CN101506811A - 用于自动执行多维空间的学习的方法和系统 - Google Patents

用于自动执行多维空间的学习的方法和系统 Download PDF

Info

Publication number
CN101506811A
CN101506811A CNA2007800306918A CN200780030691A CN101506811A CN 101506811 A CN101506811 A CN 101506811A CN A2007800306918 A CNA2007800306918 A CN A2007800306918A CN 200780030691 A CN200780030691 A CN 200780030691A CN 101506811 A CN101506811 A CN 101506811A
Authority
CN
China
Prior art keywords
hyperspace
present
user
processor
master station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2007800306918A
Other languages
English (en)
Inventor
萨姆·斯塔西斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of CN101506811A publication Critical patent/CN101506811A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Processing Or Creating Images (AREA)

Abstract

公开了一种方法和系统,所述方法和系统包括主站、处理器和一个或多个目标,允许所述系统的用户自动生成建筑场所的3维图形表示,并且把图叠加在图形表示上,以便在由处理器显示的虚拟空间内引导用户。

Description

用于自动执行多维空间的学习的方法和系统
技术领域
本发明涉及用于以自动方式生成多维空间的图形表示的系统和方法。
背景技术
设计从概念到实施方案的实现是具有挑战性的,特别是当它涉及到建筑业时。在建筑业中,建筑师、规划师、工程师等负责把想法概念化和把概念归结为诸如设计图那样的有形形式的任务,然后由该领域中的承包商实施。实施或建筑过程可以是艰巨的任务,它们的成功很大地依赖于承包商精确地复制在关于即将到来的具体项目的图或设计文件上显示的尺度和空间关系的能力。承包商在复制设计文件所表示的内容时的错误是建筑实践的通常的特征,并且其常常导致代价高的校正行动。在某些事例中,错误是由于缺少对于建筑发生的场所的特征的真正了解。例如,如果要翻新的空间设计要求在特定的位置设置一个门,以及在建筑场所处的位置在要求门的精确位置处却有一个柱子,则对设计图的昂贵的重新设计变为必要的。导致昂贵的补救措施的另一个常常发生的现象是建筑场所的不精确的布局导致在错误的地方建造设计的主要单元,从而当最终发现错误时导致代价高的翻新。
通常,任何建筑项目的成功很大地依赖于良好的尺度控制,这种尺度控制可以被依赖以使得在设计中预期的空间关系可被精确地重现在场地中。尺度控制通常是建筑师、手工艺人(例如,电工、管子工、砌墙工人)、或勘查员的职责。典型的‘建成学习(as built studies)’或勘探任务包括测量或勘查场所,以便确定现有的条件和基准、参考点和其它标石的布局,可以在承包商构建设计时被使用来使得他们被正确地取向。当在这些任务的执行中发生错误时,导致上述类型的错误。有时,错误并不是由于不精确的测量结果或‘建成学习’,而是由于对于标石的很差的控制,诸如当标石或基准,诸如标杆,在场地上被人或一件设备不当心弄倒或铅笔标记在场地上被人或一件设备不当心弄模糊时。在诸如这样的情形下工人仅仅在被认为是原先位置、但实际上不是原先位置的位置处重新放置铅笔标记或标杆并非完全不常见。当这种情况发生时,对于这种基准的任何以后的参考将导致错误,这是由于尺度控制现在是错误的,而又不被认为是错误的。而且,由于使用现在的错误的参考点而造成的错误还由于这些错误在一段时间内没有被发现的事实而进一步复杂化。
在测量或勘查中的错误,无论它们是涉及到场所的学习还是设计的布局,只能通过从精确的‘建成验证’和对基准和标石的警惕保护和它们的经常的重新验证着手来避免。实际上,这个任务是极其费时的和高劳动强度的,典型地需要许多人员经常地重新访问该场所和人工地验证现有的基准和标石或如有需要,人工地建立新的基准和标石。
发明内容
本发明提供用于自动生成多维空间的N维图形表示的系统和方法,其中N是等于或大于2的整数。
通过使用本发明的系统执行多维空间(例如,3维空间)的自动学习的方法涉及从系统设备到多维空间内的一个或多个选择的参考点的距离的测量和从系统设备到多维空间内各种现有目标和结构的距离的测量。这些测量被本发明的系统使用来根据由其至少一部分位于多维空间内的系统设备进行的测量,实时地自动生成多维空间的图(可以是数字格式)或图形表示。
而且,除了实时地创建正在被学习的多维空间的图形表示以外,本发明的系统还可实时地显示它的一个部件(例如,目标)相对于正在被学习的多维空间的测量位置的位置。当这样的部件被固定到用户或被系统的用户拥有时,所述方法和系统因此能够显示用户在正在被学习的空间内或在叠加在正在被学习的空间上的虚拟空间内的位置,以便引导用户通过该空间。
按照本发明的方法和系统的建筑场所的多维空间的自动布局涉及使用诸如基准和目标那样的参考点来建立被指定布置在多维空间内的一个或多个结构和/或目标的定位、位置、和取向。典型地,用于构建多维空间的设计作为一个或多个图(例如,CAD或计算机辅助设计图)被记住,它精确地画出在要被构建的多维空间的目标和/或结构之间的空间关系。所述设计当被图形描绘时表示具有具体物理特征的虚拟空间。在由本发明的系统的用户执行多维空间的自动布局期间,参照设计图,系统使自己适应于多维空间,然后指出被包含在设计图上的所选择的目标和/或结构在被转换到多维空间时的精确位置。因此,本发明能够把多维空间内的用户引导到单个点(或区域或体积或其它更高维的区域),使得用户能够在多维空间内作出用于表示在多维空间的边界处或边界内要构建的目标和/或结构的具体定位、取向和/或安排的标记。在本发明的一个实施例中,用户能够控制本发明的系统的设备,以便自动作出在设计中规定的结构和/或目标的标记。
本发明的系统包括部件,其中所述部件包括至少一个主站、处理器和一个或多个目标。本发明的系统的部件可互相通信,以便允许系统执行多维空间的自动学习和布局。在多维空间的学习和/或布局期间,系统可以通过显示多维空间(例如,3D图形表示)而引导多维空间内的用户,包括:已知的或已学习的目标和/或结构和用户当前的物理位置同时有效地引导在多维空间内的用户和当用户执行多维空间的布局时有效地给用户指出在哪里作出标记。而且,本发明的系统可以将虚拟空间显示为对多维空间描绘的叠加。因此,当用户在多维空间内物理地移动时,本发明的系统能够跟踪用户的位置和实时地显示在实际空间和/或虚拟空间的图形表示内的所述位置。显示器可以是主站的一部分,或处理器的一部分,或这两个部件都可以具有显示器。
以上内容相当广泛地概述了本发明的优选特征,以使得本领域技术人员可以更好地了解以下本发明的详细说明。此后将描述形成本发明的权利要求的主题的本发明的附加特征。本领域技术人员应当意识到,他们可以容易地使用所公开的概念和具体的实施例作为用于设计或修改用于实行本发明的相同目的的其它设备的基础,以及这样的其它设备不背离最广泛形式上的本发明的精神和范围。
附图说明
现在详细地参考本发明的优选实施例,这些实施例的例子在附图上显示。
图1显示本发明的方法的流程图;
图2显示包括主站、目标和便携式处理器的本发明的系统的第一实施例;
图3显示具有根据来自便携式处理器的命令从主站发出激光束来标记位置的第二实施例;
图4显示本发明的系统的第三实施例,其中主站引导移动机器人在多维空间内的表面上产生可视标记;
图5显示第四实施例(类似于图4),其中标记是想要的图案的投影向量叠加;
图6显示第四实施例,其中标记是仿真三维图案的二维投影;
图7显示第五实施例,其中主站引导移动机器人使用油漆在地面上标记位置;
图8显示第六实施例,其中主站引导移动机器人到执行诸如钻孔那样的加工操作的位置;
图9显示第七实施例,其中主站引导移动机器人到利用能够在地面上进行测量和标记的机器人臂执行计量的位置;
图10显示第七实施例,其中在墙壁上进行标记;
图11显示类似于第一实施例的第八实施例,除了主站跟踪多个三棱镜,每个三棱镜与不同的处理器通信以及处理器互相通信以外;
图12A显示两个激光测距单元(A和B)的正视图,每个单元能够测量它离地面的垂直高度和它离另一个测距器的距离;
图12B显示激光测距器和旋转三棱镜的放大图;
图13显示图12的配置的平面图,其中另外显示用于位置三角测量的目标传感器;
图14显示测距器,其使用具有传感器和其它设备的柱子来提供距离和高度测量;
图15A和15B显示具有惯性测量系统的便携式处理器,其包括三个陀螺仪和加速度表;图15A是便携式处理器的外形的等角视图;图15B是显示被布置在处理器单元内的重要部件的等角视图。
具体实施方式
本发明提供用于自动生成多维空间的N维图形表示的系统和方法,其中N是等于或大于2的整数。为了便于说明和使得描述清晰起见,将结合建筑项目描述本发明的系统和方法,其中结构和/或对象在多维空间中相对彼此被构建、安排、定位和取向,在诸如由建筑师和/或工程师或其它建筑专业人员生成的CAD(计算机辅助设计)图那样的图上表示其具体的物理特征。将会理解本发明的方法和系统不限于建筑项目的自动学习和/或布局,而可包括通过使用在空间中已存在的、或被引入到空间中的对象和/或结构而重新安排多维空间。
通过使用本发明的系统而执行多维空间(例如,3D空间)的自动学习的方法涉及从系统设备到多维空间内的一个或多个所选择的参考点的距离的测量和从系统设备到多维空间内的各种现有对象和结构的距离的测量。这些测量由本发明的系统使用来根据由至少其一部分位于多维空间内的系统设备作出的测量结果,实时地自动生成多维空间的图(可以是数字格式)或图形表示。
而且,除了实时地创建正在被学习的多维空间的图形表示以外,本发明的系统也可以实时地显示它的一个部件(例如,目标)相对于正在被学习的多维空间的测量位置的位置。当这样的部件被附着到用户或由系统的用户拥有时,方法和系统因此能够显示在正在被学习的空间内或在叠加在正在被学习的空间上的虚拟空间内的用户的位置,以便引导用户通过该空间。
按照本发明的方法和系统的建筑场所的多维空间的自动布局涉及使用诸如基准和目标那样的参考点来建立被指定布置在多维空间内的一个或多个结构和/或对象的定位、位置和取向。典型地,用于开发多维空间的设计被记住为一个或多个图(例如,CAD或计算机辅助设计图),这些图精确地画出在要建筑的多维空间的对象和/或结构之间的空间关系。所述设计在被图形描绘时表示具有具体物理特征的虚拟空间。在由本发明的系统的用户执行多维空间的自动布局期间,系统参照设计图使自己适应于多维空间,然后当设计图被转换成多维空间时,指出被包含在设计图中的、所选择的对象和/或结构的精确位置。因此,本发明能够把在多维空间内的用户引导到单个点(或区域或体积或其它更高维的区域),使得用户能够在多维空间内作出用以表明在多维空间的边界内或边界处要构建的对象和/或结构的特定定位、取向和/或安排的标记。在本发明的一个实施例中,用户能够控制本发明的系统的设备对于在设计中规定的结构和/或对象自动作出标记。
本发明的系统包括部件,其中所述部件包括至少一个主站、处理器和一个或多个目标。本发明的系统的部件可互相通信,以便允许系统执行多维空间的自动学习和布局。在多维空间的学习和/或布局期间,系统可以通过显示多维空间(例如,3D图形表示)而引导多维空间内的用户,包括:已知的或已学习的目标和/或结构和用户当前的物理位置同时有效地引导在多维空间内的用户和当用户执行多维空间的布局时有效地给用户指出在哪里作出标记。而且,本发明的系统可以将虚拟空间显示为对多维空间描绘的叠加。因此,当用户在多维空间内物理地移动时,本发明的系统能够跟踪用户的位置和实时地显示在实际空间和/或虚拟空间的图形表示内的所述位置。
正如在本说明书中清楚地显示的那样,当由本发明的系统设备按照本发明的方法执行完成任务所需要的某些或所有的步骤时,任务被‘自动地,完成。这里讨论的各种任务的某些或所有的最后步骤由系统设备执行,所述设备可以由被嵌入在这样的设备中的固件和/或软件引导;这样的任务因此被自动执行。
虚拟空间是多维空间的可视表示或数学表示,它可以根据描述对于建筑场所的设计的边界、特定对象和/或结构,对象和/或结构相对彼此的和相对于在多维空间中指定的设立参考点的定位和取向以及定义的对象和/或结构的实际物理尺度的信息来描绘。记住设计的信息被称为虚拟信息。虚拟信息的一个例子是由建筑师或工程师为建筑项目生成的图组(例如,2D或3D CAD(计算机辅助设计)图)。此后,术语“建筑场所”和“多维空间”将可互换地使用。
这里使用的术语“学习”指的是用户(优选地,建筑导航员)使用本发明的系统按照本发明的方法定位在建筑场所的参考点和其它规定的位置(例如,标石、基准),测量在这些规定点之间的距离,识别在建筑场所内的现有结构和/或对象,测量现有对象和/或结构的实际物理尺度和测量位于建筑场所内的现有对象/或结构之间的距离以便实时地自动生成建筑场所的表示(例如,图形2D或3D CAD图或其它类型的表示)的过程,即,正如学习被完成。参考点是在建筑场所内的特别规定的点或位置,这些点或位置被指定为从其开始进行测量的点。参考点通常由设计师(例如,建筑师、工程师)在虚拟信息中标识,以及通常由多维空间的现场勘查员在多维空间中标记出。从学习生成的信息可以变为虚拟信息的一部分。
这里使用的术语“布局”指的是根据参考点和从设计和/或学习生成的虚拟信息,实时地自动识别特定点的精确的位置和/或在建筑场所内对象和结构的位置、取向和安排的过程。布局过程也可以涉及在多维空间内引导系统的用户布置到精确的位置。精确的位置然后由用户标记出,或本发明的用户可以使用作为本发明的系统的一部分的设备自动标记在建筑场所内对象和结构的位置。
本发明的系统和方法使得用户能够通过执行在建筑场所(即,多维空间)与虚拟空间之间的映射而执行建筑场所的学习和/或布局。映射指的是规定在一个空间中的已知点和计算或确定在另一个空间中的相应点,其中在这两个空间之间有严格定义的关系(例如,数学关系)。例如,正如在布局期间完成的,当本发明的方法把严格定义的关系应用到设计师的图内的一个点以确定或计算多维空间中的相应点的位置时,发生从虚拟空间到多维空间的映射。
本说明书中使用的术语‘建筑场所’被理解为包括具有规定边界的任何多维空间,在该边界内可以执行对象和结构的构建和它们相对彼此的定位和取向;建筑场所还包括任何多维空间,其中已经完成部分或所有的建筑。因此,术语“建筑场所”和“多维空间”此后将可互换地使用。
本发明的方法使得与使用诸如基准那样的参考点、目标和/或所提供的参考来执行多维空间的自动学习或自动布局或二者相关联的过程自动化。典型地,在建筑场所处开始建筑之前,参考线和基准由勘查员提供。这些提供的参考典型地是互相垂直的2条线,其形成表示由勘查员建立的x-y坐标系统(互相垂直的线,其中一条是x轴,另一条是y轴)的2维平面,来作为由在建筑场所处的手工艺人(例如,木匠、管子工、电工)根据其对于定位和/或取向的对象和结构进行测量的线。而且,勘查员也可以提供“基准”,这些基准是在从所提供的参考线测量的建筑场所内的特定点,以便进一步使得手工艺人能够对建筑场所内的对象和/或结构进行取向。基准典型地是偏离沿参考线的任何地方的且在建筑场所内的现有结构(例如,列)上识别的点。因此,例如,如果2维空间的参考线被描绘在建筑场所的地面上,基准可以是从沿两条参考线的任一条的任何地方测量的点,其中这样的点可以处在由参考线形成的x-y平面上,或可以处在三维空间的第3维上垂直于x和y的z轴上。因此,基准是在N维空间内存在的参考点,其中N是等于或大于2的整数。
I.本发明的方法和系统
本发明的方法允许用户在多维空间内引入目标,这些目标是在多维空间的学习和/或布局期间要被使用的附加的参考点。目标与基准不同之处在于,它们是在多维空间中任意放置的设备,它们可以接收和发送(主动或被动地)信息到本发明的系统,以便建立附加的参考点。例如,目标可以是相对较小的方形平坦材料,其具有可以反射红外或其它电磁信号(光信号、无线信号、激光束)以便允许由本发明的系统建立和文档记录在多维空间内的参考点的反射表面。这样的目标可以由本发明的系统的用户附着在多维空间内的各种表面上,以便允许多维空间的自动学习和/或布局。目标的另一个例子是位于放置在建筑空间内的柱子上的三棱镜。目标可以是静止或移动的。主动目标可以生成和发送信号到本发明的系统的另一个设备以表明它在多维空间内的位置。被动目标反射它从本发明的系统的其它部件或设备接收的能量,以表明它在多维空间内的位置。
参照图1,图上显示通过使用本发明的系统实现的本发明的方法的流程图。本发明的系统的各种实施例显示于图2-15。在所显示的系统实施例中,本发明的方法可以实现为驻留在处理器设备(例如,膝上电脑)中的软件程序。处理器设备是任何设备,在其上软件执行本发明的方法的步骤作为系统的各种其它部件执行多维空间的自动学习和/或布局的命令。
此后被称为Theocad(SM)的系统软件可被实施为诸如
Figure A200780030691D00111
软件的计算机辅助设计(CAD)软件的一部分,该软件允许用户生成多维空间的图形表示。软件也具有为了便于在施工和建筑市场内使用而构建的图形用户界面(GUI)。这样,Theocad(SM)被无缝地集成到
Figure A200780030691D00112
内以利用这样的软件的图形生成能力。应当指出,Theocad(SM)可被实施为独立软件包,它可以生成它自己的图形。Theocad(SM)适合于快速执行特定的定位、导航、读出和写入施工任务。
Theocad(SM)可以位于手持式、膝上型、平板或台式计算机或具有与主站模块进行通信(发送信息到或接收信息)的能力的其它处理器。信息可以是由主站模块或处理器生成的命令和/或应答。处理器可以是任何微处理器、微控制器、微计算机、大型计算机、台式计算机或可以执行软件程序形式的指令和具有用于显示图形的显示器的其它处理设备。主站模块可以是任何熟知的设备,其可以测量被布置在多维空间内的参考线、基准、和目标的距离、角度和位置。例如,图2所示的主站模块可以是通常被称为总站的设备,以及一个特定的可应用的总站可以是Leica Geosystems Series 1200 Model 3。Leica 1200总站能够在3秒时间内以±3/16英寸的精度分辨在1000英尺距离处的位置。Leica 1200 Series Model 3总站能够跟踪移动的三棱镜,因此跟踪任何移动设备,通过它测量到诸如三棱镜那样的目标和其它反射目标的距离。系统软件因此可以起到距离测量、导航和文档控制软件的作用。系统软件发送命令到主站和接收从主站返回的遥测结果。系统软件发送命令到主站固件,通知它按要求执行规定的任务(例如,转到规定的方向或向上或向下移动到特定的角度位置,接通或关断可视的激光指示器,测量距离或角度等等)。主站通过执行请求的功能和然后把性能或遥测结果发送回到系统软件而应答。应当指出,所有的软件(例如,TheoCAD和AutoCAD)可以位于处理器内,位于主站内或软件的各部分可以处在处理器和主站二者中。
暂时参考图2,图上显示本发明的系统的第一实施例,其包括主站模块100(被显示为静止机器人设备),该主站模块100具有三角架107、激光测距器104、位于顶部的无线通信设备102(包括天线),以及计算机和用户接口106。系统还包括处理器114和至少一个诸如三棱镜108的目标。被实施为总站的主站模块是机器人设备,它移动激光器104,以便不断跟踪位于柱子112上的三棱镜108,该柱子112类似于勘查员的柱子,除了它还具有如图所示的位于它的一个末端的无线通信设备110以外。总站知道三棱镜的位置,该位置由主站模块100通过通信设备110被传送到处理器114。通信设备100被耦合到处理器114,并由处理器114使用来接收和/或发送信息到主站模块100,该主站模块100具有它自己的通信设备102。通信设备110和102可以是任何类型的能够按照协议互相交换信息的无线通信设备。协议是一组法则,它规定信息如何被发送和/或接收信息的设备格式化、发送、接收和解译。协议可以是熟知的协议或由本发明的系统的制造商设计的协议。假如三棱镜的位置的通信被中断,那么主站模块100可以开始搜索模式(search pattern)程序,以便找出三棱镜。因为处理器114被附着到柱子112上,处理器114在建筑场所内的位置可以由主站模块100确定。更具体地,主站模块100能够通过使用熟知的三角测量过程而确定它在建筑场所内的位置。所以,因为主站模块100知道它的位置和处理器114的相对位置,所以处理器在建筑场所内的位置也能够由主站模块100确定。处理器114被显示为执行
Figure A200780030691D0013092503QIETU
的便携式处理设备,以及TheoCAD(SM)软件设备被装载以专用软件,该专业软件显示场所的修改后的CAD图(平面图和正视图),以便形成建筑场所的虚拟映射。所以,手持式设备现在可以在虚拟映射上叠加它的位置。
回到图1,本发明的方法显示步骤10,其中通信设备建立与彼此的通信。图2的主站模块100、目标、和处理器114可以具有与它们相关联的通信设备。在本发明的系统初始激活后(即,系统首先被接通),在不同的通信设备之间的各种通信链路被建立。在任何两个设备之间的通信链路的建立需要确认设备被接通以及设备可以互相通信。而且,在设备之间的通信在于,它们可以正确地解译彼此的信息。典型地,在两个设备之间的握手程序被使用来建立在两个设备之间的链路。链路因此是按照系统遵循的协议有效地通信的能力。
在本发明的方法的步骤12,各种参考点被识别和被定位。勘查员典型地提供参考线和基准。另外,策略地放置在建筑场所中的目标也被定位和被识别。而且,主站在建筑场所内相对于参考线或基准或目标被放置。可能有其中在建筑场所处没有可用的参考线的情形。在这样的情形下,目标被用作为相对于其来放置主站的参考点。基准和参考线可以在多维空间的CAD图上指出,其中所述图被存储在系统的处理器(例如,图2的处理器114),或可以被下载到系统的处理器中。目标由用户安装或固定在建筑场所内的各个点,因此多半它们的位置是用户已知的。当leica model 1200总站被用作为主站时,它可以自动定位某些类型的目标,诸如三棱镜。
在本发明的方法的步骤14,通过使用leica model 1200总站(例如,图2的主站100)测量各种参考点。具体地,测量从参考点到主站的距离和参考点相对于主站的角度(垂直和水平),并把它们存储在总站中。总站把这个信息传送到处理器(例如,图2的处理器114)。在使用作为平台的TheoCAD(SM)的控制下的处理器(诸如图2的处理器114)能够处理所述信息,以便生成至少两种特定类型的信息,该信息导致本发明的方法的步骤16和18。应当指出,TheoCAD(SM)可被用作为独立软件和使用它自己的指令组,以便生成在本发明的方法的步骤16和18中讨论的信息。
在本发明的方法的步骤16,TheoCAD(SM)软件通过熟知的三角测量过程,计算主站在正在被学习的多维空间内的位置。至少两个参考点被使用来确定主站的位置。驻留在处理器中的TheoCAD和AutoCAD软件使用至少两个参考点位置来确定主站的实际位置,并在处理器的显示器上显示所述位置。在其中卫星信号是可得到的建筑场所处,本发明的方法可以使用熟知的GPS(全球定位系统)来确定主站的位置,从而确定处理器的位置。
在步骤18,因为参考点如上所述地被定位、识别、测量、存储和处理,所以TheoCAD和AutoCAD软件能够生成建筑场所的3维图形表示。另外,空间的其它参考点不是目标而是非反射表面,所述其他参考点可被使用来帮助生成3维图形。由工程师或建筑师单独生成的建筑场所的所存储的CAD图(不使用本发明的系统)可被下载到处理器,然后通过映射操作而对准由本发明的系统生成的建筑场所的3维图形表示。映射操作规定在一个空间中的一个已知的点,以及计算或确定在另一个空间中的对应点,其中在两个空间之间有严格定义的关系(例如,数学上的关系)。对于对准的两个空间,用户可以容易地看见在被学习的空间与由建筑场所的建筑师单独生成的空间之间的差异。随着每个点被生成,在这些点之间的连接也被生成,从而允许本发明的系统实时地生成建筑场所的3维图形表示。而且,可以由用户保持的和被主站跟踪的处理器的位置也可以与正在生成的空间和例如由建筑师通过使用AutoCAD单独生成的叠加空间一起同时被显示。这样,本发明的系统的用户可以通过使用本发明的方法操作所述系统,以便导航虚拟空间以及还在实际的空间中作标记,该标记表示虚拟空间的对象和/或结构的位置。也就是,系统的用户可以由所述系统实时地引导以便执行建筑场所的布局。
II.本发明的系统的其它实施例
图3显示本发明的系统的第二实施例,其中主站模块100(例如,Leica总站1200系列型号3)把它的激光束109指向目标118,所述目标的位置通过用户110把坐标输入到处理器114而确定,以及所述坐标被无线地传送到总站。用户把想要激光照射到的位置告知处理器114,以及使主站模块的激光束指向该位置。
图4显示第三实施例,其中主站模块100定位三棱镜108,三棱镜108物理地位于具有被安装在其上的子站的移动机器人122上。主站模块100站包括软件,该软件可以经由无线通信引导移动机器人到特定的位置。移动是“盲目的”,但它由主站模块100电路在驻留在主站模块100的计算机106上的软件的控制下被导航。被安装在移动单元122上的子站120可以执行类似于主站模块100的操作的操作,但在模块100的控制下进行。移动机器人还包括无线通信设备110和激光器118。移动机器人的激光器然后可以照射由主站模块100表示的任何点位置。这是有用的,因为主站模块100是静止的,以及某些位置不能通过视线用于主站模块。
图5显示类似于图4的第三实施例的第四实施例,但其中移动机器人122通过按照想要的图案124快速移动它的激光束111而在表面上投影图形叠加。在想要向建筑工人表明在哪里放置结构材料的情况下,这是有用的。例如,如果想要12英寸管子被垂直地放置,则移动机器人激光器在地面上或水平面上投影12英寸直径圆圈。
图6还显示上述的第四实施例,其中所显示的图案是三维叠加126的二维投影。
图7显示第五实施例,其中移动机器人122被引导到特定的位置坐标,以及被引导来通过使用喷漆器机构128用油漆或染料标记地面。例如,CAD图的整个平面图可以以这样的方式画在地面上。
图8显示第六实施例,其中移动机器人122被引导到特定的位置坐标,以及被引导来执行某些加工操作,诸如通过使用钻头或标记工具130在地面上钻孔。
图9显示第七实施例,其中移动机器人122被引导到特定的位置坐标,以便执行计量检测(metrological measurement)。移动机器人具有机械臂132,其上附着有计算机化的测量、指向或标记装置133。图上显示正在执行的这样的计量。
图10显示如上所述的第七实施例,除了对于墙壁正在执行计量以外。
图11显示第八实施例,其中主站模块100站与多个柱子(诸如在图2的第一实施例中显示的每一个)通信。分别由用户116A、116B和116C操作的处理器(114A、114B和114C)在局域网(LAN)中互相通信。用户116B没有柱子,但能够与处理器(114A和114C)通信,以便定位三棱镜108C和108A的位置。LAN可以具有客户-服务器协议或对等协议。无论如何,任何手持单元的位置坐标对于每个其它手持单元是已知的。
图12-14显示第九实施例。在这个实施例中,不利用总站。而是由能够传送到由用户216操作的处理器214的两个静止激光测距器单元221A和221B(见图12、13和14)通过使用激光束223A和223B测量它们离地面的垂直距离和分隔开它们的距离。测距器单元的细节被显示于图12A中;每个测距器具有光传感器21、旋转三棱镜22和激光器23以及通信设备(未示出)。测距器单元编码它们自己的位置,并且它们发送遥测数据到目标传感器。目标传感器可以读出到每个测距器单元(221A和221B)的距离用于三角测量,以及所形成的三角形的角度(A和B)。这被显示于图13。图14显示通过使用柱子本身来精确地测量测距器单元的高度的替换方法,其中所述柱子具有被安装在可移动单元230上的激光器215以及沿着其高度的传感器217和被固定在可移动单元230的每一端的镜子211,213的。一旦传感器拾取测距器221A的激光束219,在参考以上的真实高度可以通过使用传感器阵列在柱子上的已知位置被测量。可移动单元也可以具有发送信息到处理器214的通信设备。
图15显示便携式处理器手持单元,它通过使用三个陀螺仪和一个加速度表来测量它的位置。手持单元与其它设备的通信通过使用射频信号进行。惯性引导系统是与惯性测量硬件和/或电子装置和/或软件组合的多平台无线手持计算机、PDA、膝上电脑、平板电脑等等,该系统包括一个或多个陀螺仪、用于补偿陀螺漂移的谐振环、和至少一个高度精确的可变电容加速度表。为了初始化该单元,操作员必须首先参考空间中的控制点。
虽然已详细地参照具体实施例描述了本发明,但本领域技术人员将会看到,在这里可以作出各种改变和修改而不背离本发明的精神和范围。因此,意欲使本发明覆盖本发明的修改和变例,只要它们属于所附权利要求及其等同的范围。

Claims (1)

1.一种方法,包括:
基于在多维空间内的参考点而自动生成所述空间的N维表示,从而使用户使用其至少一部分位于所述空间内的系统在所述空间内被导航,其中N是等于或大于2的整数。
CNA2007800306918A 2006-06-28 2007-06-26 用于自动执行多维空间的学习的方法和系统 Pending CN101506811A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US80598306P 2006-06-28 2006-06-28
US60/805,983 2006-06-28
US11/766,672 2007-06-21

Publications (1)

Publication Number Publication Date
CN101506811A true CN101506811A (zh) 2009-08-12

Family

ID=40977762

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2007800306918A Pending CN101506811A (zh) 2006-06-28 2007-06-26 用于自动执行多维空间的学习的方法和系统

Country Status (2)

Country Link
CN (1) CN101506811A (zh)
ZA (1) ZA200900447B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103339470A (zh) * 2010-12-08 2013-10-02 株式会社日本计算机系统研究所 Cad信息生成系统、cad信息生成程序、以及cad信息生成方法
CN114918951A (zh) * 2022-06-27 2022-08-19 西安优艾智合机器人科技有限公司 激光投影机器人及飞机装配方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103339470A (zh) * 2010-12-08 2013-10-02 株式会社日本计算机系统研究所 Cad信息生成系统、cad信息生成程序、以及cad信息生成方法
CN114918951A (zh) * 2022-06-27 2022-08-19 西安优艾智合机器人科技有限公司 激光投影机器人及飞机装配方法

Also Published As

Publication number Publication date
ZA200900447B (en) 2010-01-27

Similar Documents

Publication Publication Date Title
US8060344B2 (en) Method and system for automatically performing a study of a multidimensional space
US9858712B2 (en) System and method capable of navigating and/or mapping any multi-dimensional space
US10571273B2 (en) Construction site referencing
US7460214B2 (en) Surface metering device
US9747698B2 (en) System for accurately and precisely locating and marking a position in space using wireless communications and robotics
US8087176B1 (en) Two dimension layout and point transfer system
US20050102063A1 (en) 3D point locator system
CN103376097B (zh) 自动布局和点转换系统
EP3614101A1 (en) Construction task referencing
US9880022B1 (en) Point layout system with third transmitter
WO2006052259A1 (en) 3d point location system
CA2667217A1 (en) System for accurately and precisely locating and marking a position in space using wireless communications and robotics
Yang et al. A cost-effective non-orthogonal 3D measurement system
CN101506811A (zh) 用于自动执行多维空间的学习的方法和系统
EP0486245B1 (en) Laser surveying system having a function of marking reference points
KR100258405B1 (ko) 터널공사시 발파위치 및 내공측정방법 및 장치

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Open date: 20090812