improve the gain of antenna, trap reflector also has trap effect simultaneously, can filtering two trap in-band signals to the interference of antenna, obtain stronger suppression in the gain of trap frequency range internal antenna, and the compact dimensions of antenna.
Accompanying drawing explanation
Fig. 1 is structural representation of the present invention.
Have in figure: knot radiation patch 1, feeding transmission line 2, the conduction band 3 of feeding transmission line, the ground 4 of feeding transmission line, medium substrate 5, trap reflector 6, two-wire line 7, the input 8 of feeding transmission line, the load(ing) point 9 of trap reflector, the end 10 of feeding transmission line, left side two-wire open-circuit line 11, the right two-wire open-circuit line 12.
?
Embodiment
Below in conjunction with drawings and Examples, the invention will be further described.
The technical solution adopted in the present invention is: the co-planar Bow―tie antenna of double frequency trap reflector comprises two panels knot radiation patch 1, feeding transmission line 2, medium substrate 5 and trap reflector 6; Knot radiation patch 1, feeding transmission line 2 and trap reflector 6 are all on medium substrate 5; The shape of two panels knot radiation patch 1 is triangle, two panels knot radiation patch 1 is printed on the same face of medium substrate 5, a slice knot radiation patch is directly connected with the conduction band 3 of feeding transmission line, and another sheet knot paster is connected at the end 10 of feeding transmission line with the ground 4 of the feeding transmission line of medium substrate 5 another side through metalized ground via hole; The two-wire line 7 that trap reflector 6 is not waited by two segment length, the left side two-wire open-circuit line 11 of open-end and the right two-wire open-circuit line 12 form is formed; The conduction band of two-wire line 7 and be printed on the two sides of medium substrate 5, left side two-wire open-circuit line 11 and the right two-wire open-circuit line 12 are placed in the both sides of feeding transmission line 2 respectively, and its direction of extension is parallel with the direction that knot radiation patch 1 stretches; The load(ing) point 9 of trap reflector is between the input 8 and the end 10 of feeding transmission line of feeding transmission line 2, and at trap reflector load(ing) point 9, the conduction band of two-wire line 7 is connected with the ground 4 of feeding transmission line with the conduction band 3 of feeding transmission line 2 respectively with ground.The width on the ground 4 of feeding transmission line 2 is the widest at the input 8 of feeding transmission line 2, then narrows gradually, between the input 8 and the load(ing) point 9 of trap reflector of feeding transmission line 2, becomes the width the same with the conduction band 3 of feeding transmission line 2.The length of left side two-wire open-circuit line 11 is about 1/4th of the first trap band wavelength, and the length of the right two-wire open-circuit line 12 is about 1/4th of the second trap band wavelength, to realize the radiation of suppressing antenna in two trap frequency ranges.The left side two-wire open-circuit line 11 of two-wire line 7 and the length of the right two-wire open-circuit line 12 all long than the length of knot radiation patch 1, to realize the effect of reflector; And spacing between the load(ing) point 9 of trap reflector and the end 10 of feeding transmission line be about carry out near 1/4th operation wavelengths tuning, to realize better reflector characteristic and matching performance simultaneously.
In two trap frequency ranges lower than operating frequency of antenna, because left side two-wire open-circuit line and the right two-wire open-circuit line are all open-end, and the length of left side two-wire open-circuit line is about 1/4th of the first trap band wavelength, the length of the right two-wire open-circuit line is about 1/4th of the second trap band wavelength, therefore the load(ing) point of trap reflector on feeding transmission line, in two trap frequency ranges, the input impedance of left side two-wire open-circuit line and the right two-wire open-circuit line is respectively zero, therefore the load(ing) point place of trap reflector on feeding transmission line, total input impedance is zero.Therefore the co-planar Bow―tie antenna of double frequency trap reflector is equivalent to the transmission line of terminal short circuit two trap frequency ranges, input signal load(ing) point place of trap reflector on feeding transmission line of antenna is totally reflected and is fed back into end, thus inhibit the aerial radiation of these two frequency ranges, form trap characteristic.At the working frequency range of antenna, the length of left side two-wire open-circuit line and the right two-wire open-circuit line is all greater than 1/4th operation wavelengths, thus be greater than the length of antenna knot radiation patch, therefore trap reflector can realize the characteristic of its reflector, antenna gain is improved, by the distance between adjustment trap reflector and knot radiation patch, optimal antenna gain can be obtained.
For ensureing trap characteristic and reflection characteristic simultaneously, the length of left side two-wire open-circuit line and the right two-wire open-circuit line is all greater than the length of antenna knot radiation patch, therefore trap frequency will lower than operating frequency of antenna, and the size of trap frequency regulates by regulating the length of trap reflector left side two-wire open-circuit line and the right two-wire open-circuit line simultaneously.
Structurally, the width of the conduction band 3 of the feeding transmission line of the co-planar Bow―tie antenna of this double frequency trap reflector all remains unchanged in microstrip transmission line part and two-wire line part.The width on the ground 4 of feeding transmission line is wider at the input 8 of feeding transmission line, makes input be microstrip line, is conveniently connected with feeding coaxial lines; Between the load(ing) point 9 and the end 10 of feeding transmission line of trap reflector, the width on the ground 4 of feeding transmission line is consistent with the width of conduction band 3, forms two-wire line, conveniently carries out feed to knot radiation patch 1.Between the input 8 of feeding transmission line and the load(ing) point 9 of trap reflector, the width on ground 4 can linearly or arc gradual change.The shape of two panels knot radiation patch 1 can be triangle strip, or the shape such as triangle strip of band toothed edge.
In manufacture, the manufacturing process of the co-planar Bow―tie antenna of this double frequency trap reflector can adopt semiconductor technology, ceramic process, laser technology or printed circuit technology.The co-planar Bow―tie antenna of this double frequency trap reflector is made up of knot radiation patch 1, feeding transmission line 2, medium substrate 5 and trap reflector 6, wherein knot radiation patch 1, feeding transmission line 2 conduction band 3 and ground 4 and trap reflector 6 every section of two-wire line 7 conduction band and ground, all be made up of the conductor material that electric conductivity is good, be printed on medium substrate 5.Medium substrate 5 wants the alap dielectric material of service wear.Two panels knot radiation patch 1 is printed on the same face of medium substrate 5, a slice knot radiation patch is directly connected with the conduction band 3 of feeding transmission line, another sheet knot paster is connected at the end 10 of feeding transmission line with the ground 4 of the feeding transmission line of medium substrate 5 another side through metalized ground via hole, so that carry out feed by micro-band-two-wire line.The left side two-wire open-circuit line 11 of the two-wire line 7 of trap reflector 6 and the conduction band of the right two-wire open-circuit line 12 are also printed on the two sides of medium substrate 5 with ground, are connected respectively with the conduction band 3 of feeding transmission line 2 with ground 4 at the load(ing) point 9 of trap reflector.
According to the above, just the present invention can be realized.
Claims (4)
1. a co-planar Bow―tie antenna for double frequency trap reflector, is characterized in that the co-planar Bow―tie antenna of this double frequency trap reflector comprises two panels knot radiation patch (1), feeding transmission line (2), medium substrate (5) and trap reflector (6); Knot radiation patch (1), feeding transmission line (2) and trap reflector (6) are all on medium substrate (5); The shape of two panels knot radiation patch (1) is triangle, two panels knot radiation patch (1) is printed on the same face of medium substrate (5), a slice knot radiation patch is directly connected with the conduction band (3) of feeding transmission line, and another sheet knot paster is connected at the end (10) of feeding transmission line with the ground (4) of the feeding transmission line of medium substrate (5) another side through metalized ground via hole; Two-wire line (7) formation that trap reflector (6) is not waited by two segment length, left side two-wire open-circuit line (11) of open-end and the right two-wire open-circuit line (12) form; The conduction band of two-wire line (7) and ground are printed on the two sides of medium substrate (5) respectively, left side two-wire open-circuit line (11) and the right two-wire open-circuit line (12) are placed in the both sides of feeding transmission line (2) respectively, and its direction of extension is parallel with the direction that knot radiation patch (1) stretches; The load(ing) point (9) of trap reflector is positioned between the input (8) of feeding transmission line (2) and the end (10) of feeding transmission line, at trap reflector load(ing) point (9), the conduction band of two-wire line (7) is connected with the ground (4) of feeding transmission line with the conduction band (3) of feeding transmission line (2) respectively with ground.
2. the co-planar Bow―tie antenna of double frequency trap reflector according to claim 1, it is characterized in that the width on the ground (4) of described feeding transmission line (2) is the widest at the input (8) of feeding transmission line (2), then narrow gradually, between the input (8) and the load(ing) point (9) of trap reflector of feeding transmission line (2), become the width the same with the conduction band of feeding transmission line (2) (3).
3. the co-planar Bow―tie antenna of double frequency trap reflector according to claim 1, it is characterized in that the length on described left side two-wire open-circuit line (11) is about 1/4th of the first trap band wavelength, the length on the right two-wire open-circuit line (12) is about 1/4th of the second trap band wavelength, to realize the radiation of suppressing antenna in two trap frequency ranges.
4. the co-planar Bow―tie antenna of double frequency trap reflector according to claim 1, it is characterized in that left side two-wire open-circuit line (11) of described two-wire line (7) and the length on the right two-wire open-circuit line (12) all will be grown than the length of knot radiation patch (1), to realize the effect of reflector; And spacing between the end (10) of the load(ing) point of trap reflector (9) and feeding transmission line be about carry out near 1/4th operation wavelengths tuning, to realize better reflector characteristic and matching performance simultaneously.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410516943.XA CN104241837A (en) | 2014-09-30 | 2014-09-30 | Plane coplanar bowtie antenna of dual-band trapped wave antenna |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410516943.XA CN104241837A (en) | 2014-09-30 | 2014-09-30 | Plane coplanar bowtie antenna of dual-band trapped wave antenna |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104241837A true CN104241837A (en) | 2014-12-24 |
Family
ID=52229485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410516943.XA Pending CN104241837A (en) | 2014-09-30 | 2014-09-30 | Plane coplanar bowtie antenna of dual-band trapped wave antenna |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104241837A (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0537226A (en) * | 1991-07-31 | 1993-02-12 | Mitsubishi Electric Corp | Print dipole antenna |
JPH11168323A (en) * | 1997-12-04 | 1999-06-22 | Mitsubishi Electric Corp | Multi-frequency antenna device and multi-frequency array antenna device using multi-frequency sharing antenna |
CN1457150A (en) * | 2002-05-06 | 2003-11-19 | 三星电子株式会社 | Image inhibiting antenna |
JP2009200719A (en) * | 2008-02-20 | 2009-09-03 | National Institutes Of Natural Sciences | Plane microwave antenna, one-dimensional microwave antenna and two-dimensional microwave antenna array |
CN102800951A (en) * | 2012-08-06 | 2012-11-28 | 哈尔滨工业大学 | Printed Yagi antenna of vibrator loading type balance microstrip line feed |
TW201330383A (en) * | 2012-01-10 | 2013-07-16 | Ralink Technology Corp | High gain antenna and wireless device |
-
2014
- 2014-09-30 CN CN201410516943.XA patent/CN104241837A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0537226A (en) * | 1991-07-31 | 1993-02-12 | Mitsubishi Electric Corp | Print dipole antenna |
JPH11168323A (en) * | 1997-12-04 | 1999-06-22 | Mitsubishi Electric Corp | Multi-frequency antenna device and multi-frequency array antenna device using multi-frequency sharing antenna |
CN1457150A (en) * | 2002-05-06 | 2003-11-19 | 三星电子株式会社 | Image inhibiting antenna |
JP2009200719A (en) * | 2008-02-20 | 2009-09-03 | National Institutes Of Natural Sciences | Plane microwave antenna, one-dimensional microwave antenna and two-dimensional microwave antenna array |
TW201330383A (en) * | 2012-01-10 | 2013-07-16 | Ralink Technology Corp | High gain antenna and wireless device |
CN102800951A (en) * | 2012-08-06 | 2012-11-28 | 哈尔滨工业大学 | Printed Yagi antenna of vibrator loading type balance microstrip line feed |
Non-Patent Citations (2)
Title |
---|
M.MIDRIO等: ""Planar, Compact Dual-Band Antenna for wireless LAN Applications"", 《IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS》 * |
高为东等: ""一种新型缺陷地结构的双陷波超宽带天线"", 《上海交通大学学报》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104466399B (en) | Method, the mobile terminal of a kind of microstrip antenna and its filtering interference signals | |
CN104241835A (en) | Broadband coplanar bowtie antenna with trap reflector | |
CN104241839A (en) | Broadband planar bowtie antenna of dual-band trapped wave reflector | |
CN104241840A (en) | Coplanar bowtie antenna of trapped wave reflector | |
CN109980347B (en) | Monopole microstrip antenna of coplanar waveguide feed | |
CN104269635A (en) | Broadband coplane bow tie antenna with double-frequency notch reflector | |
CN104241838A (en) | Broadband plane coplanar dipole antenna of dual-band trapped wave reflector | |
CN104300219A (en) | Coplanar dipole antenna with double-frequency notch reflector | |
CN104269639A (en) | Broadband coplane dipole antenna with double-frequency notch reflector | |
CN104241833A (en) | Dipole antenna of dual-band trapped wave reflector | |
CN104218314A (en) | Broadband coplanar dipole antenna of wave trapping reflector | |
CN104269634A (en) | Planar coplanar dipole antenna with notch reflector | |
CN104269620A (en) | Broadband planar dipole antenna with notch reflector | |
CN104241837A (en) | Plane coplanar bowtie antenna of dual-band trapped wave antenna | |
CN104269654A (en) | Dipole antenna with notch reflector | |
CN104269633A (en) | Coplane bow tie antenna with double-frequency notch reflector | |
CN104241834A (en) | Plane coplanar dipole antenna of dual-band trapped wave reflector | |
CN104241832A (en) | Bowtie antenna with dual-frequency trap reflector | |
CN104269637A (en) | Plane bow tie antenna with double-frequency notch reflector | |
CN104218312A (en) | Broadband bow-tie antenna for dual-band wave trapping reflector | |
CN104241836A (en) | Broadband coplanar bowtie antenna with trap reflector | |
CN104300221A (en) | Umbrella coplanar dipole antenna with double-frequency notch reflector | |
CN104300220A (en) | Broadband umbrella coplanar dipole antenna with double-frequency notch reflector | |
CN104300216A (en) | Planar umbrella coplanar dipole antenna with double-frequency notch reflector | |
CN104269623A (en) | Broadband dipole antenna with double-frequency notch reflector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20141224 |