CN102214720B - 基于p型硅片的背接触异质结太阳电池 - Google Patents

基于p型硅片的背接触异质结太阳电池 Download PDF

Info

Publication number
CN102214720B
CN102214720B CN 201110155026 CN201110155026A CN102214720B CN 102214720 B CN102214720 B CN 102214720B CN 201110155026 CN201110155026 CN 201110155026 CN 201110155026 A CN201110155026 A CN 201110155026A CN 102214720 B CN102214720 B CN 102214720B
Authority
CN
China
Prior art keywords
type
silicon
solar cell
solar battery
amorphous silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN 201110155026
Other languages
English (en)
Other versions
CN102214720A (zh
Inventor
张黎明
李玉花
刘鹏
姜言森
杨青天
高岩
徐振华
张春艳
王兆光
程亮
任现坤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linuo Solar Power Co Ltd
Original Assignee
Linuo Solar Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linuo Solar Power Co Ltd filed Critical Linuo Solar Power Co Ltd
Priority to CN 201110155026 priority Critical patent/CN102214720B/zh
Publication of CN102214720A publication Critical patent/CN102214720A/zh
Application granted granted Critical
Publication of CN102214720B publication Critical patent/CN102214720B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0745Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells
    • H01L31/0747Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a AIVBIV heterojunction, e.g. Si/Ge, SiGe/Si or Si/SiC solar cells comprising a heterojunction of crystalline and amorphous materials, e.g. heterojunction with intrinsic thin layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及一种太阳电池,具体涉及一种基于P型硅片的背接触异质结太阳电池。从背面特征分为N型区域和P型区域,N型区域形成P+a-si/i-a-si/P-c-si/P+c-si/i-a-si/N-a-si异质结结构,P型区域形成P+a-si/i-a-si/P-c-si/P+c-si异质结结构,具有更好的光谱响应,太阳光在电池内传播光程更长,电池较常规晶硅太阳电池厚度大大减薄;电极全部印刷在电池背面,即避免了常规太阳电池正面电极遮光的问题,提高了太阳电池短路电流,进而大大提高太阳电池的转化效率,低温烧结工艺大大简化生产工艺、降低生产成本,适用于产业化生产。

Description

基于P型硅片的背接触异质结太阳电池
技术领域
本发明涉及一种太阳电池,具体涉及一种基于P型硅片的背接触异质结太阳电池。
背景技术
二十一世纪,能源危机和环境污染已经成为亟待解决的全球问题。开发绿色能源成为解决危机的主要方法。其中太阳电池因其洁净、安全、可再生成为世界各国竞相发展的目标。目前太阳电池主要发展方向是降低成本、增加效率。
新型非晶硅和晶硅构成的异质结太阳电池具有结构简单、工艺简易、它将晶体硅具有高载流子迁移率优点与低温化学气相沉积非晶硅工艺优势相结合,成为太阳能行业的热点发展方向。如日本三sanyo集团开发的以N型晶体硅为衬底的HIT电池实验室装换效率已经突破22%,产业化电池片转化效率达到19%。
上述HIT结构的太阳电池存在以下问题:第一非晶硅薄膜的缺陷较多,增加了薄膜体内的载流子复合缺陷密度,影响光生电流的收集及传输;第二正面的栅线设计是电池受光面积减少,从而降低短路电流,影响太阳电池最终的转化效率。
发明内容
本发明的目的就是针对上述存在的缺陷而提供一种基于P型硅片的背接触异质结太阳能电池。本发明太阳电池具有更好的光谱响应特性,太阳光在电池内传播光程更长,电池较常规晶硅太阳电池厚度大大减薄;电极全部印刷在电池背面,即避免了常规太阳能电池正面电极遮光的问题,又降低了对电极印刷精度和高宽比的要求,提高了太阳电池短路电流,进而大大提高晶体硅太阳能电池的效率,低温烧结工艺大大简化生产工艺、降低生产成本,适用于产业化生产。
本发明采用的技术方案为,一种基于P型硅片的背接触异质结太阳电池,从背面特征分为N型区域和P型区域,P型区域包括由上到下依次叠层结合的受光面减反射膜、P+ a-Si P+非晶硅薄膜、i-a-Si本征非晶硅薄膜、P-C-Si P型晶体硅、P+ c-Si P+晶硅层、透明导电薄膜TCO和背电极,形成P+ a-si/ i- a-si/P-c-si/P+c-si异质结结构,N型区域包括由上到下依次叠层结合的受光面减反射膜、P+ a-Si P+非晶硅薄膜、i-a-Si本征非晶硅薄膜、P-C-Si P型晶体硅、P+ c-Si P+晶硅层、i-a-Si本征非晶硅薄膜、N-a-Si非晶硅薄膜、透明导电薄膜TCO和背电极,形成P+ a-si/ i- a-si/P-c-si/P+c-si/i-a-si/N-a-si异质结结构。
所述的受光面减反射膜为SiO2、Si3N4、Ta2O5或TiO2,减反射膜厚度为70~90nm,折射率为1.5~2.5。
采用化学气相沉积工艺在P型晶体硅上面和N型区域的N+晶硅层下面制作本征非晶硅薄膜,厚度为1~50nm。
所述的P型晶体硅为单晶硅、太阳能级或金属级多晶硅、带状硅,其厚度为120~220um,掺杂浓度为1×1015~5×1017/cm3
所述的P+型晶体硅层,其厚度为0.1~0.5um,浓硼掺杂浓度为1×1018~5×1020/cm3
在N型区域中,采用化学气相沉积工艺在本征非晶硅薄膜下面沉积一层P-a-Si非晶硅薄膜,厚度为1~50nm。
透明导电薄膜TCO为氧化物透明导电材料体系,为In2O3、SnO2、ZnO、In2O3:Sn(ITO)、In2O3:Mo(IMO)、SnO2:Sb(ATO)、SnO2:F(FTO)、ZnO:Al(ZnO)、ZnO·SnO2、ZnO·In2O3、CdSb2O6、MgIn2O4、In4Sn3O12、Zn2In2O5、CdIn2O4、Cd2SnO4、Zn2SnO4、GaInO3中的一种,其厚度为50nm~900nm。
所述的背电极为Al、Ag、Au、Ni 、Cu/Ni、Al/Ni或Ti/Pd/Ag电极,其厚度为50nm~600um。
本发明的基于P型硅片的背接触异质结太阳电池具有以下有益效果:一是太阳电池具有更好的光谱响应,太阳光在电池内传播光程更长,电池较常规晶硅太阳电池厚度大大减薄;二是电极全部印刷在电池背面,即避免了常规太阳能电池正面电极遮光的问题,提高太阳电池短路电流,进而大大提高了太阳电池的转化效率;三是低温烧结工艺,大大简化了太阳电池生产工艺,有效降低生产成本,适合产业化发展。
本发明的基于P型硅片的背接触异质结太阳电池,从背面特征分为N型区域和P型区域,P型区域包括由上到下依次叠层结合的受光面减反射膜、P+ a-Si P+非晶硅薄膜、i-a-Si本征非晶硅薄膜、P-C-Si P型晶体硅、P+ c-Si P+晶硅层、透明导电薄膜TCO和背电极,形成P+ a-si/ i- a-si/P-c-si/P+c-si异质结结构,N型区域包括由上到下依次叠层结合的受光面减反射膜、P+ a-Si P+非晶硅薄膜、i-a-Si本征非晶硅薄膜、P-C-Si P型晶体硅、P+ c-Si P+晶硅层、i-a-Si本征非晶硅薄膜、N-a-Si非晶硅薄膜、透明导电薄膜TCO和背电极,形成P+ a-si/ i- a-si/P-c-si/P+c-si/i-a-si/N-a-si异质结结构。该结构的具体作用如下:
背接触电极主要起到收集电流作用。
所述的透明导电薄膜TCO具有较高的透光性和电导率,主要起到收集电流的作用,另外还将透过电池体内的太阳光反射回去,增加太阳电池光吸收的作用。
采用化学气相沉积工艺在P型晶体硅上面和N型区域的N+晶硅层下面制作本征非晶硅薄膜,厚度为1~50nm。主要起到减少界面缺陷态,增加表面钝化效应。
所述的N-a-Si非晶硅薄膜采用化学气相沉积工艺在本征非晶硅薄膜上再沉积一层,厚度为1~50nm。N-a-si非晶硅薄膜沉积在i-a-si本征非晶硅薄膜层上与P型晶硅电池形成核心结构HIT异质结。
所述的P+型晶体硅层,其厚度为0.1~0.5um,浓硼掺杂浓度为1×1018~5×1020/cm3。其作用是形成高低结,提升开路电压,同时起到背面钝化的作用。
所述的减反射膜为SiO2、Si3N4、Ta2O5、TiO2中的一种,减反射膜厚度为70~90nm,折射率为1.5~2.5。其作用主要是增加光吸收,减低太阳光在电池表面的反射损失,另外,减反射膜还具有表面钝化的作用。
采用以上技术方案制作的P型硅片的背接触式HIT太阳电池,本发明的制备工艺将常规晶硅生产工艺和薄膜太阳电池生产工艺结合,方法简单,能够迅速产业化。另外其背接触的结构在太阳电池的受光面无栅线覆盖,不仅增加了太阳电池的受光面积,还在在组件生产中可简化了焊接工序外观要求,节约生产时间,降低组件生产成本。
附图说明
图1所示为本发明电池结构示意图;
图2所示为本发明实施例1中背面电极的示意图;
图3所示为本发明工艺流程示意图。
图中,1、受光面减反射膜,2、P+ a-Si非晶硅薄膜,3、本征非晶硅薄膜,4、P型晶体硅,5、P+晶硅层,6、N-a-Si非晶硅薄膜,7、透明导电薄膜TCO,8、背电极。
具体实施方式:
下面结合附图和实例来说明本发明的技术方案,但是本发明并不局限于此。
实施例1
P型晶体硅4选用P型单晶硅片,采用半导体清洗工艺对P型晶体硅4表面预清洗和表面织构。所用P型晶体硅4厚度在200um, 电阻率为0.5~3Ω.cm,用1~5%的氢氟酸去除硅片表面的二氧化硅层,在浓度小于3%的NaOH和IPA(异丙醇)的混合液中80℃左右制备金字塔形状绒面。增加对太阳光的吸收,增加PN结面积,提高短路电流。再用酸清洗工艺将之后的P型晶体硅4清洗干净-甩干。将制绒后P型晶体硅4放入扩散炉中用硼烷在850℃左右进行单面重扩散,在P型晶体硅4下表面形成一层P+重掺杂层P+c-si 5,经等离子刻蚀后,用HF溶液清洗,去离子水清洗后甩干;
用等离子体增强化学气相沉积(PECVD)工艺,在250℃扩散后晶硅的上下表面分别沉积一层本征非晶硅薄膜3,厚度约5nm,有钝化作用。在晶硅的上表面沉积高浓度P+ a-Si非晶硅薄膜2,厚度为5~10nm;在背表面沉积一层N-a-si非晶硅薄层6,厚度为5~10nm;在400℃下,用PECVD在硅片正表面生长氮化硅受光面减反射膜1,厚度为85nm,折射率为2.05;其作用减少电池表面的反射损失,镀膜后的太阳电池光反射损失可以减少到4%以内;同时对电池进行有效地表面钝化和体钝化,减少复合中心,提高少子寿命,增加光电流。在硅片背面印刷上腐蚀性浆料,腐蚀掉印刷区域的N-a-si 非晶硅薄层6和本征非晶硅薄膜3,露出P+晶硅层5表面,未腐蚀区域的HIT结构被保存下来。最后用去离子水超声清洗干净后,烘干。通过磁控溅射工艺在硅片的背面沉积一层厚度为30~100nm的透明导电层薄膜TCO 7。再用激光将P型区域与N型区域分割。在背表面的N型区域和P型区域分别丝网印刷导电浆料经低温烧结制成背电极8。电池背面图形2 所示。N型区域上采用的电极印刷材料为银浆;P型区域上采用的电极印刷材料为银浆、银铝浆,或者是类似常规太阳能电池背面银铝浆结构的一种。
本实施例制备的基于N型多晶硅片的背接触异质结太阳电池的电性能输出参数:在标准测量条件下:测量温度25oC,光强1000W/m2,AM1.5 光谱测试,短路电流密度40mA/cm2;开路电压681mV,填充因子79%;光电转换效率21.1 %。

Claims (8)

1. 一种基于P型硅片的背接触异质结太阳电池,从背面特征分为N型区域和P型区域,其特征在于:P型区域包括由上到下依次叠层结合的受光面减反射膜、P+ a-Si P+非晶硅薄膜、i-a-Si本征非晶硅薄膜、P-C-Si P型晶体硅、P+ c-Si P+晶硅层、透明导电薄膜TCO和背电极,形成P+ a-si/ i- a-si/P-c-si/P+c-si异质结结构,N型区域包括由上到下依次叠层结合的受光面减反射膜、P+ a-Si P+非晶硅薄膜、i-a-Si本征非晶硅薄膜、P-C-Si P型晶体硅、P+ c-Si P+晶硅层、i-a-Si本征非晶硅薄膜、N-a-Si非晶硅薄膜、透明导电薄膜TCO和背电极,形成P+ a-si/ i- a-si/P-c-si/P+c-si/i-a-si/N-a-si异质结结构。
2. 根据权利要求1所述的基于P型硅片的背接触异质结太阳电池,其特征在于:所述的受光面减反射膜为SiO2、Si3N4、Ta2O5或TiO2,减反射膜厚度为70~90nm,折射率为1.5~2.5。
3. 根据权利要求1所述的基于P型硅片的背接触异质结太阳电池,其特征在于:采用化学气相沉积工艺在P型晶体硅上面和N型区域的P+晶硅层下面制作本征非晶硅薄膜,厚度为1~50nm。
4. 根据权利要求1所述的基于P型硅片的背接触异质结太阳电池,其特征在于:所述的P型晶体硅为单晶硅、太阳能级或金属级多晶硅、带状硅,其厚度为120~220um,掺杂浓度为1×1015~5×1017/cm3
5. 根据权利要求1所述的基于P型硅片的背接触异质结太阳电池,其特征在于:所述的P+晶硅层,其厚度为0.1~0.5um,浓硼掺杂浓度为1×1018~5×1020/cm3
6. 根据权利要求1所述的基于P型硅片的背接触异质结太阳电池,其特征在于:在N型区域中,采用化学气相沉积工艺在本征非晶硅薄膜下面沉积一层N-a-Si非晶硅薄膜,厚度为1~50nm。
7. 根据权利要求1所述的基于P型硅片的背接触异质结太阳电池,其特征在于:透明导电薄膜TCO为氧化物透明导电材料体系,为In2O3、SnO2、ZnO、In2O3:Sn、In2O3:Mo、SnO2:Sb、SnO2:F、ZnO:Al、ZnO·SnO2、ZnO·In2O3、CdSb2O6、MgIn2O4、In4Sn3O12、Zn2In2O5、CdIn2O4、Cd2SnO4、Zn2SnO4、GaInO3中的一种,其厚度为50nm~900nm。
8. 根据权利要求1所述的基于P型硅片的背接触异质结太阳电池,其特征在于:所述的背电极为Al、Ag、Au、Ni 、Cu/Ni、Al/Ni或Ti/Pd/Ag电极,其厚度为50nm~600um。
CN 201110155026 2011-06-10 2011-06-10 基于p型硅片的背接触异质结太阳电池 Active CN102214720B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110155026 CN102214720B (zh) 2011-06-10 2011-06-10 基于p型硅片的背接触异质结太阳电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110155026 CN102214720B (zh) 2011-06-10 2011-06-10 基于p型硅片的背接触异质结太阳电池

Publications (2)

Publication Number Publication Date
CN102214720A CN102214720A (zh) 2011-10-12
CN102214720B true CN102214720B (zh) 2013-07-24

Family

ID=44745942

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110155026 Active CN102214720B (zh) 2011-06-10 2011-06-10 基于p型硅片的背接触异质结太阳电池

Country Status (1)

Country Link
CN (1) CN102214720B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102623517B (zh) * 2012-04-11 2013-05-01 中国科学院苏州纳米技术与纳米仿生研究所 一种背接触型晶体硅太阳能电池及其制作方法
JP6103867B2 (ja) * 2012-09-12 2017-03-29 シャープ株式会社 光電変換素子および光電変換素子の製造方法
US20190189811A1 (en) * 2016-08-15 2019-06-20 Sharp Kabushiki Kaisha Photovoltaic device and photovoltaic unit
CN110620163B (zh) * 2019-10-28 2024-05-24 通威太阳能(金堂)有限公司 异质结太阳能电池片、叠瓦组件及其制造方法
CN112018196B (zh) * 2020-08-04 2022-11-29 隆基绿能科技股份有限公司 背接触太阳电池及生产方法、背接触电池组件
CN114050204A (zh) * 2021-11-12 2022-02-15 苏州腾晖光伏技术有限公司 一种p型ibc电池的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080000522A1 (en) * 2006-06-30 2008-01-03 General Electric Company Photovoltaic device which includes all-back-contact configuration; and related processes
JP5274277B2 (ja) * 2009-01-27 2013-08-28 京セラ株式会社 太陽電池素子の製造方法
CN202210522U (zh) * 2011-06-10 2012-05-02 山东力诺太阳能电力股份有限公司 基于p型硅片的背接触异质结太阳电池结构

Also Published As

Publication number Publication date
CN102214720A (zh) 2011-10-12

Similar Documents

Publication Publication Date Title
CN109244194B (zh) 一种低成本p型全背电极晶硅太阳电池的制备方法
CN102184976A (zh) 背接触异质结太阳电池
CN103489934B (zh) 一种双面透光的局部铝背场太阳能电池及其制备方法
CN102214719B (zh) 基于n型硅片的背接触异质结太阳电池
US9214576B2 (en) Transparent conducting oxide for photovoltaic devices
CN106601855A (zh) 一种双面发电异质结太阳能电池的制备方法
CN102214720B (zh) 基于p型硅片的背接触异质结太阳电池
CN104157717B (zh) 一种全背电极n型晶硅异质结太阳电池的制备方法
CN102185030B (zh) 基于n型硅片的背接触式hit太阳能电池制备方法
CN102956723B (zh) 一种太阳能电池及其制备方法
KR101878397B1 (ko) 태양전지 및 그 제조 방법
CN110047965A (zh) 一种新型的背接触异质结电池及其制作方法
CN107946382A (zh) Mwt与hit结合的太阳能电池及其制备方法
CN202210522U (zh) 基于p型硅片的背接触异质结太阳电池结构
KR101897722B1 (ko) 광전소자
CN102201480B (zh) 基于n型硅片的碲化镉半导体薄膜异质结太阳电池
CN108615775B (zh) 一种叉指背接触异质结单晶硅电池
CN204130563U (zh) 一种全背电极p型晶硅异质结太阳电池结构
CN202210533U (zh) 基于n型硅片的背接触异质结太阳电池结构
CN113224182A (zh) 一种异质结太阳电池及其制备方法
CN102185031B (zh) 基于p型硅片的背接触式hit太阳能电池制备方法
CN110416329A (zh) 一种晶体硅太阳电池
CN215299264U (zh) 一种新型低成本的太阳电池结构
CN202111102U (zh) 背接触异质结太阳电池结构
CN203839392U (zh) 一种太阳能电池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant