CN101249438B - 三层次结构的金属复合氧化物材料及其制备方法 - Google Patents

三层次结构的金属复合氧化物材料及其制备方法 Download PDF

Info

Publication number
CN101249438B
CN101249438B CN2008100200341A CN200810020034A CN101249438B CN 101249438 B CN101249438 B CN 101249438B CN 2008100200341 A CN2008100200341 A CN 2008100200341A CN 200810020034 A CN200810020034 A CN 200810020034A CN 101249438 B CN101249438 B CN 101249438B
Authority
CN
China
Prior art keywords
powder
oxide
layer
zirconium oxide
cerium zirconium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2008100200341A
Other languages
English (en)
Other versions
CN101249438A (zh
Inventor
岳军
褚霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Weifu Environmental Protection Catalyst Co Ltd
Original Assignee
Wuxi Weifu Environmental Protection Catalyst Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuxi Weifu Environmental Protection Catalyst Co Ltd filed Critical Wuxi Weifu Environmental Protection Catalyst Co Ltd
Priority to CN2008100200341A priority Critical patent/CN101249438B/zh
Publication of CN101249438A publication Critical patent/CN101249438A/zh
Priority to US12/408,700 priority patent/US20120172212A1/en
Application granted granted Critical
Publication of CN101249438B publication Critical patent/CN101249438B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/894Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • B01J35/69Pore distribution bimodal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • B01D2255/407Zr-Ce mixed oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/902Multilayered catalyst
    • B01D2255/9025Three layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

本发明公开了一种用于汽车尾气净化催化剂涂层的三层次结构的金属复合氧化物材料,本发明同时还公开了一种该金属复合氧化物材料的制备方法。按照本发明提供的技术方案,所述三层次结构的金属复合氧化物材料的特征是:该金属复合氧化物材料具有三层次结构,内层为氧化铝,中间层与最外层均为铈锆氧化物,该铈锆氧化物中掺杂有除去氧化铈的稀土氧化物,当最外层的铈锆氧化物的Ce/Zr原子比≥1时,中间层铈锆氧化物的Ce/Zr≤1/3;当最外层的铈锆氧化物的Ce/Zr≤1/3时,中间层的Ce/Zr≥1。本发明具有较好高温稳定性和污染物处理能力。

Description

三层次结构的金属复合氧化物材料及其制备方法
技术领域
本发明公开了一种用于汽车尾气净化催化剂涂层的三层次结构的金属复合氧化物材料,本发明同时还公开了一种该金属复合氧化物材料的制备方法。
背景技术
汽车尾气的主要污染物是一氧化碳(CO),碳氢化合物(HC)和氮氧化合物(NOx),利用安装在排气系统的催化剂可以将CO、HC氧化成二氧化碳(CO2)、水(H2O),并同时使NOx还原为氮气(N2),实现尾气的净化,这种催化剂通常称为三元催化剂。三元催化剂由两部分组成:蜂窝状的陶瓷或金属载体,以及附着在载体上的催化剂涂层。催化剂涂层通常由具有较大比表面积的氧化物材料(如氧化铝)、储氧材料和分散在氧化物或储氧材料表面的贵金属活性组分(常为Pt、Pd、Rh中的一种或几种)组成。其中的储氧材料一般为含铈锆的复合氧化物,它通过吸附储存尾气中的氧或释放出氧来调节尾气中氧化性组分和还原性组分的比例,使CO和HC被氧化的同时NOx被还原。为了提高汽车冷启动时HC的转化效率,三元催化剂常安装在靠近发动机排气歧管出口的位置,在汽车高速行驶时,三元催化剂的床层温度可达到900℃~1100℃的高温。在这种高温条件下,催化剂涂层材料会发生烧结而使比表面积逐渐变小,储氧能力变小,分散在表面的贵金属颗粒将逐渐聚集增大或被埋入涂层材料因烧结而坍塌的孔道内,使催化剂表面的催化活性位逐渐减少,导致CO、HC和NOx的转化率下降;此外,贵金属Rh与涂层中的氧化铝(γ-Al2O3)、氧化铈(CeO2)在富氧高温条件下会发生合金作用而使Rh的催化能力下降。
在现有的制备三元催化剂涂层的过程中,通常将γ-Al2O3和储氧材料两种粉体物理混合后球磨,同时加入其它助剂,制备的涂层材料在高温条件下稳定性较差,经10小时900℃~1100℃高温老化后比表面积较低,涂层表面负载贵金属后制备的三元催化剂经高温老化后处理CO、HC和NOx的能力较差。此外,制备过程中直接采用铈锆复合氧化物粉体,颗粒较大,而储氧过程主要发生在铈锆复合氧化物颗粒的表面部分,颗粒较深层的部分对储氧无效。为了提高三元催化剂性能,近年来公开了各种用于三元催化剂涂层的金属复合氧化物材料及其制备方法。如Degussa公司的专利US6576207用共沉淀的方法将铈锆氧化物纳米颗粒分散在具有高比表面积的γ-Al2O3粉体表面,形成双层次结构,提高了材料的高温稳定性,并提高了铈锆复合氧化物的动态储氧效率;类似,Mazda公司专利US2007179054则采用反向共沉淀法将铈锆氧化物纳米颗粒分散在γ-Al2O3表面形成双层次结构。一般而言,富铈的铈锆复合氧化物比富锆的铈锆复合氧化物具有更好的储氧能力,但前者的热稳定性却比后者差,因此,上述两个专利公开的这种双层次结构的不足之处在于:表层的铈锆储氧材料不能兼顾储氧能力和热稳定性两个方面。
发明内容
本发明的目的是克服现有技术中存在的不足,提供一种具有较好高温稳定性和污染物处理能力的三层次结构的金属复合氧化物材料。
本发明的另一目的是提供一种上述三层次结构的金属复合氧化物材料的制备方法。
按照本发明提供的技术方案,所述三层次结构的金属复合氧化物材料的特征是:该金属复合氧化物材料具有三层次结构,内层为氧化铝,中间层与最外层均为铈锆氧化物,该铈锆氧化物中掺杂有除去氧化铈的稀土氧化物,当最外层的铈锆氧化物的Ce/Zr原子比≥1时,中间层铈锆氧化物的Ce/Zr≤1/3;当最外层的铈锆氧化物的Ce/Zr≤1/3时,中间层的Ce/Zr≥1。
内层氧化铝与中间层的质量比为10∶5~10∶1。
中间层与最外层的质量比为1∶3~4∶1。
除去氧化铈的稀土氧化物的质量在铈锆氧化物中占2%~10%。
所述的三层次结构的金属复合氧化物材料及其制备方法的制备方法,其特征是该方法包含如下步骤:
第一步,将含Ce3+、Zr4+及掺杂的稀土盐溶解在去离子水中,其中,Ce3+、Zr4+及掺杂的稀土元素的离子的原子比例与中间层的组成一致,然后与柠檬酸水溶液混合搅拌形成金属离子与柠檬酸的络合溶液,溶液中柠檬酸的摩尔浓度≥(3×Ce3+的摩尔浓度+4×Zr4+的摩尔浓度)/3,在此络合溶液中加入颗粒直径90μm、比表面积≥130m2/g的氧化铝粉体形成悬浊液,然后将此悬浊液在60~100℃蒸干,120~200℃干燥5~12小时后,在450~650℃下焙烧3~6小时,将焙烧后的粉体研磨得到具有双层次结构的粉体,该双层次结构的粉体中,内层氧化铝的质量与表层掺杂稀土元素的铈锆复合氧化物的质量之比为10∶5~10∶1;
第二步,将含Ce3+、Zr4+及掺杂的稀土盐溶解在去离子水中,其中,Ce3+、Zr4+及掺杂的稀土元素的离子的原子比例与最外层的组成一致,然后与柠檬酸水溶液混合搅拌形成金属离子与柠檬酸的络合溶液,溶液中柠檬酸的摩尔浓度≥(3×Ce3+的摩尔浓度+4×Zr4+的摩尔浓度)/3,在此络合溶液中加入由第一步制备的具有双层次结构的粉体形成悬浊液,所述粉体颗粒的直径为2μm~60μm,然后将此悬浊液在60~100℃蒸干,120~200℃干燥5~12小时后,在450~650℃下焙烧3~6小时,将焙烧后的粉体研磨,最后得到具有三层次结构的金属复合氧化物材料的粉体。
用于汽车尾气净化的贵金属催化剂包含权利要求1所述的三层结构的金属复合氧化物材料。
本发明的特点是:
(1)用溶胶-凝胶法将铈锆氧化物纳米晶粒直接分散在具有大比表面积的氧化铝颗粒表面,而不是将铈锆氧化物粉体与氧化铝粉体物理混合。一方面,铈锆氧化物在氧化铝颗粒表面的高度分散提高了铈锆氧化物的表面积,抑制了高温条件下铈锆氧化物的晶粒增大;另一方面,铈锆氧化物分散在氧化铝表面,能充分发挥储氧能力。
(2)氧化铝处于三层次结构的内层,中间层和最外层的隔离使氧化铝颗粒间的接触变得困难,提高了氧化铝的高温稳定性。
(3)中间层和最外层的两种铈锆氧化物的Ce与Zr的原子比不同,可根据催化剂的应用要求进行选择:当金属复合氧化物表面负载的贵金属为Pd时,最外层的铈锆氧化物的Ce/Zr(原子比)≥1,比Ce/Zr≤1的铈锆氧化物负载Pd的催化剂具有更高的HC和CO的转化率,而中间层使用Ce/Zr≤1/3的铈锆氧化物提高了最外层和催化剂的高温稳定性;当金属复合氧化物表面负载的贵金属为Rh时,最外层的铈锆氧化物的Ce/Zr,比Ce/Zr(原子比)≤1/3,抑制了Rh与Ce在富氧高温条件下的合金作用,中间层使用Ce/Zr(原子比)≥1的铈锆氧化物以提高催化剂的储氧能力。
具体实施方式
下面结合具体实施例对本发明作进一步说明。
实施例1
步骤一:500g柠檬酸溶解在500g去离子水中形成1000g柠檬酸溶液,将214g ZrO(NO3)2.5H2O、434g Ce(NO3)3.6H2O和35.5g La(NO3).6H2O溶解在600g去离子水中形成溶液。将两种溶液混合后搅拌1小时,加入1337g氧化铝粉体(颗粒直径90μm,比表面积150m2/g)形成悬浊液。然后将此悬浊液加热在80℃搅拌至蒸干,120℃干燥12小时后在600℃焙烧5小时。将焙烧冷却后的粉体研磨得到具有双层次结构的浅黄色粉体,即粉体1:氧化铝与铈锆氧化物的质量比为5∶1,铈锆氧化物中Ce/Zr为3/2,La2O3占铈锆氧化物总质量的5%。
步骤二:500g柠檬酸溶解在500g去离子水中形成1000g柠檬酸溶液,将491g ZrO(NO3)2.5H2O、166g Ce(NO3)3.6H2O和35.5g La(NO3).6H2O溶解在600g去离子水中形成溶液。将两种溶液混合后搅拌1小时,加入1337g粉体1形成悬浊液。然后将此悬浊液加热在80℃搅拌至蒸干,120℃干燥12小时后在600℃焙烧5小时。将焙烧冷却后的粉体研磨得到具有三层次结构的金属复合氧化物粉体,即粉体3:氧化铝与中间层铈锆氧化物的质量比为5∶1,中间层铈锆氧化物与最外层铈锆氧化物的质量比为1∶1,中间层铈锆氧化物Ce/Zr为3/2,La2O3占5%,最外层铈锆氧化物Ce/Zr为1/4,La2O3占5%。
实施例2
步骤一:500g柠檬酸溶解在500g去离子水中形成1000g柠檬酸溶液,将491g ZrO(NO3)2.5H2O、166g Ce(NO3)3.6H2O和35.5g La(NO3).6H2O溶解在600g去离子水中形成溶液。将两种溶液混合后搅拌1小时,加入1337g氧化铝粉体(颗粒直径45μm,比表面积150m2/g)形成悬浊液。然后将此悬浊液加热在80℃搅拌至蒸干,120℃干燥12小时后在600℃焙烧5小时。将焙烧冷却后的粉体研磨得到具有双层次结构的浅黄色粉体,即粉体2:氧化铝与铈锆氧化物的质量比为5∶1,铈锆氧化物中Ce/Zr为1/4,La2O3占铈锆氧化物总质量的5%。
步骤二:500g柠檬酸溶解在500g去离子水中形成1000g柠檬酸溶液,将214g ZrO(NO3)2.5H2O、434g Ce(NO3)3.6H2O和35.5g La(NO3).6H2O溶解在600g去离子水中形成溶液。将两种溶液混合后搅拌1小时,加入1337g粉体2形成悬浊液。然后将此悬浊液加热在80℃搅拌蒸干,120℃干燥12小时后在600℃焙烧5小时。将焙烧冷却后的粉体研磨得到具有三层次结构的金属复合氧化物粉体,即粉体4:氧化铝与中间层铈锆氧化物的质量比为5∶1,中间层铈锆氧化物与最外层铈锆氧化物的质量比为1∶1,中间层铈锆氧化物Ce/Zr为1/4,La2O3占5%,最外层铈锆氧化物Ce/Zr为3/2,La2O3占5%。
实施例3
三元催化剂A(Rh-粉体2/Pd-粉体1/陶瓷载体)的制备:
Pd涂层:粉体1和去离子水均匀混合,并缓慢滴加入Pd(NO3)3溶液,球磨此悬浊液至平均颗粒直径为50μm,固体含量为45%的浆液I。在规格为Φ20mm×40mm,400cpsi/6.5mil(体积12.56ml)的蜂窝陶瓷载体上涂敷定量的浆液I,并烘干、焙烧。
Rh涂层:粉体2和去离子水均匀混合,并缓慢滴加入Rh(NO3)3溶液,球磨此悬浊液至平均颗粒直径为50μm,固体含量为40%的浆液II。在涂敷了Pd涂层的载体上涂敷定量的浆液II,并烘干、焙烧。即制备得到三元催化剂A:Rh-粉体2/Pd-粉体1/陶瓷载体,具体组成为:
 载体   Φ20mm×40mm,400cpsi/6.5mil
 粉体1   70g/L
 粉体2   50g/L
 Pd   30g/ft3
 Rh   6g/ft3
实施例4
三元催化剂B(Rh-粉体3/Pd-粉体4/陶瓷载体)的制备:
制备过程同催化剂A,除了粉体1换为粉体4,粉体2换为粉体3,催化剂B的具体组成为:
 载体   Φ20mm×40mm,400cpsi/6.5mil
 粉体4   70g/L
 粉体3   50g/L
 Pd   30g/ft3
 Rh   6g/ft3
实施例5
三元催化剂C(Rh-粉体4/Pd-粉体3/陶瓷载体)的制备:
制备过程同催化剂A,除了粉体1换为粉体3,粉体2换为粉体4,催化剂C的具体组成为:
 载体   Φ20mm×40mm,400cpsi/6.5mil
 粉体3   70g/L
 粉体4  50g/L
 Pd  30g/ft3
 Rh  6g/ft3
实施例6
催化剂A-C的催化性能评价:
在进行催化性能测试前,催化剂均在10vol.%H2O/90%空气的1050℃气氛中老化了20小时。采用模拟评价系统测试催化剂的性能,测试对象为HC、CO、NOx的起燃温度T50(即污染物转化率达50%时对应的催化剂入口温度)和450℃时的动态转化率。下表为测试起燃温度时模拟评价系统的合成气组成:
Figure S2008100200341D00051
催化剂入口处温度由室温以60℃/min的速率逐渐升温至500℃,合成气空速为60000h-1。测得的起燃温度T50值如下表所示:
催化剂 HC T50/℃ CO T50/℃   NOx T50/℃
  A   314   293   297
  B   306   286   288
  C   312   290   296
测试动态转化率时保持催化剂入口温度450℃,合成气Lambda值为:0.998±0.03,振荡频率1HZ。测得的动态转化率值如下表所示:
催化剂   HC转化率/%   CO转化率/%   NOx转化率/%
  A   84   90   87
  B   92   95   94
  C   88   93   89
催化剂性能评价的结果表明,经过1050℃的高温水热老化后,催化剂B具有最高的催化效率。与采用双层次结构金属复合氧化物粉体制备的催化剂A相比,在催化剂B和C上三种污染物具有更高的转化效率和更低的起燃温度T50。而B与C的结果比较表明,负载不同贵金属时,金属复合氧化物中间层和最外层铈锆氧化物的Ce/Zr的选择对催化剂的高温稳定性有影响。

Claims (3)

1.一种三层次结构的金属复合氧化物材料,其特征在于:该金属复合氧化物材料具有三层次结构,内层为氧化铝,中间层与最外层均为铈锆氧化物,该铈锆氧化物中掺杂有除去氧化铈的稀土氧化物,当最外层的铈锆氧化物的Ce/Zr原子比≥1时,中间层铈锆氧化物的Ce/Zr原子比≤1/3;当最外层的铈锆氧化物的Ce/Zr原子比≤1/3时,中间层的Ce/Zr原子比≥1;
除去氧化铈的稀土氧化物的质量在铈锆氧化物中占2%~10%;
内层氧化铝与中间层的质量比为10∶5~10∶1;
中间层与最外层的质量比为1∶3~4∶1。
2.制备权利要求1所述三层次结构的金属复合氧化物材料的方法,其特征是该方法包含如下步骤:
第一步,将含Ce3+、Zr4+及掺杂的稀土盐溶解在去离子水中,其中,Ce3+、Zr4+及掺杂的稀土元素的离子的原子比例与中间层的组成一致,然后与柠檬酸水溶液混合搅拌形成金属离子与柠檬酸的络合溶液,溶液中柠檬酸的摩尔浓度≥(3×Ce3+的摩尔浓度+4×Zr4+的摩尔浓度)/3,在此络合溶液中加入颗粒直径90μm、比表面积≥130m2/g的氧化铝粉体形成悬浊液,然后将此悬浊液在60~100℃蒸干,120~200℃干燥5~12小时后,在450~650℃下焙烧3~6小时,将焙烧后的粉体研磨得到具有双层次结构的粉体,该双层次结构的粉体中,内层氧化铝的质量与表层掺杂稀土元素的铈锆复合氧化物的质量之比为10∶5~10∶1;
第二步,将含Ce3+、Zr4+及掺杂的稀土盐溶解在去离子水中,其中,Ce3+、Zr4+及掺杂的稀土元素的离子的原子比例与最外层的组成一致,然后与柠檬酸水溶液混合搅拌形成金属离子与柠檬酸的络合溶液,溶液中柠檬酸的摩尔浓度≥(3×Ce3+的摩尔浓度+4×Zr4+的摩尔浓度)/3,在此络合溶液中加入由第一步制备的具有双层次结构的粉体形成悬浊液,所述粉体颗粒的直径为2μm~60μm,然后将此悬浊液在60~100℃蒸干,120~200℃干燥5~12小时后,在450~650℃下焙烧3~6小时,将焙烧后的粉体研磨,最后得到具有三层次结构的金属复合氧化物材料的粉体。
3.用于汽车尾气净化的包含权利要求1所述的三层结构的金属复合氧化物材料的贵金属催化剂。 
CN2008100200341A 2008-03-21 2008-03-21 三层次结构的金属复合氧化物材料及其制备方法 Active CN101249438B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2008100200341A CN101249438B (zh) 2008-03-21 2008-03-21 三层次结构的金属复合氧化物材料及其制备方法
US12/408,700 US20120172212A1 (en) 2008-03-21 2009-03-21 Tri-layer structured metal oxides composite material and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008100200341A CN101249438B (zh) 2008-03-21 2008-03-21 三层次结构的金属复合氧化物材料及其制备方法

Publications (2)

Publication Number Publication Date
CN101249438A CN101249438A (zh) 2008-08-27
CN101249438B true CN101249438B (zh) 2011-08-17

Family

ID=39953137

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008100200341A Active CN101249438B (zh) 2008-03-21 2008-03-21 三层次结构的金属复合氧化物材料及其制备方法

Country Status (2)

Country Link
US (1) US20120172212A1 (zh)
CN (1) CN101249438B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2502561C1 (ru) * 2012-11-28 2013-12-27 Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) Способ приготовления катализатора для очистки отработавших газов двигателей внутреннего сгорания и катализатор, полученный этим способом

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5567923B2 (ja) * 2010-07-23 2014-08-06 トヨタ自動車株式会社 排ガス浄化用触媒
CN102755912A (zh) * 2012-07-17 2012-10-31 无锡威孚环保催化剂有限公司 净化有机废气的陶瓷蜂窝状催化剂及其制备方法
CN103191734B (zh) * 2013-03-15 2015-02-18 无锡威孚环保催化剂有限公司 用于汽车尾气处理的三元催化剂
CN103191735B (zh) * 2013-03-29 2015-05-20 无锡威孚环保催化剂有限公司 稀燃型天然气车用催化剂的制备方法
EP3752462A4 (en) * 2018-02-15 2021-11-17 Sumitomo Chemical Company Limited INORGANIC OXIDE
CN109772288B (zh) * 2019-01-16 2021-12-28 山东国瓷功能材料股份有限公司 表面富铈型纳米铈锆复合氧化物及其制备和应用
CN110801832A (zh) * 2019-10-22 2020-02-18 浙江达峰汽车技术有限公司 一种满足国六排放标准的汽油机尾气净化三效催化剂
CN112076740A (zh) * 2020-09-17 2020-12-15 有研稀土新材料股份有限公司 一种元素梯度分布的铈锆基复合氧化物及其制备方法
CN113457660B (zh) * 2021-06-30 2023-04-28 无锡威孚环保催化剂有限公司 一种汽油车颗粒捕集器催化剂及其制备方法
CN114100594B (zh) * 2021-11-26 2023-04-11 四川大学 铈锆-铝基氧化物微纳米复合催化材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6764665B2 (en) * 2001-10-26 2004-07-20 Engelhard Corporation Layered catalyst composite

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2502561C1 (ru) * 2012-11-28 2013-12-27 Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) Способ приготовления катализатора для очистки отработавших газов двигателей внутреннего сгорания и катализатор, полученный этим способом

Also Published As

Publication number Publication date
CN101249438A (zh) 2008-08-27
US20120172212A1 (en) 2012-07-05

Similar Documents

Publication Publication Date Title
CN101249438B (zh) 三层次结构的金属复合氧化物材料及其制备方法
JP5361855B2 (ja) パラジウム−ロジウム単一層触媒
JP4454855B2 (ja) ロジウム、ジルコニアおよび希土類元素酸化物を含んでなる排ガス触媒
KR101520983B1 (ko) 촉매 조성물
JP4019357B2 (ja) 排気ガス浄化用触媒粉末の製造方法及び排気ガス浄化触媒の製造方法
WO2010023919A1 (ja) 排気ガス浄化用触媒及びこれを用いた排気ガス浄化方法
KR20170093899A (ko) 배기 시스템용 아산화질소 제거 촉매
CN107530623B (zh) 具有提高的高温和低温性能的贫NOx捕集
JP2000515419A (ja) 3元変換触媒およびそれらの製造方法
JP5589321B2 (ja) 排気ガス浄化用触媒およびその製造方法
JP2007296518A (ja) 排ガス浄化触媒および排ガス浄化装置
US20070179054A1 (en) Exhaust gas purification catalyst
JP6748590B2 (ja) 排ガス浄化用触媒
CN102112225A (zh) 废气净化催化剂
JP2006334490A (ja) 排気ガス浄化用触媒
JP6482986B2 (ja) 排気ガス浄化用触媒の製造方法
JP5684973B2 (ja) 排ガス浄化用触媒及びそれを用いた排ガス浄化方法
US7745371B2 (en) Exhaust gas purifying catalyst, metal oxide particle and production process thereof
JPH03154635A (ja) セリア含有ジルコニア支持体を含む三方転化触媒
JP2005021880A (ja) 排ガス浄化用触媒及び排ガス浄化用触媒システム
WO2007055216A1 (ja) 排ガス浄化装置及び排ガス浄化方法
JP2004275814A (ja) 排ガス浄化触媒、その製造方法及び排ガス浄化装置
JPH1157477A (ja) 排気ガス浄化用触媒及びその使用方法
JPH10165819A (ja) 排気ガス浄化用触媒及びその使用方法
CN104941677B (zh) 一种高稳定性的涂层材料和机动车尾气净化催化剂的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant