CN100383213C - 一种热界面材料及其制造方法 - Google Patents
一种热界面材料及其制造方法 Download PDFInfo
- Publication number
- CN100383213C CN100383213C CNB2004100267786A CN200410026778A CN100383213C CN 100383213 C CN100383213 C CN 100383213C CN B2004100267786 A CNB2004100267786 A CN B2004100267786A CN 200410026778 A CN200410026778 A CN 200410026778A CN 100383213 C CN100383213 C CN 100383213C
- Authority
- CN
- China
- Prior art keywords
- interfacial material
- heat interfacial
- heat
- macromolecular
- nano pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 title claims abstract description 135
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 84
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 50
- 239000002131 composite material Substances 0.000 claims abstract description 13
- 239000007791 liquid phase Substances 0.000 claims abstract description 11
- 239000007790 solid phase Substances 0.000 claims abstract description 7
- 239000002041 carbon nanotube Substances 0.000 claims description 33
- 229910021393 carbon nanotube Inorganic materials 0.000 claims description 33
- 229920000642 polymer Polymers 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 22
- 239000000758 substrate Substances 0.000 claims description 13
- 229920002379 silicone rubber Polymers 0.000 claims description 9
- 238000005520 cutting process Methods 0.000 claims description 8
- 229920001971 elastomer Polymers 0.000 claims description 4
- 239000005060 rubber Substances 0.000 claims description 4
- 150000001336 alkenes Chemical class 0.000 claims description 3
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims description 2
- 239000000178 monomer Substances 0.000 claims description 2
- 229920005989 resin Polymers 0.000 claims description 2
- 239000011347 resin Substances 0.000 claims description 2
- 238000009827 uniform distribution Methods 0.000 claims description 2
- 229920002521 macromolecule Polymers 0.000 abstract 6
- 239000010408 film Substances 0.000 description 8
- 239000003054 catalyst Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000002245 particle Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 230000005855 radiation Effects 0.000 description 4
- 229920000049 Carbon (fiber) Polymers 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000004917 carbon fiber Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- 239000004519 grease Substances 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 238000009747 press moulding Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000004945 silicone rubber Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 230000000739 chaotic effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000000313 electron-beam-induced deposition Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000012782 phase change material Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229910021426 porous silicon Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/701—Integrated with dissimilar structures on a common substrate
- Y10S977/712—Integrated with dissimilar structures on a common substrate formed from plural layers of nanosized material, e.g. stacked structures
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/734—Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
- Y10S977/735—Carbon buckyball
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/734—Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
- Y10S977/742—Carbon nanotubes, CNTs
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/734—Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
- Y10S977/742—Carbon nanotubes, CNTs
- Y10S977/743—Carbon nanotubes, CNTs having specified tube end structure, e.g. close-ended shell or open-ended tube
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/84—Manufacture, treatment, or detection of nanostructure
- Y10S977/842—Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/84—Manufacture, treatment, or detection of nanostructure
- Y10S977/842—Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
- Y10S977/848—Tube end modifications, e.g. capping, joining, splicing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/84—Manufacture, treatment, or detection of nanostructure
- Y10S977/849—Manufacture, treatment, or detection of nanostructure with scanning probe
- Y10S977/855—Manufacture, treatment, or detection of nanostructure with scanning probe for manufacture of nanostructure
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/84—Manufacture, treatment, or detection of nanostructure
- Y10S977/849—Manufacture, treatment, or detection of nanostructure with scanning probe
- Y10S977/855—Manufacture, treatment, or detection of nanostructure with scanning probe for manufacture of nanostructure
- Y10S977/856—Manufacture, treatment, or detection of nanostructure with scanning probe for manufacture of nanostructure including etching/cutting
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Carbon And Carbon Compounds (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
一种热界面材料,其包括一高分子材料以及分布在该高分子材料中的多个碳纳米管,该热界面材料形成有一第一表面及相对于第一表面的第二表面,该碳纳米管两端开口,在该高分子材料中均匀分布并且沿热界面材料的第一表面向第二表面延伸。本发明还提供此种热界面材料的制造方法,其包括以下步骤:提供一碳纳米管阵列;将碳纳米管阵列浸润于液相高分子体系;使液相高分子体系转化为固相,生成分布有碳纳米管的高分子复合材料;在碳纳米管阵列预定高度,并沿垂直碳纳米管阵列轴向的方向切割该高分子复合材料,去除碳纳米管阵列顶端的高分子材料并使得碳纳米管尖端开口;按照预定厚度切割上述高分子复合材料,形成热界面材料。
Description
【技术领域】
本发明涉及一种热界面材料及其制造方法,尤其涉及一种利用碳纳米管导热的热界面材料及其制造方法。
【背景技术】
近年来,随着半导体器件集成工艺的快速发展,半导体器件的集成化程度越来越高,而器件体积却变得越来越小,其散热成为一个越来越重要的问题,其对散热的要求也越来越高。为了满足这些需要,各种散热方式被大量的运用,如利用风扇散热、水冷辅助散热和热管散热等方式,并取得一定的散热效果,但由于散热器与半导体集成器件的接触界面并不平整,一般相互接触的只有不到2%面积,没有理想的接触界面,,从根本上极大地影响了半导体器件向散热器进行热传递的效果,因此在散热器与半导体器件的接触界面间增加一导热系数较高的热界面材料来增加界面的接触程度就显得十分必要。
传统的热界面材料是将一些导热系数较高的颗粒分散到聚合物材料中形成复合材料,如石墨、氮化硼、氧化硅、氧化铝、银或其它金属等。此种材料的导热性能在很大程度上取决于聚合物载体的性质。其中以油脂、相变材料为载体的复合材料因其使用时为液态而能与热源表面浸润故接触热阻较小,而以硅胶和橡胶为载体的复合材料的接触热阻就比较大。这些材料的一个普遍缺陷是整个材料的导热系数比较小,典型值在1W/mK,这已经越来越不能适应半导体集成化程度的提高对散热的需求,而增加聚合物载体中导热颗粒的含量使颗粒与颗粒尽量相互接触可以增加整个复合材料的导热系数,如某些特殊的界面材料因此可达到4-8W/mK,但当聚合物载体中导热颗粒的含量增加到一定程度时,会使聚合物失去所需的性能,如油脂会变硬,从而浸润效果会变差,橡胶也会变硬,从而失去柔韧性,这都会使热界面材料性能大大降低。
近来有一种新的热界面材料,是将定向排列的导热系数约为1100W/mK的碳纤维一端或整个用聚合物固定在一起,从而在聚合物薄膜的垂直方向上形成定向排列的碳纤维阵列,这样每根碳纤维就可以形成一个导热通道,极大提高了这种聚合物薄膜的导热系数,可达到50-90W/mK。但这类材料的一个缺点是不能做得很薄,厚度必须在40微米以上,而材料的热阻与薄膜的厚度成正比,所以,它的热阻降低到一定的程度就难以再进一步降低。
为改善热界面材料的性能,提高其热传导系数,各种材料被广泛的试验。Savas Berber等人于2000年在美国物理学会上发表的一篇名为“UnusuallyHigh Thermal Conductivity of Carbon Nanotubes”的文章指出“Z”形(10,10)碳纳米管在室温下导热系数可达6600W/mK,具体内容可参阅文献Phys.Rev.Lett,vol.84,p.4613。研究如何将碳纳米管用于热界面材料并充分发挥其优良的导热性成为提高热界面材料性能的一个重要方向。
美国专利第6,407,922号揭示一种利用碳纳米管导热特性的热界面材料,其是将碳纳米管掺到基体材料中结成一体,然后通过模压方式制成热界面材料,该热界面材料的两导热表面的面积不相等,其中与散热器接触的导热表面的面积大于与热源接触的导热表面的面积,这样可有利于散热器散热,但该方法制成的热界面材料尚有以下不足,其一,模压方式制成热界面材料较难把厚度做薄,因而,一方面导致该热界面材料导热系数的降低,另一方面,增加该热界面材料的体积,不利于器件向小型化方向发展的需要,且使得热界面材料缺乏柔韧性;其二,该方法制成的热界面材料,碳纳米管杂乱无序的排列在基体材料中,其在基体材料中分布的均匀性较难得到保证,因而热传导的均匀性也受到影响,而且没有充分利用碳纳米管纵向导热的优势,影响了热界面材料的热传导系数。
因此,提供一种厚度薄、导热系数大,接触热阻小,柔韧性好,导热均匀的热界面材料十分必要。
【发明内容】
为解决现有技术的技术问题,本发明的目的是提供一种厚度薄、导热系数大,接触热阻小,柔韧性好,导热均匀的热界面材料。
本发明的另一目的是提供此种热界面材料的制造方法。
为实现本发明的目的,本发明提供一种热界面材料,其包括一高分子材料以及分布于该高分子材料中的多个碳纳米管,该热界面材料形成有一第一表面及相对于第一表面的第二表面,该碳纳米管两端开口,在该高分子材料中均匀分布且沿热界面材料的第一表面向第二表面延伸。
其中,在该热界面材料中,该碳纳米管基本相互平行且垂直于热界面材料的第一表面和第二表面。
为实现本发明的另一目的,本发明还提供此种热界面材料的制造方法,其包括以下步骤:
提供一碳纳米管阵列;
将碳纳米管阵列浸润于液相高分子体系;
使液相高分子体系转化为固相,生成分布有碳纳米管的高分子复合材料;
在碳纳米管阵列预定高度,并沿垂直碳纳米管阵列的轴向方向切割该高分子复合材料,去除碳纳米管阵列顶端的高分子材料并使得碳纳米管尖端开口;
按照预定厚度切割上述高分子复合材料,形成热界面材料。
与现有技术相比较,本发明基于碳纳米管阵列导热的热界面材料具以下优点:其一,利用碳纳米管阵列制得的热界面材料,因碳纳米管阵列具有均匀、超顺、定向排列的优点,该热界面材料的每一根碳纳米管均在垂直热界面材料方向形成导热通道,使得碳纳米管的纵向导热特性得到最大限度的利用,因而可得到导热系数高且导热一致均匀的热界面材料;其二,利用本方法制得的热界面材料,不受碳纳米管阵列的生长高度的限制,可通过切割的方法制得厚度极薄的热界面材料,一方面增加了热界面材料的导热效果,另一方面,增加了热界面材料的柔韧性,降低了热界面材料的体积及重量,利于整个器件安装向小型化方向发展的需要;其三,本发明分布在热界面材料中的碳纳米管皆两端开口,在热界面材料内从一表面延伸至相对的另一表面,可直接与热源以及散热装置接触,而且,热界面材料表面平整,与热源及散热装置接触热阻小,有利于更好的发挥碳纳米管的导热特性。
【附图说明】
图1是本发明中形成有催化剂薄膜的基底的示意图。
图2是图1所示基底上生长有定向排列的碳纳米管阵列的示意图。
图3是图2所示的碳纳米管阵列连同基底在高分子溶液中浸泡的示意图。
图4是本发明中浸有高分子溶液的碳纳米管阵列的固化的示意图。
图5是本发明中含碳纳米管阵列的热界面材料示意图。
图6是本发明热界面材料的应用示意图。
【具体实施方式】
下面将结合附图及具体实施例对本发明进行详细说明。
请参阅图1和图2,首先在一基底11上均匀形成一层催化剂薄膜12,该催化剂薄膜12的形成可利用热沉积、电子束沉积或溅射法来完成。基底11的材料可用玻璃、石英、硅或氧化铝。本实施例采用多孔硅,其表面有一层多孔层,孔的直径极小,一般小于3纳米。催化剂薄膜12的材料选用铁,也可选用其它材料,如氮化镓、钴、镍及其合金材料等。
然后,氧化催化剂薄膜12,形成催化剂颗粒(图未示),再将分布有催化剂颗粒的基底11放入反应炉中(图未示),在700~1000摄氏度下,通入碳源气,生长出碳纳米管阵列,其中碳源气可为乙炔、乙烯等气体,碳纳米管阵列的高度可通过控制生长时间来控制。有关碳纳米管阵列22生长的方法已较为成熟,具体可参阅文献Science,1999,vol.283,p.512-414和文献J.Am.Chem.Soc,2001,vol.123,p.11502-11503,此外美国专利第6,350,488号也公开了一种生长大面积碳纳米管阵列的方法。
请参阅图3,将高分子溶液32装进一容器30中,将已生长好的定向排列的碳纳米管阵列22连同基底11一起浸到该高分子溶液32中,直至高分子溶液32完全浸润碳纳米管阵列22,高分子溶液32完全浸润的时间同碳纳米管阵列22的高度、密度以及整个碳纳米管阵列22的面积相关。为使高分子溶液32能完全浸润碳纳米管阵列22,该高分子溶液32的粘度在200cPs以下。本发明高分子溶液32的高分子材料选自树脂、硅橡胶或橡胶。本发明高分子溶液32为液相高分子体系,该高分子溶液32还可用熔融态高分子或聚合物单体溶液替代,本实施例采用的高分子溶液32为硅橡胶高分子溶液。
请参阅图4和图5,将被高分子溶液32完全浸润的碳纳米管阵列22连同基底11一起从容器30中取出,固化使该液相高分子溶液32转化为固相,形成高分子材料34。然后将固化后的高分子材料34从基底11上揭下,在碳纳米管阵列22预定高度,用切片机(图未示)将该高分子材料34沿垂直于碳纳米管阵列22的轴向方向进行切割,形成热界面材料40。
本发明的热界面材料40的制造方法中也可以先固化该高分子溶液32并使其转化为固相高分子材料34,再将固化后的高分子材料34连同基底11一起从容器30中取出,然后可以在已经形成高分子材料34的基底11上,用切片机直接切割该高分子材料34形成热界面材料40。
本发明液相高分子溶液转化为固相高分子材料的方法需依据所选用的高分子材料。本实施例硅橡胶高分子溶液的固化由于选用的硅橡胶高分子溶液为两组份硅橡胶高分子溶液,所以只需要将该两组份硅橡胶高分子溶液在室温固化24小时或在60℃固化2小时,其自身的反应即可使该硅橡胶高分子溶液转化为固相。本实施例中的两组份硅橡胶高分子溶液可以由市场上直接买到。
本发明用切片机切割高分子材料34形成热界面材料40的具体方法为:首先根据碳纳米管阵列22的生长高度将分布有碳纳米管阵列22的高分子材料34沿垂直于碳纳米管阵列22轴向方向进行切割,除去碳纳米管阵列22上方多余的高分子材料34,同时使碳纳米管的尖端开口;然后按照热界面材料40的所需厚度沿同一方向进行切割,即得到所需的热界面材料40,该热界面材料40中的碳纳米管两端开口,在应用时能够与热源或散热装置直接接触,避免因为过量的高分子材料介于碳纳米管与热源或散热器之间影响热界面材料40的热传导性能。本发明热界面材料40的厚度可为1~1000微米,本实施例热界面材料40的厚度为20微米,由于使用切片机进行切割,热界面材料40的厚度可根据需求由切片时直接控制,方法简单,且容易控制。
另外,为使切割后得到的热界面材料表面更加平整,可将已经固化的高分子材料34浸入熔融态石蜡材料中,经过冷却固化后再进行切割,由于冷却后的石蜡具有较高硬度,所以,切割后得到的热界面材料的表面会更加平整。
本发明的热界面材料40,碳纳米管阵列22经高分子材料34固结形成一体,使得碳纳米管阵列22在高分子材料34中具有分布均匀、垂直排列的特点,在垂直薄膜方向形成导热通道,所形成的热界面材料40具有导热系数高、导热均匀的特点。
利用本方法制得的热界面材料40中原碳纳米管阵列22的形态基本未变,即碳纳米管阵列22的中碳纳米管的间距未变,且碳纳米管阵列22没有聚集成束,保持了原有的定向排列的状态,并且此热界面材料40具有良好柔韧性。
请参阅图6,本发明制得的碳纳米管阵列热界面材料40具有极佳的导热性能,可广泛的应用于包括中央处理器(CPU)、功率晶体管、视频图形阵列芯片(VGA)、射频芯片在内的电子器件80中,热界面材料40置于电子器件80与散热器60之间,能提供电子器件80与散热器60之间一优良热接触,热界面材料40的第一表面42与电子器件80的表面(未标示)接触,与第一表面42相对应的热界面材料40的第二表面44与散热器60的底面(未标示)接触。由于本发明制得的碳纳米管阵列热界面材料40极薄,其厚度仅在微米级,具有较好的柔韧性,因而,即使在电子器件的表面参差不齐的情况下,本发明的热界面材料也能提供电子器件80与散热器60之间一良好的热接触。另外,由于本发明热界面材料40中的碳纳米管皆两端开口,沿热界面材料40的第一表面42向第二表面44垂直延伸,因而,碳纳米管可与电子器件80及散热器60直接接触,而且,热界面材料40的表面平整,与电子器件80及散热器60接触热阻小,使得碳纳米管的纵向导热特性得到最大限度的利用,热界面材料40具有导热系数高且导热一致均匀的特点。
Claims (7)
1.一种热界面材料,其包括一高分子材料以及分布于该高分子材料中的多个碳纳米管,该热界面材料进一步包括一第一表面及相对于第一表面的第二表面,其特征在于:该碳纳米管两端开口,在该高分子材料中均匀分布且沿热界面材料的第一表面向第二表面延伸,该碳纳米管基本相互平行且垂直于热界面材料的第一表面和第二表面,该热界面材料的厚度为1~1000微米。
2.一种如权利要求1所述的热界面材料的制造方法,其包括以下步骤:
在基底上形成一碳纳米管阵列;
将碳纳米管阵列浸润于液相高分子体系;
使液相高分子体系转化为固相,生成分布有碳纳米管的高分子复合材料;
在碳纳米管阵列预定高度,并沿垂直于碳纳米管阵列轴向切割该高分子复合材料,去除碳纳米管阵列顶端的高分子材料并使得碳纳米管尖端开口;
按照预定厚度切割上述高分子复合材料,形成热界面材料。
3.如权利要求2所述的热界面材料的制造方法,其特征在于切割该高分子复合材料以前进一步包括以下步骤:
用熔融态石蜡材料浸润分布有碳纳米管的高分子复合材料;
冷却固化该熔融态石蜡材料。
4.如权利要求2所述的热界面材料的制造方法,其特征在于液相高分子体系粘度在200cPs以下。
5.如权利要求2所述的热界面材料的制造方法,其特征在于该液相高分子体系包括熔融态高分子、高分子溶液和聚合物单体溶液。
6.如权利要求5所述的热界面材料的制造方法,其特征在于该高分子溶液包括树脂、硅橡胶和橡胶。
7.如权利要求2所述的热界面材料的制造方法,其特征在于切割该高分子复合材料以前进一步包括先将该分布有碳纳米管的高分子复合材料从基底上揭下。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100267786A CN100383213C (zh) | 2004-04-02 | 2004-04-02 | 一种热界面材料及其制造方法 |
US11/024,513 US7253442B2 (en) | 2004-04-02 | 2004-12-29 | Thermal interface material with carbon nanotubes |
US11/592,767 US7569425B2 (en) | 2004-04-02 | 2006-11-03 | Method for manufacturing thermal interface material with carbon nanotubes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2004100267786A CN100383213C (zh) | 2004-04-02 | 2004-04-02 | 一种热界面材料及其制造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1676568A CN1676568A (zh) | 2005-10-05 |
CN100383213C true CN100383213C (zh) | 2008-04-23 |
Family
ID=34800348
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2004100267786A Expired - Lifetime CN100383213C (zh) | 2004-04-02 | 2004-04-02 | 一种热界面材料及其制造方法 |
Country Status (2)
Country | Link |
---|---|
US (2) | US7253442B2 (zh) |
CN (1) | CN100383213C (zh) |
Families Citing this family (173)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10340424B2 (en) | 2002-08-30 | 2019-07-02 | GE Lighting Solutions, LLC | Light emitting diode component |
US7656027B2 (en) * | 2003-01-24 | 2010-02-02 | Nanoconduction, Inc. | In-chip structures and methods for removing heat from integrated circuits |
US7273095B2 (en) | 2003-03-11 | 2007-09-25 | United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Nanoengineered thermal materials based on carbon nanotube array composites |
DE10327530A1 (de) * | 2003-06-17 | 2005-01-20 | Electrovac Gesmbh | Vorrichtung mit wenigstens einer von einem zu kühlenden Funktionselement gebildeten Wärmequelle, mit wenigstens einer Wärmesenke und mit wenigstens einer Zwischenlage aus einer thermischen leitenden Masse zwischen der Wärmequelle und der Wärmesenke sowie thermische leitende Masse, insbesondere zur Verwendung bei einer solchen Vorrichtung |
US20070114658A1 (en) * | 2004-08-24 | 2007-05-24 | Carlos Dangelo | Integrated Circuit Micro-Cooler with Double-Sided Tubes of a CNT Array |
US7732918B2 (en) * | 2003-08-25 | 2010-06-08 | Nanoconduction, Inc. | Vapor chamber heat sink having a carbon nanotube fluid interface |
US8048688B2 (en) * | 2006-10-24 | 2011-11-01 | Samsung Electronics Co., Ltd. | Method and apparatus for evaluation and improvement of mechanical and thermal properties of CNT/CNF arrays |
US7538422B2 (en) | 2003-08-25 | 2009-05-26 | Nanoconduction Inc. | Integrated circuit micro-cooler having multi-layers of tubes of a CNT array |
US7477527B2 (en) * | 2005-03-21 | 2009-01-13 | Nanoconduction, Inc. | Apparatus for attaching a cooling structure to an integrated circuit |
US7109581B2 (en) * | 2003-08-25 | 2006-09-19 | Nanoconduction, Inc. | System and method using self-assembled nano structures in the design and fabrication of an integrated circuit micro-cooler |
CN100345472C (zh) * | 2004-04-10 | 2007-10-24 | 清华大学 | 一种热界面材料及其制造方法 |
CN1290764C (zh) * | 2004-05-13 | 2006-12-20 | 清华大学 | 一种大量制造均一长度碳纳米管的方法 |
US7758572B2 (en) * | 2004-05-20 | 2010-07-20 | Boston Scientific Scimed, Inc. | Medical devices and methods including cooling balloons having nanotubes |
CN103646848B (zh) | 2004-06-04 | 2018-06-05 | 伊利诺伊大学评议会 | 组装可印刷半导体元件和制造电子器件的方法 |
US7521292B2 (en) | 2004-06-04 | 2009-04-21 | The Board Of Trustees Of The University Of Illinois | Stretchable form of single crystal silicon for high performance electronics on rubber substrates |
US7799699B2 (en) | 2004-06-04 | 2010-09-21 | The Board Of Trustees Of The University Of Illinois | Printable semiconductor structures and related methods of making and assembling |
TWI388042B (zh) * | 2004-11-04 | 2013-03-01 | Taiwan Semiconductor Mfg | 基於奈米管基板之積體電路 |
TWI463615B (zh) * | 2004-11-04 | 2014-12-01 | Taiwan Semiconductor Mfg Co Ltd | 以奈米管為基礎之具方向性導電黏著 |
TW200633171A (en) * | 2004-11-04 | 2006-09-16 | Koninkl Philips Electronics Nv | Nanotube-based fluid interface material and approach |
CN101120054B (zh) | 2005-02-16 | 2013-01-09 | 陶氏康宁公司 | 增强的有机硅树脂膜及其制备方法 |
US8092910B2 (en) | 2005-02-16 | 2012-01-10 | Dow Corning Toray Co., Ltd. | Reinforced silicone resin film and method of preparing same |
CN100543103C (zh) * | 2005-03-19 | 2009-09-23 | 清华大学 | 热界面材料及其制备方法 |
CN100337981C (zh) * | 2005-03-24 | 2007-09-19 | 清华大学 | 热界面材料及其制造方法 |
JP2009503230A (ja) | 2005-08-04 | 2009-01-29 | ダウ・コーニング・コーポレイション | 強化シリコーン樹脂フィルムおよびその製造方法 |
US9771264B2 (en) * | 2005-10-25 | 2017-09-26 | Massachusetts Institute Of Technology | Controlled-orientation films and nanocomposites including nanotubes or other nanostructures |
CN1964028B (zh) * | 2005-11-11 | 2010-08-18 | 鸿富锦精密工业(深圳)有限公司 | 散热器 |
EP1969065B1 (en) | 2005-12-21 | 2011-07-27 | Dow Corning Corporation | Silicone resin film, method of preparing same, and nanomaterial-filled silicone composition |
US8084532B2 (en) | 2006-01-19 | 2011-12-27 | Dow Corning Corporation | Silicone resin film, method of preparing same, and nanomaterial-filled silicone composition |
CN101379153B (zh) * | 2006-02-02 | 2011-12-28 | 陶氏康宁公司 | 有机硅树脂膜,其制备方法和纳米材料填充的有机硅组合物 |
WO2007097835A2 (en) | 2006-02-20 | 2007-08-30 | Dow Corning Corporation | Silicone resin film, method of preparing same, and nanomaterial-filled silicone composition |
US7494910B2 (en) | 2006-03-06 | 2009-02-24 | Micron Technology, Inc. | Methods of forming semiconductor package |
CN101054467B (zh) * | 2006-04-14 | 2010-05-26 | 清华大学 | 碳纳米管复合材料及其制备方法 |
CN101058721B (zh) * | 2006-04-21 | 2010-09-29 | 清华大学 | 热界面材料制备方法 |
CN101058720B (zh) * | 2006-04-21 | 2011-08-24 | 清华大学 | 热界面材料 |
US8337979B2 (en) | 2006-05-19 | 2012-12-25 | Massachusetts Institute Of Technology | Nanostructure-reinforced composite articles and methods |
US9181639B2 (en) * | 2006-05-19 | 2015-11-10 | Massachusetts Institute Of Technology | Continuous process for the production of nanostructures including nanotubes |
EP2081869B1 (en) * | 2006-07-10 | 2020-11-04 | California Institute of Technology | Method for selectively anchoring large numbers of nanoscale structures |
US8846143B2 (en) | 2006-07-10 | 2014-09-30 | California Institute Of Technology | Method for selectively anchoring and exposing large numbers of nanoscale structures |
US20080026505A1 (en) * | 2006-07-28 | 2008-01-31 | Nirupama Chakrapani | Electronic packages with roughened wetting and non-wetting zones |
CN101121791B (zh) * | 2006-08-09 | 2010-12-08 | 清华大学 | 碳纳米管/聚合物复合材料的制备方法 |
CN100591613C (zh) * | 2006-08-11 | 2010-02-24 | 清华大学 | 碳纳米管复合材料及其制造方法 |
GB0617460D0 (en) * | 2006-09-05 | 2006-10-18 | Airbus Uk Ltd | Method of manufacturing composite material |
GB0617459D0 (en) * | 2006-09-05 | 2006-10-18 | Airbus Uk Ltd | Method of manufacturing composite material |
WO2008029178A1 (en) | 2006-09-05 | 2008-03-13 | Airbus Uk Limited | Method of manufacturing composite material by growing of layers of reinforcement and related apparatus |
US20080067502A1 (en) * | 2006-09-14 | 2008-03-20 | Nirupama Chakrapani | Electronic packages with fine particle wetting and non-wetting zones |
EP2065932B1 (en) * | 2006-09-22 | 2013-11-06 | International Business Machines Corporation | Method for manufacturing a thermal interface structure |
EP2086872A2 (en) * | 2006-10-17 | 2009-08-12 | Purdue Research Foundation | Electrothermal interface material enhancer |
CN100583470C (zh) | 2006-12-15 | 2010-01-20 | 富准精密工业(深圳)有限公司 | 发光二极管散热装置组合 |
US8951632B2 (en) | 2007-01-03 | 2015-02-10 | Applied Nanostructured Solutions, Llc | CNT-infused carbon fiber materials and process therefor |
US8951631B2 (en) | 2007-01-03 | 2015-02-10 | Applied Nanostructured Solutions, Llc | CNT-infused metal fiber materials and process therefor |
US8158217B2 (en) | 2007-01-03 | 2012-04-17 | Applied Nanostructured Solutions, Llc | CNT-infused fiber and method therefor |
US9005755B2 (en) | 2007-01-03 | 2015-04-14 | Applied Nanostructured Solutions, Llc | CNS-infused carbon nanomaterials and process therefor |
KR101636750B1 (ko) | 2007-01-17 | 2016-07-06 | 더 보오드 오브 트러스티스 오브 더 유니버시티 오브 일리노이즈 | 프린팅기반 어셈블리에 의해 제조되는 광학 시스템 |
EP2125936A1 (en) * | 2007-02-06 | 2009-12-02 | Dow Corning Corporation | Silicone resin, silicone composition, coated substrate, and reinforced silicone resin film |
DE102007006175A1 (de) * | 2007-02-07 | 2008-08-14 | Osram Opto Semiconductors Gmbh | Wärmeleitfähige Schicht und Verfahren zur Herstellung einer wärmeleitfähigen Schicht |
KR20100014391A (ko) * | 2007-02-22 | 2010-02-10 | 다우 코닝 코포레이션 | 강화 실리콘 수지 필름 및 이의 제조방법 |
JP5355423B2 (ja) * | 2007-02-22 | 2013-11-27 | ダウ コーニング コーポレーション | 伝導性フィルムを調製するためのプロセスおよびそのプロセスを用いて調製した物品 |
US8273448B2 (en) | 2007-02-22 | 2012-09-25 | Dow Corning Corporation | Reinforced silicone resin films |
CN101626893B (zh) | 2007-02-22 | 2013-07-03 | 道康宁公司 | 增强硅树脂膜 |
CN101275060B (zh) * | 2007-03-30 | 2012-06-20 | 清华大学 | 导电胶带及其制造方法 |
EP2142588A1 (en) * | 2007-05-01 | 2010-01-13 | Dow Corning Corporation | Nanomaterial-filled silicone composition and reinforced silicone resin film |
CN101675097B (zh) * | 2007-05-01 | 2012-03-14 | 陶氏康宁公司 | 增强的有机硅树脂膜 |
CN101323759B (zh) * | 2007-06-15 | 2014-10-08 | 清华大学 | 导电胶带及其制造方法 |
US7959969B2 (en) | 2007-07-10 | 2011-06-14 | California Institute Of Technology | Fabrication of anchored carbon nanotube array devices for integrated light collection and energy conversion |
CN101343532B (zh) * | 2007-07-13 | 2011-06-08 | 清华大学 | 碳纳米管复合热界面材料的制备方法 |
CN101779271B (zh) * | 2007-07-19 | 2013-05-22 | 加利福尼亚技术学院 | 垂直排列的硅线阵列的结构及其形成方法 |
CN101842909A (zh) * | 2007-07-19 | 2010-09-22 | 加利福尼亚技术学院 | 半导体的有序阵列结构 |
CN101353785B (zh) * | 2007-07-25 | 2010-09-29 | 清华大学 | 高密度碳纳米管阵列复合材料的制备方法 |
CN101360387B (zh) * | 2007-08-03 | 2012-06-13 | 富葵精密组件(深圳)有限公司 | 柔性电路板基膜、柔性电路板基板及柔性电路板 |
GB0715990D0 (en) * | 2007-08-16 | 2007-09-26 | Airbus Uk Ltd | Method and apparatus for manufacturing a component from a composite material |
CN101372614B (zh) * | 2007-08-24 | 2011-06-08 | 清华大学 | 碳纳米管阵列复合导热片及其制备方法 |
EP2183789A1 (en) | 2007-08-28 | 2010-05-12 | California Institute of Technology | Method for reuse of wafers for growth of vertically-aligned wire arrays |
WO2009035393A1 (en) * | 2007-09-12 | 2009-03-19 | Smoltek Ab | Connecting and bonding adjacent layers with nanostructures |
WO2009048694A1 (en) * | 2007-10-12 | 2009-04-16 | Dow Corning Corporation | Reinforced silicone resin film and nanofiber-filled silicone composition |
US8919428B2 (en) | 2007-10-17 | 2014-12-30 | Purdue Research Foundation | Methods for attaching carbon nanotubes to a carbon substrate |
US8262835B2 (en) * | 2007-12-19 | 2012-09-11 | Purdue Research Foundation | Method of bonding carbon nanotubes |
US7479590B1 (en) * | 2008-01-03 | 2009-01-20 | International Business Machines Corporation | Dry adhesives, methods of manufacture thereof and articles comprising the same |
KR101755207B1 (ko) | 2008-03-05 | 2017-07-19 | 더 보드 오브 트러스티즈 오브 더 유니버시티 오브 일리노이 | 펴고 접을 수 있는 전자장치 |
US8470701B2 (en) * | 2008-04-03 | 2013-06-25 | Advanced Diamond Technologies, Inc. | Printable, flexible and stretchable diamond for thermal management |
US7808099B2 (en) * | 2008-05-06 | 2010-10-05 | International Business Machines Corporation | Liquid thermal interface having mixture of linearly structured polymer doped crosslinked networks and related method |
CN101626674B (zh) * | 2008-07-11 | 2015-07-01 | 清华大学 | 散热结构及其制备方法 |
CN101671442A (zh) * | 2008-09-12 | 2010-03-17 | 清华大学 | 碳纳米管阵列复合材料的制备方法 |
US8097926B2 (en) | 2008-10-07 | 2012-01-17 | Mc10, Inc. | Systems, methods, and devices having stretchable integrated circuitry for sensing and delivering therapy |
US8389862B2 (en) | 2008-10-07 | 2013-03-05 | Mc10, Inc. | Extremely stretchable electronics |
US8886334B2 (en) | 2008-10-07 | 2014-11-11 | Mc10, Inc. | Systems, methods, and devices using stretchable or flexible electronics for medical applications |
US9289132B2 (en) | 2008-10-07 | 2016-03-22 | Mc10, Inc. | Catheter balloon having stretchable integrated circuitry and sensor array |
US8372726B2 (en) | 2008-10-07 | 2013-02-12 | Mc10, Inc. | Methods and applications of non-planar imaging arrays |
CN101768427B (zh) * | 2009-01-07 | 2012-06-20 | 清华大学 | 热界面材料及其制备方法 |
JP5620408B2 (ja) | 2009-01-27 | 2014-11-05 | カリフォルニア インスティチュート オブテクノロジー | デバイス表面から突出する配向カーボンナノチューブを有するナノ強化デバイスにより促進された、薬物送達及び物質移送 |
BRPI1007300A2 (pt) | 2009-02-17 | 2019-09-24 | Applied Nanostructured Sols | compósitos compreendendo nanotubos de carbono sobre fibra |
WO2010141130A1 (en) | 2009-02-27 | 2010-12-09 | Lockheed Martin Corporation | Low temperature cnt growth using gas-preheat method |
CN101826467B (zh) * | 2009-03-02 | 2012-01-25 | 清华大学 | 热界面材料的制备方法 |
US20100224129A1 (en) | 2009-03-03 | 2010-09-09 | Lockheed Martin Corporation | System and method for surface treatment and barrier coating of fibers for in situ cnt growth |
EP2421702A4 (en) | 2009-04-24 | 2013-01-02 | Applied Nanostructured Sols | NED SIGNATURE CONTROL MATERIAL |
US9111658B2 (en) | 2009-04-24 | 2015-08-18 | Applied Nanostructured Solutions, Llc | CNS-shielded wires |
BRPI1014711A2 (pt) | 2009-04-27 | 2016-04-12 | Applied Nanostrctured Solutions Llc | aquecimento de resistência com base em cnt para descongelar estruturas de compósito |
EP2430652B1 (en) | 2009-05-12 | 2019-11-20 | The Board of Trustees of the University of Illionis | Printed assemblies of ultrathin, microscale inorganic light emitting diodes for deformable and semitransparent displays |
EP2461953A4 (en) | 2009-08-03 | 2014-05-07 | Applied Nanostructured Sols | USE OF NANOPARTICLES IN COMPOSITE FIBERS |
CN101989583B (zh) * | 2009-08-05 | 2013-04-24 | 清华大学 | 散热结构及使用该散热结构的散热系统 |
CN101996890B (zh) * | 2009-08-25 | 2012-06-20 | 清华大学 | 碳纳米管散热器的制备装置及方法 |
US9469790B2 (en) | 2009-09-29 | 2016-10-18 | The Boeing Company | Adhesive compositions comprising electrically insulating-coated carbon-based particles and methods for their use and preparation |
US8709538B1 (en) | 2009-09-29 | 2014-04-29 | The Boeing Company | Substantially aligned boron nitride nano-element arrays and methods for their use and preparation |
US9723122B2 (en) | 2009-10-01 | 2017-08-01 | Mc10, Inc. | Protective cases with integrated electronics |
US8593040B2 (en) | 2009-10-02 | 2013-11-26 | Ge Lighting Solutions Llc | LED lamp with surface area enhancing fins |
BR112012012260A2 (pt) | 2009-11-23 | 2016-04-26 | Applied Nanostructured Sols | estruturas compósitas à base de ar adaptadas por cnt |
BR112012010907A2 (pt) | 2009-11-23 | 2019-09-24 | Applied Nanostructured Sols | "materiais compósitos de cerâmica contendo materiais de fibra infundidos em nanotubo de carbono e métodos para a produção dos mesmos" |
EP2507843A2 (en) * | 2009-11-30 | 2012-10-10 | California Institute of Technology | Semiconductor wire array structures, and solar cells and photodetectors based on such structures |
US8545963B2 (en) | 2009-12-14 | 2013-10-01 | Applied Nanostructured Solutions, Llc | Flame-resistant composite materials and articles containing carbon nanotube-infused fiber materials |
US10441185B2 (en) | 2009-12-16 | 2019-10-15 | The Board Of Trustees Of The University Of Illinois | Flexible and stretchable electronic systems for epidermal electronics |
US9936574B2 (en) | 2009-12-16 | 2018-04-03 | The Board Of Trustees Of The University Of Illinois | Waterproof stretchable optoelectronics |
EP2513953B1 (en) | 2009-12-16 | 2017-10-18 | The Board of Trustees of the University of Illionis | Electrophysiology using conformal electronics |
US9167736B2 (en) | 2010-01-15 | 2015-10-20 | Applied Nanostructured Solutions, Llc | CNT-infused fiber as a self shielding wire for enhanced power transmission line |
CA2785803A1 (en) | 2010-02-02 | 2011-11-24 | Applied Nanostructured Solutions, Llc | Carbon nanotube-infused fiber materials containing parallel-aligned carbon nanotubes, methods for production thereof, and composite materials derived therefrom |
EP2543052B1 (en) | 2010-03-02 | 2019-11-27 | Applied NanoStructured Solutions, LLC | Electrical devices containing carbon nanotube-infused fibers and methods for production thereof |
US8665581B2 (en) | 2010-03-02 | 2014-03-04 | Applied Nanostructured Solutions, Llc | Spiral wound electrical devices containing carbon nanotube-infused electrode materials and methods and apparatuses for production thereof |
CN101787264A (zh) * | 2010-03-06 | 2010-07-28 | 东莞市万丰纳米材料有限公司 | 一种高导热材料及其制备方法和装置 |
CN102892356B (zh) | 2010-03-17 | 2016-01-13 | 伊利诺伊大学评议会 | 基于生物可吸收基质的可植入生物医学装置 |
US9263612B2 (en) | 2010-03-23 | 2016-02-16 | California Institute Of Technology | Heterojunction wire array solar cells |
JP2013524439A (ja) * | 2010-04-02 | 2013-06-17 | ジーイー ライティング ソリューションズ エルエルシー | 軽量ヒートシンク及びそれを使用するledランプ |
US10240772B2 (en) * | 2010-04-02 | 2019-03-26 | GE Lighting Solutions, LLC | Lightweight heat sinks and LED lamps employing same |
US8668356B2 (en) * | 2010-04-02 | 2014-03-11 | GE Lighting Solutions, LLC | Lightweight heat sinks and LED lamps employing same |
WO2011127207A2 (en) | 2010-04-07 | 2011-10-13 | California Institute Of Technology | Simple method for producing superhydrophobic carbon nanotube array |
US8780526B2 (en) | 2010-06-15 | 2014-07-15 | Applied Nanostructured Solutions, Llc | Electrical devices containing carbon nanotube-infused fibers and methods for production thereof |
CN101880035A (zh) | 2010-06-29 | 2010-11-10 | 清华大学 | 碳纳米管结构 |
US9017854B2 (en) | 2010-08-30 | 2015-04-28 | Applied Nanostructured Solutions, Llc | Structural energy storage assemblies and methods for production thereof |
CA2808242A1 (en) | 2010-09-14 | 2012-03-22 | Applied Nanostructured Solutions, Llc | Glass substrates having carbon nanotubes grown thereon and methods for production thereof |
CN103118975A (zh) | 2010-09-22 | 2013-05-22 | 应用奈米结构公司 | 具有碳纳米管成长于其上的碳纤维基板及其制造方法 |
AU2011305751A1 (en) | 2010-09-23 | 2012-06-21 | Applied Nanostructured Solutions, Llc | CNT-infused fiber as a self shielding wire for enhanced power transmission line |
WO2012079066A2 (en) | 2010-12-10 | 2012-06-14 | California Institute Of Technology | Method for producing graphene oxide with tunable gap |
WO2012097163A1 (en) | 2011-01-14 | 2012-07-19 | The Board Of Trustees Of The University Of Illinois | Optical component array having adjustable curvature |
FR2973038B1 (fr) | 2011-03-21 | 2015-01-02 | Thales Sa | Interface thermique a base de materiau a faible resistance thermique et procede de fabrication |
US8976507B2 (en) | 2011-03-29 | 2015-03-10 | California Institute Of Technology | Method to increase the capacitance of electrochemical carbon nanotube capacitors by conformal deposition of nanoparticles |
JP5618886B2 (ja) * | 2011-03-31 | 2014-11-05 | 株式会社日立製作所 | ネットワークシステムおよび計算機振り分け装置、計算機振り分け方法 |
US9765934B2 (en) | 2011-05-16 | 2017-09-19 | The Board Of Trustees Of The University Of Illinois | Thermally managed LED arrays assembled by printing |
KR102000302B1 (ko) | 2011-05-27 | 2019-07-15 | 엠씨10, 인크 | 전자, 광학, 및/또는 기계 장치 및 시스템, 그리고 이를 제조하기 위한 방법 |
EP2713863B1 (en) | 2011-06-03 | 2020-01-15 | The Board of Trustees of the University of Illionis | Conformable actively multiplexed high-density surface electrode array for brain interfacing |
CN108389893A (zh) | 2011-12-01 | 2018-08-10 | 伊利诺伊大学评议会 | 经设计以经历可编程转变的瞬态器件 |
US8764681B2 (en) | 2011-12-14 | 2014-07-01 | California Institute Of Technology | Sharp tip carbon nanotube microneedle devices and their fabrication |
US10026560B2 (en) | 2012-01-13 | 2018-07-17 | The California Institute Of Technology | Solar fuels generator |
WO2013106793A1 (en) | 2012-01-13 | 2013-07-18 | California Institute Of Technology | Solar fuel generators |
US9476129B2 (en) | 2012-04-02 | 2016-10-25 | California Institute Of Technology | Solar fuels generator |
US10090425B2 (en) | 2012-02-21 | 2018-10-02 | California Institute Of Technology | Axially-integrated epitaxially-grown tandem wire arrays |
US9085464B2 (en) | 2012-03-07 | 2015-07-21 | Applied Nanostructured Solutions, Llc | Resistance measurement system and method of using the same |
US9554484B2 (en) | 2012-03-30 | 2017-01-24 | The Board Of Trustees Of The University Of Illinois | Appendage mountable electronic devices conformable to surfaces |
WO2013152132A1 (en) | 2012-04-03 | 2013-10-10 | The California Institute Of Technology | Semiconductor structures for fuel generation |
CN102634212B (zh) * | 2012-04-23 | 2015-11-25 | 湖州明朔光电科技有限公司 | 一种导热硅脂组合物 |
US9500355B2 (en) | 2012-05-04 | 2016-11-22 | GE Lighting Solutions, LLC | Lamp with light emitting elements surrounding active cooling device |
WO2014022314A1 (en) | 2012-07-30 | 2014-02-06 | California Institute Of Technology | Nano tri-carbon composite systems and manufacture |
US9171794B2 (en) | 2012-10-09 | 2015-10-27 | Mc10, Inc. | Embedding thin chips in polymer |
US9553223B2 (en) | 2013-01-24 | 2017-01-24 | California Institute Of Technology | Method for alignment of microwires |
US10195797B2 (en) | 2013-02-28 | 2019-02-05 | N12 Technologies, Inc. | Cartridge-based dispensing of nanostructure films |
US9269603B2 (en) * | 2013-05-09 | 2016-02-23 | Globalfoundries Inc. | Temporary liquid thermal interface material for surface tension adhesion and thermal control |
JP6261352B2 (ja) * | 2014-01-23 | 2018-01-17 | 新光電気工業株式会社 | カーボンナノチューブシート及び半導体装置とカーボンナノチューブシートの製造方法及び半導体装置の製造方法 |
JP2017507809A (ja) * | 2014-02-04 | 2017-03-23 | エヌ12 テクノロジーズ, インク.N12 Technologies, Inc. | ナノ構造強化コンポジットの物品及び製造方法 |
US20160106004A1 (en) * | 2014-10-13 | 2016-04-14 | Ntherma Corporation | Carbon nanotubes disposed on metal substrates with one or more cavities |
US20160106005A1 (en) * | 2014-10-13 | 2016-04-14 | Ntherma Corporation | Carbon nanotubes as a thermal interface material |
US10677647B2 (en) | 2015-06-01 | 2020-06-09 | The Board Of Trustees Of The University Of Illinois | Miniaturized electronic systems with wireless power and near-field communication capabilities |
KR20180034342A (ko) | 2015-06-01 | 2018-04-04 | 더 보드 오브 트러스티즈 오브 더 유니버시티 오브 일리노이 | 대안적인 자외선 감지방법 |
US10925543B2 (en) | 2015-11-11 | 2021-02-23 | The Board Of Trustees Of The University Of Illinois | Bioresorbable silicon electronics for transient implants |
TWI721077B (zh) * | 2015-12-28 | 2021-03-11 | 日商日立造船股份有限公司 | 奈米碳管複合材料及奈米碳管複合材料的製造方法 |
WO2017210238A1 (en) | 2016-05-31 | 2017-12-07 | Massachusetts Institute Of Technology | Composite articles comprising non-linear elongated nanostructures and associated methods |
TWI755492B (zh) | 2017-03-06 | 2022-02-21 | 美商卡爾拜斯有限公司 | 基於碳納米管的熱界面材料及其製造和使用方法 |
US20190085138A1 (en) | 2017-09-15 | 2019-03-21 | Massachusetts Institute Of Technology | Low-defect fabrication of composite materials |
EP3718157A4 (en) | 2017-11-28 | 2021-09-29 | Massachusetts Institute of Technology | SEPARATORS INCLUDING ELONGATED NANOSTRUCTURES AND ASSOCIATED DEVICES AND PROCESSES FOR STORING AND / OR USING ENERGY |
CN108559277A (zh) * | 2018-05-15 | 2018-09-21 | 熊振 | 一种碳纳米管增强的生物高分子材料及其制备方法 |
US10707596B2 (en) * | 2018-09-21 | 2020-07-07 | Carbice Corporation | Coated electrical connectors and methods of making and using thereof |
US10462944B1 (en) * | 2018-09-25 | 2019-10-29 | Getac Technology Corporation | Wave absorbing heat dissipation structure |
WO2020086122A1 (en) * | 2018-10-24 | 2020-04-30 | Applied Materials, Inc. | Substrate support designs for a deposition chamber |
CN111417282B (zh) * | 2019-01-04 | 2021-07-30 | 清华大学 | 散热片以及利用该散热片的电子装置 |
CN112235999B (zh) * | 2020-09-11 | 2022-04-29 | 深圳烯湾科技有限公司 | 碳纳米管导热片的制备方法 |
CN112358855B (zh) * | 2020-10-26 | 2021-12-28 | 深圳烯湾科技有限公司 | 碳纳米管导热片及其制备方法 |
CN114433261B (zh) * | 2022-01-25 | 2023-04-18 | 大连海事大学 | 一种基于碳纳米管通道的纳流控芯片加工方法 |
CN115895188A (zh) * | 2022-10-31 | 2023-04-04 | 长沙先进电子材料工业技术研究院有限公司 | 一种定向排列的热界面材料及其制备方法与应用 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6407922B1 (en) * | 2000-09-29 | 2002-06-18 | Intel Corporation | Heat spreader, electronic package including the heat spreader, and methods of manufacturing the heat spreader |
WO2002076903A2 (en) * | 2001-03-22 | 2002-10-03 | Clemson University | Halo-polymer nanocomposite compositions, methods, and products employing such compositions |
US20030111333A1 (en) * | 2001-12-17 | 2003-06-19 | Intel Corporation | Method and apparatus for producing aligned carbon nanotube thermal interface structure |
WO2003072679A1 (en) * | 2002-02-22 | 2003-09-04 | Carbon Nanotechnologies, Inc. | Molecular-level thermal-management materials comprising single-wall carbon nanotubes |
WO2003078317A1 (en) * | 2002-03-14 | 2003-09-25 | Carbon Nanotechnologies, Inc. | Composite materials comprising polar polyers and single-wall carbon naotubes |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1059266A3 (en) * | 1999-06-11 | 2000-12-20 | Iljin Nanotech Co., Ltd. | Mass synthesis method of high purity carbon nanotubes vertically aligned over large-size substrate using thermal chemical vapor deposition |
US6965513B2 (en) * | 2001-12-20 | 2005-11-15 | Intel Corporation | Carbon nanotube thermal interface structures |
CN1296994C (zh) * | 2002-11-14 | 2007-01-24 | 清华大学 | 一种热界面材料及其制造方法 |
US20050061496A1 (en) * | 2003-09-24 | 2005-03-24 | Matabayas James Christopher | Thermal interface material with aligned carbon nanotubes |
CN100345472C (zh) * | 2004-04-10 | 2007-10-24 | 清华大学 | 一种热界面材料及其制造方法 |
-
2004
- 2004-04-02 CN CNB2004100267786A patent/CN100383213C/zh not_active Expired - Lifetime
- 2004-12-29 US US11/024,513 patent/US7253442B2/en active Active
-
2006
- 2006-11-03 US US11/592,767 patent/US7569425B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6407922B1 (en) * | 2000-09-29 | 2002-06-18 | Intel Corporation | Heat spreader, electronic package including the heat spreader, and methods of manufacturing the heat spreader |
WO2002076903A2 (en) * | 2001-03-22 | 2002-10-03 | Clemson University | Halo-polymer nanocomposite compositions, methods, and products employing such compositions |
US20030111333A1 (en) * | 2001-12-17 | 2003-06-19 | Intel Corporation | Method and apparatus for producing aligned carbon nanotube thermal interface structure |
WO2003072679A1 (en) * | 2002-02-22 | 2003-09-04 | Carbon Nanotechnologies, Inc. | Molecular-level thermal-management materials comprising single-wall carbon nanotubes |
WO2003078317A1 (en) * | 2002-03-14 | 2003-09-25 | Carbon Nanotechnologies, Inc. | Composite materials comprising polar polyers and single-wall carbon naotubes |
Also Published As
Publication number | Publication date |
---|---|
US7253442B2 (en) | 2007-08-07 |
US20070059864A1 (en) | 2007-03-15 |
US20050167647A1 (en) | 2005-08-04 |
CN1676568A (zh) | 2005-10-05 |
US7569425B2 (en) | 2009-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100383213C (zh) | 一种热界面材料及其制造方法 | |
CN100345472C (zh) | 一种热界面材料及其制造方法 | |
CN100358132C (zh) | 热界面材料制备方法 | |
CN1891780B (zh) | 热界面材料及其制备方法 | |
CN100543103C (zh) | 热界面材料及其制备方法 | |
CN1296994C (zh) | 一种热界面材料及其制造方法 | |
TW200521218A (en) | Thermal interface material and methode for making same | |
CN101768427B (zh) | 热界面材料及其制备方法 | |
CN101899288B (zh) | 热界面材料及其制备方法 | |
US20060118791A1 (en) | Thermal interface material and method for manufacturing same | |
CN1837147A (zh) | 热界面材料及其制备方法 | |
CN100364081C (zh) | 散热器及其制造方法 | |
CN1266247C (zh) | 一种热界面材料及其制造方法 | |
CN100405587C (zh) | 散热器及其制备方法 | |
CN101423751B (zh) | 热界面材料及其制备方法 | |
CN1667821A (zh) | 一种热界面材料及其制造方法 | |
TWI246879B (en) | Thermal interface material and method for making same | |
CN101058720B (zh) | 热界面材料 | |
TW200533736A (en) | Thermal interface material and method for making same | |
TWI233331B (en) | Heat sink and a method for making the same | |
TWI378071B (en) | Thermal interface material and method for making same | |
TW201043909A (en) | Thermal interface material and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CX01 | Expiry of patent term | ||
CX01 | Expiry of patent term |
Granted publication date: 20080423 |