CA2268772C - Detergent compositions comprising an amylolytic enzyme and a cationic surfactant - Google Patents
Detergent compositions comprising an amylolytic enzyme and a cationic surfactant Download PDFInfo
- Publication number
- CA2268772C CA2268772C CA002268772A CA2268772A CA2268772C CA 2268772 C CA2268772 C CA 2268772C CA 002268772 A CA002268772 A CA 002268772A CA 2268772 A CA2268772 A CA 2268772A CA 2268772 C CA2268772 C CA 2268772C
- Authority
- CA
- Canada
- Prior art keywords
- alkyl
- formula
- detergent composition
- weight
- carbon atoms
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/39—Organic or inorganic per-compounds
- C11D3/3942—Inorganic per-compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/12—Sulfonic acids or sulfuric acid esters; Salts thereof
- C11D1/22—Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/12—Sulfonic acids or sulfuric acid esters; Salts thereof
- C11D1/28—Sulfonation products derived from fatty acids or their derivatives, e.g. esters, amides
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/38—Cationic compounds
- C11D1/62—Quaternary ammonium compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/38—Cationic compounds
- C11D1/65—Mixtures of anionic with cationic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/66—Non-ionic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/66—Non-ionic compounds
- C11D1/835—Mixtures of non-ionic with cationic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/86—Mixtures of anionic, cationic, and non-ionic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/0047—Detergents in the form of bars or tablets
- C11D17/0065—Solid detergents containing builders
- C11D17/0069—Laundry bars
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/04—Water-soluble compounds
- C11D3/10—Carbonates ; Bicarbonates
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/12—Water-insoluble compounds
- C11D3/124—Silicon containing, e.g. silica, silex, quartz or glass beads
- C11D3/1246—Silicates, e.g. diatomaceous earth
- C11D3/1253—Layer silicates, e.g. talcum, kaolin, clay, bentonite, smectite, montmorillonite, hectorite or attapulgite
- C11D3/1273—Crystalline layered silicates of type NaMeSixO2x+1YH2O
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/12—Water-insoluble compounds
- C11D3/124—Silicon containing, e.g. silica, silex, quartz or glass beads
- C11D3/1246—Silicates, e.g. diatomaceous earth
- C11D3/128—Aluminium silicates, e.g. zeolites
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/37—Polymers
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/37—Polymers
- C11D3/3703—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C11D3/3723—Polyamines or polyalkyleneimines
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/38—Products with no well-defined composition, e.g. natural products
- C11D3/386—Preparations containing enzymes, e.g. protease or amylase
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/38—Products with no well-defined composition, e.g. natural products
- C11D3/386—Preparations containing enzymes, e.g. protease or amylase
- C11D3/38645—Preparations containing enzymes, e.g. protease or amylase containing cellulase
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/39—Organic or inorganic per-compounds
- C11D3/3945—Organic per-compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/12—Sulfonic acids or sulfuric acid esters; Salts thereof
- C11D1/14—Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
- C11D1/143—Sulfonic acid esters
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/12—Sulfonic acids or sulfuric acid esters; Salts thereof
- C11D1/14—Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
- C11D1/146—Sulfuric acid esters
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/38—Cationic compounds
- C11D1/52—Carboxylic amides, alkylolamides or imides or their condensation products with alkylene oxides
- C11D1/525—Carboxylic amides (R1-CO-NR2R3), where R1, R2 or R3 contain two or more hydroxy groups per alkyl group, e.g. R3 being a reducing sugar rest
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/66—Non-ionic compounds
- C11D1/662—Carbohydrates or derivatives
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/66—Non-ionic compounds
- C11D1/72—Ethers of polyoxyalkylene glycols
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Detergent Compositions (AREA)
Abstract
The present invention relates to detergent compositions or components thereof containing an amylolytic enzyme and one or more cationic surfactants of the formula: R1R2R3R4N+ X-, in which R1 is a hydroxyalkyl group having no greater than 6 carbon atoms; each of R2 and R3 is independently selected from C1-4 alkyl or alkenyl; R4 is a C5-11 alkyl or alkenyl; and X- is a counterion.
Description
Detereent Compositions Comprising an Amylolytic Enzyme and a Cationic Surfactant Technical Field The present invention relates to detergent compositions or components thereof containing cationic surfactant and an amylolytic enzyme for use in laundry and dish washing processes to provide enhanced greasy stain removal and cleaning benefits in particular in body soils.
BacUround to the Invention It is known to use cationic surfactants in detergent compositions. For example, GB 2040990A
describes granular detergent compositions comprising cationic surfactants.
Other detergent components frequently employed in detergents are amylolytic enzymes, which are known to be used in detergent compositions to aid the removal of soils such as blood stains.
Generally, the stain removal performance of amylolytic enzymes is directly related to their concentration in the detergent composition, so that an increase in the amount of amylolytic enzyme increases the stain removal performance. It has however been observed that under stressed conditions, such as the use of short washing machine cycles, or at low temperatures or in the presence of highly stained substrates, the optimum performance of the amylolytic enzyme is limited beyond a certain level. Increasing the level of amylolytic enzyme beyond this amount does not result in increased stain removal performance benefits.
The Applicants have now found that these problems can be ameliorated by a detergent composition comprising a combination of a specific quaternary ammonium cationic surfactant and an amylolytic enzyme. Employing both of these components in combination has been found to deliver surprisingly better greasy stain removal and cleaning performance than that of detergent compositions employing either of the two components individually.
The invention has been found to be particularly beneficial in detergent compositions which additionally comprise anionic surfactants.
Without wishing to be bound by theory, the Applicant believes that the particular cationic surfactants used in the detergent compositions of the present invention have surprisingly good solubility and form an association in the presence of anionic components to produce surprisingly soluble anionic/cationic complexes which lead to unexpected performance benefits. The good solubility of the cationic surfactants essential to the present invention, and of any anionic-cationic complexes formed, ensure that greasy oily soils are rapidly broken down, enabling rapid contact of the enzymes with stains and highly effective stain removal, particularly for residual sebaceous secretions. Furthermore, it is believed that following breakdown of the oily soil by the enzyme, the cationic surfactants used in the present invention may also form complexes with the fatty acids and any other negatively charged breakdown product produced, increasing their solubility and enhancing greasy, oily soil removal and overall cleaning performance.
Summary of the invention The present invention relates to a granular detergent composition having a bulk density of at least 400 g/l comprising: (a) an amylolytic enzyme; and (b) a cationic surfactant comprising: a first compound of formula I :
R 1 R2 R3 R4 N+ X' (I) in which R1 is a hydroxyalkyl group having from 1 to 6 carbon atoms; each of R2 and R3 is independently selected from C1-4 alkyl or alkenyl; R4 is a higher alkyl group having n carbon atoms where n is from 8 to 11; and X- is a counterion; and a second compound of formula I in which RI is a hydroxyalkyl group having from 1 to 6 carbon atoms; each of R2 and R3 is independently selected from C1-4 alkyl or alkenyl; R4 is a lower alkyl group having n-2 carbon atoms where n is as defined above, the lower alkyl group is 2 carbons less than the higher alkyl group; and X" is a counterion.
Detailed descriation of the invention Cationic surfactant The cationic surfactant is generally present in the composition or component thereof in an amount no greater than 60% by weight, preferably no greater than 10% by weight, most preferably in an amount no greater than 4.5% or even 3% by weight. The benefits of the invention are found even with very small amounts of the cationic surfactant of formula I.
Generally there will be at least 0.01% by weight, preferably at least 0.05% or at least 0.1% by weight of the cationic surfactant in the detergent compositions of the invention.
BacUround to the Invention It is known to use cationic surfactants in detergent compositions. For example, GB 2040990A
describes granular detergent compositions comprising cationic surfactants.
Other detergent components frequently employed in detergents are amylolytic enzymes, which are known to be used in detergent compositions to aid the removal of soils such as blood stains.
Generally, the stain removal performance of amylolytic enzymes is directly related to their concentration in the detergent composition, so that an increase in the amount of amylolytic enzyme increases the stain removal performance. It has however been observed that under stressed conditions, such as the use of short washing machine cycles, or at low temperatures or in the presence of highly stained substrates, the optimum performance of the amylolytic enzyme is limited beyond a certain level. Increasing the level of amylolytic enzyme beyond this amount does not result in increased stain removal performance benefits.
The Applicants have now found that these problems can be ameliorated by a detergent composition comprising a combination of a specific quaternary ammonium cationic surfactant and an amylolytic enzyme. Employing both of these components in combination has been found to deliver surprisingly better greasy stain removal and cleaning performance than that of detergent compositions employing either of the two components individually.
The invention has been found to be particularly beneficial in detergent compositions which additionally comprise anionic surfactants.
Without wishing to be bound by theory, the Applicant believes that the particular cationic surfactants used in the detergent compositions of the present invention have surprisingly good solubility and form an association in the presence of anionic components to produce surprisingly soluble anionic/cationic complexes which lead to unexpected performance benefits. The good solubility of the cationic surfactants essential to the present invention, and of any anionic-cationic complexes formed, ensure that greasy oily soils are rapidly broken down, enabling rapid contact of the enzymes with stains and highly effective stain removal, particularly for residual sebaceous secretions. Furthermore, it is believed that following breakdown of the oily soil by the enzyme, the cationic surfactants used in the present invention may also form complexes with the fatty acids and any other negatively charged breakdown product produced, increasing their solubility and enhancing greasy, oily soil removal and overall cleaning performance.
Summary of the invention The present invention relates to a granular detergent composition having a bulk density of at least 400 g/l comprising: (a) an amylolytic enzyme; and (b) a cationic surfactant comprising: a first compound of formula I :
R 1 R2 R3 R4 N+ X' (I) in which R1 is a hydroxyalkyl group having from 1 to 6 carbon atoms; each of R2 and R3 is independently selected from C1-4 alkyl or alkenyl; R4 is a higher alkyl group having n carbon atoms where n is from 8 to 11; and X- is a counterion; and a second compound of formula I in which RI is a hydroxyalkyl group having from 1 to 6 carbon atoms; each of R2 and R3 is independently selected from C1-4 alkyl or alkenyl; R4 is a lower alkyl group having n-2 carbon atoms where n is as defined above, the lower alkyl group is 2 carbons less than the higher alkyl group; and X" is a counterion.
Detailed descriation of the invention Cationic surfactant The cationic surfactant is generally present in the composition or component thereof in an amount no greater than 60% by weight, preferably no greater than 10% by weight, most preferably in an amount no greater than 4.5% or even 3% by weight. The benefits of the invention are found even with very small amounts of the cationic surfactant of formula I.
Generally there will be at least 0.01% by weight, preferably at least 0.05% or at least 0.1% by weight of the cationic surfactant in the detergent compositions of the invention.
Preferably RI in formula I is a hydroxyalkyl group, having no greater than 6 carbon atoms and preferably the --OH group is separated from the quaternary ammonium nitrogen atom by no more than 3 carbon atoms. Preferred R I groups are -CH2CH2OH, -CH2CH2CH2OH, -CH2CH(CH3)OH and -CH(CH3)CH2OH.
-CH2CH2OH and -CH2CH2CH2OH are most preferred and -CH2CH2OH is particularly preferred. Preferably R2 and R3 are each selected from ethyl and methyl groups and most preferably both R2 and R3 are methyl groups. Preferred R4 groups have at least 6 or even at least 7 carbon atoms. R4 may have no greater than 9 carbon atoms, or even no greater than 8 or 7 carbon atoms Preferred R4 groups are linear alkyl groups. Linear R4 groups having from 8 to 11 carbon atoms, or from 8 to 10 carbon atoms are preferred. Generally each of R2 and R3 is selected from C 1-4 alkyl and R4 is C6-1 I alkyl or alkenyl.
Whilst pure or substantially pure cationic compounds are within the ambit of this invention, it has been found that mixtures of the cationic surfactants of formula I may be particularly effective. Examples of suitable mixtures include those where at least 10%, preferably at least 20% by weight of the cationic surfactants of formula I have R4 which is a C5-9 alkyl or alkenyl.
Other suitable examples include surfactant mixtures in which R4 may be a combination of Cg and C 10 linear alkyl groups, or Cq and C I 1 alkyl groups. According to one aspect of the invention a mixture of cationic surfactants of formula I is present in the composition, the mixture comprising a shorter alkyl chain surfactant of formula I and a longer alkyl chain surfactant of formula I. The longer alkyl chain cationic surfactant is selected from the surfactants of formula I where R4 is an alkyl group having n carbon atoms where n is from 8 to 11; the shorter alkyl chain surfactant is selected from those of formula I
where R4 is an alkyl group having (n-2) carbon atoms. Generally in such mixtures there will be from 5 to 95%, preferably from 35 to 70% or even 65% by weight and most preferably at least 40% by weight of the shorter alkyl chain surfactant, and from 5 to 95%, preferably from 30 to 95% by weight and mot preferably at least 50% by weight longer chain surfactant.
X in formula I may be any counterion providing electrical neutrality, but is preferably selected from the group consisting of halide, methyl sulfate, sulfate and nitrate, more preferably being selected from methyl sulfate, chloride, bromide and iodide. The halide ions, especially chloride are most preferred.
Amylolytic Enzyme The granular detergent compositions or component thereof in accordance with the present invention also comprises an amylolytic enzyme.
-CH2CH2OH and -CH2CH2CH2OH are most preferred and -CH2CH2OH is particularly preferred. Preferably R2 and R3 are each selected from ethyl and methyl groups and most preferably both R2 and R3 are methyl groups. Preferred R4 groups have at least 6 or even at least 7 carbon atoms. R4 may have no greater than 9 carbon atoms, or even no greater than 8 or 7 carbon atoms Preferred R4 groups are linear alkyl groups. Linear R4 groups having from 8 to 11 carbon atoms, or from 8 to 10 carbon atoms are preferred. Generally each of R2 and R3 is selected from C 1-4 alkyl and R4 is C6-1 I alkyl or alkenyl.
Whilst pure or substantially pure cationic compounds are within the ambit of this invention, it has been found that mixtures of the cationic surfactants of formula I may be particularly effective. Examples of suitable mixtures include those where at least 10%, preferably at least 20% by weight of the cationic surfactants of formula I have R4 which is a C5-9 alkyl or alkenyl.
Other suitable examples include surfactant mixtures in which R4 may be a combination of Cg and C 10 linear alkyl groups, or Cq and C I 1 alkyl groups. According to one aspect of the invention a mixture of cationic surfactants of formula I is present in the composition, the mixture comprising a shorter alkyl chain surfactant of formula I and a longer alkyl chain surfactant of formula I. The longer alkyl chain cationic surfactant is selected from the surfactants of formula I where R4 is an alkyl group having n carbon atoms where n is from 8 to 11; the shorter alkyl chain surfactant is selected from those of formula I
where R4 is an alkyl group having (n-2) carbon atoms. Generally in such mixtures there will be from 5 to 95%, preferably from 35 to 70% or even 65% by weight and most preferably at least 40% by weight of the shorter alkyl chain surfactant, and from 5 to 95%, preferably from 30 to 95% by weight and mot preferably at least 50% by weight longer chain surfactant.
X in formula I may be any counterion providing electrical neutrality, but is preferably selected from the group consisting of halide, methyl sulfate, sulfate and nitrate, more preferably being selected from methyl sulfate, chloride, bromide and iodide. The halide ions, especially chloride are most preferred.
Amylolytic Enzyme The granular detergent compositions or component thereof in accordance with the present invention also comprises an amylolytic enzyme.
The weight ratio of amylolytic enzyme to cationic surfactant is generally from 1:15000 to 10:1, more preferably from 1:10000 to 5:1, most preferably from 1:5000 to 1:1, based on % by weight active enzyme of the detergent composition.
The amylolytic enzymes will generally be incorporated in the detergent compositions of the present invention a level of from 0.0001 % to 2%, preferably from 0.00018% to 0.06%, more preferably from 0.00024% to 0.048% pure enzyme by weight of the composition.
The detergent compositions of the invention may also contain one or a mixture of more than one amylase enzyme (a and/or (3). W094/02597, Novo Nordisk A/S published February 03, 1994, describes cleaning compositions which incorporate mutant amylases. See also W095/10603, Novo Nordisk A/S, published April 20, 1995. Other amylases known for use in cleaning compositions include both a- and 13-amylases. a-Amylases are known in the art and include those disclosed in US Pat. no. 5,003,257; EP 252,666; WO/91/00353; FR
2,676,456; EP
285,123; EP 525,610; EP 368,341; and British Patent specification no.
1,296,839 (Novo). Other suitable amylases are stability-enhanced amylases described in W094/18314, published August 18, 1994 and W096/05295, Genencor, published February 22, 1996 and amylase variants having additional modification in the immediate parent available from Novo Nordisk A/S, disclosed in WO 95/10603, published April 95. Also suitable are amylases described in EP 277 216, W095/26397 and W096/23873 (all by Novo Nordisk).
Examples of commercial a-amylases products are Purafect Ox Am from Genencor and Termamyl8, Ban Fungamyl and Duramyl , all available from Novo Nordisk A/S
Denmark. W095/26397 describes other suitable amylases : a-amylases characterised by having a specific activity at least 25% higher than the specific activity of Termamyl at a temperature range of 25 C to 55 C and at a pH value in the range of 8 to 10, measured by the Phadebas a-amylase activity assay. Suitable are variants of the above enzymes, described in W096/23873 (Novo Nordisk). Other preferred amylolytic enzymes with improved properties with respect to the activity level and the combination of thermostability and a higher activity level are described in W095/35382.
The amylase enzyme or mixture of amylase enzymes may be added to the detergent composition as a separate ingredient (eg. in the form of a prill, granulette, stabilized liquid, etc.) or as a mixture with two or more amylase enzymes or amylase and an additional enzyme, for example as part of a co-granulate.
Additional detergent components The detergent compositions or components thereof in accordance with the present invention may also contain additional detergent components. The precise nature of these additional components, and levels of incorporation thereof will depend on the physical form of the composition or component thereof, and the precise nature of the washing operation for which it is to be used.
The compositions or components thereof, of the invention preferably contain one or more additional detergent components selected from additional surfactants, builders, sequestrants, bleach, bleach precursors, bleach catalysts, organic polymeric compounds, additional enzymes, suds suppressors, lime soap dispersants, additional soil suspension and anti-redeposition agents soil releasing agents, perfumes and corrosion inhibitors.
Additional surfactant The detergent compositions or components thereof in accordance with the invention preferably contain an additional surfactant selected from anionic, nonionic, cationic, ampholytic, amphoteric and zwitterionic surfactants and mixtures thereof.
A typical listing of anionic, nonionic, ampholytic, and zwitterionic classes, and species of these surfactants, is given in U.S.P. 3,929,678 issued to Laughlin and Heuring on December 30, 1975.
Further examples are given in "Surface Active Agents and Detergents" (Vol. I
and II by Schwartz, Perry and Berch). A list of suitable cationic surfactants is given in U.S.P. 4,259,217 issued to Murphy on March 31, 1981.
Where present, ampholytic, amphoteric and zwitteronic surfactants are generally used in combination with one or more anionic and/or nonionic surfactants.
Anionic surfactant In a particularly preferred embodiment of the invention, the detergent compositions additionally comprise an anionic surfactant. Any anionic surfactant useful for detersive purposes is suitable.
These can include salts (including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts) of the anionic sulfate, sulfonate, carboxylate and sarcosinate surfactants. Anionic sulfate surfactants are preferred.
Other suitable anionic surfactants include the isethionates such as the acyl isethionates, N-acyl taurates, fatty acid amides of methyl tauride, alkyl succinates and sulfosuccinates, monoesters of sulfosuccinate (especially saturated and unsaturated C 12-C 18 monoesters) diesters of sulfosuccinate (especially saturated and unsaturated C6-C14 diesters), N-acyl sarcosinates.
Resin acids and hydrogenated resin acids are also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tallow oil.
Anionic sulfate surfactant Anionic sulfate surfactants suitable for use in the compositions of the invention include the linear and branched primary and secondary alkyl sulfates, alkyl ethoxysulfates, fatty oleoyl glycerol sulfates, alkyl phenol ethylene oxide ether sulfates, the C5-C 17 acyl-N-(C 1-C4 alkyl) and -N-(C 1-C2 hydroxyalkyl) glucamine sulfates, and sulfates of alkylpolysaccharides such as the sulfates of alkylpolyglucoside (the nonionic nonsulfated compounds being described herein).
Alkyl ethoxysulfate surfactants are preferably selected from the group consisting of the C9-C22 alkyl sulfates which have been ethoxylated with from 0.5 to 20 moles of ethylene oxide per molecule. More preferably, the alkyl ethoxysulfate surfactant is a C I I-C 18, most preferably C 11-C 15 alkyl sulfate which has been ethoxylated with from 0.5 to 7, preferably from 1 to 5, moles of ethylene oxide per molecule.
A particularly preferred aspect of the invention employs mixtures of the preferred alkyl sulfate and alkyl ethoxysulfate surfactants. Such mixtures have been disclosed in PCT
Patent Application No. WO 93/18124.
Anionic sulfonate surfactant Anionic sulfonate surfactants suitable for use herein include the salts of C5-C20 linear alkylbenzene sulfonates, alkyl ester sulfonates, C6-C22 primary or secondary alkane sulfonates, C6-C24 olefin sulfonates, sulfonated polycarboxylic acids, alkyl glycerol sulfonates, fatty acyl glycerol sulfonates, fatty oleyl glycerol sulfonates, and any mixtures thereof.
Particularly prefenred compositions of the present invention additionally comprise an anionic surfactant, selected from alkyl sulfate and/or alkylbenzene sulphonate surfactants of formulae II
and III, respectively:
R5 O S O 3-M+ (II) R6303-1y'+ (III) wherein R5 is a linear or branched alkyl or alkenyl moiety having from 9 to 22 carbon atoms, preferably C 12 to C 18 alkyl or as found in secondary alkyl sulfates; R6 is C
alkylbenzene, preferably C 11-C 13 alkylbenzene; M+ and M'+ can vary independently and are selected from alkali metals, alkaline earths, alkanolammonium and ammonium.
Particularly preferred compositions of the invention comprise both an alkyl sulfate surfactant and an alkyl benzene surfactant, preferably in ratios of II to III of from 15:1 to 1:2, most preferably from 12:1 to 2:1.
Amounts of the one or mixtures of more than one anionic surfactant in the preferred composition may be from 1% to 50%, however, preferably anionic surfactant is present in amounts of from 5% to 40% by weight of the composition. Preferred amounts of the alkyl sulfate surfactant of formula II are from 3% to 40%, or more preferably 6% to 30% by weight of the detergent composition. Preferred amounts of the alkyl benzene sulphonate surfactant of formula III in the detergent composition are from at least 1%, preferably at least 2%, or even at least 4% by weight. Preferred amounts of the alkyl benzene sulphonate surfactant are up to 23%, more preferably no greater than 20%, most preferably up to 15% or even 10%.
The performance benefits which result when an anionic surfactant is also used in the compositions of the invention are particularly useful for longer carbon chain length anionic surfactants such as those having a carbon chain length of C 12 or greater, particularly of C 14/ 15 or even up to C 16-18 carbon chain lengths.
In preferred embodiments of the detergent compositions of the invention comprising anionic surfactant there will be a significant excess of anionic surfactants, preferably a weight ratio of anionic to cationic surfactant of from 50:1 to 2:1, most preferably 30:1 to 8:1. However, the benefits of the invention are also achieved where the ratio of cationic surfactant to anionic surfactant is substantially stoichiometric, for example from 3:2 to 4:3.
In a preferred embodiment of the invention the essential cationic surfactant of formula I is intimately mixed with one or more anionic surfactants prior to addition of the other detergent composition components.
Anionic carboxylate surfactant Suitable anionic carboxylate surfactants include the alkyl ethoxy carboxylates, the alkyl polyethoxy polycarboxylate surfactants and the soaps ('alkyl carboxyls'), especially certain secondary soaps as described herein.
Suitable alkyl ethoxy carboxylates include those with the formula RO(CH2CH20)x CH2C00' M+ wherein R is a C6 to C 18 alkyl group, x ranges from 0 to 10, and the ethoxylate distribution is such that, on a weight basis, the amount of material where x is 0 is less than 20 % and M is a cation. Suitable alkyl polyethoxy polycarboxylate surfactants include those having the formula RO-(CHR1-CHR2-O)-R3 wherein R is a C6 to C18 alkyl group, x is from 1 to 25, R1 and R2 are selected from the group consisting of hydrogen, methyl acid radical, succinic acid radical, hydroxysuccinic acid radical, and mixtures thereof, and R3 is selected from the group consisting of hydrogen, substituted or unsubstituted hydrocarbon having between 1 and 8 carbon atoms, and mixtures thereof.
Suitable soap surfactants include the secondary soap surfactants which contain a carboxyl unit connected to a secondary carbon. Preferred secondary soap surfactants for use herein are water-soluble members selected from the group consisting of the water-soluble salts of 2-methyl-l-undecanoic acid, 2-ethyl-l-decanoic acid, 2-propyl-l-nonanoic acid, 2-butyl-l-octanoic acid and 2-pentyl-l-heptanoic acid. Certain soaps may also be included as suds suppressors.
Alkali metal sarcosinate surfactant Other suitable anionic surfactants are the alkali metal sarcosinates of formula R-CON (R1) CH2 COOM, wherein R is a C5-C 17 linear or branched alkyl or alkenyl group, R1 is a C 1-C4 alkyl group and M is an alkali metal ion. Preferred examples are the myristyl and oleoyl methyl sarcosinates in the form of their sodium salts.
Alkoxylated nonionic surfactant Essentially any alkoxylated nonionic surfactants are suitable herein. The ethoxylated and propoxylated nonionic surfactants are preferred. Linear or branched alkoxylated groups are suitable.
Preferred alkoxylated surfactants can be selected from the classes of the nonionic condensates of alkyl phenols, nonionic ethoxylated alcohols, nonionic ethoxylated/propoxylated fatty alcohols, nonionic ethoxylate/propoxylate condensates with propylene glycol, and the nonionic ethoxylate condensation products with propylene oxide/ethylene diamine adducts.
Nonionic alkoxylated alcohol surfactant The condensation products of aliphatic alcohols with from I to 25 moles of alkylene oxide, particularly ethylene oxide and/or propylene oxide, are suitable for use herein. The alkyl chain of the aliphatic alcohol can either be straight or branched, primary or secondary, and generally contains from 6 to 22 carbon atoms. Particularly preferred are the condensation products of alcohols having an alkyl group containing from 8 to 20 carbon atoms with from 2 to 10 moles of ethylene oxide per mole of alcohol.
Nonionic polyhydroxy fattv acid amide surfactant Polyhydroxy fatty acid amides suitable for use herein are those having the structural formula R2CONRIZ wherein : R1 is H, CI-C4 hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl, ethoxy, propoxy, or a mixture thereof, preferable C1-C4 alkyl, more preferably CI or C2 alkyl, most preferably C 1 alkyl (i.e., methyl); and R2 is a C5-C31 hydrocarbyl, preferably straight-chain C5-C 19 alkyl or alkenyl, more preferably straight-chain C9-C 17 alkyl or alkenyl, most preferably straight-chain C 11-C 17 alkyl or alkenyl, or mixture thereof; and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative (preferably ethoxylated or propoxylated) thereof. Z
preferably will be derived from a reducing sugar in a reductive amination reaction; more preferably Z is a glycityl.
Nonionic fatty acid amide surfactant Suitable fatty acid amide surfactants include those having the formula:
R6CON(R7)2 wherein R6 is an alkyl group containing from 7 to 21, preferably from 9 to 17 carbon atoms and each R7 is selected from the group consisting of hydrogen, CI-C4 alkyl, CI-C4 hydroxyalkyl, and -(C2H4O)xH, where x is in the range of from I to 3.
Nonionic alkylpolysaccharide surfactant Suitable alkylpolysaccharides for use herein are disclosed in U.S. Patent 4,565,647, Llenado, issued January 21, 1986, having a hydrophobic group containing from 6 to 30 carbon atoms and a polysaccharide, e.g., a polyglycoside, hydrophilic group containing from 1.3 to 10 saccharide units.
Preferred alkylpolyglycosides have the formula R2O(CnH2nO)t(glycosyl)x wherein R2 is selected from the group consisting of alkyl, alkylphenyl, hydroxyalkyl, hydroxyalkylphenyl, and mixtures thereof in which the alkyl groups contain from 10 to 18 carbon atoms; n is 2 or 3; t is from 0 to 10, and x is from 1.3 to 8. The glycosyl is preferably derived from glucose.
Amphoteric surfactant Suitable amphoteric surfactants for use herein include the amine oxide surfactants and the alkyl amphocarboxylic acids.
Suitable amine oxides include those compounds having the formula R3(OR4)xN0(R5)2 wherein R3 is selected from an alkyl, hydroxyalkyl, acylamidopropoyl and alkyl phenyl group, or mixtures thereof, containing from 8 to 26 carbon atoms; R4 is an alkylene or hydroxyalkylene group containing from 2 to 3 carbon atoms, or mixtures thereof; x is from 0 to 5, preferably from 0 to 3; and each R5 is an alkyl or hydroxyalkyl group containing from t to 3, or a polyethylene oxide group containing from 1 to 3 ethylene oxide groups. Preferred are C I O-C 18 alkyl dimethylamine oxide, and C10-18 acylamido alkyl dimethylamine oxide.
A suitable example of an alkyl aphodicarboxylic acid is Miranol(TM) C2M Conc.
manufactured by Miranol, Inc., Dayton, NJ.
Zwitterionic surfactant Zwitterionic surfactants can also be incorporated into the detergent compositions or components thereof in accord with the invention. These surfactants can be broadly described as derivatives of secondary and tertiary amines, derivatives of heterocyclic secondary and tertiary amines, or derivatives of quaternary ammonium, quaternary phosphonium or tertiary sulfonium compounds. Betaine and sultaine surfactants are exemplary zwitterionic surfactants for use herein.
Suitable betaines are those compounds having the formula R(R')2N+R2C00-wherein R is a C6-C 18 hydrocarbyl group, each R I is typically C I-C3 alkyl, and R2 is a C I-C5 hydrocarbyl group. Preferred betaines are C 12-18 dimethyl-ammonio hexanoate and the C 10-acylamidopropane (or ethane) dimethyl (or diethyl) betaines. Complex betaine surfactants are also suitable for use herein.
Additional Cationic surfactants The compositions of the invention are preferably substantially free of quaternary ammonium compounds of formula I but wherein one or RI, R2, R3 or R4 is an alkyl chain group longer than C 11. Preferably the composition should contain less than 1%, preferably less than 0.1 % by weight or even less than 0.05% and most preferably less than 0.0 1% by weight of compounds of formula I having a linear (or even branched) alkyl group having 12 or more carbon atoms.
Another suitable group of cationic surfactants which can be used in the detergent compositions of the invention are cationic ester surfactants. The cationic ester surfactant is a compound having surfactant properties comprising at least one ester (i.e. -COO-) linkage and at least one cationically charged group. Preferred cationic ester surfactants are water dispersible.
Suitable cationic ester surfactants, including choline ester surfactants, have for example been disclosed in US Patents Nos. 4228042, 4239660 and 4260529.
In preferred cationic ester surfactants the ester linkage and cationically charged group are separated from each other in the surfactant molecule by a spacer group consisting of a chain comprising at least three atoms (i.e. of three atoms chain length), preferably from three to eight atoms, more preferably from three to five atoms, most preferably three atoms.
The atoms forming the spacer group chain are selected from the group consisting of carbon, nitrogen and oxygen atoms and any mixtures thereof, with the proviso that any nitrogen or oxygen atom in said chain connects only with carbon atoms in the chain. Thus spacer groups having, for example, -0-0- (i.e. peroxide), -N-N-, and -N-O- linkages are excluded, whilst spacer groups having, for example -CH2-O- CH2- and -CH2-NH-CH2- linkages are included. In a preferred aspect the spacer group chain comprises only carbon atoms, most preferably the chain is a hydrocarbyl chain.
Alkalinity In the detergent compositions of the present invention preferably an alkalinity system is present to achieve optimal cationic surfactant performance. The alkalinity system comprises components capable of providing alkalinity species in solution. Examples of alkalinity species include carbonate, bicarbonate, hydroxide, the various silicate anions, percarbonate, perborates, perphosphates, persulfate and persilicate. Such alkalinity species can be formed for example, when alkaline salts selected from alkali metal or alkaline earth carbonate, bicarbonate, hydroxide or silicate, including crystalline layered silicate, salts and percarbonate, perborates, perphosphates, persulfate and persilicate salts and any mixtures thereof are dissolved in water.
Examples of carbonates are the alkaline earth and alkali metal carbonates, including sodium carbonate and sesqui-carbonate and any mixtures thereof with ultra-fine calcium carbonate such as are disclosed in German Patent Application No. 2,321,001 published on November 15, 1973.
Suitable silicates include the water soluble sodium silicates with an Si02:NA2O ratio of from 1.0 to 2.8, with ratios of from 1.6 to 2.0 being preferred, and 2.0 ratio being most preferred. The silicates may be in the form of either the anhydrous salt or a hydrated salt.
Sodium silicate with an Si02:Na20 ratio of 2.0 is the most preferred silicate.
Preferred crystalline layered silicates for use herein have the general formula NaMSixO2x+1.yH2O
wherein M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20.
Crystalline layered sodium silicates of this type are disclosed in EP-A-0164514 and methods for their preparation are disclosed in DE-A-3417649 and DE-A-3742043. Herein, x in the general formula above preferably has a value of 2, 3 or 4 and is preferably 2. The most preferred TM
material is 8-Na2Si2O5, available from Hoechst AG as NaSKS-6.
Water-soluble builder compound The detergent compositions in accordance with the present invention preferably contain a water-soluble builder compound, typically present in detergent compositions at a level of from 1% to 80% by weight, preferably from 10% to 70% by weight, most preferably from 20%
to 60% by weight of the composition.
Suitable water-soluble builder compounds include the water soluble monomeric polycarboxylates, or their acid forms, homo or copolymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxylic radicals separated from each other by not more that two carbon atoms, borates, phosphates, and mixtures of any of the foregoing.
The carboxylate or polycarboxylate builder can be monomeric or oligomeric in type although monomeric polycarboxylates are generally preferred for reasons of cost and performance.
Suitable carboxylates containing one carboxy group include the water soluble salts of lactic acid, glycolic acid and ether derivatives thereof. Polycarboxylates containing two carboxy groups include the water-soluble salts of succinic acid, malonic acid, (ethylenedioxy) diacetic acid, maleic acid, diglycolic acid, tartaric acid, tartronic acid and fumaric acid, as well as the ether carboxylates and the sulfinyl carboxylates. Polycarboxylates containing three carboxy groups include, in particular, water-soluble citrates, aconitrates and citraconates as well as succinate derivatives such as the carboxymethyloxysuccinates described in British Patent No. 1,379,241, lactoxysuccinates described in British Patent No. 1,389,732, and aminosuccinates described in Canadian Patent No. 973,771, and the oxypolycarboxylate materials such as 2-oxa-1,1;3-propane tricarboxylates described in British Patent No. 1,387,447.
Polycarboxylates containing four carboxy groups include oxydisuccinates disclosed in British Patent No. 1,261,829, 1,1,2,2-ethane tetracarboxylates, 1,1,3,3-propane tetracarboxylates and 1,1,2,3-propane tetracarboxylates. Polycarboxylates containing sulfo substituents include the sulfosuccinate derivatives disclosed in British Patent Nos. 1,398,421 and 1,398,422 and in U.S.
Patent No. 3,936,448, and the sulfonated pyrolysed citrates described in British Patent No.
1,439,000. Preferred polycarboxylates are hydroxycarboxylates containing up to three carboxy groups per molecule, more particularly citrates.
The parent acids of the monomeric or oligomeric polycarboxylate chelating agents or mix!-ares thereof with their salts, e.g. citric acid or citrate/citric acid mixtures are also contemplated as useful builder components.
Borate builders, as well as builders containing borate-forming materials that can produce borate under detergent storage or wash conditions are useful water-soluble builders herein.
Suitable examples of water-soluble phosphate builders are the alkali metal tripolyphosphates, sodium, potassium and ammonium pyrophosphate, sodium and potassium and ammonium pyrophosphate, sodium and potassium orthophosphate, sodium polymeta/phosphate in which the degree of polymerization ranges from about 6 to 21, and salts of phytic acid.
Partially soluble or insoluble builder compound The detergent compositions or components thereof, of the present invention may contain a partially soluble or insoluble builder compound, typically present in detergent compositions at a level of from 1% to 80% by weight, preferably from 10% to 70% by weight, most preferably from 20% to 60% weight of the composition.
Examples of largely water insoluble builders include the sodium aluminosilicates.
Suitable aluminosilicate zeolites have the unit cell formula Naz[(AIO2)z(SiO2)y). xH2O
wherein z and y are at least 6; the molar ratio of z to y is from 1.0 to 0.5 and x is at least 5, preferably from 7.5 to 276, more preferably from 10 to 264. The aluminosilicate materials are in hy.drated form and are preferably crystalline, containing from 10% to 28%, more preferably from 18% to 22% water in bound form.
The aluminosilicate zeolites can be naturally occurring materials, but are preferably synthetically derived. Synthetic crystalline aluminosilicate ion exchange materials are available under the designations Zeolite A, Zeolite B, Zeolite P, Zeolite X, Zeolite HS
and mixtures thereof. Zeolite A has the formula Na 12 [(A102) 12 (Si02)121= xH2O
wherein x is from 20 to 30, especially 27. Zeolite X has the formula Na86 [(AI02)86(Si02)1061= 276 H20.
Another preferred aluminosilicate zeolite is zeolite MAP builder.
The zeolite MAP can be present at a level of from 1% to 80%, more preferably from 15%
to 40% by weight of the compositions.
Zeolite MAP is described in EP 384070A (Unilever). It is defined as an alkali metal alumino-silicate of the zeolite P type having a silicon to aluminium ratio not greater than 1.33, preferably within the range from 0.9 to 1.33 and more preferably within the range of from 0.9 to 1.2.
Of particular interest is zeolite MAP having a silicon to aluminium ratio not greater than 1.15 and, more particularly, not greater than 1.07.
In a preferred aspect the zeolite MAP detergent builder has a particle size, expressed as a d50 value of from 1.0 to 10.0 micrometres, more preferably from 2.0 to 7.0 micrometres, most preferably from 2.5 to 5.0 micrometres.
The d50 value indicates that 50% by weight of the particles have a diameter smaller than that figure. The particle size may, in particular be determined by conventional analytical techniques such as microscopic determination using a scanning electron microscope or by means of a laser granulometer. Other methods of establishing d50 values are disclosed in EP 384070A.
Heavy metal ion seauestrant The detergent compositions or components thereof in accordance with the present invention preferably contain as an optional component a heavy metal ion sequestrant. By heavy metal ion sequestrant it is meant herein components which act to sequester (chelate) heavy metal ions.
These components may also have calcium and magnesium chelation capacity, but preferentially they show selectivity to binding heavy metal ions such as iron, manganese and copper.
Heavy metal ion sequestrants are generally present at a level of from 0.005%
to 20%, preferably from 0.1% to 10%, more preferably from 0.25% to 7.5% and most preferably from 0.5% to 5%
by weight of the compositions.
Suitable heavy metal ion sequestrants for use herein include organic phosphonates, such as the amino alkylene poly (alkylene phosphonates), alkali metal ethane 1-hydroxy disphosphonates and nitrilo trimethylene phosphonates.
Preferred among the above species are diethylene triamine penta (methylene phosphonate), ethylene diamine tri (methylene phosphonate) hexamethylene diamine tetra (methylene phosphonate) and hydroxy-ethylene 1,1 diphosphonate.
Other suitable heavy metal ion sequestrant for use herein include nitrilotriacetic acid and polyaminocarboxylic acids such as ethylenediaminotetracetic acid, ethylenetriamine pentacetic acid, ethylenediamine disuccinic acid, ethylenediamine diglutaric acid, 2-hydroxypropylenediamine disuccinic acid or any salts thereof. Especially preferred is ethylenediamine-N,N'-disuccinic acid (EDDS) or the alkali metal, alkaline earth metal, ammonium, or substituted ammonium salts thereof, or mixtures thereof.
Other suitable heavy metal ion sequestrants for use herein are iminodiacetic acid derivatives such as 2-hydroxyethyl diacetic acid or glyceryl imino diacetic acid, described in EP-A-317,542 and EP-A-399,133. The iminodiacetic acid-N-2-hydroxypropyl sulfonic acid and aspartic acid N-carboxymethyl N-2-hydroxypropyl-3-sulfonic acid sequestrants described in EP-A-516,102 are also suitable herein. The (3-alanine-N,N'-diacetic acid, aspartic acid-N,N'-diacetic acid, aspartic acid-N-monoacetic acid and iminodisuccinic acid sequestrants described in EP-A-509,382 are also suitable.
EP-A-476,257 describes suitable amino based sequestrants. EP-A-510,331 describes suitable sequestrants derived from collagen, keratin or casein. EP-A-528,859 describes a suitable alkyl iminodiacetic acid sequestrant. Dipicolinic acid and 2-phosphonobutane-1,2,4-tricarboxylic acid are also suitable. Glycinamide-N,N'-disuccinic acid (GADS), ethylenediamine-N-N'-diglutaric acid (EDDG) and 2-hydroxypropylenediamine-N-N'-disuccinic acid (HPDDS) are also suitable.
Organic peroxyacid bleachin¾ system A preferred feature of detergent compositions or component thereof in accordance with the invention is an organic peroxyacid bleaching system. In one preferred execution the bleaching system contains a hydrogen peroxide source and an organic peroxyacid bleach precursor compound. The production of the organic peroxyacid occurs by an in situ reaction of the precursor with a source of hydrogen peroxide. Preferred sources of hydrogen peroxide include inorganic perhydrate bleaches. In an altemative preferred execution a preformed organic peroxyacid is incorporated directly into the composition. Compositions containing mixtures of a hydrogen peroxide source and organic peroxyacid precursor in combination with a preformed organic peroxyacid are also envisaged.
Inoreanic perhvdrate bleaches Inorganic perhydrate salts are a preferred source of hydrogen peroxide. These salts are normally incorporated in the form of the alkali metal, preferably sodium salt at a level of from 1% to 40%
by weight, more preferably from 2% to 30% by weight and most preferably from 5% to 25% by weight of the compositions.
Examples of inorganic perhydrate salts include perborate, percarbonate, perphosphate, persulfate and persilicate salts. The inorganic perhydrate salts are normally the alkali metal salts. The inorganic perhydrate salt may be included as the crystalline solid without additional protection.
For certain perhydrate salts however, the preferred executions of such granular compositions utilize a coated form of the material which provides better storage stability for the perhydrate salt in the granular product and/or delayed release of the perhydrate salt on contact of the granular product with water. Suitable coatings comprise inorganic salts such as alkali metal silicate, carbonate or borate salts or mixtures thereof, or organic materials such as waxes, oils, or fatty soaps.
Sodium perborate is a preferred perhydrate salt and can be in the form of the monohydrate of nominal forrnula NaBO2H2O2 or the tetrahydrate NaBO2H2O2.3H20.
Alkali metal percarbonates, particularly sodium percarbonate are preferred perhydrates herein.
Sodium percarbonate is an addition compound having a formula corresponding to 2Na2CO3.3H2O2, and is available commercially as a crystalline solid.
Potassium peroxymonopersulfate is another inorganic perhydrate salt of use in the detergent compositions herein.
Peroxyacid bleach precursor Peroxyacid bleach precursors are compounds which react with hydrogen peroxide in a perhydrolysis reaction to produce a peroxvacid. Generally peroxyacid bleach precursors may be represented as O
X-C-L
where L is a leaving group and X is essentially any functionality, such that on perhydrolysis the structure of the peroxyacid produced is O
II
'X-C-OOH
Peroxyacid bleach precursor compounds are preferably incorporated at a level of from 0.5% to 20% by weight, more preferably from 1% to 15% by weight, most preferably from 1.5% to 10%
by weight of the detergent compositions.
Suitable peroxyacid bleach precursor compounds typically contain one or more N-or 0-acyl groups, which precursors can be selected from a wide range of classes.
Suitable classes include anhydrides, esters, imides, lactams and acylated derivatives of imidazoles and oximes. Examples of useful materials within these classes are disclosed in GB-A-1586789.
Suitable esters are disclosed in GB-A-836988, 864798, 1147871, 2143231 and EP-A-0170386.
Leaving grouDs The leaving group, hereinafter L group, must be sufficiently reactive for the perhydrolysis reaction to occur within the optimum time frame (e.g., a wash cycle). However, if L is too reactive, this activator will be difficult to stabilize for use in a bleaching composition.
Preferred L groups are selected from the group consisting of:
-O -O Y and -O
C 1~
~i O
Il ~ , ~
-N-C- RI , - + N , --i--C-iH-R4 , Y
I I
-O-C H=C-C H=C H2 --O-C H=C-C H=C H2 . 0 CH2-C r~ 4 -O-C-R' -N\C jNR4 -NCNR
~ p O
-O-C=CHR4 , and --N-S-CH-R4 and mixtures thereof, wherein RI is an alkyl, aryl, or alkaryl group containing from I to 14 carbon atoms, R3 is an alkyl chain containing from 1 to 8 carbon atoms, R4 is H or R3, R5 is an alkenyl chain containing from I to 8 carbon atoms and Y is H or a solubilizing group. Any of R1, R3 and R4 may be substituted by essentially any functional group including, for example alkyl, hydroxy, alkoxy, halogen, amine, nitrosyl, amide and ammonium or alkyl ammonium groups.
The 3 preferred solubilizing groups are+SO3 M+, CO2 M+, -SO4 M+, -N+(R3)4X and O<--N(R )3 and most preferably -SO3 M and -CO2 M wherein R is an alkyl chain containing from 1 to 4 carbon atoms, M is a catiori which provides solubility to the bleach activator and X
is an anion which provides solubility to the bleach activator. Preferably, M
is an alkali metal, ammonium or substituted ammonium cation, with sodium and potassium being most preferred, and X is a halide, hydroxide, methylsulfate or acetate anion.
Alkyl percarboxylic acid bleach precursors Alkyl percarboxylic acid bleach precursors form percarboxylic acids on perhydrolysis. Preferred precursors of this type provide peracetic acid on perhydrolysis.
Preferred alkyl percarboxylic precursor compounds of the imide type include the N-,N,NIN1 tetra acetylated alkylene diamines wherein the alkylene group contains from I
to 6 carbon atoms, particularly those compounds in which the alkylene group contains 1, 2 and 6 carbon atoms. Tetraacetyl ethylene diamine (TAED) is particularly preferred.
Other preferred alkyl percarboxylic acid precursors include sodium 3,5,5-tri-methyl hexanoyloxybenzene sulfonate (iso-NC)BS), sodium nonanoyloxybenzene sulfonate (NOBS), sodium acetoxybenzene sulfonate (ABS) and pentaacetyl glucose.
Amide substituted alkyl neroxyacid precursors Amide substituted alkyl peroxyacid precursor compounds are suitable herein, including those of the following general formulae:
R' -C-N-R2-C-L R' -N-C-R2-C-L
~~ ~ 1 . I I 11 11 O R5 O or R5 O O
wherein RI is an alkyl group with from I to 14 carbon atoms, R2 is an alkylene group containing from I to 14 carbon atoms, and R5 is H or an alkyl group containing 1 to 10 carbon atoms and L can be essentially any leaving group. Amide substituted bleach activator compounds of this type are described in EP-A-0 1703 86.
Perbenzoic acid precursor Perbenzoic acid precursor compounds provide perbenzoic acid on perhydrolysis.
Suitable 0-acylated perbenzoic acid precursor compounds include the substituted and unsubstituted benzoyl oxybenzene sulfonates, and the benzoylation products of sorbitol, glucose, and all saccharides with benzoylating agents, and those of the imide type including N-benzoyl succinimide, tetrabenzoyl ethylene diamine and the N-benzoyl substituted ureas. Suitable imidazole type perbenzoic acid precursors include N-benzoyl imidazole and N-benzoyl benzimidazole. Other useful N-acyl group-containing perbenzoic acid precursors include N-benzoyl pyrrolidone, dibenzoyl taurine and benzoyl pyroglutamic acid.
Cationic aeroxyacid precursors Cationic peroxyacid precursor compounds produce cationic peroxyacids on perhydrolysis.
Typically, cationic peroxyacid precursors are formed by substituting the peroxyacid part of a suitable peroxyacid precursor compound with a positively charged functional group, such as an ammonium or alkyl ammonium group, preferably an ethyl or methyl ammonium group.
Cationic peroxyacid precursors are typically present in the solid detergent compositions as a salt with a suitable anion, such as a halide ion.
The peroxyacid precursor compound to be so cationically substituted may be a perbenzoic acid, or substituted derivative thereof, precursor compound as described hereinbefore. Alternatively, the peroxyacid precursor compound may be an alkyl percarboxylic acid precursor .7ompound or an amide substituted alkyl peroxyacid precursor as described hereinafter Cationic peroxyacid precursors are described in U.S. Patents 4,904,406;
4,751,015; 4,988,451;
4,397,757; 5,269,962; 5,127,852; 5,093,022; 5,106,528; U.K. 1,382,594; EP
475,512, 458,396 and 284,292; and in JP 87-318,332.
Examples of preferred cationic peroxyacid precursors are described in WO 95/29160 and US Patent Nos. 5,686,015; 5,460,747; 5,578,136 and 5,584,888.
Suitable cationic peroxyacid precursors include any of the ammonium or alkyl ammonium substituted alkyl or benzoyl oxybenzene sulfonates, N-acylated caprolactams, and monobenzoyltetraacetyl glucose benzoyl peroxides. Preferred cationic peroxyacid precursors of the N-acylated caprolactam class include the trialkyl ammonium methylene benzoyl caprolactams and the trialkyl ammonium methylene alkyl caprolactams.
Benzoxazin or ag nic peroxyacid precursors Also suitable are precursor compounds of the benzoxazin-type, as disclosed for example in EP-A-332,294 and EP-A-482,807, particularly those having the formula:
O
I I
O
O ~ .
N C-Rt wherein RI is H, alkyl, alkaryl, aryl, or arylalkyl.
Preformed organic perox vacid The organic peroxyacid bleaching system may contain, in addition to, or as an altetnative to, an organic peroxyacid bleach precursor compound, a preformed organic peroxyacid , typically at a level of from 1% to 15% by weight, more preferably from 1% to 10% by weight of the composition.
A preferred class of organic peroxyacid compounds are the amide substituted compounds of the following general formulae:
R1-C-N-R2-C-OOH R' - N - C - R2 - C - OOH
I 1 f 11 ~ 11 ~~
O R5 0 or R5 O 0 wherein RI is an alkyl, aryl or alkaryl group with from I to 14 carbon atoms, R2 is an alkylene, arylene, and alkarylene group containing from I to 14 carbon atoms, and R5 is H or an alkyl, aryl, or alkaryl group containing 1 to 10 carbon atoms. Amide substituted organic peroxyacid compounds of this type are described in EP-A-0 1703 86.
Other organic peroxyacids include diacyl and tetraacylperoxides, especially diperoxydodecanedioc acid, diperoxytetradecanedioic acid and diperoxyhexadecanedioc acid.
Mono- and diperazelaic acid, mono- and diperbrassylic acid and N-phthaloylaminoperoxicaproic acid are also suitable herein.
Bleach catalyst The compositions of the invention optionally contain a transition metal containing bleach catalyst. One suitable type of bleach catalyst is a catalyst system comprising a heavy metal cation of defined bleach catalytic activity, such as copper, iron or manganese cations, an auxiliary metal cation having little or no bleach catalytic activity, such as zinc or aluminum cations, and a sequestrant having defined stability constants for the catalytic and auxiliary metal cations, particularly ethylenediaminetetraacetic acid, ethylenediaminetetra(methylenephosphonic acid) and water-soluble salts thereof. Such catalysts are disclosed in U.S. Pat. 4,430,243.
Other types of bleach catalysts include the manganese-based complexes disclosed in U.S. Pat.
5,246,621 and U.S. Pat. 5,244,594. Preferred examples of these catalysts include MnIV2(u-0)3(1,4,7-trimethyl-1,4,7-triazacyclononane)2-(PF6)2, MnIII2(u-O)1(u-OAc)2(1,4,7-trimethyl-1,4,7-triazacyclononane)2-(C104)2, MnIV4(u-O)6(1,4,7-triazacyclononane)4-(CIO4)2, MnIIIMnIV4(u-O)I(u-OAc)2-(1,4,7-trimethyl-1,4,7-triazacyclononane)2-(CI04)3, and mixtures thereof. Others are described in European patent application publication no.
549,272. Other ligands suitable for use herein include 1,5,9-trimethyl-1,5,9-triazacyclododecane, 2-methyl-1,4,7-triazacyclononane, 2-methyl-1,4,7-triazacyclononane, 1,2,4,7-tetramethyl-1,4,7-triazacyclononane, and mixtures thereof.
For examples of suitable bleach catalysts see U.S. Pat. 4,246,612 and U.S. Pat 5,227,084. See also U.S. Pat. 5,194,416 which teaches mononuclear manganese (IV) complexes such as Mn(1,4,7-trimethyl-1,4,7-triazacyclononane)(OCH3)3-(PF6). Still another type of bleach catalyst, as disclosed in U.S. Pat. 5,114,606, is a water-soluble complex of manganese (III), and/or (IV) with a ligand which is a non-carboxylate polyhydroxyl compound having at least three consecutive C-OH groups. Other examples include binuclear Mn complexed with tetra-N-dentate and bi-N-dentate ligands, including N4MnIII(u-O)2MnIVN4)+ and [BiPY2MnII1(u-O)2Mn1Vb1PY2)-(C1O4)3.
Further suitable bleach catalysts are described, for example, in European patent application No.
408,131 (cobalt complex catalysts), European patent applications, publication nos. 384,503, and 306,089 (metallo-porphyrin catalysts), U.S. 4,728,455 (manganese/multidentate ligand catalyst), U.S. 4,711,748 and European patent application, publication no. 224,952, (absorbed manganese on aluminosilicate catalyst), U.S. 4,601,845 (aluminosilicate support with manganese and zinc or magnesium salt), U.S. 4,626,373 (inanganese/ligand catalyst), U.S.
4,119,557 (ferric complex catalyst), German Pat. specification 2,054,019 (cobalt chelant catalyst) Canadian 866,191 (transition metal-containing salts), U.S. 4,430,243 (chelants with manganese cations and non-catalytic metal cations), and U.S. 4,728,455 (manganese gluconate catalysts).
Additional Enzymes The compositions of the present invention may comprise one or more additional enzymes.
Preferred additional enzymatic materials include the commercially available enzymes. Said enzymes include enzymes selected from cellulases, hemicellulases, peroxidases, proteases, gluco-amylases, lipases, xylanases, phospholipases, esterases, cutinases, pectinases, keratanases, reductases, oxidases, phenoloxidases, lipoxygenases, ligninases, pullulanases, tannases, pentosanases, malanases, R-glucanases, arabinosidases, hyaluronidase, chondroitinase, laccase or mixtures thereof.
A preferred combination of additional enzymes in a cleaning composition has a mixture of conventional applicable enzymes such as protease, lipase, cutinase and/or cellulase in conjunction with one or more plant cell wall degrading enzymes. Suitable enzymes are exemplified in US Patents 3,519,570 and 3,533,139.
Suitable proteases are the subtilisins which are obtained from particular strains of B. subtilis and B. lichenlormis (subtilisin BPN and BPN'). One suitable protease is obtained from a strain of Bacillus, having maximum activity throughout the pH range of 8-12, developed and sold as ESPERASE by Novo Industries A/S of Denmark, hereinafter "Novo". The preparation of this enzyme and analogous enzymes is described in GB 1,243,784 to Novo. Other suitable proteases include ALCALASE , DURAZYM(& and SAVINASE from Novo and MAXATASE , IVIAXACALO, PROPERASE and MAXAPEMO (protein engineered Maxacal) from Gist-Brocades. Proteolytic enzymes also encompass modified bacterial serine proteases, such as those described in European Patent Application 251,446 published January 7, (particularly pages 17, 24 and 98), and which is called herein "Protease B", and in European Patent Application 199,404, Venegas, published October 29, 1986, which refers to a modified bacterial serine protealytic enzyme which is called "Protease A" herein.
Suitable is what is called herein "Protease C", which is a variant of an alkaline serine protease from Bacillus in which lysine replaced arginine at position 27, tyrosine replaced valine at position 104, serine replaced asparagine at position 123, and alanine replaced threonine at position 274. Protease C is described in WO 91/06637, Published May 16, 1991.
Genetically modified variants, particuiariy of Protease C, are also included herein.
A preferred protease referred to as "Protease D" is a carbonyl hydrolase variant having an amino acid sequence not found in nature, which is derived from a precursor carbonyl hydrolase by substituting a different amino acid for a plurality of amino acid residues at a position in said carbonyl hydrolase equivalent to position +76, preferably also in combination with one or more amino acid residue positions equivalent to those selected from the group consisting of +99, +101, +103, +104, +107, +123, +27, +105, +109, +126, +128, +135, +156, +166, +195, +197, +204, +206, +210, +216, +217, +218, +222, +260, +265, and/or +274 according to the numbering of Bacillus amyloliquefaciens subtilisin, as described in W095/10591 and in the patent of C. Ghosh, et al, "Bleaching Compositions Comprising Protease Enzymes" having US
Patent No. 5,677,272 issued October 14, 1997.
Also suitable for the present invention are proteases described in patent applications EP 251 446-and WO 91/06637, protease BLAP described in W091/02792 and their variants described in WO 95/23221.
See also a high pH protease from Bacillus sp. NCIMB 40338 described in WO
93/18140 A to Novo. Enzymatic detergents comprising protease, one or more other enzymes, and a reversible protease inhibitor are described in WO 92/03529 A to Novo. When desired, a protease having decreased adsorption and increased hydrolysis is available as described in WO
95/07791 to Procter & Gamble. A recombinant trypsin-like protease for detergents suitable herein is described in WO 94/25583 to Novo. Other suitable proteases are described in EP
516 200 by Unilever.
One or a mixture of proteolytic enzymes may be incorporated in the detergent compositions of the present invention, generally at a level of from 0.0001 % to 2%, preferably from 0.001 % to 0.2%, more preferably from 0.005% to 0.1% pure enzyme by weight of the composition.
The detergent composition of the invention may also contain lipolytic enzymes.
Suitable lipolytic enzymes for use include those produced by micro-organisms of the Pseudomonas group, such as Pseudomonas stuizeri ATCC 19.154, as disclosed in British Patent 1,372,034.
Suitable lipases include those which show a positive immunological cross-section with the antibody of the lipase produced by the microorganism Pseudomonas Hisorescent IAM 1057.
This lipase is available from Amano Pharmaceutical Co. Ltd., Nagoya, Japan, under the trade mark Lipase P "Amano," hereinafter referred to as "Amano-P." Other suitable commercial lipases include Amano-CES, lipases ex Chromobacter viscosum, e.g. Chromobacter viscosum var. lipolyticum NRRLB 3673, commercially available from Toyo Jozo Co., Tagata, Japan;
Chromobacter viscosum lipases from U.S. Biochemical Corp., U.S.A. and Disoynth Co., The Netherlands, and lipases ex Pseudomonas gladioli. Especially suitable lipases are lipases such as M 1 Lipase and Lipomax (Gist-Brocades) and Lipulase and Lipolase Ultra {Novo) which have found to be very effective when used in combination with the compositions of the present invention. Also suitable are the lipolytic enzymes described in EP 258 068, WO
92/05249 and WO 95/22615 by Novo Nordisk and in WO 94/03578, WO 95/35381 and WO
96/00292 by Unilever.
Also suitable are cutinases [EC 3.1.1.50) which can be considered as a special kind of lipase, namely lipases which do not require interfacial activation. Addition of cutinases to detergent compositions have been described in e.g. WO-A-88/09367 (Genencor); WO 90/09446 (Plant Genetic System) and WO 94/14963 and WO 94/14964 (Unilever). The LIPOLASE
enzyme derived from Humicola lanuginosa and commercially available from Novo (see also EPO
341,947) is a preferred lipase for use in the present invention.
Another preferred lipase for use in the present invention is D96L lipolytic enzyme variant of the native lipase derived from Humicola lanuginosa. Most preferably the Humicola lanuginosa strain DSM 4106 is used.
By D96L lipolytic enzyme variant is meant the lipase variant as described in patent application WO 92/05249 in which the native lipase ex Humicola lanuginosa has the aspartic acid (D) residue at position 96 changed to Leucine (L). According to this nomenclature said substitution of aspartic acid to Leucine in position 96 is shown as : D96L. To determine the activity of the enzyme D96L the standard LU assay may be used (Analytical method, internal Novo Nordisk number AF 95/6-GB 1991.02.07). A substrate for D96L was prepared by emulsifying glycerine tributyrate (Merck) using gum-arabic as emulsifier. Lipase activity is assayed at pH 7 using pH
stat. method.
In the detergent compositions of the present invention, the lipolytic enzyme component is generally present at levels of from 0.00005% to 2% of active enzyme by weight of the detergent composition, preferably 0.001 % to 1% by weight, most preferably from 0.0002%
to 0.05% by weight active enzyme in the detergent composition.
The detergent compositions of the invention may additionally incorporate one or more cellulase enzymes. Suitable cellulases include both bacterial or fungal cellulases.
Preferably, they will have a pH optimum of between 5 and 12 and an activity above 50 CEVU (Cellulose Viscosity Unit). Suitable cellulases are disclosed in U.S. Patent 4,435,307, Barbesgoard et al, J61078384 and W096/02653 which disclose fungal cellulases produced respectively from Humicola insolens, Trichoderma, Thielavia and Sporotrichum. EP 739 982 describes cellulases isolated from novel Bacillus species. Suitable cellulases are also disclosed in GB-A-2.075.028; GB-A-2.095.275; DE-OS-2.247.832 and W095/26398.
Examples of such cellulases are cellulases produced by a strain of Humicola insolens (Humicola grisea var. thermoidea), particularly the Humicola strain DSM 1800. Other suitable cellulases are cellulases originated from Humicola insolens having a molecular weight of about 50KDay an isoelectric point of 5.5 and containing 415 amino acids; and a`43kD
endoglucanase derived from Humicola insolens, DSM 1800, exhibiting cellulase activity; a preferred endoglucanase component has the amino acid sequence disclosed in PCT Patent Application No.
WO 91/17243.
Also suitable cellulases are the EGIII cellulases from Trichoderma longibrachiatum described in W094/2 1 80 1, Genencor, published September 29, 1994. Especially suitable cellulases are the cellulases having color care benefits. Examples of such cellulases are cellulases described in United States Patent No. 5,520,838 (Novo). CarezymeTM and TM
Celluzyme (Novo Nordisk A/S) are especially useful. See also WO91/17244 and W09 1 /2 1 80 1.
Other suitable cellulases for fabric care and/or cleaning properties are described in W096/34092, W096/17994 and W095/24471.
Peroxidase enzymes may also be incorporated into the detergent compositions of the invention.
Peroxidasis are used in combination with oxygen sources, e.g. percarbonate, perborate, persulfate, hydrogen peroxide, etc. They are used for "solution bleaching", i.e. to prevent transfer of dyes or pigments removed from substrates during wash operations to other substrates in the wash solution. Peroxidase enzymes are known in the art, and include, for example, horseradish peroxidase, ligninase and haloperoxidase such as chloro- and bromo-peroxidase.
Peroxidase-containing detergent compositions are disclosed, for example, in PCT International Application WO 89/099813, WO 89/09813 and in Canadian Patent application No.
2,122,987, filed on October 28, 1992 and EP 927,242 published July 7, 1999. Also suitable is the laccase enzyme.
Preferred enhancers are substituted phenthiazine and phenoxasine 10-Phenothiazinepropionicacid (PPT), l0-ethylphenothiazine-4-carboxylic acid (EPC), 10-phenoxazinepropionic acid (POP) and 10-methylphenoxazine (described in WO
94/12621) and substituted syringates (C3-C5 substituted alkyl syringates) and phenols.
Sodium percarbonate or perborate are preferred sources of hydrogen peroxide.
Said cellulases and/or peroxidases, if present, are normally incorporated in the detergent composition at levels from 0.0001 % to 2% of active enzyme by weight of the detergent composition.
Said additional enzymes, when present, are normally incorporated in the detergent composition at levels from 0.0001% to 2% of active enzyme by weight of the detergent composition. The additional enzymes can be added as separate single ingredients (prills, granulates, stabilized liquids, etc. containing one enzyme ) or as mixtures of two or more enzymes ( e.g. cogranulates ).
Enzyme Oxidation Scavengers Other suitable detergent ingredients that can be added are enzyme oxidation scavengers which are described in European Published Patent application 553,607.
Examples of such enzyme oxidation scavengers are ethoxylated tetraethylene polyamines.
Enzyme Materials A range of enzyme materials and means for their incorporation into synthetic detergent compositions is also disclosed in WO 9307263 A and WO 9307260 A to Genencor International, WO 8908694 A to Novo, and U.S. 3,553,139, January 5, 1971 to McCarty et al.
Enzymes are further disclosed in U.S. 4,101,457, Place et al, July 18, 1978, and in U.S.
4,507,219, Hughes, March 26, 1985. Enzyme materials useful for liquid detergent formulations, and their incorporation into such formulations, are disclosed in U.S.
4,261,868, Hora et al, April 14, 1981. Enzymes for use in detergents can be stabilised by various techniques. Enzyme stabilisation techniques are disclosed and exemplified in U.S. 3,600,319, August 17, 1971, Gedge et al, EP 199,405 and EP 200,586, October 29, 1986, Venegas. Enzyme stabilisation systems are also described, for example, in U.S. 3,519,570. A useful Bacillus, sp. AC13 giving proteases, xylanases and cellulases, is described in WO 9401532 A to Novo.
Organic polymeric compound Organic polymeric compounds are preferred additional components of the detergent compositions or components thereof of the present invention, and are preferably present as components of any particulate component of the detergent composition where they may act sucti as to bind the particulate component together. By organic polymeric compound is meant any polymeric organic compound commonly used as dispersants, anti-redeposition or soil suspension agents in detergent compositions, including any of the high molecular weight organic polymeric compounds described as clay flocculating agents herein.
Such an organic polymeric compound is generally incorporated in the detergent compositions of the invention at a level of from 0.1% to 30%, preferably from 0.5% to 15%, most preferably from 1% to 10% by weight of the compositions.
Examples of organic polymeric compounds include the water soluble organic homo-or co-polymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms. Polymers of the latter type are disclosed in GB-A-1,596,756. Examples of such salts are polyacrylic acid or polyacrylates of MWt 1000-5000 and their copolymers with maleic anhydride, such copolymers having a molecular weight of from 2000 to 100,000, especially 40,000 to 80,000.
Polymaleates or polymaleic acid polymers and salts thereof are also suitable examples.
Polyamino compounds useful herein include those derived from aspartic acid including polyaspartic acid and such as those disclosed in EP-A-305282, EP-A-305283 and EP-A-351629.
Terpolymers containing monomer units selected from maleic acid, acrylic acid, aspartic acid and vinyl alcohol or acetate, particularly those having an average molecular weight of from 1,000 to 30,000, preferably 3,000 to 10,000, are also suitable for incorporation into the compositions of the present invention.
Other organic polymeric compounds suitable for incorporation in the detergent compositions of the present invention include cellulose derivatives such as methylcellulose, carboxymethylcellulose, hydroxypropylmethylcellulose, ethylhydroxyethylcellulose and hydroxyethylcellulose.
Further useful organic polymeric compounds are the polyethylene glycols, particularly those of molecular weight 1000 to 10000, more particularly 2000 to 8000 and most preferably about 4000.
Cationic soil removal/anti-redeposition compounds The detergent composition or components thereof of the invention may comprise water-soluble cationic ethoxylated amine compounds with particulate soil/clay-soil removal and/or anti-redeposition properties. These cationic compounds are described in more detail in EP-B-111965, US 4659802 and US 4664848. Particularly preferred of these cationic compounds are ethoxylated cationic monoamines, diamines or triamines. Especially preferred are the ethoxylated cationic monoamines, diamines and triamines of the fonnula:
X OCH2CH2)n 1~ +- CH2 -- CH2 -(- CH2)a b N+- CH2CH2O ~ X
(CH2CH2O +n_ X (CH2CH2O -)n-- X
wherein X is a nonionic group selected from the group consisting of H, C1-C4 alkyl or hydroxyalkyl ester or ether groups, and mixtures thereof, a is from 0 to 20, preferably from 0 to 4 (e.g. ethylene, propylene, hexamethylene) b is 2, 1 or 0; for cationic monoamines (b=0), n is preferably at least 16, with a typical range of from 20 to 35; for cationic diamines or triamines, n is preferably at least about 12 with a typical range of from about 12 to about 42.
These compounds where present in the composition, are generally present in an amount of from 0.01 to 30% by weight, preferably 0.05 to 10% by weight.
Suds suppressin¾ system The detergent compositions of the invention, when formulated for use in machine washing compositions, preferably comprise a suds suppressing system present at a level of from 0.01% to 15%, preferably from 0.05% to 10%, most preferably from 0.1 % to 5% by weight of the composition.
Suitable suds suppressing systems for use herein may comprise essentially any known antifoam compound, including, for example silicone antifoam compounds and 2-alkyl alcanol antifoam compounds.
By antifoam compound it is meant herein any compound or mixtures of compounds which act such as to depress the foaming or sudsing produced by a solution of a detergent composition, particularly in the presence of agitation of that solution.
Particularly preferred antifoam compounds for use herein are silicone antifoam compounds defined herein as any antifoam compound including a silicone component. Such silicone antifoam compounds also typically contain a silica component. The term "silicone" as used herein, and in general throughout the industry, encompasses a variety of relatively high molecular weight polymers containing siloxane units and hydrocarbyl group of various types.
Preferred silicone antifoam compounds are the siloxanes, particularly the polydimethylsiloxanes having trimethylsilyl end blocking units.
Other suitable antifoam compounds include the monocarboxylic fatty acids and soluble salts thereof. These materials are described in US Patent 2,954,347, issued September 27, 1960 to Wayne St. John. The monocarboxylic fatty acids, and salts thereof, for use as suds suppressor typically have hydrocarbyl chains of 10 to 24 carbon atoms, preferably 12 to 18 carbon atoms.
Suitable salts include the alkali metal salts such as sodium, potassium, and lithium salts, and ammonium and alkanolammonium salts.
Other suitable antifoam compounds include, for example, high molecular weight fatty esters (e.g. fatty acid triglycerides), fatty acid esters of monovalent alcohols, aliphatic C 18-C40 ketones (e.g. stearone) N-alkylated amino triazines such as tri- to hexa-alkylmelamines or di- to tetra alkyldiamine chlortriazines formed as products of cyanuric chloride with two or three moles of a primary or secondary amine containing 1 to 24 carbon atoms, propylene oxide, bis stearic acid amide and monostearyl di-alkali metal (e.g. sodium, potassium, lithium) phosphates and phosphate esters.
A preferred suds suppressing system comprises (a) antifoam compound, preferably silicone antifoam compound, most preferably a silicone antifoam compound comprising in combination (i) polydimethyl siloxane, at a level of from 50% to 99%, preferably 75% to 95% by weight of the silicone antifoam compound; and ... , .. , .. i .
(ii) silica, at a level of from 1% to 50%, preferably 5% to 25% by weight of the silicone/silica antifoam compound;
wherein said silica/silicone antifoam compound is incorporated at a level of from 5% to 50%, preferably 10% to 40% by weight;
(b) a dispersant compound, most preferably comprising a silicone glycol rake copolymer with a polyoxyalkylene content of 72-78% and an ethylene oxide to propylene oxide ratio of from 1:0.9 to 1:1.1, at a level of from 0.5% to 10%, preferably 1% to 10% by TM
weight; a particularly preferred silicone glycol rake copolymer of this type is DC0544, commercially available from DOW Coming under the trademark DC0544;
(c) an inert carrier fluid compound, most preferably comprising a C 16-C 18 ethoxylated alcohol with a degree of ethoxylation of from 5 to 50, preferably 8 to 15, at a level of from 5% to 80%, preferably 10% to 70%, by weight;
A highly preferred particulate suds suppressing system is described in EP-A-0210731 and comprises a silicone antifoam compound and an organic carrier material having a melting point in the range 50 C to 85 C, wherein the organic carrier material comprises a monoester of glycerol and a fatty acid having a carbon chain containing from 12 to 20 carbon atoms. EP-A-0210721 discloses other preferred particulate suds suppressing systems wherein the organic carrier material is a fatty acid or alcohol having a carbon chain containing from 12 to 20 carbon atoms, or a mixture thereof, with a melting point of from 45 C to 80 C.
Polymeric dye transfer inhibitin pY agents The detergent compositions herein may also comprise from 0.01% to 10 %, preferably from 0.05% to 0.5% by weight of polymeric dye transfer inhibiting agents.
The polymeric dye transfer inhibiting agents are preferably selected from polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, polyvinylpyrrolidone polymers or combinations thereof, whereby these polymers can be cross-linked polymers.
a) Polyamine N-oxide polymers Polyamine N-oxide polymers suitable for use herein contain units having the following structure formula :
P
= ( (~) Ax I
R
wherein P is a polymerisable unit, and ~1 RIO ~1 A is-C-N-, -N-C-, CO, C, -0-, -S-, -N-; xis 0 or 1;
R 1 is H or C 1-6 linear or branched alkyl; or may form a heterocyclic group with R;
R are aliphatic, ethoxylated aliphatics, aromatic, heterocyclic or alicyclic groups or any combination thereof whereto the nitrogen of the N-O group can be attached or wherein the nitrogen of the N-O group is part of these groups.
The N-O group can be represented by the following general structures :
~
(Rj) x -N-(R2)y; ~
(R3)z or --- N-(Rl)x wherein RI, R2, and R3 are aliphatic groups, aromatic, heterocyclic or alicyclic groups or combinations thereof, x or/and y or/and z is 0 or I and wherein the nitrogen of the N-O group can be attached or wherein the nitrogen of the N-O group forms part of these groups. The N-O
group can be part of the polymerisable unit (P) or can be attached to the polymeric backbone or a combination of both.
Suitable polyamine N-oxides wherein the N-O group forms part of the polymerisable unit comprise polyamine N-oxides wherein R is selected from aliphatic, aromatic, alicyclic or heterocyclic groups. One class of said polyamine N-oxides comprises the group of polyamine N-oxides wherein the nitrogen of the N-O group forms part of the R-group.
Preferred polyamine N-oxides are those wherein R is a heterocyclic group such as pyridine, N-substituted pyrrole, imidazole, N-substituted pyrrolidine, piperidine, quinoline, acridine and derivatives thereof.
Other suitable polyamine N-oxides are the polyamine oxides whereto the N-O
group is attached to the polymerisable unit. A preferred class of these polyamine N-oxides comprises the polyamine N-oxides having the general formula (1) wherein R is an aromatic,heterocyclic or alicyclic groups wherein the nitrogen of the N-O functional group is part of said R group.
Examples of these classes are polyamine oxides wherein R is a heterocyclic compound such as pyridine, N-substituted pyrrole, imidazole and derivatives thereof.
The polyamine N-oxides can be obtained in almost any degree of polymerisation.
The degree of polymerisation is not critical provided the material has the desired water-solubility and dye-suspending power. Typically, the average molecular weight is within the range of 500 to 1000,000.
b) Copolymers ofN-vinYlpyrrolidone and N-vinvlimidazole Suitable herein are copolymers ofN-vinylimidazole and N-vinylpyrrolidone having a preferred average molecular weight range of from 5,000 to 100,000, or 5,000 to 50,000.
The preferred copolymers have a molar ratio of N-vinylimidazole to N-vinylpyrrolidone from I
to 0.2.
c) Polyvinylpyrrolidone The detergent compositions herein may also utilize polyvinylpyrrolidone ("PVP") having an average molecular weight of from 2,500 to 400,000. Suitable polyvinylpyrrolidones are commercially available from ISP Corporation, New York, NY and Montreal, Canada under the product names PVP K- 15 (viscosity molecular weight of 10,000), PVP K-30 (average molecular weight of 40,000), PVP K-60 (average moleciilar weight of 160,000), and PVP K-90 (average molecular weight of 360,000). PVP K-15 is also available from ISP Corporation.
Other suitable polyvinylpyrrolidones which are commercially available from BASF Corporation include SokalaTMn HP 165 and Sokalan HP 12.
d) Polyvinvloxazolidone The detergent compositions herein may also utilize poiyvinyloxazolidones as polymeric dye transfer inhibiting agents. Said polyvinyloxazolidones have an average molecular weight of from 2,500 to 400,000.
e) Polyvinylimidazole . . , , i CA 02268772 2003-08-05 The detergent compositions herein may also utilize polyvinylimidazole as polymeric dye transfer inhibiting agent. Said polyviriylimidazoles preferably have an average molecular weight of from 2,500 to 400,000.
Optical brightener The detergent compositions herein also optionally contain from about 0.005% to 5% by weight of certain types of hydrophilic optical brighteners.
Hydrophilic optical brighteners useful herein include those having the structural formula:
R, R2 )7N H H N 41"
N
O>--N O C=C N--CN
N ~
R2~N H S03M S03M H Rt wherein R1 is selected from anilino, N-2-bis-hydroxyethyl and NH-2-hydroxyethyl; R2 is selected from N-2-bis-hydroxyethyl, N-2-hydroxyethyl-N-methylamino, morphilino, chloro and amino; and M is a salt-forming cation such as sodium or potassium.
When in the above formula, R1 is anilino, R2 is N-2-bis-hydroxyethyl and M is a cation such as sodium, the brightener is 4,4',-bis[(4-anilino-6-(N-2-bis-hydroxyethyl)-s-triazine-2-yl)amino]-2,2'-stilbenedisulfonic acid and disodium salt. This particular brightener species is cor-,mercially marketed under the trademark Tinopal-UNPA-GX by Ciba-Geigy Corporation.
Tinopal-UNPA-GX is the preferred hydrophilic optical brightener useful in the detergent compositions herein.
When in the above fotmula, R1 is anilino, R2 is N-2-hydroxyethyl-N-2-methylamino and M is a cation such as sodium, the brightener is 4,4'-bis[(4-anilino-6-(N-2-hydroxyethyl-N-methylamino)-s-triazine-2-yi)amino]2,2'-stilbenedisulfonic acid disodium salt.
This particular brightener species is commercially marketed under the trademark Tinopal 5BM-GX
by Ciba-Geigy Corporation.
When in the above formula, R1 is anilino, R2 is morphilino and M is a cation such as sodium, the brightener is 4,4'-bis[(4-anilino-6-morphilino-s-triazine-2-yl)amino]2,2'-stilbenedisulfonic acid, sodium salt. This particular brightener species is commercially marketed under the trademark Tinopal AMS-GX by Ciba Geigy Corporation.
Polymeric Soil Release Agent Known polymeric soil release agents, hereinafter "SRA", can optionally be employed in the present detergent compositions. If utilized, SRA's will generally comprise from 0.01% to 10.0%, typically from 0.1 % to 5%, preferably from 0.2% to 3.0% by weight, of the compositions.
Preferred SRA's typically have hydrophilic segments to hydrophilize the surface of hydrophobic fibers such as polyester and nylon, and hydrophobic segments to deposit upon hydrophobic fibers and remain adhered thereto through completion of washing and rinsing cycles, thereby serving as an anchor for the hydrophilic segments. This can enable stains occurring subsequent to treatment with the SRA to be more easily cleaned in later washing procedures.
Preferred SRA's include oligomeric terephthalate esters, typically prepared by processes involving at least one transesterification/oligomerization, often with a metal catalyst such as a titanium(IV) alkoxide. Such esters may be made using additional monomers capable of being incorporated into the ester structure through one, two, three, four or more positions, without, of course, forming a densely crosslinked overall structure.
Suitable SRA's include a sulfonated product of a substantially linear ester oligomer comprised of an oligomeric or polymeric ester backbone of terephthaloyl and oxyalkyleneoxy repeat units and allyl-derived sulfonated tenninal moieties covalently attached to the backbone, for example as described in U.S. 4,968,451, November 6, 1990 to J.J. Scheibel and E.P.
Gosselink. Such ester oligomers can be prepared by: (a) ethoxylating allyl alcohol; (b) reacting the product of (a) with dimethyl terephthalate ("DMT") and 1,2-propylene glycol ("PG") in a two-stage transesterification/oligomerization procedure; and (c) reacting the product of (b) with sodium metabisulfite in water. Other SRA's include the nonionic end-capped 1,2-propylene/polyoxyethylene terephthalate polyesters of U.S. 4,711,730, December 8, 1987 to Gosselink et al., for example those produced by transesterification/oligomerization of poly-(ethyleneglycol) methyl ether, DMT, PG and poly(ethyleneglycol) ("PEG"). Other examples of SRA's include: the partly- and fully- anionic-end-capped oligomeric esters of U.S. 4,721,580, January 26, 1988 to Gosselink, such as oligomers from ethylene glycol ("EG"), PG, DMT and Na-3,6-dioxa-8-hydroxyoctanesulfonate; the nonionic-capped block polyester oligomeric compounds of U.S. 4,702,857, October 27, 1987 to Gosselink, for example produced from = 36 DMT, methyl (Me)-capped PEG and EG and/or PG, or a combination of DMT, EG
and/or PG, Me-capped PEG and Na-dimethyl-5-sulfoisophthalate; and the anionic, especially sulfoaroyl, end-capped terephthalate esters of U.S. 4,877,896, October 31, 1989 to Maldonado, Gosselink et al., the latter being typical of SRA's useful in both laundry and fabric conditioning products, an example being an ester composition made from m-sulfobenzoic acid monosodium salt, PG and DMT, optionally but preferably further comprising added PEG, e.g., PEG 3400.
SRA's also include: simple copolymeric blocks of ethylene terephthalate or propylene terephthalate with polyethylene oxide or polypropylene oxide terephthalate, see U.S. 3,959,230 to Hays, May 25, 1976 and U.S. 3,893,929 to Basadur, July 8, 1975; cellulosic derivatives such TM
as the hydroxyether cellulosic polymers available as METHOCEL from Dow; the C1-C4 alkyl celluloses and C4 hydroxyalkyl celluloses, see U.S. 4,000,093, December 28, 1976 to Nicol, et al.; and the methyl cellulose ethers having an average degree of substitution (methyl) per anhydroglucose unit from about 1.6 to about 2.3 and a solution viscosity of from about 80 to about 120 centipoise measured at 20 C as a 2% aqueous solution. Such materials are available as METOLOSE SM100 and METOLOSE SM200, which are the trade names of methyl cellulose ethers manufactured by Shin-etsu Kagaku Kogyo KK.
Additional classes of SRA's include: (1) nonionic terephthalates using diisocyanate coupling agents to link polymeric ester structures, see U.S. 4,201,824, Violland et al.
and U.S. 4,240,918 Lagasse et al.; and (II) SRA's with carboxylate terminal groups made by adding trimellitic anhydride to known SRA's to convert terminal hydroxyl groups to trimellitate esters. With the proper selection of catalyst, the trimellitic anhydride forms linkages to the terminals of the polymer through an ester of the isolated carboxylic acid of trimellitic anhydride rather than by opening of the anhydride linkage. Either nonionic or anionic SRA's may be used as starting materials as long as they have hydroxyl terminal groups which may be esterified. See U.S.
4,525,524 Tung et al.. Other classes include: (111) anionic terephthalate-based SRA's of the urethane-linked variety, see U.S. 4,201,824, Violland et al.;
Other optional ineredients Other optional ingredients suitable for inclusion in the compositions of the invention include perfumes, colours and filler salts, with sodium sulfate being a preferred filler salt.
Near neutral wash pH deterQent formulation While the detergent compositions of the present invention are operative within a wide range of wash pHs (e.g. from about 5 to about 12), they are particularly suitable when formulated to provide a near neutral wash pH, i.e. an initial pH of from about 7.0 to about 10.5 at a concentration of from about 0.1 to about 2% by weight in water at 20 C. Near neutral wash pH
formulations are better for enzyme stability and for preventing stains from setting. In such formulations, the wash pH is preferably from about 7.0 to about 10.5, more preferably from about 8.0 to about 10.5, most preferably from 8.0 to 9Ø
Preferred near neutral wash pH detergent formulations are disclosed to European Patent 95205 published November 30, 1983, J.H.M. Wertz and P.C.E. Goffinet.
Highly preferred compositions of this type also preferably contain from about 2 to about 10% by weight of citric acid and minor amounts (e.g., less than about 20% by weight) of neutralizing agents, buffering agents, phase regulants, hydrotropes, enzymes, enzyme stabilizing agents, polyacids, suds regulants, opacifiers, anti-oxidants, bactericides, dyes, perfumes and brighteners, such as those described in US Patent 4,285,841 to Barrat et al., issued August 25, 1981 .
Form of the compositions The compositions in accordance with the invention can take a variety of physical forms including granular, tablet, flake, pastille and bar and liquid forms. Liquids may be aqueous or non-aqueous and may be in the fonn of a gel. The compositions are particularly the so-called concentrated granular detergent compositions adapted to be added to a washing machine by means of a dispensing device placed in the machine drum with the soiled fabric load.
Such granular detergent compositions or components thereof in accordance with the present invention can be made via a variety of methods, including spray-drying, dry-mixing, extrusion, agglomerating and granulation. The cationic quaternised surfactant can be added to the other detergent components by mixing, agglomeration (preferably combined with a carrier material), granulation or as a spray-dried component.
The compositions in accord with the present invention can also be used in or in combination with bleach additive compositions, for example comprising chlorine bleach.
In one aspect of the invention the mean particle size of the components of granular compositions in accordance with the invention, should preferably be such that no more than 15% of the particles are greater than 18mm in diameter and not more than 15% of the particles are less than 0.25mm in diameter. Preferably the mean particle size is such that from 10% to 50% of the particles has a particle size of from 0.2mm to 0.7mm in diameter.
The term mean particle size as defined herein is calculated by sieving a sample of the composition into a number of fractions (typically 5 fractions) on a series of sieves, preferably Tyler sieves. The weight fractions thereby obtained are plotted against the aperture size of the sieves. The mean particle size is taken to be the aperture size through which 50% by weight of the sample would pass.
In a further aspect of the invention at last 80%, preferably at least 90% by weight of the composition comprises particles of mean particle size at least 0.8 mm, more preferably at least 1.0 mm and most preferably from 1.0, or 1.5 to 2.5 mm. Most preferably at least 95% of the particles will have such a mean particle size. Such particles are preferably prepared by an extrusion process.
The bulk density of granular detergent compositions in accordance with the present invention typically have a bulk density of at least 400, preferably at least 600 g/litre, more preferably from 650 g/litre to 1200 g/litre. Bulk density is measured by means of a simple funnel and cup device consisting of a conical funnel moulded rigidly on a base and provided with a flap valve at its lower extremity to allow the contents of the funnel to be emptied into an axially aligned cylindrical cup disposed below the funnel. The funnel is 130 mm high and has internal diameters of 130 mm and 40 mm at its respective upper and lower extremities. It is mounted so that the lower extremity is 140 mm above the upper surface of the base. The cup has an overall height of 90 mm, an internal height of 87 mm and an internal diameter of 84 mm. Its nominal volume is 500 ml.
To carry out a measurement, the funnel is filled with powder by hand pouring, the flap valve is opened and powder allowed to overfill the cup. The filled cup is removed from the frame and excess powder removed from the cup by passing a straight edged implement eg; a knife, across its upper edge. The filled cup is then weighed and the value obtained for the weight of powder doubled to provide a bulk density in g/litre. Replicate measurements are made as required.
Compacted solids may be manufactured using any suitable compacting process, such as tabletting, briquetting or extrusion, preferably tabletting. Preferably tablets for use in dish washing processes, are manufactured using a standard rotary tabletting press using compression forces of from 5 to 13 KN/cm2, more preferably from 5 to 11 KN/cm2 so that the compacted solid has a minimum hardness of 176N to 275N, preferably from 195N to 245N, measured by a C100 hardness test as supplied by I. Holland instruments. This process may be used to prepare homogeneous or layered tablets of any size or shape. Preferably tablets are symmetrical to ensure the uniform dissolution of the tablet in the wash solution.
Laundry washing method Machine laundry methods herein typically comprise treating soiled laundry with an aqueous wash solution in a washing machine having dissolved or dispensed therein an effective amount of a machine laundry detergent composition in accord with the invention. By an effective amount of the detergent composition it is meant from l Og to 300g of product dissolved or dispersed in a wash solution of volume from 5 to 65 litres, as are typical product dosages and wash solution volumes commonly employed in conventional machine laundry methods. Dosage is dependent upon the particular conditions such as water hardness and degree of soiling of the soiled laundry.
The detergent composition may be dispensed from the drawer dispenser of a washing machine or may be sprinkled over the soiled laundry placed in the machine.
In one use aspect a dispensing device is employed in the washing method. The dispensing device is charged with the detergent product, and is used to introduce the product directly into the drum of the washing machine before the commencement of the wash cycle. Its volume capacity should be such as to be able to contain sufficient detergent product as would normally be used in the washing method.
The dispensing device containing the detergent product is placed inside the drum before the commencement of the wash, before, simultaneously with or after the washing machine has been loaded with laundry. At the commencement of the wash cycle of the washing machine water is introduced into the drum and the drum periodically rotates. The design of the dispensing device should be such that it permits containment of the dry detergent product but then allows release of this product during the wash cycle in response to its agitation as the drum rotates and also as a result of its contact with the wash water.
To allow for release of the detergent product during the wash the device may possess a number of openings through which the product may pass. Alternatively, the device may be made of a material which is permeable to liquid but impermeable to the solid product, which will allow release of dissolved product. Preferably, the detergent product will be rapidly released at the start of the wash cycle thereby providing transient localised high concentrations of product in the drum of the washing machine at this stage of the wash cycle.
Preferred dispensing devices are reusable and are designed in such a way that container integrity is maintained in both the dry state and during the wash cycle. Especially preferred dispensing devices for use with the composition of the invention have been described in the following patents; GB-B-2, 157, 717, GB-B-2, 157, 718, EP-A-0201376, EP-A-0288345 and EP-A-0288346. An article by J.Bland published in Manufacturing Chemist, November 1989, pages 41-46 also describes especially preferred dispensing devices for use with granular laundry products which are of a type commonly know as the "granulette". Another preferred dispensing device for use with the compositions of this invention is disclosed in PCT
Patent Application No. W094/11562.
Especially preferred dispensing devices are disclosed in European Patent Application Publication Nos. 0343069 & 0343070. The latter Application discloses a device comprising a flexible sheath in the form of a bag extending from a support ring defining an orifice, the orifice being adapted to admit to the bag sufficient product for one washing cycle in a washing process.
A portion of the washing medium flows through the orifice into the bag, dissolves the product, and the solution then passes outwardly through the orifice into the washing medium. The support ring is provided with a masking arrangement to prevent egress of wetted, undissolved, product, this arrangement typically comprising radially extending walls extending from a central boss in a spoked wheel configuration, or a similar structure in which the walls have a helical form.
Alternatively, the dispensing device may be a flexible container, such as a bag or pouch. The bag may be of fibrous construction coated with a water impermeable protective material so as to retain the contents, such as is disclosed in European published Patent Application No. 0018678.
Alternatively it may be formed of a water-insoluble synthetic polymeric material provided with an edge seal or closure designed to rupture in aqueous media as disclosed in European published Patent Application Nos. 0011500, 0011501, 0011502, and 0011968. A convenient form of water frangible closure comprises a water soluble adhesive disposed along and sealing one edge of a pouch formed of a water impermeable polymeric film such as polyethylene or polypropylene.
Machine dishwashing method . . , . . . , i .
Any suitable methods for machine dishwashing or cleaning soiled tableware, particularly soiled silverware are envisaged.
A preferred machine dishwashing method comprises treating soiled articles selected from crockery, glassware, hollowware, silverware and cutlery and mixtures thereof, with an aqueous liquid having dissolved or dispensed therein an effective amount of a machine dishwashing composition in accord with the invention. By an effective amount of the machine dishwashing composition it is meant from 8g to 60g of product dissolved or dispersed in a wash solution of volume from 3 to 10 litres, as are typical product dosages and wash solution volumes commonly employed in conventional machine dishwashing methods.
Packaging for the compositions Commercially marketed executions of the bleaching compositions can be packaged in any suitable container including those constructed from paper, cardboard, plastic materials and any suitable laminates. A preferred packaging execution is described in WO
95/02681.
Abbreviations used in Examples In the detergent compositions, the abbreviated component identifications have the following meanings:
LAS . Sodium linear C 12 alkyl benzene sulfonate TAS . Sodium tallow alkyl sulfate CxyAS . Sodium C I x- C I y alkyl sulfate C46SAS . Sodium C 14 - C 16 secondary (2,3) alkyl sulfate CxyEzS . Sodium C I x-C 1 y alkyl sulfate condensed with z moles of ethylene oxide CxyEz . C I x-C 1 y predominantly linear primary alcohol condensed with an average of z moles of ethylene oxide QAS I . R2.N+(CH3)2(C2H4OH) with R2 = C9 - C I I linear alkyl QAS 2 . R2.N+(CH3)2(C2H4OH) with approximately 50% R2 = C8 linear alkyl; approximately 50%R2=C10 QAS 3 . R2.N+(CH3)2(C2H4OH) with approximately 40% R2 = C I I linear alkyl; approximately 60% R2 = C9 linear alkyl QAS 4 . R2.N+(CH3)2(C2H4OH) with R2 = C6 linear alkyl QAS 5 . R2.N+(CH3)2(C2H4OH) with R2 = C 10 linear alkyl Soap . Sodium linear alkyl carboxylate derived from an 80/20 mixture of tallow and coconut oils CFAA . C 12-C 14 (coco) alkyl N-methyl glucamide TFAA . C 16-C 18 alkyl N-methyl glucamide TPKFA . C 12-C 14 topped whole cut fatty acids STPP . Anhydrous sodium tripolyphosphate TSPP . Tetrasodium pyrophosphate Zeolite A . Hydrated Sodium Aluminosilicate of formula Na12(A102SiO2)I2.27H20 having a primary particle size in the range from 0.1 to 10 micrometers Zeolite MAP . Hydrated sodium aluminosilicate zeolite MAP
having a silicon to aluminium ratio of 1.07 NaSKS-6 . Crystalline layered silicate of formula 8-Na2Si2O5 Citric acid . Anhydrous citric acid Borate . Sodium borate Carbonate . Anydrous sodium carbonate with a particle size between 200 m and 900 m Bicarbonate . Anhydrous sodium bicarbonate with a particle size distribution between 400 m and 1200pm Silicate . Amorphous Sodium Silicate (Si02:Na20 = 2.0:1) Sodium sulfate : Anhydrous sodium sulfate Citrate . Tri-sodium citrate dihydrate of activity 86.4%
with a particle size distribution between 425pm and 850 m MA/AA . Copolymer of 1:4 maleic/acrylic acid, average molecular weight about 70,000 AA . Sodium polyacrylate polymer of average molecular weight 4,500 CMC Sodium carboxymethyl cellulose Cellulose ether : Methyl cellulose ether with a degree of polymerization of 650 available from Shin Etsu Chemicals Protease . Proteolytic enzyme of activity 4KNPU/g sold by NOVO Industries A/S under the trademark Savinase Alcalase . Proteolytic enzyme of activity 3AU/g sold by NOVO Industries A/S
Cellulase . Cellulytic enzyme of activity 1000 CEVU/g sold by NOVO Industries A/S under the trademark Carezyme Amylase . Amylolytic enzyme of activity 120KNU/g sold by NOVO Industries A/S under the trademark Termamyl 120T
Lipase . Lipolytic enzyme of activity 100KLU/g sold by NOVO Industries A/S under the trademark Lipolase TM
Endolase . Endoglucanase enzyme of activity 3000 CEVU/g.
sold by NOVO Industries A/S
PB4 . Sodium perborate tetrahydrate of nominal formula NaBO2.3H20.H202 PBI . Anhydrous sodium perborate bleach of nominal formula NaBO2.H202 Percarbonate Sodium percarbonate of nominal formula 2Na2CO3.3H2O2 NOBS . Nonanoyloxybenzene sulfonate in the form of the sodium salt TAED Tetraacetylethylenediamine Mn catalyst . MnlV2(m-O)3(1,4,7-trimethyl-1,4,7-triazacyclononane)2(PF6)2, as described in U.S.
Pat. Nos. 5,246,621 and 5,244,594.
DTPA . Diethylene triamine pentaacetic acid DTPMP . Diethylene triamine penta (methylene phosphonate), marketed by Monsanto under the Trademark Dequest 2060 Photoactivated bleach : Sulfonated Zinc Phthlocyanine encapsulated in bleach dextrin soluble polymer Brightener 1 Disodium 4,4'-bis(2-sulphostyry)biphenyl Brightener 2 . Disodium 4,4'-bis(4-anilino-6-morpholino-1.3.5-triazin-2-yl)amino) stilbene-2:2'-disulfonate HEDP . 1,1-hydroxvethane diphosphonic acid EDDS . Ethylenediamine-N, N-disuccinic acid QEA . bis((C2H5O)(C2H4On)(CH3) -N+-C6H12-N+ -(CH3) bis((C2H5O)-(C2H4O)n), wherein n= from 20 to 30 PEGX . Polyethylene glycol, with a molecular weight of x PEO . Polyethylene oxide, with a molecular weight of 50,000 TEPAE . Tetraethylenepentaamine ethoxylate PVP . Polyvinylpyrrolidone polymer PVNO Polyvinylpyridine N-oxide PVPVI Copolymer of polyvinylpyrrolidone and vinylimidazole SRP I . Anionically end capped esters with oxyethylene oxy and terephtaloyl backbone SRP 2 . Diethoxylated poly (1, 2 propylene terephthalate) short block polymer Silicone antifoam . Polydimethylsiloxane foam controller with siloxane-oxyalkylene copolymer as dispersing agent with a ratio of said foam controller to said dispersing agent of 10:1 to 100:1 Wax . Paraffin wax In the following examples all levels are quoted as % by weight of the composition:
Examole 1 The following high density granular laundry detergent compositions A to F of particular utility under European machine wash conditions are examples of the present invention:
A B C D E F
LAS 8.0 8.0 8.0 8.0 8.0 8.0 C25E3 3.4 3.4 3.4 3.4 3.4 3.4 C46AS 1.0 2.0 2.5 - 3.0 4.0 C68AS 3.0 2.0 5.0 7.0 1.0 0.5 QAS 1 0.05 - - - - 0.8 QAS 2 - 0.05 0.8 - - -QAS 3 - - - 1.4 1.0 -Zeolite A 18.1 18.1 16.1 18.1 18.1 18.1 Zeolite MAP - 4.0 3.5 - - -Carbonate 12.0 12.0 13.0 26.0 26.0 26.0 Silicate 1.4 1.4 1.4 3.0 3.0 3.0 NaSKS-6(citric acid 11.0 6.0 6.0 - - 12.5 79:21) Sodium Sulfate 26.1 26.1 25.0 17.1 24.1 9.1 MA/AA 0.3 0.3 0.3 0.3 0.3 0.3 CMC 0.2 0.2 0.2 0.2 0.2 0.2 PB4 9.0 9.0 9.0 9.0 9.0 9.0 TAED 1.5 1.5. 1.0 1.5 - 1.5 Mn Catalyst - 0.03 0.07 - - -DTPMP 0.1 0.3 - - 0.2 0.3 HEDP 0.3 0.3 0.2 0.2 0.3 0.3 EDDS - - 0.4 0.2 - -QEA 1.0 0.8 0.7 1.2 - 0.5 Protease 0.85 0.85 0.26 0.85 0.85 0.85 Amylase 0.1 0.1 0.4 0.3 0.1 0.1 Lipase 0.05 0.6 0.7 0.1 0.07 0.1 Photoactivated 15 ppm 15 ppm 15 ppm 15 ppm 15 ppm 15 ppm bleach (ppm) Brightener 1 0.09 0.09 - 0.09 0.09 0.09 Perfume 0.3 0.3 0.3 0.3 0.3 0.3 Silicone antifoam 0.5 0.5 0.5 0.5 0.5 0.5 Misc/minors to 100%
Density in g/litre 850 850 850 850 850 850 Example 2 The following granular laundry detergent compositions G to I of particular utility under European machine wash conditions are examples of the present invention:
G H I
LAS 5.3 5.61 4.76 TAS 1.3 1.86 1.57 C45AS - 2.24 3.89 C25E3S - 0.76 1.18 C45E7 3.3 - 5.0 C25E3 - 5.5 -QAS 1 0.8 3.0 2.5 STPP 19.7 - -Zeolite A - 19.5 19.5 Zeolite MAP 2.0 - -NaSKS-6/citric acid - 13.0 10.6 (79:21) Carbonate 5.1 18.4 21.4 Bicarbonate - 2.0 2.0 Silicate 6.8 - -Sodium Sulfate 37.8 - 7.0 MA/AA 0.8 1.6 1.6 CMC 0.2 0.4 0.4 PB4 5.0 12.7 -Percarbonate 5.0 - 12.7 TAED 0.5 3.1 -Mn Catalyst 0.04 - -DTPMP 0.25 0.2 0.2 HEDP - 0.3 0.3 QEA 0.9 - -Protease 0.85 2.8 0.85 Lipase 0.15 0.25 0.15 Cellulase 0.28 0.28 0.28 Amylase 0.4 0.1 0.1 PVP 0.9 1.3 0.8 Photoactivated bleach 15 ppm 27 ppm 27 ppm (ppm) Brightener 1 0.08 0.19 0.19 Brightener 2 - 0.04 0.04 Perfume 0.3 0.3 0.3 Silicone antifoam 0.5 2.4 2.4 Minors/misc to 1.3 1.1 0.3 100%
Example 3 The following detergent formulations of particular utility under European machine wash conditions are examples of the present invention.
J K L M
Blown powder LAS 6.0 5.0 11.0 6.0 TAS 2.0 - - 2.0 QAS2 0.8 1.0 - -QAS 3 - - 1.5 0.6 Zeolite A - 27.0 - 20.0 STPP 24.0 - 24.0 -Sulfate 6.0 6.0 9.0 -MA/AA 2.0 4.0 6.0 4.0 Silicate 7.0 3.0 3.0 3.0 CMC 1.0 1.0 0.5 0.6 QEA - - 1.4 0.5 Brightener 0.2 0.2 0.2 0.2 Silicone antifoam 1.0 1.0 1.0 0.3 DTPMP 0.4 0.4 0.2 0.4 Spray on C45E7 - - - 5.0 C45E5 2.5 2.5 2.0 -C45E3 2.6 2.5 2.0 -Perfume 0.3 0.3 0.3 0.2 Silicone antifoam 0.3 0.3 0.3 -Dry additives Sulfate 3.0 3.0 5.0 10.0 Carbonate 6.0 13.0 15.0 11.0 PB l - - - 1.5 PB4 18.0 18.0 10.0 18.5 TAED 3.0 2.0 - 2.0 EDDS - 2.0 2.4 -Protease 3.25 1.0 3.25 3.25 Lipase 0.4 0.5 0.4 0.2 Amylase 0.2 0.2 0.2 0.4 Photoactivated bleach - - - 0.15 Minors/misc to 100%
ExamRie 4 The following granular detergent formulations are examples of the present invention.
Formulation N is particularly suitable for usage under Japanese machine wash conditions.
Formulations 0 to S are particularly suitable for use under US machine wash conditions.
Blown powder LAS 22.0 5.0 4.0 9.0 8.0 7.0 C45AS 7.0 7.0 6.0 - - -C46AS - 4.0 3.0 - - -C45E35 - 3.0 2.0 8.0 5.0 4.0 QAS 1 0.5 - - - - -QAS 2 - 0.5 - 2.0 - 3.5 QAS 3 - - 0.8 - 3.0 -Zeolite A 6.0 16.0 14.0 19.0 16.0 14.0 MA/AA 6.0 3.0 3.0 - - -AA - 3.0 3.0 2.0 3.0 3.0 Sodium Sulfate 6.0 3.3 2.3 24.0 13.3 19.3 Silicate 5.0 1.0 1.0 2.0 1.0 1.0 Carbonate 28.3 9.0 3.0 25.7 8.0 6.0 QEA 0.4 0.4 - - 0.5 1.1 PEG 4000 0.5 - 1.5 1.0 1.5 1.0 Sodium oleate 2.0 - - - - -DTPA 0.4 - 0.5 - - 0.5 Brightener 0.2 0.3 0.3 0.3 0.3 0.3 Spray on C25E5 1.0 - - - - -C45E7 - 2.0 2.0 0.5 2.0 2.0 Perfume 1.0 0.3 0.3 1.0 0.3 0.3 Agglomerates C45AS - 5.0 5.0 - 5.0 5.0 LAS - 2.0 2.0 - 2.0 2.0 Zeolite A - 7.5 7.5 - 7.5 7.5 HEDP - 1.0 - - 2.0 -Carbonate - 4.0 4.0 - 4.0 4.0 PEG 4000 - 0.5 0.5 - 0.5 0.5 Misc (water etc) - 2.0 2.0 - 2.0 2.0 Dry additives TAED 1.0 2.0 3.0 1.0 3.0 2.0 PB4 - 1.0 4.0 - 5.0 0.5 PBI 6.0 - - - - -Percarbonate - 5.0 12.5 - - -Carbonate - 5.3 0.8 - 2.5 4.0 NOBS 4.5 - 6.0 - - 0.6 Cumeme sulfonic - 2.0 2.0 - 2.0 2.0 acid Lipase - 0.4 0.4 - - 0.2 Cellulase - 0.2 0.2 - 0.2 0.2 Amylase 1.6 0.3 0.3 0.1 0.05 0.2 Protease - 1.6 1.6 - 1.6 1.6 PVPVI - 0.5 - - - -PVP 0.5 - - - - -PVNO - 0.5 0.5 - - -SRP1 - 0.5 0.5 - - -Silicone antifoam - 0.2 0.2 - 0.2 0.2 Minors/misc to 100%
Example 5 The following granular detergent formulations are examples of the present invention.
Formulations W and X are of particular utility under US machine wash conditions. Y is of particular utility under Japanese machine wash conditions T U V
Blown Powder Zeolite A 30.0 22.0 6.0 Sodium Sulfate 19.0 5.0 7.0 MA/AA 3.0 2.0 6.0 LAS 14.0 12.0 22.0 C45AS 8.0 7.0 7.0 QAS 1 0.7 - -QAS 2 - 2.2 -QAS 5 - - 1.5 Silicate - 1.0 5.0 Soap - - 2.0 Brightener 1 0.2 0.2 0.2 Carbonate 7.0 16.0 20.0 DTPMP - 0.4 0.4 Spray On - 1.0 5.0 C45E7 1.0 1.0 1.0 Dry additives HEDP 1.0 - -PVPVI/PVNO 0.5 0.5 0.5 Protease 3.25 3.25 3.25 Lipase 0.4 0.1 0.2 Amylase 0.1 0.1 0.1 Cellulase 0.1 0.1 0.1 TAED - 6.1 4.5 PB 1 11.0 5.0 6.0 Sodium Sulfate - 6.0 -Balance (Moisture and Misc.) ExamBle 6 The following granular detergent compositions of particular utility under European wash conditions were are examples of the present invention.
w x Blown powder Zeolite A 20.0 -STPP - 20.0 LAS 6.0 6.0 C68AS 2.0 2.0 QAS 1 0.01 -QA S 4 - 0.6 Silicate 3.0 8.0 MA/AA 4.0 2.0 CMC 0.6 0.6 Brightener 1 0.2 0.2 DTPMP 0.4 0.4 Spray on C45E7 5.0 5.0 Silicone antifoam 0.3 0.3 Perfume 0.2 0.2 Dry additives Carbonate 14.0 9.0 PB 1 1.5 2.0 PB4 18.5 13.0 TAED 2.0 2.0 Photoactivated bleach 15 ppm 15 ppm Protease 1.0 1.0 Lipase 0.2 0.08 Amylase 0.4 0.4 Cellulase 0.1 0.1 Sulfate 10.0 20.0 Balance (Moisture and Misc.) 10.6 5.12 Density (g/litre) 700 700 Example 7 The foilowing detergent compositions are examples of the present invention:
Y Z AA
Blown Powder Zeolite A 15.0 15.0 15.0 Sodium Sulfate 0.0 0.0 0.0 LAS 3.0 3.0 3.0 QAS 2 1.0 - -QAS 5 - 3.0 2.0 DTPMP 0.4 0.2 0.4 CMC 0.4 0.4 0.4 MA/AA 4.0 2.0 2.0 Agglomerates LAS 5.0 5.0 5.0 TAS 2.0 2.0 1.0 Silicate 3.0 3.0 4.0 QEA - 1.0 0.6 Mn Catalyst 0.03 - -Zeolite A 8.0 8.0 8.0 Carbonate 8.0 8.0 4.0 Spray On Perfume 0.3 0.3 0.3 C45E7 2.0 2.0 2.0 C25E3 2.0 - -Dry additives Citrate 5.0 - 2.0 Bicarbonate - 3.0 -Carbonate 8.0 12.5 5.5 Percarbonate - 7.0 10.0 TAED 6.0 2.0 5.0 PB 1 14.0 7.0 8.0 EDDS - 2.0 -PolyethyleneoxideofMW 5,000,000 - - 0.2 Bentonite clay - - 10.0 Protease 1.0 3.25 3.25 Lipase 0.4 0.1 -Amylase 0.6 0.6 1.0 Cellulase 0.6 0.6 -Silicone antifoam 5.0 5.0 5.0 Dry additives Sodium sulfate 0.0 3.0 0.0 Balance (Moisture and Misc.) to 100%
Density (g/litre) 850 850 850 Example 8 The following detergent formulations are examples of the present invention:
BB CC DD EE
LAS 20.0 14.0 24.0 22.0 QAS 1 0.7 1.0 0 0 QAS 2 - - 0.08 -QAS 4 - - - 1.0 TFAA - 1.0 - -C25E5/C45E7 - 2.0 - 0.5 C45E3S - 2.5 - -STPP 30.0 18.0 30.0 22.0 Silicate 9.0 5.0 10.0 8.0 Carbonate 13.0 7.5 - 5.0 Bicarbonate - 7.5 - -Percarbonate - 5.0 9.0 15.0 DTPMP 0.7 1.0 - -QEA 1 0.4 1.2 0.5 2.0 QEA 2 0.4 - - -SRP 1 0.3 0.2 - 0.1 MA/AA 2.0 1.5 2.0 1.0 CMC 0.8 0.4 0.4 0.2 Protease 2.6 3.25 1.6 1.6 Amylase 0.8 0.4 0.25 0.5 Lipase 0.2 0.06 - 0.1 Cellulase 0.15 0.05 - -Photoactivated 70ppm 45ppm - 10ppm bleach (ppm) Brightener 1 0.2 0.2 0.08 0.2 PBI 6.0 2.0 - -HEDP - - 2.3 -TAED 2.0 1.0 - -Balance (Moisture and Misc.) to 100%
Example 9 The following laundry bar detergent compositions are examples of the present invention.
FF GG HH II JJ KK LL MM
LAS - - 19.0 15.0 21.0 6.75 8.8 -C28AS 30.0 13.5 - - - 15.75 11.2 22.5 Sodium laurate 2.5 9.0 - - - - - -QAS 1 - - - 0.08 - - 2.0 -QAS2 1.5 - 0.8 - - - - -QAS 3 - 5 - - - - - 0.1 QAS 4 - - - - 1.5 0.04 - -QAS 5 - - - - - 0.04 - -Zeolite A 2.0 1.25 - - - 1.25 1.25 1.25 Carbonate 20.0 3.0 13.0 8.0 10.0 15.0 15.0 10.0 Calcium carbonate 21.5 - - - - - - -Sulfate 5.0 - - - - - - -TSPP 5.0 - 5.0 - 5.0 5.0 2.5 5.0 STPP 5.0 15.0 - - - 5.0 8.0 10.0 Bentonite clay - 10.0 - - 5.0 - - -DTPMP - 0.7 0.6 - 0.6 0.7 0.7 0.7 MA/AA 0.4 1.0 - - 0.2 0.4 0.5 0.4 SRP1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 Protease - 0.39 - - 0.26 - - -Lipase - 0.1 - - 0.2 - 0.1 -Amylase 0.07 0.12 0.15 0.1 0.15 0.5 0.1 0.1 Cellulase - 0.15 - - - - - -PEO - 0.2 - 0.2 0.3 - - 0.3 Perfume 1.6 - - - - - - -
The amylolytic enzymes will generally be incorporated in the detergent compositions of the present invention a level of from 0.0001 % to 2%, preferably from 0.00018% to 0.06%, more preferably from 0.00024% to 0.048% pure enzyme by weight of the composition.
The detergent compositions of the invention may also contain one or a mixture of more than one amylase enzyme (a and/or (3). W094/02597, Novo Nordisk A/S published February 03, 1994, describes cleaning compositions which incorporate mutant amylases. See also W095/10603, Novo Nordisk A/S, published April 20, 1995. Other amylases known for use in cleaning compositions include both a- and 13-amylases. a-Amylases are known in the art and include those disclosed in US Pat. no. 5,003,257; EP 252,666; WO/91/00353; FR
2,676,456; EP
285,123; EP 525,610; EP 368,341; and British Patent specification no.
1,296,839 (Novo). Other suitable amylases are stability-enhanced amylases described in W094/18314, published August 18, 1994 and W096/05295, Genencor, published February 22, 1996 and amylase variants having additional modification in the immediate parent available from Novo Nordisk A/S, disclosed in WO 95/10603, published April 95. Also suitable are amylases described in EP 277 216, W095/26397 and W096/23873 (all by Novo Nordisk).
Examples of commercial a-amylases products are Purafect Ox Am from Genencor and Termamyl8, Ban Fungamyl and Duramyl , all available from Novo Nordisk A/S
Denmark. W095/26397 describes other suitable amylases : a-amylases characterised by having a specific activity at least 25% higher than the specific activity of Termamyl at a temperature range of 25 C to 55 C and at a pH value in the range of 8 to 10, measured by the Phadebas a-amylase activity assay. Suitable are variants of the above enzymes, described in W096/23873 (Novo Nordisk). Other preferred amylolytic enzymes with improved properties with respect to the activity level and the combination of thermostability and a higher activity level are described in W095/35382.
The amylase enzyme or mixture of amylase enzymes may be added to the detergent composition as a separate ingredient (eg. in the form of a prill, granulette, stabilized liquid, etc.) or as a mixture with two or more amylase enzymes or amylase and an additional enzyme, for example as part of a co-granulate.
Additional detergent components The detergent compositions or components thereof in accordance with the present invention may also contain additional detergent components. The precise nature of these additional components, and levels of incorporation thereof will depend on the physical form of the composition or component thereof, and the precise nature of the washing operation for which it is to be used.
The compositions or components thereof, of the invention preferably contain one or more additional detergent components selected from additional surfactants, builders, sequestrants, bleach, bleach precursors, bleach catalysts, organic polymeric compounds, additional enzymes, suds suppressors, lime soap dispersants, additional soil suspension and anti-redeposition agents soil releasing agents, perfumes and corrosion inhibitors.
Additional surfactant The detergent compositions or components thereof in accordance with the invention preferably contain an additional surfactant selected from anionic, nonionic, cationic, ampholytic, amphoteric and zwitterionic surfactants and mixtures thereof.
A typical listing of anionic, nonionic, ampholytic, and zwitterionic classes, and species of these surfactants, is given in U.S.P. 3,929,678 issued to Laughlin and Heuring on December 30, 1975.
Further examples are given in "Surface Active Agents and Detergents" (Vol. I
and II by Schwartz, Perry and Berch). A list of suitable cationic surfactants is given in U.S.P. 4,259,217 issued to Murphy on March 31, 1981.
Where present, ampholytic, amphoteric and zwitteronic surfactants are generally used in combination with one or more anionic and/or nonionic surfactants.
Anionic surfactant In a particularly preferred embodiment of the invention, the detergent compositions additionally comprise an anionic surfactant. Any anionic surfactant useful for detersive purposes is suitable.
These can include salts (including, for example, sodium, potassium, ammonium, and substituted ammonium salts such as mono-, di- and triethanolamine salts) of the anionic sulfate, sulfonate, carboxylate and sarcosinate surfactants. Anionic sulfate surfactants are preferred.
Other suitable anionic surfactants include the isethionates such as the acyl isethionates, N-acyl taurates, fatty acid amides of methyl tauride, alkyl succinates and sulfosuccinates, monoesters of sulfosuccinate (especially saturated and unsaturated C 12-C 18 monoesters) diesters of sulfosuccinate (especially saturated and unsaturated C6-C14 diesters), N-acyl sarcosinates.
Resin acids and hydrogenated resin acids are also suitable, such as rosin, hydrogenated rosin, and resin acids and hydrogenated resin acids present in or derived from tallow oil.
Anionic sulfate surfactant Anionic sulfate surfactants suitable for use in the compositions of the invention include the linear and branched primary and secondary alkyl sulfates, alkyl ethoxysulfates, fatty oleoyl glycerol sulfates, alkyl phenol ethylene oxide ether sulfates, the C5-C 17 acyl-N-(C 1-C4 alkyl) and -N-(C 1-C2 hydroxyalkyl) glucamine sulfates, and sulfates of alkylpolysaccharides such as the sulfates of alkylpolyglucoside (the nonionic nonsulfated compounds being described herein).
Alkyl ethoxysulfate surfactants are preferably selected from the group consisting of the C9-C22 alkyl sulfates which have been ethoxylated with from 0.5 to 20 moles of ethylene oxide per molecule. More preferably, the alkyl ethoxysulfate surfactant is a C I I-C 18, most preferably C 11-C 15 alkyl sulfate which has been ethoxylated with from 0.5 to 7, preferably from 1 to 5, moles of ethylene oxide per molecule.
A particularly preferred aspect of the invention employs mixtures of the preferred alkyl sulfate and alkyl ethoxysulfate surfactants. Such mixtures have been disclosed in PCT
Patent Application No. WO 93/18124.
Anionic sulfonate surfactant Anionic sulfonate surfactants suitable for use herein include the salts of C5-C20 linear alkylbenzene sulfonates, alkyl ester sulfonates, C6-C22 primary or secondary alkane sulfonates, C6-C24 olefin sulfonates, sulfonated polycarboxylic acids, alkyl glycerol sulfonates, fatty acyl glycerol sulfonates, fatty oleyl glycerol sulfonates, and any mixtures thereof.
Particularly prefenred compositions of the present invention additionally comprise an anionic surfactant, selected from alkyl sulfate and/or alkylbenzene sulphonate surfactants of formulae II
and III, respectively:
R5 O S O 3-M+ (II) R6303-1y'+ (III) wherein R5 is a linear or branched alkyl or alkenyl moiety having from 9 to 22 carbon atoms, preferably C 12 to C 18 alkyl or as found in secondary alkyl sulfates; R6 is C
alkylbenzene, preferably C 11-C 13 alkylbenzene; M+ and M'+ can vary independently and are selected from alkali metals, alkaline earths, alkanolammonium and ammonium.
Particularly preferred compositions of the invention comprise both an alkyl sulfate surfactant and an alkyl benzene surfactant, preferably in ratios of II to III of from 15:1 to 1:2, most preferably from 12:1 to 2:1.
Amounts of the one or mixtures of more than one anionic surfactant in the preferred composition may be from 1% to 50%, however, preferably anionic surfactant is present in amounts of from 5% to 40% by weight of the composition. Preferred amounts of the alkyl sulfate surfactant of formula II are from 3% to 40%, or more preferably 6% to 30% by weight of the detergent composition. Preferred amounts of the alkyl benzene sulphonate surfactant of formula III in the detergent composition are from at least 1%, preferably at least 2%, or even at least 4% by weight. Preferred amounts of the alkyl benzene sulphonate surfactant are up to 23%, more preferably no greater than 20%, most preferably up to 15% or even 10%.
The performance benefits which result when an anionic surfactant is also used in the compositions of the invention are particularly useful for longer carbon chain length anionic surfactants such as those having a carbon chain length of C 12 or greater, particularly of C 14/ 15 or even up to C 16-18 carbon chain lengths.
In preferred embodiments of the detergent compositions of the invention comprising anionic surfactant there will be a significant excess of anionic surfactants, preferably a weight ratio of anionic to cationic surfactant of from 50:1 to 2:1, most preferably 30:1 to 8:1. However, the benefits of the invention are also achieved where the ratio of cationic surfactant to anionic surfactant is substantially stoichiometric, for example from 3:2 to 4:3.
In a preferred embodiment of the invention the essential cationic surfactant of formula I is intimately mixed with one or more anionic surfactants prior to addition of the other detergent composition components.
Anionic carboxylate surfactant Suitable anionic carboxylate surfactants include the alkyl ethoxy carboxylates, the alkyl polyethoxy polycarboxylate surfactants and the soaps ('alkyl carboxyls'), especially certain secondary soaps as described herein.
Suitable alkyl ethoxy carboxylates include those with the formula RO(CH2CH20)x CH2C00' M+ wherein R is a C6 to C 18 alkyl group, x ranges from 0 to 10, and the ethoxylate distribution is such that, on a weight basis, the amount of material where x is 0 is less than 20 % and M is a cation. Suitable alkyl polyethoxy polycarboxylate surfactants include those having the formula RO-(CHR1-CHR2-O)-R3 wherein R is a C6 to C18 alkyl group, x is from 1 to 25, R1 and R2 are selected from the group consisting of hydrogen, methyl acid radical, succinic acid radical, hydroxysuccinic acid radical, and mixtures thereof, and R3 is selected from the group consisting of hydrogen, substituted or unsubstituted hydrocarbon having between 1 and 8 carbon atoms, and mixtures thereof.
Suitable soap surfactants include the secondary soap surfactants which contain a carboxyl unit connected to a secondary carbon. Preferred secondary soap surfactants for use herein are water-soluble members selected from the group consisting of the water-soluble salts of 2-methyl-l-undecanoic acid, 2-ethyl-l-decanoic acid, 2-propyl-l-nonanoic acid, 2-butyl-l-octanoic acid and 2-pentyl-l-heptanoic acid. Certain soaps may also be included as suds suppressors.
Alkali metal sarcosinate surfactant Other suitable anionic surfactants are the alkali metal sarcosinates of formula R-CON (R1) CH2 COOM, wherein R is a C5-C 17 linear or branched alkyl or alkenyl group, R1 is a C 1-C4 alkyl group and M is an alkali metal ion. Preferred examples are the myristyl and oleoyl methyl sarcosinates in the form of their sodium salts.
Alkoxylated nonionic surfactant Essentially any alkoxylated nonionic surfactants are suitable herein. The ethoxylated and propoxylated nonionic surfactants are preferred. Linear or branched alkoxylated groups are suitable.
Preferred alkoxylated surfactants can be selected from the classes of the nonionic condensates of alkyl phenols, nonionic ethoxylated alcohols, nonionic ethoxylated/propoxylated fatty alcohols, nonionic ethoxylate/propoxylate condensates with propylene glycol, and the nonionic ethoxylate condensation products with propylene oxide/ethylene diamine adducts.
Nonionic alkoxylated alcohol surfactant The condensation products of aliphatic alcohols with from I to 25 moles of alkylene oxide, particularly ethylene oxide and/or propylene oxide, are suitable for use herein. The alkyl chain of the aliphatic alcohol can either be straight or branched, primary or secondary, and generally contains from 6 to 22 carbon atoms. Particularly preferred are the condensation products of alcohols having an alkyl group containing from 8 to 20 carbon atoms with from 2 to 10 moles of ethylene oxide per mole of alcohol.
Nonionic polyhydroxy fattv acid amide surfactant Polyhydroxy fatty acid amides suitable for use herein are those having the structural formula R2CONRIZ wherein : R1 is H, CI-C4 hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl, ethoxy, propoxy, or a mixture thereof, preferable C1-C4 alkyl, more preferably CI or C2 alkyl, most preferably C 1 alkyl (i.e., methyl); and R2 is a C5-C31 hydrocarbyl, preferably straight-chain C5-C 19 alkyl or alkenyl, more preferably straight-chain C9-C 17 alkyl or alkenyl, most preferably straight-chain C 11-C 17 alkyl or alkenyl, or mixture thereof; and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative (preferably ethoxylated or propoxylated) thereof. Z
preferably will be derived from a reducing sugar in a reductive amination reaction; more preferably Z is a glycityl.
Nonionic fatty acid amide surfactant Suitable fatty acid amide surfactants include those having the formula:
R6CON(R7)2 wherein R6 is an alkyl group containing from 7 to 21, preferably from 9 to 17 carbon atoms and each R7 is selected from the group consisting of hydrogen, CI-C4 alkyl, CI-C4 hydroxyalkyl, and -(C2H4O)xH, where x is in the range of from I to 3.
Nonionic alkylpolysaccharide surfactant Suitable alkylpolysaccharides for use herein are disclosed in U.S. Patent 4,565,647, Llenado, issued January 21, 1986, having a hydrophobic group containing from 6 to 30 carbon atoms and a polysaccharide, e.g., a polyglycoside, hydrophilic group containing from 1.3 to 10 saccharide units.
Preferred alkylpolyglycosides have the formula R2O(CnH2nO)t(glycosyl)x wherein R2 is selected from the group consisting of alkyl, alkylphenyl, hydroxyalkyl, hydroxyalkylphenyl, and mixtures thereof in which the alkyl groups contain from 10 to 18 carbon atoms; n is 2 or 3; t is from 0 to 10, and x is from 1.3 to 8. The glycosyl is preferably derived from glucose.
Amphoteric surfactant Suitable amphoteric surfactants for use herein include the amine oxide surfactants and the alkyl amphocarboxylic acids.
Suitable amine oxides include those compounds having the formula R3(OR4)xN0(R5)2 wherein R3 is selected from an alkyl, hydroxyalkyl, acylamidopropoyl and alkyl phenyl group, or mixtures thereof, containing from 8 to 26 carbon atoms; R4 is an alkylene or hydroxyalkylene group containing from 2 to 3 carbon atoms, or mixtures thereof; x is from 0 to 5, preferably from 0 to 3; and each R5 is an alkyl or hydroxyalkyl group containing from t to 3, or a polyethylene oxide group containing from 1 to 3 ethylene oxide groups. Preferred are C I O-C 18 alkyl dimethylamine oxide, and C10-18 acylamido alkyl dimethylamine oxide.
A suitable example of an alkyl aphodicarboxylic acid is Miranol(TM) C2M Conc.
manufactured by Miranol, Inc., Dayton, NJ.
Zwitterionic surfactant Zwitterionic surfactants can also be incorporated into the detergent compositions or components thereof in accord with the invention. These surfactants can be broadly described as derivatives of secondary and tertiary amines, derivatives of heterocyclic secondary and tertiary amines, or derivatives of quaternary ammonium, quaternary phosphonium or tertiary sulfonium compounds. Betaine and sultaine surfactants are exemplary zwitterionic surfactants for use herein.
Suitable betaines are those compounds having the formula R(R')2N+R2C00-wherein R is a C6-C 18 hydrocarbyl group, each R I is typically C I-C3 alkyl, and R2 is a C I-C5 hydrocarbyl group. Preferred betaines are C 12-18 dimethyl-ammonio hexanoate and the C 10-acylamidopropane (or ethane) dimethyl (or diethyl) betaines. Complex betaine surfactants are also suitable for use herein.
Additional Cationic surfactants The compositions of the invention are preferably substantially free of quaternary ammonium compounds of formula I but wherein one or RI, R2, R3 or R4 is an alkyl chain group longer than C 11. Preferably the composition should contain less than 1%, preferably less than 0.1 % by weight or even less than 0.05% and most preferably less than 0.0 1% by weight of compounds of formula I having a linear (or even branched) alkyl group having 12 or more carbon atoms.
Another suitable group of cationic surfactants which can be used in the detergent compositions of the invention are cationic ester surfactants. The cationic ester surfactant is a compound having surfactant properties comprising at least one ester (i.e. -COO-) linkage and at least one cationically charged group. Preferred cationic ester surfactants are water dispersible.
Suitable cationic ester surfactants, including choline ester surfactants, have for example been disclosed in US Patents Nos. 4228042, 4239660 and 4260529.
In preferred cationic ester surfactants the ester linkage and cationically charged group are separated from each other in the surfactant molecule by a spacer group consisting of a chain comprising at least three atoms (i.e. of three atoms chain length), preferably from three to eight atoms, more preferably from three to five atoms, most preferably three atoms.
The atoms forming the spacer group chain are selected from the group consisting of carbon, nitrogen and oxygen atoms and any mixtures thereof, with the proviso that any nitrogen or oxygen atom in said chain connects only with carbon atoms in the chain. Thus spacer groups having, for example, -0-0- (i.e. peroxide), -N-N-, and -N-O- linkages are excluded, whilst spacer groups having, for example -CH2-O- CH2- and -CH2-NH-CH2- linkages are included. In a preferred aspect the spacer group chain comprises only carbon atoms, most preferably the chain is a hydrocarbyl chain.
Alkalinity In the detergent compositions of the present invention preferably an alkalinity system is present to achieve optimal cationic surfactant performance. The alkalinity system comprises components capable of providing alkalinity species in solution. Examples of alkalinity species include carbonate, bicarbonate, hydroxide, the various silicate anions, percarbonate, perborates, perphosphates, persulfate and persilicate. Such alkalinity species can be formed for example, when alkaline salts selected from alkali metal or alkaline earth carbonate, bicarbonate, hydroxide or silicate, including crystalline layered silicate, salts and percarbonate, perborates, perphosphates, persulfate and persilicate salts and any mixtures thereof are dissolved in water.
Examples of carbonates are the alkaline earth and alkali metal carbonates, including sodium carbonate and sesqui-carbonate and any mixtures thereof with ultra-fine calcium carbonate such as are disclosed in German Patent Application No. 2,321,001 published on November 15, 1973.
Suitable silicates include the water soluble sodium silicates with an Si02:NA2O ratio of from 1.0 to 2.8, with ratios of from 1.6 to 2.0 being preferred, and 2.0 ratio being most preferred. The silicates may be in the form of either the anhydrous salt or a hydrated salt.
Sodium silicate with an Si02:Na20 ratio of 2.0 is the most preferred silicate.
Preferred crystalline layered silicates for use herein have the general formula NaMSixO2x+1.yH2O
wherein M is sodium or hydrogen, x is a number from 1.9 to 4 and y is a number from 0 to 20.
Crystalline layered sodium silicates of this type are disclosed in EP-A-0164514 and methods for their preparation are disclosed in DE-A-3417649 and DE-A-3742043. Herein, x in the general formula above preferably has a value of 2, 3 or 4 and is preferably 2. The most preferred TM
material is 8-Na2Si2O5, available from Hoechst AG as NaSKS-6.
Water-soluble builder compound The detergent compositions in accordance with the present invention preferably contain a water-soluble builder compound, typically present in detergent compositions at a level of from 1% to 80% by weight, preferably from 10% to 70% by weight, most preferably from 20%
to 60% by weight of the composition.
Suitable water-soluble builder compounds include the water soluble monomeric polycarboxylates, or their acid forms, homo or copolymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxylic radicals separated from each other by not more that two carbon atoms, borates, phosphates, and mixtures of any of the foregoing.
The carboxylate or polycarboxylate builder can be monomeric or oligomeric in type although monomeric polycarboxylates are generally preferred for reasons of cost and performance.
Suitable carboxylates containing one carboxy group include the water soluble salts of lactic acid, glycolic acid and ether derivatives thereof. Polycarboxylates containing two carboxy groups include the water-soluble salts of succinic acid, malonic acid, (ethylenedioxy) diacetic acid, maleic acid, diglycolic acid, tartaric acid, tartronic acid and fumaric acid, as well as the ether carboxylates and the sulfinyl carboxylates. Polycarboxylates containing three carboxy groups include, in particular, water-soluble citrates, aconitrates and citraconates as well as succinate derivatives such as the carboxymethyloxysuccinates described in British Patent No. 1,379,241, lactoxysuccinates described in British Patent No. 1,389,732, and aminosuccinates described in Canadian Patent No. 973,771, and the oxypolycarboxylate materials such as 2-oxa-1,1;3-propane tricarboxylates described in British Patent No. 1,387,447.
Polycarboxylates containing four carboxy groups include oxydisuccinates disclosed in British Patent No. 1,261,829, 1,1,2,2-ethane tetracarboxylates, 1,1,3,3-propane tetracarboxylates and 1,1,2,3-propane tetracarboxylates. Polycarboxylates containing sulfo substituents include the sulfosuccinate derivatives disclosed in British Patent Nos. 1,398,421 and 1,398,422 and in U.S.
Patent No. 3,936,448, and the sulfonated pyrolysed citrates described in British Patent No.
1,439,000. Preferred polycarboxylates are hydroxycarboxylates containing up to three carboxy groups per molecule, more particularly citrates.
The parent acids of the monomeric or oligomeric polycarboxylate chelating agents or mix!-ares thereof with their salts, e.g. citric acid or citrate/citric acid mixtures are also contemplated as useful builder components.
Borate builders, as well as builders containing borate-forming materials that can produce borate under detergent storage or wash conditions are useful water-soluble builders herein.
Suitable examples of water-soluble phosphate builders are the alkali metal tripolyphosphates, sodium, potassium and ammonium pyrophosphate, sodium and potassium and ammonium pyrophosphate, sodium and potassium orthophosphate, sodium polymeta/phosphate in which the degree of polymerization ranges from about 6 to 21, and salts of phytic acid.
Partially soluble or insoluble builder compound The detergent compositions or components thereof, of the present invention may contain a partially soluble or insoluble builder compound, typically present in detergent compositions at a level of from 1% to 80% by weight, preferably from 10% to 70% by weight, most preferably from 20% to 60% weight of the composition.
Examples of largely water insoluble builders include the sodium aluminosilicates.
Suitable aluminosilicate zeolites have the unit cell formula Naz[(AIO2)z(SiO2)y). xH2O
wherein z and y are at least 6; the molar ratio of z to y is from 1.0 to 0.5 and x is at least 5, preferably from 7.5 to 276, more preferably from 10 to 264. The aluminosilicate materials are in hy.drated form and are preferably crystalline, containing from 10% to 28%, more preferably from 18% to 22% water in bound form.
The aluminosilicate zeolites can be naturally occurring materials, but are preferably synthetically derived. Synthetic crystalline aluminosilicate ion exchange materials are available under the designations Zeolite A, Zeolite B, Zeolite P, Zeolite X, Zeolite HS
and mixtures thereof. Zeolite A has the formula Na 12 [(A102) 12 (Si02)121= xH2O
wherein x is from 20 to 30, especially 27. Zeolite X has the formula Na86 [(AI02)86(Si02)1061= 276 H20.
Another preferred aluminosilicate zeolite is zeolite MAP builder.
The zeolite MAP can be present at a level of from 1% to 80%, more preferably from 15%
to 40% by weight of the compositions.
Zeolite MAP is described in EP 384070A (Unilever). It is defined as an alkali metal alumino-silicate of the zeolite P type having a silicon to aluminium ratio not greater than 1.33, preferably within the range from 0.9 to 1.33 and more preferably within the range of from 0.9 to 1.2.
Of particular interest is zeolite MAP having a silicon to aluminium ratio not greater than 1.15 and, more particularly, not greater than 1.07.
In a preferred aspect the zeolite MAP detergent builder has a particle size, expressed as a d50 value of from 1.0 to 10.0 micrometres, more preferably from 2.0 to 7.0 micrometres, most preferably from 2.5 to 5.0 micrometres.
The d50 value indicates that 50% by weight of the particles have a diameter smaller than that figure. The particle size may, in particular be determined by conventional analytical techniques such as microscopic determination using a scanning electron microscope or by means of a laser granulometer. Other methods of establishing d50 values are disclosed in EP 384070A.
Heavy metal ion seauestrant The detergent compositions or components thereof in accordance with the present invention preferably contain as an optional component a heavy metal ion sequestrant. By heavy metal ion sequestrant it is meant herein components which act to sequester (chelate) heavy metal ions.
These components may also have calcium and magnesium chelation capacity, but preferentially they show selectivity to binding heavy metal ions such as iron, manganese and copper.
Heavy metal ion sequestrants are generally present at a level of from 0.005%
to 20%, preferably from 0.1% to 10%, more preferably from 0.25% to 7.5% and most preferably from 0.5% to 5%
by weight of the compositions.
Suitable heavy metal ion sequestrants for use herein include organic phosphonates, such as the amino alkylene poly (alkylene phosphonates), alkali metal ethane 1-hydroxy disphosphonates and nitrilo trimethylene phosphonates.
Preferred among the above species are diethylene triamine penta (methylene phosphonate), ethylene diamine tri (methylene phosphonate) hexamethylene diamine tetra (methylene phosphonate) and hydroxy-ethylene 1,1 diphosphonate.
Other suitable heavy metal ion sequestrant for use herein include nitrilotriacetic acid and polyaminocarboxylic acids such as ethylenediaminotetracetic acid, ethylenetriamine pentacetic acid, ethylenediamine disuccinic acid, ethylenediamine diglutaric acid, 2-hydroxypropylenediamine disuccinic acid or any salts thereof. Especially preferred is ethylenediamine-N,N'-disuccinic acid (EDDS) or the alkali metal, alkaline earth metal, ammonium, or substituted ammonium salts thereof, or mixtures thereof.
Other suitable heavy metal ion sequestrants for use herein are iminodiacetic acid derivatives such as 2-hydroxyethyl diacetic acid or glyceryl imino diacetic acid, described in EP-A-317,542 and EP-A-399,133. The iminodiacetic acid-N-2-hydroxypropyl sulfonic acid and aspartic acid N-carboxymethyl N-2-hydroxypropyl-3-sulfonic acid sequestrants described in EP-A-516,102 are also suitable herein. The (3-alanine-N,N'-diacetic acid, aspartic acid-N,N'-diacetic acid, aspartic acid-N-monoacetic acid and iminodisuccinic acid sequestrants described in EP-A-509,382 are also suitable.
EP-A-476,257 describes suitable amino based sequestrants. EP-A-510,331 describes suitable sequestrants derived from collagen, keratin or casein. EP-A-528,859 describes a suitable alkyl iminodiacetic acid sequestrant. Dipicolinic acid and 2-phosphonobutane-1,2,4-tricarboxylic acid are also suitable. Glycinamide-N,N'-disuccinic acid (GADS), ethylenediamine-N-N'-diglutaric acid (EDDG) and 2-hydroxypropylenediamine-N-N'-disuccinic acid (HPDDS) are also suitable.
Organic peroxyacid bleachin¾ system A preferred feature of detergent compositions or component thereof in accordance with the invention is an organic peroxyacid bleaching system. In one preferred execution the bleaching system contains a hydrogen peroxide source and an organic peroxyacid bleach precursor compound. The production of the organic peroxyacid occurs by an in situ reaction of the precursor with a source of hydrogen peroxide. Preferred sources of hydrogen peroxide include inorganic perhydrate bleaches. In an altemative preferred execution a preformed organic peroxyacid is incorporated directly into the composition. Compositions containing mixtures of a hydrogen peroxide source and organic peroxyacid precursor in combination with a preformed organic peroxyacid are also envisaged.
Inoreanic perhvdrate bleaches Inorganic perhydrate salts are a preferred source of hydrogen peroxide. These salts are normally incorporated in the form of the alkali metal, preferably sodium salt at a level of from 1% to 40%
by weight, more preferably from 2% to 30% by weight and most preferably from 5% to 25% by weight of the compositions.
Examples of inorganic perhydrate salts include perborate, percarbonate, perphosphate, persulfate and persilicate salts. The inorganic perhydrate salts are normally the alkali metal salts. The inorganic perhydrate salt may be included as the crystalline solid without additional protection.
For certain perhydrate salts however, the preferred executions of such granular compositions utilize a coated form of the material which provides better storage stability for the perhydrate salt in the granular product and/or delayed release of the perhydrate salt on contact of the granular product with water. Suitable coatings comprise inorganic salts such as alkali metal silicate, carbonate or borate salts or mixtures thereof, or organic materials such as waxes, oils, or fatty soaps.
Sodium perborate is a preferred perhydrate salt and can be in the form of the monohydrate of nominal forrnula NaBO2H2O2 or the tetrahydrate NaBO2H2O2.3H20.
Alkali metal percarbonates, particularly sodium percarbonate are preferred perhydrates herein.
Sodium percarbonate is an addition compound having a formula corresponding to 2Na2CO3.3H2O2, and is available commercially as a crystalline solid.
Potassium peroxymonopersulfate is another inorganic perhydrate salt of use in the detergent compositions herein.
Peroxyacid bleach precursor Peroxyacid bleach precursors are compounds which react with hydrogen peroxide in a perhydrolysis reaction to produce a peroxvacid. Generally peroxyacid bleach precursors may be represented as O
X-C-L
where L is a leaving group and X is essentially any functionality, such that on perhydrolysis the structure of the peroxyacid produced is O
II
'X-C-OOH
Peroxyacid bleach precursor compounds are preferably incorporated at a level of from 0.5% to 20% by weight, more preferably from 1% to 15% by weight, most preferably from 1.5% to 10%
by weight of the detergent compositions.
Suitable peroxyacid bleach precursor compounds typically contain one or more N-or 0-acyl groups, which precursors can be selected from a wide range of classes.
Suitable classes include anhydrides, esters, imides, lactams and acylated derivatives of imidazoles and oximes. Examples of useful materials within these classes are disclosed in GB-A-1586789.
Suitable esters are disclosed in GB-A-836988, 864798, 1147871, 2143231 and EP-A-0170386.
Leaving grouDs The leaving group, hereinafter L group, must be sufficiently reactive for the perhydrolysis reaction to occur within the optimum time frame (e.g., a wash cycle). However, if L is too reactive, this activator will be difficult to stabilize for use in a bleaching composition.
Preferred L groups are selected from the group consisting of:
-O -O Y and -O
C 1~
~i O
Il ~ , ~
-N-C- RI , - + N , --i--C-iH-R4 , Y
I I
-O-C H=C-C H=C H2 --O-C H=C-C H=C H2 . 0 CH2-C r~ 4 -O-C-R' -N\C jNR4 -NCNR
~ p O
-O-C=CHR4 , and --N-S-CH-R4 and mixtures thereof, wherein RI is an alkyl, aryl, or alkaryl group containing from I to 14 carbon atoms, R3 is an alkyl chain containing from 1 to 8 carbon atoms, R4 is H or R3, R5 is an alkenyl chain containing from I to 8 carbon atoms and Y is H or a solubilizing group. Any of R1, R3 and R4 may be substituted by essentially any functional group including, for example alkyl, hydroxy, alkoxy, halogen, amine, nitrosyl, amide and ammonium or alkyl ammonium groups.
The 3 preferred solubilizing groups are+SO3 M+, CO2 M+, -SO4 M+, -N+(R3)4X and O<--N(R )3 and most preferably -SO3 M and -CO2 M wherein R is an alkyl chain containing from 1 to 4 carbon atoms, M is a catiori which provides solubility to the bleach activator and X
is an anion which provides solubility to the bleach activator. Preferably, M
is an alkali metal, ammonium or substituted ammonium cation, with sodium and potassium being most preferred, and X is a halide, hydroxide, methylsulfate or acetate anion.
Alkyl percarboxylic acid bleach precursors Alkyl percarboxylic acid bleach precursors form percarboxylic acids on perhydrolysis. Preferred precursors of this type provide peracetic acid on perhydrolysis.
Preferred alkyl percarboxylic precursor compounds of the imide type include the N-,N,NIN1 tetra acetylated alkylene diamines wherein the alkylene group contains from I
to 6 carbon atoms, particularly those compounds in which the alkylene group contains 1, 2 and 6 carbon atoms. Tetraacetyl ethylene diamine (TAED) is particularly preferred.
Other preferred alkyl percarboxylic acid precursors include sodium 3,5,5-tri-methyl hexanoyloxybenzene sulfonate (iso-NC)BS), sodium nonanoyloxybenzene sulfonate (NOBS), sodium acetoxybenzene sulfonate (ABS) and pentaacetyl glucose.
Amide substituted alkyl neroxyacid precursors Amide substituted alkyl peroxyacid precursor compounds are suitable herein, including those of the following general formulae:
R' -C-N-R2-C-L R' -N-C-R2-C-L
~~ ~ 1 . I I 11 11 O R5 O or R5 O O
wherein RI is an alkyl group with from I to 14 carbon atoms, R2 is an alkylene group containing from I to 14 carbon atoms, and R5 is H or an alkyl group containing 1 to 10 carbon atoms and L can be essentially any leaving group. Amide substituted bleach activator compounds of this type are described in EP-A-0 1703 86.
Perbenzoic acid precursor Perbenzoic acid precursor compounds provide perbenzoic acid on perhydrolysis.
Suitable 0-acylated perbenzoic acid precursor compounds include the substituted and unsubstituted benzoyl oxybenzene sulfonates, and the benzoylation products of sorbitol, glucose, and all saccharides with benzoylating agents, and those of the imide type including N-benzoyl succinimide, tetrabenzoyl ethylene diamine and the N-benzoyl substituted ureas. Suitable imidazole type perbenzoic acid precursors include N-benzoyl imidazole and N-benzoyl benzimidazole. Other useful N-acyl group-containing perbenzoic acid precursors include N-benzoyl pyrrolidone, dibenzoyl taurine and benzoyl pyroglutamic acid.
Cationic aeroxyacid precursors Cationic peroxyacid precursor compounds produce cationic peroxyacids on perhydrolysis.
Typically, cationic peroxyacid precursors are formed by substituting the peroxyacid part of a suitable peroxyacid precursor compound with a positively charged functional group, such as an ammonium or alkyl ammonium group, preferably an ethyl or methyl ammonium group.
Cationic peroxyacid precursors are typically present in the solid detergent compositions as a salt with a suitable anion, such as a halide ion.
The peroxyacid precursor compound to be so cationically substituted may be a perbenzoic acid, or substituted derivative thereof, precursor compound as described hereinbefore. Alternatively, the peroxyacid precursor compound may be an alkyl percarboxylic acid precursor .7ompound or an amide substituted alkyl peroxyacid precursor as described hereinafter Cationic peroxyacid precursors are described in U.S. Patents 4,904,406;
4,751,015; 4,988,451;
4,397,757; 5,269,962; 5,127,852; 5,093,022; 5,106,528; U.K. 1,382,594; EP
475,512, 458,396 and 284,292; and in JP 87-318,332.
Examples of preferred cationic peroxyacid precursors are described in WO 95/29160 and US Patent Nos. 5,686,015; 5,460,747; 5,578,136 and 5,584,888.
Suitable cationic peroxyacid precursors include any of the ammonium or alkyl ammonium substituted alkyl or benzoyl oxybenzene sulfonates, N-acylated caprolactams, and monobenzoyltetraacetyl glucose benzoyl peroxides. Preferred cationic peroxyacid precursors of the N-acylated caprolactam class include the trialkyl ammonium methylene benzoyl caprolactams and the trialkyl ammonium methylene alkyl caprolactams.
Benzoxazin or ag nic peroxyacid precursors Also suitable are precursor compounds of the benzoxazin-type, as disclosed for example in EP-A-332,294 and EP-A-482,807, particularly those having the formula:
O
I I
O
O ~ .
N C-Rt wherein RI is H, alkyl, alkaryl, aryl, or arylalkyl.
Preformed organic perox vacid The organic peroxyacid bleaching system may contain, in addition to, or as an altetnative to, an organic peroxyacid bleach precursor compound, a preformed organic peroxyacid , typically at a level of from 1% to 15% by weight, more preferably from 1% to 10% by weight of the composition.
A preferred class of organic peroxyacid compounds are the amide substituted compounds of the following general formulae:
R1-C-N-R2-C-OOH R' - N - C - R2 - C - OOH
I 1 f 11 ~ 11 ~~
O R5 0 or R5 O 0 wherein RI is an alkyl, aryl or alkaryl group with from I to 14 carbon atoms, R2 is an alkylene, arylene, and alkarylene group containing from I to 14 carbon atoms, and R5 is H or an alkyl, aryl, or alkaryl group containing 1 to 10 carbon atoms. Amide substituted organic peroxyacid compounds of this type are described in EP-A-0 1703 86.
Other organic peroxyacids include diacyl and tetraacylperoxides, especially diperoxydodecanedioc acid, diperoxytetradecanedioic acid and diperoxyhexadecanedioc acid.
Mono- and diperazelaic acid, mono- and diperbrassylic acid and N-phthaloylaminoperoxicaproic acid are also suitable herein.
Bleach catalyst The compositions of the invention optionally contain a transition metal containing bleach catalyst. One suitable type of bleach catalyst is a catalyst system comprising a heavy metal cation of defined bleach catalytic activity, such as copper, iron or manganese cations, an auxiliary metal cation having little or no bleach catalytic activity, such as zinc or aluminum cations, and a sequestrant having defined stability constants for the catalytic and auxiliary metal cations, particularly ethylenediaminetetraacetic acid, ethylenediaminetetra(methylenephosphonic acid) and water-soluble salts thereof. Such catalysts are disclosed in U.S. Pat. 4,430,243.
Other types of bleach catalysts include the manganese-based complexes disclosed in U.S. Pat.
5,246,621 and U.S. Pat. 5,244,594. Preferred examples of these catalysts include MnIV2(u-0)3(1,4,7-trimethyl-1,4,7-triazacyclononane)2-(PF6)2, MnIII2(u-O)1(u-OAc)2(1,4,7-trimethyl-1,4,7-triazacyclononane)2-(C104)2, MnIV4(u-O)6(1,4,7-triazacyclononane)4-(CIO4)2, MnIIIMnIV4(u-O)I(u-OAc)2-(1,4,7-trimethyl-1,4,7-triazacyclononane)2-(CI04)3, and mixtures thereof. Others are described in European patent application publication no.
549,272. Other ligands suitable for use herein include 1,5,9-trimethyl-1,5,9-triazacyclododecane, 2-methyl-1,4,7-triazacyclononane, 2-methyl-1,4,7-triazacyclononane, 1,2,4,7-tetramethyl-1,4,7-triazacyclononane, and mixtures thereof.
For examples of suitable bleach catalysts see U.S. Pat. 4,246,612 and U.S. Pat 5,227,084. See also U.S. Pat. 5,194,416 which teaches mononuclear manganese (IV) complexes such as Mn(1,4,7-trimethyl-1,4,7-triazacyclononane)(OCH3)3-(PF6). Still another type of bleach catalyst, as disclosed in U.S. Pat. 5,114,606, is a water-soluble complex of manganese (III), and/or (IV) with a ligand which is a non-carboxylate polyhydroxyl compound having at least three consecutive C-OH groups. Other examples include binuclear Mn complexed with tetra-N-dentate and bi-N-dentate ligands, including N4MnIII(u-O)2MnIVN4)+ and [BiPY2MnII1(u-O)2Mn1Vb1PY2)-(C1O4)3.
Further suitable bleach catalysts are described, for example, in European patent application No.
408,131 (cobalt complex catalysts), European patent applications, publication nos. 384,503, and 306,089 (metallo-porphyrin catalysts), U.S. 4,728,455 (manganese/multidentate ligand catalyst), U.S. 4,711,748 and European patent application, publication no. 224,952, (absorbed manganese on aluminosilicate catalyst), U.S. 4,601,845 (aluminosilicate support with manganese and zinc or magnesium salt), U.S. 4,626,373 (inanganese/ligand catalyst), U.S.
4,119,557 (ferric complex catalyst), German Pat. specification 2,054,019 (cobalt chelant catalyst) Canadian 866,191 (transition metal-containing salts), U.S. 4,430,243 (chelants with manganese cations and non-catalytic metal cations), and U.S. 4,728,455 (manganese gluconate catalysts).
Additional Enzymes The compositions of the present invention may comprise one or more additional enzymes.
Preferred additional enzymatic materials include the commercially available enzymes. Said enzymes include enzymes selected from cellulases, hemicellulases, peroxidases, proteases, gluco-amylases, lipases, xylanases, phospholipases, esterases, cutinases, pectinases, keratanases, reductases, oxidases, phenoloxidases, lipoxygenases, ligninases, pullulanases, tannases, pentosanases, malanases, R-glucanases, arabinosidases, hyaluronidase, chondroitinase, laccase or mixtures thereof.
A preferred combination of additional enzymes in a cleaning composition has a mixture of conventional applicable enzymes such as protease, lipase, cutinase and/or cellulase in conjunction with one or more plant cell wall degrading enzymes. Suitable enzymes are exemplified in US Patents 3,519,570 and 3,533,139.
Suitable proteases are the subtilisins which are obtained from particular strains of B. subtilis and B. lichenlormis (subtilisin BPN and BPN'). One suitable protease is obtained from a strain of Bacillus, having maximum activity throughout the pH range of 8-12, developed and sold as ESPERASE by Novo Industries A/S of Denmark, hereinafter "Novo". The preparation of this enzyme and analogous enzymes is described in GB 1,243,784 to Novo. Other suitable proteases include ALCALASE , DURAZYM(& and SAVINASE from Novo and MAXATASE , IVIAXACALO, PROPERASE and MAXAPEMO (protein engineered Maxacal) from Gist-Brocades. Proteolytic enzymes also encompass modified bacterial serine proteases, such as those described in European Patent Application 251,446 published January 7, (particularly pages 17, 24 and 98), and which is called herein "Protease B", and in European Patent Application 199,404, Venegas, published October 29, 1986, which refers to a modified bacterial serine protealytic enzyme which is called "Protease A" herein.
Suitable is what is called herein "Protease C", which is a variant of an alkaline serine protease from Bacillus in which lysine replaced arginine at position 27, tyrosine replaced valine at position 104, serine replaced asparagine at position 123, and alanine replaced threonine at position 274. Protease C is described in WO 91/06637, Published May 16, 1991.
Genetically modified variants, particuiariy of Protease C, are also included herein.
A preferred protease referred to as "Protease D" is a carbonyl hydrolase variant having an amino acid sequence not found in nature, which is derived from a precursor carbonyl hydrolase by substituting a different amino acid for a plurality of amino acid residues at a position in said carbonyl hydrolase equivalent to position +76, preferably also in combination with one or more amino acid residue positions equivalent to those selected from the group consisting of +99, +101, +103, +104, +107, +123, +27, +105, +109, +126, +128, +135, +156, +166, +195, +197, +204, +206, +210, +216, +217, +218, +222, +260, +265, and/or +274 according to the numbering of Bacillus amyloliquefaciens subtilisin, as described in W095/10591 and in the patent of C. Ghosh, et al, "Bleaching Compositions Comprising Protease Enzymes" having US
Patent No. 5,677,272 issued October 14, 1997.
Also suitable for the present invention are proteases described in patent applications EP 251 446-and WO 91/06637, protease BLAP described in W091/02792 and their variants described in WO 95/23221.
See also a high pH protease from Bacillus sp. NCIMB 40338 described in WO
93/18140 A to Novo. Enzymatic detergents comprising protease, one or more other enzymes, and a reversible protease inhibitor are described in WO 92/03529 A to Novo. When desired, a protease having decreased adsorption and increased hydrolysis is available as described in WO
95/07791 to Procter & Gamble. A recombinant trypsin-like protease for detergents suitable herein is described in WO 94/25583 to Novo. Other suitable proteases are described in EP
516 200 by Unilever.
One or a mixture of proteolytic enzymes may be incorporated in the detergent compositions of the present invention, generally at a level of from 0.0001 % to 2%, preferably from 0.001 % to 0.2%, more preferably from 0.005% to 0.1% pure enzyme by weight of the composition.
The detergent composition of the invention may also contain lipolytic enzymes.
Suitable lipolytic enzymes for use include those produced by micro-organisms of the Pseudomonas group, such as Pseudomonas stuizeri ATCC 19.154, as disclosed in British Patent 1,372,034.
Suitable lipases include those which show a positive immunological cross-section with the antibody of the lipase produced by the microorganism Pseudomonas Hisorescent IAM 1057.
This lipase is available from Amano Pharmaceutical Co. Ltd., Nagoya, Japan, under the trade mark Lipase P "Amano," hereinafter referred to as "Amano-P." Other suitable commercial lipases include Amano-CES, lipases ex Chromobacter viscosum, e.g. Chromobacter viscosum var. lipolyticum NRRLB 3673, commercially available from Toyo Jozo Co., Tagata, Japan;
Chromobacter viscosum lipases from U.S. Biochemical Corp., U.S.A. and Disoynth Co., The Netherlands, and lipases ex Pseudomonas gladioli. Especially suitable lipases are lipases such as M 1 Lipase and Lipomax (Gist-Brocades) and Lipulase and Lipolase Ultra {Novo) which have found to be very effective when used in combination with the compositions of the present invention. Also suitable are the lipolytic enzymes described in EP 258 068, WO
92/05249 and WO 95/22615 by Novo Nordisk and in WO 94/03578, WO 95/35381 and WO
96/00292 by Unilever.
Also suitable are cutinases [EC 3.1.1.50) which can be considered as a special kind of lipase, namely lipases which do not require interfacial activation. Addition of cutinases to detergent compositions have been described in e.g. WO-A-88/09367 (Genencor); WO 90/09446 (Plant Genetic System) and WO 94/14963 and WO 94/14964 (Unilever). The LIPOLASE
enzyme derived from Humicola lanuginosa and commercially available from Novo (see also EPO
341,947) is a preferred lipase for use in the present invention.
Another preferred lipase for use in the present invention is D96L lipolytic enzyme variant of the native lipase derived from Humicola lanuginosa. Most preferably the Humicola lanuginosa strain DSM 4106 is used.
By D96L lipolytic enzyme variant is meant the lipase variant as described in patent application WO 92/05249 in which the native lipase ex Humicola lanuginosa has the aspartic acid (D) residue at position 96 changed to Leucine (L). According to this nomenclature said substitution of aspartic acid to Leucine in position 96 is shown as : D96L. To determine the activity of the enzyme D96L the standard LU assay may be used (Analytical method, internal Novo Nordisk number AF 95/6-GB 1991.02.07). A substrate for D96L was prepared by emulsifying glycerine tributyrate (Merck) using gum-arabic as emulsifier. Lipase activity is assayed at pH 7 using pH
stat. method.
In the detergent compositions of the present invention, the lipolytic enzyme component is generally present at levels of from 0.00005% to 2% of active enzyme by weight of the detergent composition, preferably 0.001 % to 1% by weight, most preferably from 0.0002%
to 0.05% by weight active enzyme in the detergent composition.
The detergent compositions of the invention may additionally incorporate one or more cellulase enzymes. Suitable cellulases include both bacterial or fungal cellulases.
Preferably, they will have a pH optimum of between 5 and 12 and an activity above 50 CEVU (Cellulose Viscosity Unit). Suitable cellulases are disclosed in U.S. Patent 4,435,307, Barbesgoard et al, J61078384 and W096/02653 which disclose fungal cellulases produced respectively from Humicola insolens, Trichoderma, Thielavia and Sporotrichum. EP 739 982 describes cellulases isolated from novel Bacillus species. Suitable cellulases are also disclosed in GB-A-2.075.028; GB-A-2.095.275; DE-OS-2.247.832 and W095/26398.
Examples of such cellulases are cellulases produced by a strain of Humicola insolens (Humicola grisea var. thermoidea), particularly the Humicola strain DSM 1800. Other suitable cellulases are cellulases originated from Humicola insolens having a molecular weight of about 50KDay an isoelectric point of 5.5 and containing 415 amino acids; and a`43kD
endoglucanase derived from Humicola insolens, DSM 1800, exhibiting cellulase activity; a preferred endoglucanase component has the amino acid sequence disclosed in PCT Patent Application No.
WO 91/17243.
Also suitable cellulases are the EGIII cellulases from Trichoderma longibrachiatum described in W094/2 1 80 1, Genencor, published September 29, 1994. Especially suitable cellulases are the cellulases having color care benefits. Examples of such cellulases are cellulases described in United States Patent No. 5,520,838 (Novo). CarezymeTM and TM
Celluzyme (Novo Nordisk A/S) are especially useful. See also WO91/17244 and W09 1 /2 1 80 1.
Other suitable cellulases for fabric care and/or cleaning properties are described in W096/34092, W096/17994 and W095/24471.
Peroxidase enzymes may also be incorporated into the detergent compositions of the invention.
Peroxidasis are used in combination with oxygen sources, e.g. percarbonate, perborate, persulfate, hydrogen peroxide, etc. They are used for "solution bleaching", i.e. to prevent transfer of dyes or pigments removed from substrates during wash operations to other substrates in the wash solution. Peroxidase enzymes are known in the art, and include, for example, horseradish peroxidase, ligninase and haloperoxidase such as chloro- and bromo-peroxidase.
Peroxidase-containing detergent compositions are disclosed, for example, in PCT International Application WO 89/099813, WO 89/09813 and in Canadian Patent application No.
2,122,987, filed on October 28, 1992 and EP 927,242 published July 7, 1999. Also suitable is the laccase enzyme.
Preferred enhancers are substituted phenthiazine and phenoxasine 10-Phenothiazinepropionicacid (PPT), l0-ethylphenothiazine-4-carboxylic acid (EPC), 10-phenoxazinepropionic acid (POP) and 10-methylphenoxazine (described in WO
94/12621) and substituted syringates (C3-C5 substituted alkyl syringates) and phenols.
Sodium percarbonate or perborate are preferred sources of hydrogen peroxide.
Said cellulases and/or peroxidases, if present, are normally incorporated in the detergent composition at levels from 0.0001 % to 2% of active enzyme by weight of the detergent composition.
Said additional enzymes, when present, are normally incorporated in the detergent composition at levels from 0.0001% to 2% of active enzyme by weight of the detergent composition. The additional enzymes can be added as separate single ingredients (prills, granulates, stabilized liquids, etc. containing one enzyme ) or as mixtures of two or more enzymes ( e.g. cogranulates ).
Enzyme Oxidation Scavengers Other suitable detergent ingredients that can be added are enzyme oxidation scavengers which are described in European Published Patent application 553,607.
Examples of such enzyme oxidation scavengers are ethoxylated tetraethylene polyamines.
Enzyme Materials A range of enzyme materials and means for their incorporation into synthetic detergent compositions is also disclosed in WO 9307263 A and WO 9307260 A to Genencor International, WO 8908694 A to Novo, and U.S. 3,553,139, January 5, 1971 to McCarty et al.
Enzymes are further disclosed in U.S. 4,101,457, Place et al, July 18, 1978, and in U.S.
4,507,219, Hughes, March 26, 1985. Enzyme materials useful for liquid detergent formulations, and their incorporation into such formulations, are disclosed in U.S.
4,261,868, Hora et al, April 14, 1981. Enzymes for use in detergents can be stabilised by various techniques. Enzyme stabilisation techniques are disclosed and exemplified in U.S. 3,600,319, August 17, 1971, Gedge et al, EP 199,405 and EP 200,586, October 29, 1986, Venegas. Enzyme stabilisation systems are also described, for example, in U.S. 3,519,570. A useful Bacillus, sp. AC13 giving proteases, xylanases and cellulases, is described in WO 9401532 A to Novo.
Organic polymeric compound Organic polymeric compounds are preferred additional components of the detergent compositions or components thereof of the present invention, and are preferably present as components of any particulate component of the detergent composition where they may act sucti as to bind the particulate component together. By organic polymeric compound is meant any polymeric organic compound commonly used as dispersants, anti-redeposition or soil suspension agents in detergent compositions, including any of the high molecular weight organic polymeric compounds described as clay flocculating agents herein.
Such an organic polymeric compound is generally incorporated in the detergent compositions of the invention at a level of from 0.1% to 30%, preferably from 0.5% to 15%, most preferably from 1% to 10% by weight of the compositions.
Examples of organic polymeric compounds include the water soluble organic homo-or co-polymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms. Polymers of the latter type are disclosed in GB-A-1,596,756. Examples of such salts are polyacrylic acid or polyacrylates of MWt 1000-5000 and their copolymers with maleic anhydride, such copolymers having a molecular weight of from 2000 to 100,000, especially 40,000 to 80,000.
Polymaleates or polymaleic acid polymers and salts thereof are also suitable examples.
Polyamino compounds useful herein include those derived from aspartic acid including polyaspartic acid and such as those disclosed in EP-A-305282, EP-A-305283 and EP-A-351629.
Terpolymers containing monomer units selected from maleic acid, acrylic acid, aspartic acid and vinyl alcohol or acetate, particularly those having an average molecular weight of from 1,000 to 30,000, preferably 3,000 to 10,000, are also suitable for incorporation into the compositions of the present invention.
Other organic polymeric compounds suitable for incorporation in the detergent compositions of the present invention include cellulose derivatives such as methylcellulose, carboxymethylcellulose, hydroxypropylmethylcellulose, ethylhydroxyethylcellulose and hydroxyethylcellulose.
Further useful organic polymeric compounds are the polyethylene glycols, particularly those of molecular weight 1000 to 10000, more particularly 2000 to 8000 and most preferably about 4000.
Cationic soil removal/anti-redeposition compounds The detergent composition or components thereof of the invention may comprise water-soluble cationic ethoxylated amine compounds with particulate soil/clay-soil removal and/or anti-redeposition properties. These cationic compounds are described in more detail in EP-B-111965, US 4659802 and US 4664848. Particularly preferred of these cationic compounds are ethoxylated cationic monoamines, diamines or triamines. Especially preferred are the ethoxylated cationic monoamines, diamines and triamines of the fonnula:
X OCH2CH2)n 1~ +- CH2 -- CH2 -(- CH2)a b N+- CH2CH2O ~ X
(CH2CH2O +n_ X (CH2CH2O -)n-- X
wherein X is a nonionic group selected from the group consisting of H, C1-C4 alkyl or hydroxyalkyl ester or ether groups, and mixtures thereof, a is from 0 to 20, preferably from 0 to 4 (e.g. ethylene, propylene, hexamethylene) b is 2, 1 or 0; for cationic monoamines (b=0), n is preferably at least 16, with a typical range of from 20 to 35; for cationic diamines or triamines, n is preferably at least about 12 with a typical range of from about 12 to about 42.
These compounds where present in the composition, are generally present in an amount of from 0.01 to 30% by weight, preferably 0.05 to 10% by weight.
Suds suppressin¾ system The detergent compositions of the invention, when formulated for use in machine washing compositions, preferably comprise a suds suppressing system present at a level of from 0.01% to 15%, preferably from 0.05% to 10%, most preferably from 0.1 % to 5% by weight of the composition.
Suitable suds suppressing systems for use herein may comprise essentially any known antifoam compound, including, for example silicone antifoam compounds and 2-alkyl alcanol antifoam compounds.
By antifoam compound it is meant herein any compound or mixtures of compounds which act such as to depress the foaming or sudsing produced by a solution of a detergent composition, particularly in the presence of agitation of that solution.
Particularly preferred antifoam compounds for use herein are silicone antifoam compounds defined herein as any antifoam compound including a silicone component. Such silicone antifoam compounds also typically contain a silica component. The term "silicone" as used herein, and in general throughout the industry, encompasses a variety of relatively high molecular weight polymers containing siloxane units and hydrocarbyl group of various types.
Preferred silicone antifoam compounds are the siloxanes, particularly the polydimethylsiloxanes having trimethylsilyl end blocking units.
Other suitable antifoam compounds include the monocarboxylic fatty acids and soluble salts thereof. These materials are described in US Patent 2,954,347, issued September 27, 1960 to Wayne St. John. The monocarboxylic fatty acids, and salts thereof, for use as suds suppressor typically have hydrocarbyl chains of 10 to 24 carbon atoms, preferably 12 to 18 carbon atoms.
Suitable salts include the alkali metal salts such as sodium, potassium, and lithium salts, and ammonium and alkanolammonium salts.
Other suitable antifoam compounds include, for example, high molecular weight fatty esters (e.g. fatty acid triglycerides), fatty acid esters of monovalent alcohols, aliphatic C 18-C40 ketones (e.g. stearone) N-alkylated amino triazines such as tri- to hexa-alkylmelamines or di- to tetra alkyldiamine chlortriazines formed as products of cyanuric chloride with two or three moles of a primary or secondary amine containing 1 to 24 carbon atoms, propylene oxide, bis stearic acid amide and monostearyl di-alkali metal (e.g. sodium, potassium, lithium) phosphates and phosphate esters.
A preferred suds suppressing system comprises (a) antifoam compound, preferably silicone antifoam compound, most preferably a silicone antifoam compound comprising in combination (i) polydimethyl siloxane, at a level of from 50% to 99%, preferably 75% to 95% by weight of the silicone antifoam compound; and ... , .. , .. i .
(ii) silica, at a level of from 1% to 50%, preferably 5% to 25% by weight of the silicone/silica antifoam compound;
wherein said silica/silicone antifoam compound is incorporated at a level of from 5% to 50%, preferably 10% to 40% by weight;
(b) a dispersant compound, most preferably comprising a silicone glycol rake copolymer with a polyoxyalkylene content of 72-78% and an ethylene oxide to propylene oxide ratio of from 1:0.9 to 1:1.1, at a level of from 0.5% to 10%, preferably 1% to 10% by TM
weight; a particularly preferred silicone glycol rake copolymer of this type is DC0544, commercially available from DOW Coming under the trademark DC0544;
(c) an inert carrier fluid compound, most preferably comprising a C 16-C 18 ethoxylated alcohol with a degree of ethoxylation of from 5 to 50, preferably 8 to 15, at a level of from 5% to 80%, preferably 10% to 70%, by weight;
A highly preferred particulate suds suppressing system is described in EP-A-0210731 and comprises a silicone antifoam compound and an organic carrier material having a melting point in the range 50 C to 85 C, wherein the organic carrier material comprises a monoester of glycerol and a fatty acid having a carbon chain containing from 12 to 20 carbon atoms. EP-A-0210721 discloses other preferred particulate suds suppressing systems wherein the organic carrier material is a fatty acid or alcohol having a carbon chain containing from 12 to 20 carbon atoms, or a mixture thereof, with a melting point of from 45 C to 80 C.
Polymeric dye transfer inhibitin pY agents The detergent compositions herein may also comprise from 0.01% to 10 %, preferably from 0.05% to 0.5% by weight of polymeric dye transfer inhibiting agents.
The polymeric dye transfer inhibiting agents are preferably selected from polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, polyvinylpyrrolidone polymers or combinations thereof, whereby these polymers can be cross-linked polymers.
a) Polyamine N-oxide polymers Polyamine N-oxide polymers suitable for use herein contain units having the following structure formula :
P
= ( (~) Ax I
R
wherein P is a polymerisable unit, and ~1 RIO ~1 A is-C-N-, -N-C-, CO, C, -0-, -S-, -N-; xis 0 or 1;
R 1 is H or C 1-6 linear or branched alkyl; or may form a heterocyclic group with R;
R are aliphatic, ethoxylated aliphatics, aromatic, heterocyclic or alicyclic groups or any combination thereof whereto the nitrogen of the N-O group can be attached or wherein the nitrogen of the N-O group is part of these groups.
The N-O group can be represented by the following general structures :
~
(Rj) x -N-(R2)y; ~
(R3)z or --- N-(Rl)x wherein RI, R2, and R3 are aliphatic groups, aromatic, heterocyclic or alicyclic groups or combinations thereof, x or/and y or/and z is 0 or I and wherein the nitrogen of the N-O group can be attached or wherein the nitrogen of the N-O group forms part of these groups. The N-O
group can be part of the polymerisable unit (P) or can be attached to the polymeric backbone or a combination of both.
Suitable polyamine N-oxides wherein the N-O group forms part of the polymerisable unit comprise polyamine N-oxides wherein R is selected from aliphatic, aromatic, alicyclic or heterocyclic groups. One class of said polyamine N-oxides comprises the group of polyamine N-oxides wherein the nitrogen of the N-O group forms part of the R-group.
Preferred polyamine N-oxides are those wherein R is a heterocyclic group such as pyridine, N-substituted pyrrole, imidazole, N-substituted pyrrolidine, piperidine, quinoline, acridine and derivatives thereof.
Other suitable polyamine N-oxides are the polyamine oxides whereto the N-O
group is attached to the polymerisable unit. A preferred class of these polyamine N-oxides comprises the polyamine N-oxides having the general formula (1) wherein R is an aromatic,heterocyclic or alicyclic groups wherein the nitrogen of the N-O functional group is part of said R group.
Examples of these classes are polyamine oxides wherein R is a heterocyclic compound such as pyridine, N-substituted pyrrole, imidazole and derivatives thereof.
The polyamine N-oxides can be obtained in almost any degree of polymerisation.
The degree of polymerisation is not critical provided the material has the desired water-solubility and dye-suspending power. Typically, the average molecular weight is within the range of 500 to 1000,000.
b) Copolymers ofN-vinYlpyrrolidone and N-vinvlimidazole Suitable herein are copolymers ofN-vinylimidazole and N-vinylpyrrolidone having a preferred average molecular weight range of from 5,000 to 100,000, or 5,000 to 50,000.
The preferred copolymers have a molar ratio of N-vinylimidazole to N-vinylpyrrolidone from I
to 0.2.
c) Polyvinylpyrrolidone The detergent compositions herein may also utilize polyvinylpyrrolidone ("PVP") having an average molecular weight of from 2,500 to 400,000. Suitable polyvinylpyrrolidones are commercially available from ISP Corporation, New York, NY and Montreal, Canada under the product names PVP K- 15 (viscosity molecular weight of 10,000), PVP K-30 (average molecular weight of 40,000), PVP K-60 (average moleciilar weight of 160,000), and PVP K-90 (average molecular weight of 360,000). PVP K-15 is also available from ISP Corporation.
Other suitable polyvinylpyrrolidones which are commercially available from BASF Corporation include SokalaTMn HP 165 and Sokalan HP 12.
d) Polyvinvloxazolidone The detergent compositions herein may also utilize poiyvinyloxazolidones as polymeric dye transfer inhibiting agents. Said polyvinyloxazolidones have an average molecular weight of from 2,500 to 400,000.
e) Polyvinylimidazole . . , , i CA 02268772 2003-08-05 The detergent compositions herein may also utilize polyvinylimidazole as polymeric dye transfer inhibiting agent. Said polyviriylimidazoles preferably have an average molecular weight of from 2,500 to 400,000.
Optical brightener The detergent compositions herein also optionally contain from about 0.005% to 5% by weight of certain types of hydrophilic optical brighteners.
Hydrophilic optical brighteners useful herein include those having the structural formula:
R, R2 )7N H H N 41"
N
O>--N O C=C N--CN
N ~
R2~N H S03M S03M H Rt wherein R1 is selected from anilino, N-2-bis-hydroxyethyl and NH-2-hydroxyethyl; R2 is selected from N-2-bis-hydroxyethyl, N-2-hydroxyethyl-N-methylamino, morphilino, chloro and amino; and M is a salt-forming cation such as sodium or potassium.
When in the above formula, R1 is anilino, R2 is N-2-bis-hydroxyethyl and M is a cation such as sodium, the brightener is 4,4',-bis[(4-anilino-6-(N-2-bis-hydroxyethyl)-s-triazine-2-yl)amino]-2,2'-stilbenedisulfonic acid and disodium salt. This particular brightener species is cor-,mercially marketed under the trademark Tinopal-UNPA-GX by Ciba-Geigy Corporation.
Tinopal-UNPA-GX is the preferred hydrophilic optical brightener useful in the detergent compositions herein.
When in the above fotmula, R1 is anilino, R2 is N-2-hydroxyethyl-N-2-methylamino and M is a cation such as sodium, the brightener is 4,4'-bis[(4-anilino-6-(N-2-hydroxyethyl-N-methylamino)-s-triazine-2-yi)amino]2,2'-stilbenedisulfonic acid disodium salt.
This particular brightener species is commercially marketed under the trademark Tinopal 5BM-GX
by Ciba-Geigy Corporation.
When in the above formula, R1 is anilino, R2 is morphilino and M is a cation such as sodium, the brightener is 4,4'-bis[(4-anilino-6-morphilino-s-triazine-2-yl)amino]2,2'-stilbenedisulfonic acid, sodium salt. This particular brightener species is commercially marketed under the trademark Tinopal AMS-GX by Ciba Geigy Corporation.
Polymeric Soil Release Agent Known polymeric soil release agents, hereinafter "SRA", can optionally be employed in the present detergent compositions. If utilized, SRA's will generally comprise from 0.01% to 10.0%, typically from 0.1 % to 5%, preferably from 0.2% to 3.0% by weight, of the compositions.
Preferred SRA's typically have hydrophilic segments to hydrophilize the surface of hydrophobic fibers such as polyester and nylon, and hydrophobic segments to deposit upon hydrophobic fibers and remain adhered thereto through completion of washing and rinsing cycles, thereby serving as an anchor for the hydrophilic segments. This can enable stains occurring subsequent to treatment with the SRA to be more easily cleaned in later washing procedures.
Preferred SRA's include oligomeric terephthalate esters, typically prepared by processes involving at least one transesterification/oligomerization, often with a metal catalyst such as a titanium(IV) alkoxide. Such esters may be made using additional monomers capable of being incorporated into the ester structure through one, two, three, four or more positions, without, of course, forming a densely crosslinked overall structure.
Suitable SRA's include a sulfonated product of a substantially linear ester oligomer comprised of an oligomeric or polymeric ester backbone of terephthaloyl and oxyalkyleneoxy repeat units and allyl-derived sulfonated tenninal moieties covalently attached to the backbone, for example as described in U.S. 4,968,451, November 6, 1990 to J.J. Scheibel and E.P.
Gosselink. Such ester oligomers can be prepared by: (a) ethoxylating allyl alcohol; (b) reacting the product of (a) with dimethyl terephthalate ("DMT") and 1,2-propylene glycol ("PG") in a two-stage transesterification/oligomerization procedure; and (c) reacting the product of (b) with sodium metabisulfite in water. Other SRA's include the nonionic end-capped 1,2-propylene/polyoxyethylene terephthalate polyesters of U.S. 4,711,730, December 8, 1987 to Gosselink et al., for example those produced by transesterification/oligomerization of poly-(ethyleneglycol) methyl ether, DMT, PG and poly(ethyleneglycol) ("PEG"). Other examples of SRA's include: the partly- and fully- anionic-end-capped oligomeric esters of U.S. 4,721,580, January 26, 1988 to Gosselink, such as oligomers from ethylene glycol ("EG"), PG, DMT and Na-3,6-dioxa-8-hydroxyoctanesulfonate; the nonionic-capped block polyester oligomeric compounds of U.S. 4,702,857, October 27, 1987 to Gosselink, for example produced from = 36 DMT, methyl (Me)-capped PEG and EG and/or PG, or a combination of DMT, EG
and/or PG, Me-capped PEG and Na-dimethyl-5-sulfoisophthalate; and the anionic, especially sulfoaroyl, end-capped terephthalate esters of U.S. 4,877,896, October 31, 1989 to Maldonado, Gosselink et al., the latter being typical of SRA's useful in both laundry and fabric conditioning products, an example being an ester composition made from m-sulfobenzoic acid monosodium salt, PG and DMT, optionally but preferably further comprising added PEG, e.g., PEG 3400.
SRA's also include: simple copolymeric blocks of ethylene terephthalate or propylene terephthalate with polyethylene oxide or polypropylene oxide terephthalate, see U.S. 3,959,230 to Hays, May 25, 1976 and U.S. 3,893,929 to Basadur, July 8, 1975; cellulosic derivatives such TM
as the hydroxyether cellulosic polymers available as METHOCEL from Dow; the C1-C4 alkyl celluloses and C4 hydroxyalkyl celluloses, see U.S. 4,000,093, December 28, 1976 to Nicol, et al.; and the methyl cellulose ethers having an average degree of substitution (methyl) per anhydroglucose unit from about 1.6 to about 2.3 and a solution viscosity of from about 80 to about 120 centipoise measured at 20 C as a 2% aqueous solution. Such materials are available as METOLOSE SM100 and METOLOSE SM200, which are the trade names of methyl cellulose ethers manufactured by Shin-etsu Kagaku Kogyo KK.
Additional classes of SRA's include: (1) nonionic terephthalates using diisocyanate coupling agents to link polymeric ester structures, see U.S. 4,201,824, Violland et al.
and U.S. 4,240,918 Lagasse et al.; and (II) SRA's with carboxylate terminal groups made by adding trimellitic anhydride to known SRA's to convert terminal hydroxyl groups to trimellitate esters. With the proper selection of catalyst, the trimellitic anhydride forms linkages to the terminals of the polymer through an ester of the isolated carboxylic acid of trimellitic anhydride rather than by opening of the anhydride linkage. Either nonionic or anionic SRA's may be used as starting materials as long as they have hydroxyl terminal groups which may be esterified. See U.S.
4,525,524 Tung et al.. Other classes include: (111) anionic terephthalate-based SRA's of the urethane-linked variety, see U.S. 4,201,824, Violland et al.;
Other optional ineredients Other optional ingredients suitable for inclusion in the compositions of the invention include perfumes, colours and filler salts, with sodium sulfate being a preferred filler salt.
Near neutral wash pH deterQent formulation While the detergent compositions of the present invention are operative within a wide range of wash pHs (e.g. from about 5 to about 12), they are particularly suitable when formulated to provide a near neutral wash pH, i.e. an initial pH of from about 7.0 to about 10.5 at a concentration of from about 0.1 to about 2% by weight in water at 20 C. Near neutral wash pH
formulations are better for enzyme stability and for preventing stains from setting. In such formulations, the wash pH is preferably from about 7.0 to about 10.5, more preferably from about 8.0 to about 10.5, most preferably from 8.0 to 9Ø
Preferred near neutral wash pH detergent formulations are disclosed to European Patent 95205 published November 30, 1983, J.H.M. Wertz and P.C.E. Goffinet.
Highly preferred compositions of this type also preferably contain from about 2 to about 10% by weight of citric acid and minor amounts (e.g., less than about 20% by weight) of neutralizing agents, buffering agents, phase regulants, hydrotropes, enzymes, enzyme stabilizing agents, polyacids, suds regulants, opacifiers, anti-oxidants, bactericides, dyes, perfumes and brighteners, such as those described in US Patent 4,285,841 to Barrat et al., issued August 25, 1981 .
Form of the compositions The compositions in accordance with the invention can take a variety of physical forms including granular, tablet, flake, pastille and bar and liquid forms. Liquids may be aqueous or non-aqueous and may be in the fonn of a gel. The compositions are particularly the so-called concentrated granular detergent compositions adapted to be added to a washing machine by means of a dispensing device placed in the machine drum with the soiled fabric load.
Such granular detergent compositions or components thereof in accordance with the present invention can be made via a variety of methods, including spray-drying, dry-mixing, extrusion, agglomerating and granulation. The cationic quaternised surfactant can be added to the other detergent components by mixing, agglomeration (preferably combined with a carrier material), granulation or as a spray-dried component.
The compositions in accord with the present invention can also be used in or in combination with bleach additive compositions, for example comprising chlorine bleach.
In one aspect of the invention the mean particle size of the components of granular compositions in accordance with the invention, should preferably be such that no more than 15% of the particles are greater than 18mm in diameter and not more than 15% of the particles are less than 0.25mm in diameter. Preferably the mean particle size is such that from 10% to 50% of the particles has a particle size of from 0.2mm to 0.7mm in diameter.
The term mean particle size as defined herein is calculated by sieving a sample of the composition into a number of fractions (typically 5 fractions) on a series of sieves, preferably Tyler sieves. The weight fractions thereby obtained are plotted against the aperture size of the sieves. The mean particle size is taken to be the aperture size through which 50% by weight of the sample would pass.
In a further aspect of the invention at last 80%, preferably at least 90% by weight of the composition comprises particles of mean particle size at least 0.8 mm, more preferably at least 1.0 mm and most preferably from 1.0, or 1.5 to 2.5 mm. Most preferably at least 95% of the particles will have such a mean particle size. Such particles are preferably prepared by an extrusion process.
The bulk density of granular detergent compositions in accordance with the present invention typically have a bulk density of at least 400, preferably at least 600 g/litre, more preferably from 650 g/litre to 1200 g/litre. Bulk density is measured by means of a simple funnel and cup device consisting of a conical funnel moulded rigidly on a base and provided with a flap valve at its lower extremity to allow the contents of the funnel to be emptied into an axially aligned cylindrical cup disposed below the funnel. The funnel is 130 mm high and has internal diameters of 130 mm and 40 mm at its respective upper and lower extremities. It is mounted so that the lower extremity is 140 mm above the upper surface of the base. The cup has an overall height of 90 mm, an internal height of 87 mm and an internal diameter of 84 mm. Its nominal volume is 500 ml.
To carry out a measurement, the funnel is filled with powder by hand pouring, the flap valve is opened and powder allowed to overfill the cup. The filled cup is removed from the frame and excess powder removed from the cup by passing a straight edged implement eg; a knife, across its upper edge. The filled cup is then weighed and the value obtained for the weight of powder doubled to provide a bulk density in g/litre. Replicate measurements are made as required.
Compacted solids may be manufactured using any suitable compacting process, such as tabletting, briquetting or extrusion, preferably tabletting. Preferably tablets for use in dish washing processes, are manufactured using a standard rotary tabletting press using compression forces of from 5 to 13 KN/cm2, more preferably from 5 to 11 KN/cm2 so that the compacted solid has a minimum hardness of 176N to 275N, preferably from 195N to 245N, measured by a C100 hardness test as supplied by I. Holland instruments. This process may be used to prepare homogeneous or layered tablets of any size or shape. Preferably tablets are symmetrical to ensure the uniform dissolution of the tablet in the wash solution.
Laundry washing method Machine laundry methods herein typically comprise treating soiled laundry with an aqueous wash solution in a washing machine having dissolved or dispensed therein an effective amount of a machine laundry detergent composition in accord with the invention. By an effective amount of the detergent composition it is meant from l Og to 300g of product dissolved or dispersed in a wash solution of volume from 5 to 65 litres, as are typical product dosages and wash solution volumes commonly employed in conventional machine laundry methods. Dosage is dependent upon the particular conditions such as water hardness and degree of soiling of the soiled laundry.
The detergent composition may be dispensed from the drawer dispenser of a washing machine or may be sprinkled over the soiled laundry placed in the machine.
In one use aspect a dispensing device is employed in the washing method. The dispensing device is charged with the detergent product, and is used to introduce the product directly into the drum of the washing machine before the commencement of the wash cycle. Its volume capacity should be such as to be able to contain sufficient detergent product as would normally be used in the washing method.
The dispensing device containing the detergent product is placed inside the drum before the commencement of the wash, before, simultaneously with or after the washing machine has been loaded with laundry. At the commencement of the wash cycle of the washing machine water is introduced into the drum and the drum periodically rotates. The design of the dispensing device should be such that it permits containment of the dry detergent product but then allows release of this product during the wash cycle in response to its agitation as the drum rotates and also as a result of its contact with the wash water.
To allow for release of the detergent product during the wash the device may possess a number of openings through which the product may pass. Alternatively, the device may be made of a material which is permeable to liquid but impermeable to the solid product, which will allow release of dissolved product. Preferably, the detergent product will be rapidly released at the start of the wash cycle thereby providing transient localised high concentrations of product in the drum of the washing machine at this stage of the wash cycle.
Preferred dispensing devices are reusable and are designed in such a way that container integrity is maintained in both the dry state and during the wash cycle. Especially preferred dispensing devices for use with the composition of the invention have been described in the following patents; GB-B-2, 157, 717, GB-B-2, 157, 718, EP-A-0201376, EP-A-0288345 and EP-A-0288346. An article by J.Bland published in Manufacturing Chemist, November 1989, pages 41-46 also describes especially preferred dispensing devices for use with granular laundry products which are of a type commonly know as the "granulette". Another preferred dispensing device for use with the compositions of this invention is disclosed in PCT
Patent Application No. W094/11562.
Especially preferred dispensing devices are disclosed in European Patent Application Publication Nos. 0343069 & 0343070. The latter Application discloses a device comprising a flexible sheath in the form of a bag extending from a support ring defining an orifice, the orifice being adapted to admit to the bag sufficient product for one washing cycle in a washing process.
A portion of the washing medium flows through the orifice into the bag, dissolves the product, and the solution then passes outwardly through the orifice into the washing medium. The support ring is provided with a masking arrangement to prevent egress of wetted, undissolved, product, this arrangement typically comprising radially extending walls extending from a central boss in a spoked wheel configuration, or a similar structure in which the walls have a helical form.
Alternatively, the dispensing device may be a flexible container, such as a bag or pouch. The bag may be of fibrous construction coated with a water impermeable protective material so as to retain the contents, such as is disclosed in European published Patent Application No. 0018678.
Alternatively it may be formed of a water-insoluble synthetic polymeric material provided with an edge seal or closure designed to rupture in aqueous media as disclosed in European published Patent Application Nos. 0011500, 0011501, 0011502, and 0011968. A convenient form of water frangible closure comprises a water soluble adhesive disposed along and sealing one edge of a pouch formed of a water impermeable polymeric film such as polyethylene or polypropylene.
Machine dishwashing method . . , . . . , i .
Any suitable methods for machine dishwashing or cleaning soiled tableware, particularly soiled silverware are envisaged.
A preferred machine dishwashing method comprises treating soiled articles selected from crockery, glassware, hollowware, silverware and cutlery and mixtures thereof, with an aqueous liquid having dissolved or dispensed therein an effective amount of a machine dishwashing composition in accord with the invention. By an effective amount of the machine dishwashing composition it is meant from 8g to 60g of product dissolved or dispersed in a wash solution of volume from 3 to 10 litres, as are typical product dosages and wash solution volumes commonly employed in conventional machine dishwashing methods.
Packaging for the compositions Commercially marketed executions of the bleaching compositions can be packaged in any suitable container including those constructed from paper, cardboard, plastic materials and any suitable laminates. A preferred packaging execution is described in WO
95/02681.
Abbreviations used in Examples In the detergent compositions, the abbreviated component identifications have the following meanings:
LAS . Sodium linear C 12 alkyl benzene sulfonate TAS . Sodium tallow alkyl sulfate CxyAS . Sodium C I x- C I y alkyl sulfate C46SAS . Sodium C 14 - C 16 secondary (2,3) alkyl sulfate CxyEzS . Sodium C I x-C 1 y alkyl sulfate condensed with z moles of ethylene oxide CxyEz . C I x-C 1 y predominantly linear primary alcohol condensed with an average of z moles of ethylene oxide QAS I . R2.N+(CH3)2(C2H4OH) with R2 = C9 - C I I linear alkyl QAS 2 . R2.N+(CH3)2(C2H4OH) with approximately 50% R2 = C8 linear alkyl; approximately 50%R2=C10 QAS 3 . R2.N+(CH3)2(C2H4OH) with approximately 40% R2 = C I I linear alkyl; approximately 60% R2 = C9 linear alkyl QAS 4 . R2.N+(CH3)2(C2H4OH) with R2 = C6 linear alkyl QAS 5 . R2.N+(CH3)2(C2H4OH) with R2 = C 10 linear alkyl Soap . Sodium linear alkyl carboxylate derived from an 80/20 mixture of tallow and coconut oils CFAA . C 12-C 14 (coco) alkyl N-methyl glucamide TFAA . C 16-C 18 alkyl N-methyl glucamide TPKFA . C 12-C 14 topped whole cut fatty acids STPP . Anhydrous sodium tripolyphosphate TSPP . Tetrasodium pyrophosphate Zeolite A . Hydrated Sodium Aluminosilicate of formula Na12(A102SiO2)I2.27H20 having a primary particle size in the range from 0.1 to 10 micrometers Zeolite MAP . Hydrated sodium aluminosilicate zeolite MAP
having a silicon to aluminium ratio of 1.07 NaSKS-6 . Crystalline layered silicate of formula 8-Na2Si2O5 Citric acid . Anhydrous citric acid Borate . Sodium borate Carbonate . Anydrous sodium carbonate with a particle size between 200 m and 900 m Bicarbonate . Anhydrous sodium bicarbonate with a particle size distribution between 400 m and 1200pm Silicate . Amorphous Sodium Silicate (Si02:Na20 = 2.0:1) Sodium sulfate : Anhydrous sodium sulfate Citrate . Tri-sodium citrate dihydrate of activity 86.4%
with a particle size distribution between 425pm and 850 m MA/AA . Copolymer of 1:4 maleic/acrylic acid, average molecular weight about 70,000 AA . Sodium polyacrylate polymer of average molecular weight 4,500 CMC Sodium carboxymethyl cellulose Cellulose ether : Methyl cellulose ether with a degree of polymerization of 650 available from Shin Etsu Chemicals Protease . Proteolytic enzyme of activity 4KNPU/g sold by NOVO Industries A/S under the trademark Savinase Alcalase . Proteolytic enzyme of activity 3AU/g sold by NOVO Industries A/S
Cellulase . Cellulytic enzyme of activity 1000 CEVU/g sold by NOVO Industries A/S under the trademark Carezyme Amylase . Amylolytic enzyme of activity 120KNU/g sold by NOVO Industries A/S under the trademark Termamyl 120T
Lipase . Lipolytic enzyme of activity 100KLU/g sold by NOVO Industries A/S under the trademark Lipolase TM
Endolase . Endoglucanase enzyme of activity 3000 CEVU/g.
sold by NOVO Industries A/S
PB4 . Sodium perborate tetrahydrate of nominal formula NaBO2.3H20.H202 PBI . Anhydrous sodium perborate bleach of nominal formula NaBO2.H202 Percarbonate Sodium percarbonate of nominal formula 2Na2CO3.3H2O2 NOBS . Nonanoyloxybenzene sulfonate in the form of the sodium salt TAED Tetraacetylethylenediamine Mn catalyst . MnlV2(m-O)3(1,4,7-trimethyl-1,4,7-triazacyclononane)2(PF6)2, as described in U.S.
Pat. Nos. 5,246,621 and 5,244,594.
DTPA . Diethylene triamine pentaacetic acid DTPMP . Diethylene triamine penta (methylene phosphonate), marketed by Monsanto under the Trademark Dequest 2060 Photoactivated bleach : Sulfonated Zinc Phthlocyanine encapsulated in bleach dextrin soluble polymer Brightener 1 Disodium 4,4'-bis(2-sulphostyry)biphenyl Brightener 2 . Disodium 4,4'-bis(4-anilino-6-morpholino-1.3.5-triazin-2-yl)amino) stilbene-2:2'-disulfonate HEDP . 1,1-hydroxvethane diphosphonic acid EDDS . Ethylenediamine-N, N-disuccinic acid QEA . bis((C2H5O)(C2H4On)(CH3) -N+-C6H12-N+ -(CH3) bis((C2H5O)-(C2H4O)n), wherein n= from 20 to 30 PEGX . Polyethylene glycol, with a molecular weight of x PEO . Polyethylene oxide, with a molecular weight of 50,000 TEPAE . Tetraethylenepentaamine ethoxylate PVP . Polyvinylpyrrolidone polymer PVNO Polyvinylpyridine N-oxide PVPVI Copolymer of polyvinylpyrrolidone and vinylimidazole SRP I . Anionically end capped esters with oxyethylene oxy and terephtaloyl backbone SRP 2 . Diethoxylated poly (1, 2 propylene terephthalate) short block polymer Silicone antifoam . Polydimethylsiloxane foam controller with siloxane-oxyalkylene copolymer as dispersing agent with a ratio of said foam controller to said dispersing agent of 10:1 to 100:1 Wax . Paraffin wax In the following examples all levels are quoted as % by weight of the composition:
Examole 1 The following high density granular laundry detergent compositions A to F of particular utility under European machine wash conditions are examples of the present invention:
A B C D E F
LAS 8.0 8.0 8.0 8.0 8.0 8.0 C25E3 3.4 3.4 3.4 3.4 3.4 3.4 C46AS 1.0 2.0 2.5 - 3.0 4.0 C68AS 3.0 2.0 5.0 7.0 1.0 0.5 QAS 1 0.05 - - - - 0.8 QAS 2 - 0.05 0.8 - - -QAS 3 - - - 1.4 1.0 -Zeolite A 18.1 18.1 16.1 18.1 18.1 18.1 Zeolite MAP - 4.0 3.5 - - -Carbonate 12.0 12.0 13.0 26.0 26.0 26.0 Silicate 1.4 1.4 1.4 3.0 3.0 3.0 NaSKS-6(citric acid 11.0 6.0 6.0 - - 12.5 79:21) Sodium Sulfate 26.1 26.1 25.0 17.1 24.1 9.1 MA/AA 0.3 0.3 0.3 0.3 0.3 0.3 CMC 0.2 0.2 0.2 0.2 0.2 0.2 PB4 9.0 9.0 9.0 9.0 9.0 9.0 TAED 1.5 1.5. 1.0 1.5 - 1.5 Mn Catalyst - 0.03 0.07 - - -DTPMP 0.1 0.3 - - 0.2 0.3 HEDP 0.3 0.3 0.2 0.2 0.3 0.3 EDDS - - 0.4 0.2 - -QEA 1.0 0.8 0.7 1.2 - 0.5 Protease 0.85 0.85 0.26 0.85 0.85 0.85 Amylase 0.1 0.1 0.4 0.3 0.1 0.1 Lipase 0.05 0.6 0.7 0.1 0.07 0.1 Photoactivated 15 ppm 15 ppm 15 ppm 15 ppm 15 ppm 15 ppm bleach (ppm) Brightener 1 0.09 0.09 - 0.09 0.09 0.09 Perfume 0.3 0.3 0.3 0.3 0.3 0.3 Silicone antifoam 0.5 0.5 0.5 0.5 0.5 0.5 Misc/minors to 100%
Density in g/litre 850 850 850 850 850 850 Example 2 The following granular laundry detergent compositions G to I of particular utility under European machine wash conditions are examples of the present invention:
G H I
LAS 5.3 5.61 4.76 TAS 1.3 1.86 1.57 C45AS - 2.24 3.89 C25E3S - 0.76 1.18 C45E7 3.3 - 5.0 C25E3 - 5.5 -QAS 1 0.8 3.0 2.5 STPP 19.7 - -Zeolite A - 19.5 19.5 Zeolite MAP 2.0 - -NaSKS-6/citric acid - 13.0 10.6 (79:21) Carbonate 5.1 18.4 21.4 Bicarbonate - 2.0 2.0 Silicate 6.8 - -Sodium Sulfate 37.8 - 7.0 MA/AA 0.8 1.6 1.6 CMC 0.2 0.4 0.4 PB4 5.0 12.7 -Percarbonate 5.0 - 12.7 TAED 0.5 3.1 -Mn Catalyst 0.04 - -DTPMP 0.25 0.2 0.2 HEDP - 0.3 0.3 QEA 0.9 - -Protease 0.85 2.8 0.85 Lipase 0.15 0.25 0.15 Cellulase 0.28 0.28 0.28 Amylase 0.4 0.1 0.1 PVP 0.9 1.3 0.8 Photoactivated bleach 15 ppm 27 ppm 27 ppm (ppm) Brightener 1 0.08 0.19 0.19 Brightener 2 - 0.04 0.04 Perfume 0.3 0.3 0.3 Silicone antifoam 0.5 2.4 2.4 Minors/misc to 1.3 1.1 0.3 100%
Example 3 The following detergent formulations of particular utility under European machine wash conditions are examples of the present invention.
J K L M
Blown powder LAS 6.0 5.0 11.0 6.0 TAS 2.0 - - 2.0 QAS2 0.8 1.0 - -QAS 3 - - 1.5 0.6 Zeolite A - 27.0 - 20.0 STPP 24.0 - 24.0 -Sulfate 6.0 6.0 9.0 -MA/AA 2.0 4.0 6.0 4.0 Silicate 7.0 3.0 3.0 3.0 CMC 1.0 1.0 0.5 0.6 QEA - - 1.4 0.5 Brightener 0.2 0.2 0.2 0.2 Silicone antifoam 1.0 1.0 1.0 0.3 DTPMP 0.4 0.4 0.2 0.4 Spray on C45E7 - - - 5.0 C45E5 2.5 2.5 2.0 -C45E3 2.6 2.5 2.0 -Perfume 0.3 0.3 0.3 0.2 Silicone antifoam 0.3 0.3 0.3 -Dry additives Sulfate 3.0 3.0 5.0 10.0 Carbonate 6.0 13.0 15.0 11.0 PB l - - - 1.5 PB4 18.0 18.0 10.0 18.5 TAED 3.0 2.0 - 2.0 EDDS - 2.0 2.4 -Protease 3.25 1.0 3.25 3.25 Lipase 0.4 0.5 0.4 0.2 Amylase 0.2 0.2 0.2 0.4 Photoactivated bleach - - - 0.15 Minors/misc to 100%
ExamRie 4 The following granular detergent formulations are examples of the present invention.
Formulation N is particularly suitable for usage under Japanese machine wash conditions.
Formulations 0 to S are particularly suitable for use under US machine wash conditions.
Blown powder LAS 22.0 5.0 4.0 9.0 8.0 7.0 C45AS 7.0 7.0 6.0 - - -C46AS - 4.0 3.0 - - -C45E35 - 3.0 2.0 8.0 5.0 4.0 QAS 1 0.5 - - - - -QAS 2 - 0.5 - 2.0 - 3.5 QAS 3 - - 0.8 - 3.0 -Zeolite A 6.0 16.0 14.0 19.0 16.0 14.0 MA/AA 6.0 3.0 3.0 - - -AA - 3.0 3.0 2.0 3.0 3.0 Sodium Sulfate 6.0 3.3 2.3 24.0 13.3 19.3 Silicate 5.0 1.0 1.0 2.0 1.0 1.0 Carbonate 28.3 9.0 3.0 25.7 8.0 6.0 QEA 0.4 0.4 - - 0.5 1.1 PEG 4000 0.5 - 1.5 1.0 1.5 1.0 Sodium oleate 2.0 - - - - -DTPA 0.4 - 0.5 - - 0.5 Brightener 0.2 0.3 0.3 0.3 0.3 0.3 Spray on C25E5 1.0 - - - - -C45E7 - 2.0 2.0 0.5 2.0 2.0 Perfume 1.0 0.3 0.3 1.0 0.3 0.3 Agglomerates C45AS - 5.0 5.0 - 5.0 5.0 LAS - 2.0 2.0 - 2.0 2.0 Zeolite A - 7.5 7.5 - 7.5 7.5 HEDP - 1.0 - - 2.0 -Carbonate - 4.0 4.0 - 4.0 4.0 PEG 4000 - 0.5 0.5 - 0.5 0.5 Misc (water etc) - 2.0 2.0 - 2.0 2.0 Dry additives TAED 1.0 2.0 3.0 1.0 3.0 2.0 PB4 - 1.0 4.0 - 5.0 0.5 PBI 6.0 - - - - -Percarbonate - 5.0 12.5 - - -Carbonate - 5.3 0.8 - 2.5 4.0 NOBS 4.5 - 6.0 - - 0.6 Cumeme sulfonic - 2.0 2.0 - 2.0 2.0 acid Lipase - 0.4 0.4 - - 0.2 Cellulase - 0.2 0.2 - 0.2 0.2 Amylase 1.6 0.3 0.3 0.1 0.05 0.2 Protease - 1.6 1.6 - 1.6 1.6 PVPVI - 0.5 - - - -PVP 0.5 - - - - -PVNO - 0.5 0.5 - - -SRP1 - 0.5 0.5 - - -Silicone antifoam - 0.2 0.2 - 0.2 0.2 Minors/misc to 100%
Example 5 The following granular detergent formulations are examples of the present invention.
Formulations W and X are of particular utility under US machine wash conditions. Y is of particular utility under Japanese machine wash conditions T U V
Blown Powder Zeolite A 30.0 22.0 6.0 Sodium Sulfate 19.0 5.0 7.0 MA/AA 3.0 2.0 6.0 LAS 14.0 12.0 22.0 C45AS 8.0 7.0 7.0 QAS 1 0.7 - -QAS 2 - 2.2 -QAS 5 - - 1.5 Silicate - 1.0 5.0 Soap - - 2.0 Brightener 1 0.2 0.2 0.2 Carbonate 7.0 16.0 20.0 DTPMP - 0.4 0.4 Spray On - 1.0 5.0 C45E7 1.0 1.0 1.0 Dry additives HEDP 1.0 - -PVPVI/PVNO 0.5 0.5 0.5 Protease 3.25 3.25 3.25 Lipase 0.4 0.1 0.2 Amylase 0.1 0.1 0.1 Cellulase 0.1 0.1 0.1 TAED - 6.1 4.5 PB 1 11.0 5.0 6.0 Sodium Sulfate - 6.0 -Balance (Moisture and Misc.) ExamBle 6 The following granular detergent compositions of particular utility under European wash conditions were are examples of the present invention.
w x Blown powder Zeolite A 20.0 -STPP - 20.0 LAS 6.0 6.0 C68AS 2.0 2.0 QAS 1 0.01 -QA S 4 - 0.6 Silicate 3.0 8.0 MA/AA 4.0 2.0 CMC 0.6 0.6 Brightener 1 0.2 0.2 DTPMP 0.4 0.4 Spray on C45E7 5.0 5.0 Silicone antifoam 0.3 0.3 Perfume 0.2 0.2 Dry additives Carbonate 14.0 9.0 PB 1 1.5 2.0 PB4 18.5 13.0 TAED 2.0 2.0 Photoactivated bleach 15 ppm 15 ppm Protease 1.0 1.0 Lipase 0.2 0.08 Amylase 0.4 0.4 Cellulase 0.1 0.1 Sulfate 10.0 20.0 Balance (Moisture and Misc.) 10.6 5.12 Density (g/litre) 700 700 Example 7 The foilowing detergent compositions are examples of the present invention:
Y Z AA
Blown Powder Zeolite A 15.0 15.0 15.0 Sodium Sulfate 0.0 0.0 0.0 LAS 3.0 3.0 3.0 QAS 2 1.0 - -QAS 5 - 3.0 2.0 DTPMP 0.4 0.2 0.4 CMC 0.4 0.4 0.4 MA/AA 4.0 2.0 2.0 Agglomerates LAS 5.0 5.0 5.0 TAS 2.0 2.0 1.0 Silicate 3.0 3.0 4.0 QEA - 1.0 0.6 Mn Catalyst 0.03 - -Zeolite A 8.0 8.0 8.0 Carbonate 8.0 8.0 4.0 Spray On Perfume 0.3 0.3 0.3 C45E7 2.0 2.0 2.0 C25E3 2.0 - -Dry additives Citrate 5.0 - 2.0 Bicarbonate - 3.0 -Carbonate 8.0 12.5 5.5 Percarbonate - 7.0 10.0 TAED 6.0 2.0 5.0 PB 1 14.0 7.0 8.0 EDDS - 2.0 -PolyethyleneoxideofMW 5,000,000 - - 0.2 Bentonite clay - - 10.0 Protease 1.0 3.25 3.25 Lipase 0.4 0.1 -Amylase 0.6 0.6 1.0 Cellulase 0.6 0.6 -Silicone antifoam 5.0 5.0 5.0 Dry additives Sodium sulfate 0.0 3.0 0.0 Balance (Moisture and Misc.) to 100%
Density (g/litre) 850 850 850 Example 8 The following detergent formulations are examples of the present invention:
BB CC DD EE
LAS 20.0 14.0 24.0 22.0 QAS 1 0.7 1.0 0 0 QAS 2 - - 0.08 -QAS 4 - - - 1.0 TFAA - 1.0 - -C25E5/C45E7 - 2.0 - 0.5 C45E3S - 2.5 - -STPP 30.0 18.0 30.0 22.0 Silicate 9.0 5.0 10.0 8.0 Carbonate 13.0 7.5 - 5.0 Bicarbonate - 7.5 - -Percarbonate - 5.0 9.0 15.0 DTPMP 0.7 1.0 - -QEA 1 0.4 1.2 0.5 2.0 QEA 2 0.4 - - -SRP 1 0.3 0.2 - 0.1 MA/AA 2.0 1.5 2.0 1.0 CMC 0.8 0.4 0.4 0.2 Protease 2.6 3.25 1.6 1.6 Amylase 0.8 0.4 0.25 0.5 Lipase 0.2 0.06 - 0.1 Cellulase 0.15 0.05 - -Photoactivated 70ppm 45ppm - 10ppm bleach (ppm) Brightener 1 0.2 0.2 0.08 0.2 PBI 6.0 2.0 - -HEDP - - 2.3 -TAED 2.0 1.0 - -Balance (Moisture and Misc.) to 100%
Example 9 The following laundry bar detergent compositions are examples of the present invention.
FF GG HH II JJ KK LL MM
LAS - - 19.0 15.0 21.0 6.75 8.8 -C28AS 30.0 13.5 - - - 15.75 11.2 22.5 Sodium laurate 2.5 9.0 - - - - - -QAS 1 - - - 0.08 - - 2.0 -QAS2 1.5 - 0.8 - - - - -QAS 3 - 5 - - - - - 0.1 QAS 4 - - - - 1.5 0.04 - -QAS 5 - - - - - 0.04 - -Zeolite A 2.0 1.25 - - - 1.25 1.25 1.25 Carbonate 20.0 3.0 13.0 8.0 10.0 15.0 15.0 10.0 Calcium carbonate 21.5 - - - - - - -Sulfate 5.0 - - - - - - -TSPP 5.0 - 5.0 - 5.0 5.0 2.5 5.0 STPP 5.0 15.0 - - - 5.0 8.0 10.0 Bentonite clay - 10.0 - - 5.0 - - -DTPMP - 0.7 0.6 - 0.6 0.7 0.7 0.7 MA/AA 0.4 1.0 - - 0.2 0.4 0.5 0.4 SRP1 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 Protease - 0.39 - - 0.26 - - -Lipase - 0.1 - - 0.2 - 0.1 -Amylase 0.07 0.12 0.15 0.1 0.15 0.5 0.1 0.1 Cellulase - 0.15 - - - - - -PEO - 0.2 - 0.2 0.3 - - 0.3 Perfume 1.6 - - - - - - -
Claims (13)
1. A granular detergent composition having a bulk density of at least 400 g/l comprising:
(a) an amylolytic enzyme; and (b) a cationic surfactant comprising:
a first compound of formula I:
R1 R2 R3 R4 N+ X- (I) in which R1 is a hydroxyalkyl group having from 1 to 6 carbon atoms; each of R2 and R3 is independently C1-4 alkyl or C2-4 alkenyl; R4 is an alkyl group having n carbon atoms where n is an integer from 8 to 11; and X- is a counterion; and a second compound of formula I in which R1 is a hydroxyalkyl group having from 1 to 6 carbon atoms; each of R2 and R3 is independently C1-4 alkyl or C2-4 alkenyl;
R4 is an alkyl group having n-2 carbon atoms where n is as defined above:; and X is a counterion.
(a) an amylolytic enzyme; and (b) a cationic surfactant comprising:
a first compound of formula I:
R1 R2 R3 R4 N+ X- (I) in which R1 is a hydroxyalkyl group having from 1 to 6 carbon atoms; each of R2 and R3 is independently C1-4 alkyl or C2-4 alkenyl; R4 is an alkyl group having n carbon atoms where n is an integer from 8 to 11; and X- is a counterion; and a second compound of formula I in which R1 is a hydroxyalkyl group having from 1 to 6 carbon atoms; each of R2 and R3 is independently C1-4 alkyl or C2-4 alkenyl;
R4 is an alkyl group having n-2 carbon atoms where n is as defined above:; and X is a counterion.
2. A detergent composition according to claim 1 in which the cationic surfactant is present in an amount of from 0.01% to 20% by weight of the composition.
3. A detergent composition according to claim 2 in which the cationic surfactant is present in an amount of from 0.05% to 5% by weight of the composition.
4. A detergent composition according to claim 1 in which the weight ratio of the amylolytic enzyme in the detergent composition to cationic surfactant is from 1:10000 to 1:1.
5. A detergent composition according to claim 1 in which in either of the cationic compounds of formula I, R1 is -CH2CH2OH or -CH2CH2CH2OH; R2 and R3 are each methyl.
6. A detergent composition according to claim 5 in which in the first cationic compound of formula I, R4 is a C9-11 linear alkyl group.
7. A detergent composition according to claim 1 additionally comprising at least 1%
by weight of anionic surfactant.
by weight of anionic surfactant.
8. A detergent composition according to claim 7 in which the anionic surfactant is selected from an anionic surfactant having the formula II, III and mixtures thereof:
R5OSO3-M+ (II) R6SO3-M'+ (III) wherein R5 is a linear or branched alkyl moiety having from 9 to 22 carbon atoms; R6 is C10-20 alkyl benzene; M+, M'+ are each selected from alkali metals, alkaline earth metals, alkanol ammonium and ammonium.
R5OSO3-M+ (II) R6SO3-M'+ (III) wherein R5 is a linear or branched alkyl moiety having from 9 to 22 carbon atoms; R6 is C10-20 alkyl benzene; M+, M'+ are each selected from alkali metals, alkaline earth metals, alkanol ammonium and ammonium.
9. A detergent composition according to claim 8 in which the anionic surfactant comprises both an anionic surfactant of formula II and an anionic surfactant of formula III in a weight ratio of II:III of from 15:1 to 1:2.
10. A detergent composition according to claim 8 in which the anionic surfactant II is a C16-18 primary or secondary linear or branched alkyl sulfate and in which the anionic surfactant III is a C11-13 alkyl benzene sulphonate.
11. A detergent composition according to claim 1 additionally comprising a nonionic surfactant selected from the group consisting of alcohol ethoxylates, alkyl phenol ethoxylates, polyhydroxy fatty acid amides, alkyl polyglucosides and mixtures thereof.
12. A composition according to any one of claims 8 to 10 comprising:
(a) from 0.25% to 3%, by weight of a cationic surfactant of formula I:
R1R2R3R4N+X- (I) in which R1 is an hydroxyalkyl group having from 1 to 6 carbon atoms; each of R2 and R3 is independently C1-4 alkyl or C2-4 alkenyl; R4 is an alkyl group having n carbon atoms where n is an integer from 8 to 11; and X is a counterion; and a second compound of formula I in which R1 is a hydroxyalkyl group having from 1 to 6 carbon atoms; each of R2 and R3 is independently C1-4 alkyl or C2-4 alkenyl; R4 is an alkyl group having n-2 carbon atoms where n is as defined above; and X- is a counterion;
(b) from 3% to 40%, by weight of straight chain or branched chain primary or secondary alkyl sulfate as the anionic surfactants having the formula II;
(c) from 6% to 23%, by weight of alkyl benzene sulfonate as the anionic surfactants having the formula III; and (d) from 0.5% to 20%, by weight of a nonionic surfactant.
(a) from 0.25% to 3%, by weight of a cationic surfactant of formula I:
R1R2R3R4N+X- (I) in which R1 is an hydroxyalkyl group having from 1 to 6 carbon atoms; each of R2 and R3 is independently C1-4 alkyl or C2-4 alkenyl; R4 is an alkyl group having n carbon atoms where n is an integer from 8 to 11; and X is a counterion; and a second compound of formula I in which R1 is a hydroxyalkyl group having from 1 to 6 carbon atoms; each of R2 and R3 is independently C1-4 alkyl or C2-4 alkenyl; R4 is an alkyl group having n-2 carbon atoms where n is as defined above; and X- is a counterion;
(b) from 3% to 40%, by weight of straight chain or branched chain primary or secondary alkyl sulfate as the anionic surfactants having the formula II;
(c) from 6% to 23%, by weight of alkyl benzene sulfonate as the anionic surfactants having the formula III; and (d) from 0.5% to 20%, by weight of a nonionic surfactant.
13. A method of washing laundry in a domestic washing machine in which a dispensing device containing an effective amount of a granular detergent composition according to claim 1 is introduced into the washing machine before the commencement of the wash, wherein said dispensing device permits progressive release of said detergent composition into the wash liquor during the wash.
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB9621791A GB2318362A (en) | 1996-10-18 | 1996-10-18 | Detergent compositions |
GB9621799.7 | 1996-10-18 | ||
GB9621791.4 | 1996-10-18 | ||
GB9621799A GB2318363A (en) | 1996-10-18 | 1996-10-18 | Detergent compositions |
GB9705817A GB2323379A (en) | 1997-03-20 | 1997-03-20 | Detergent compositions |
GB9705817.6 | 1997-03-20 | ||
PCT/US1997/017815 WO1998017767A1 (en) | 1996-10-18 | 1997-10-02 | Detergent compositions |
Publications (2)
Publication Number | Publication Date |
---|---|
CA2268772A1 CA2268772A1 (en) | 1998-04-30 |
CA2268772C true CA2268772C (en) | 2008-12-09 |
Family
ID=27268544
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA002268772A Expired - Fee Related CA2268772C (en) | 1996-10-18 | 1997-10-02 | Detergent compositions comprising an amylolytic enzyme and a cationic surfactant |
Country Status (11)
Country | Link |
---|---|
EP (1) | EP0934389B1 (en) |
AR (1) | AR010001A1 (en) |
AT (1) | ATE256173T1 (en) |
BR (1) | BR9712360A (en) |
CA (1) | CA2268772C (en) |
DE (1) | DE69726747T2 (en) |
ES (1) | ES2210501T3 (en) |
HU (1) | HUP0000117A2 (en) |
MA (1) | MA24378A1 (en) |
MX (1) | MX228479B (en) |
WO (1) | WO1998017767A1 (en) |
Families Citing this family (328)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6127329A (en) * | 1997-10-02 | 2000-10-03 | The Procter & Gamble Company | Detergent compositions |
ES2596325T3 (en) | 2002-12-04 | 2017-01-05 | Clariant International Ltd | Quaternary Ammonium Composition |
US7686892B2 (en) | 2004-11-19 | 2010-03-30 | The Procter & Gamble Company | Whiteness perception compositions |
AR051659A1 (en) | 2005-06-17 | 2007-01-31 | Procter & Gamble | A COMPOSITION THAT INCLUDES AN ORGANIC CATALYST WITH IMPROVED ENZYMATIC COMPATIBILITY |
US20070044824A1 (en) | 2005-09-01 | 2007-03-01 | Scott William Capeci | Processing system and method of processing |
AR059158A1 (en) | 2006-01-23 | 2008-03-12 | Procter & Gamble | COMPOSITIONS CONTAINING ENZYMES AND DYE AGENTS FOR FABRICS |
WO2007087258A2 (en) | 2006-01-23 | 2007-08-02 | The Procter & Gamble Company | A composition comprising a lipase and a bleach catalyst |
WO2007087243A2 (en) | 2006-01-23 | 2007-08-02 | The Procter & Gamble Company | Detergent compositions |
CN101370921B (en) | 2006-01-23 | 2014-08-13 | 宝洁公司 | A composition comprising a lipase and a bleach catalyst |
US7629158B2 (en) | 2006-06-16 | 2009-12-08 | The Procter & Gamble Company | Cleaning and/or treatment compositions |
EP1867708B1 (en) | 2006-06-16 | 2017-05-03 | The Procter and Gamble Company | Detergent compositions |
US8021436B2 (en) | 2007-09-27 | 2011-09-20 | The Procter & Gamble Company | Cleaning and/or treatment compositions comprising a xyloglucan conjugate |
EP2071017A1 (en) | 2007-12-04 | 2009-06-17 | The Procter and Gamble Company | Detergent composition |
US20090209447A1 (en) | 2008-02-15 | 2009-08-20 | Michelle Meek | Cleaning compositions |
EP2163608A1 (en) | 2008-09-12 | 2010-03-17 | The Procter & Gamble Company | Laundry particle made by extrusion comprising a hueing dye and fatty acid soap |
EP2166078B1 (en) | 2008-09-12 | 2018-11-21 | The Procter & Gamble Company | Laundry particle made by extrusion comprising a hueing dye |
EP2166077A1 (en) | 2008-09-12 | 2010-03-24 | The Procter and Gamble Company | Particles comprising a hueing dye |
EP4159833A3 (en) | 2009-12-09 | 2023-07-26 | The Procter & Gamble Company | Fabric and home care products |
WO2011080267A2 (en) | 2009-12-29 | 2011-07-07 | Novozymes A/S | Polypetides having detergency enhancing effect |
BR112012018250A2 (en) | 2010-01-21 | 2019-09-24 | Procter & Gamble | process for preparing a particle |
EP2539447B1 (en) | 2010-02-25 | 2017-07-26 | Novozymes A/S | Variants of a lysozyme and polynucleotides encoding same |
RU2573907C2 (en) | 2010-04-26 | 2016-01-27 | Новозимс А/С | Granule for use in powder detergents and composition of granule detergent |
US8470760B2 (en) | 2010-05-28 | 2013-06-25 | Milliken 7 Company | Colored speckles for use in granular detergents |
WO2012028482A1 (en) | 2010-08-30 | 2012-03-08 | Novozymes A/S | A two-soak wash |
US20130266554A1 (en) | 2010-09-16 | 2013-10-10 | Novozymes A/S | Lysozymes |
US20120101018A1 (en) | 2010-10-22 | 2012-04-26 | Gregory Scot Miracle | Bis-azo colorants for use as bluing agents |
WO2010151906A2 (en) | 2010-10-22 | 2010-12-29 | Milliken & Company | Bis-azo colorants for use as bluing agents |
WO2012054058A1 (en) | 2010-10-22 | 2012-04-26 | The Procter & Gamble Company | Bis-azo colorants for use as bluing agents |
WO2012057781A1 (en) | 2010-10-29 | 2012-05-03 | The Procter & Gamble Company | Cleaning and/or treatment compositions comprising a fungal serine protease |
WO2011026154A2 (en) | 2010-10-29 | 2011-03-03 | The Procter & Gamble Company | Cleaning and/or treatment compositions |
JP2014500350A (en) | 2010-11-12 | 2014-01-09 | ミリケン・アンド・カンパニー | Thiopheneazo dye and laundry care composition containing the same |
EP2638142B1 (en) | 2010-11-12 | 2017-05-10 | The Procter and Gamble Company | Thiophene azo dyes and laundry care compositions containing the same |
WO2012101149A1 (en) | 2011-01-26 | 2012-08-02 | Novozymes A/S | Storage-stable enzyme granules |
CN103476915A (en) | 2011-02-16 | 2013-12-25 | 诺维信公司 | Detergent compositions comprising metalloproteases |
MX2013009176A (en) | 2011-02-16 | 2013-08-29 | Novozymes As | Detergent compositions comprising metalloproteases. |
MX2013009177A (en) | 2011-02-16 | 2013-08-29 | Novozymes As | Detergent compositions comprising m7 or m35 metalloproteases. |
US8815789B2 (en) | 2011-04-12 | 2014-08-26 | The Procter & Gamble Company | Metal bleach catalysts |
EP2705145B1 (en) | 2011-05-05 | 2020-06-17 | The Procter and Gamble Company | Compositions and methods comprising serine protease variants |
CA3111256C (en) | 2011-05-05 | 2023-05-09 | Danisco Us Inc. | Compositions and methods comprising serine protease variants |
US9163146B2 (en) | 2011-06-03 | 2015-10-20 | Milliken & Company | Thiophene azo carboxylate dyes and laundry care compositions containing the same |
US20140371435A9 (en) | 2011-06-03 | 2014-12-18 | Eduardo Torres | Laundry Care Compositions Containing Thiophene Azo Dyes |
MX351761B (en) | 2011-06-20 | 2017-10-26 | Novozymes As | Particulate composition. |
EP2537918A1 (en) | 2011-06-20 | 2012-12-26 | The Procter & Gamble Company | Consumer products with lipase comprising coated particles |
JP6126086B2 (en) | 2011-06-24 | 2017-05-10 | ノボザイムス アクティーゼルスカブ | Polypeptide having protease activity and polynucleotide encoding the same |
CN112662734B (en) | 2011-06-30 | 2024-09-10 | 诺维信公司 | Method for screening alpha-amylase |
DK2726592T3 (en) | 2011-07-01 | 2015-07-06 | Novozymes As | stabilized subtilisinsammensætning |
EP2732018B1 (en) | 2011-07-12 | 2017-01-04 | Novozymes A/S | Storage-stable enzyme granules |
EP2744898A1 (en) | 2011-08-15 | 2014-06-25 | Novozymes A/S | Polypeptides having cellulase activity and polynucleotides encoding same |
JP2014530598A (en) | 2011-09-22 | 2014-11-20 | ノボザイムスアクティーゼルスカブ | Polypeptide having protease activity and polynucleotide encoding the same |
CN103958657A (en) | 2011-11-25 | 2014-07-30 | 诺维信公司 | Subtilase variants and polynucleotides encoding same |
ES2624531T3 (en) | 2011-11-25 | 2017-07-14 | Novozymes A/S | Polypeptides that have lysozyme activity and polynucleotides encoding them |
US20140335596A1 (en) | 2011-12-20 | 2014-11-13 | Novozymes A/S | Subtilase Variants and Polynucleotides Encoding Same |
JP2015507675A (en) | 2011-12-29 | 2015-03-12 | ノボザイムス アクティーゼルスカブ | Detergent composition |
WO2013110766A1 (en) | 2012-01-26 | 2013-08-01 | Novozymes A/S | Use of polypeptides having protease activity in animal feed and detergents |
EP2809779B1 (en) | 2012-02-03 | 2017-09-13 | Novozymes A/S | Lipase variants and polynucleotides encoding same |
RU2612215C2 (en) | 2012-02-03 | 2017-03-03 | Дзе Проктер Энд Гэмбл Компани | Compositions containing lipases, and methods for surface treatment |
MX350713B (en) | 2012-02-17 | 2017-09-14 | Novozymes As | Subtilisin variants and polynucleotides encoding same. |
WO2013131964A1 (en) | 2012-03-07 | 2013-09-12 | Novozymes A/S | Detergent composition and substitution of optical brighteners in detergent compositions |
TR201900214T4 (en) | 2012-03-19 | 2019-02-21 | Milliken & Co | Carboxylate Dyes |
US20150291922A1 (en) | 2012-03-29 | 2015-10-15 | Novozymes A/S | Use of Enzymes For Preparing Water Soluble Films |
US9909109B2 (en) | 2012-04-02 | 2018-03-06 | Novozymes A/S | Lipase variants and polynucleotides encoding same |
WO2013167581A1 (en) | 2012-05-07 | 2013-11-14 | Novozymes A/S | Polypeptides having xanthan degrading activity and polynucleotides encoding same |
CN104302753A (en) | 2012-05-16 | 2015-01-21 | 诺维信公司 | Compositions comprising lipase and methods of use thereof |
EP2674475A1 (en) | 2012-06-11 | 2013-12-18 | The Procter & Gamble Company | Detergent composition |
EP2861749A1 (en) | 2012-06-19 | 2015-04-22 | Novozymes Bioag A/S | Enzymatic reduction of hydroperoxides |
MX364390B (en) | 2012-06-20 | 2019-04-25 | Novozymes As | Use of polypeptides having protease activity in animal feed and detergents. |
WO2014009473A1 (en) | 2012-07-12 | 2014-01-16 | Novozymes A/S | Polypeptides having lipase activity and polynucleotides encoding same |
BR112015003726A2 (en) | 2012-08-22 | 2019-09-24 | Novozymes As | detergent composition, use of a composition and a polypeptide, and method for removing a stain from a surface. |
MX2015002211A (en) | 2012-08-22 | 2015-05-08 | Novozymes As | Metalloprotease from exiguobacterium. |
EP2888360B1 (en) | 2012-08-22 | 2017-10-25 | Novozymes A/S | Metalloproteases from alicyclobacillus sp. |
EP2712915A1 (en) | 2012-10-01 | 2014-04-02 | The Procter and Gamble Company | Methods of treating a surface and compositions for use therein |
WO2014053594A1 (en) | 2012-10-05 | 2014-04-10 | Novozymes A/S | Preventing adhesion of bacteria |
WO2014056916A2 (en) | 2012-10-12 | 2014-04-17 | Novozymes A/S | Polypeptides having peroxygenase activity |
US9534208B2 (en) | 2012-10-12 | 2017-01-03 | Novozymes A/S | Polypeptides having peroxygenase activity |
WO2014056922A2 (en) | 2012-10-12 | 2014-04-17 | Novozymes A/S | Polypeptides having peroxygenase activity |
WO2014056920A2 (en) | 2012-10-12 | 2014-04-17 | Novozymes A/S | Polypeptides having peroxygenase activity |
CN104704116B (en) | 2012-10-12 | 2018-09-28 | 诺维信公司 | With the active polypeptide of peroxygenases |
CN104718286B (en) | 2012-10-12 | 2018-10-30 | 诺维信公司 | With the active polypeptide of peroxygenases |
US9719072B2 (en) | 2012-10-12 | 2017-08-01 | Novozymes A/S | Polypeptides having peroxygenase activity |
DK2929004T3 (en) | 2012-12-07 | 2019-07-29 | Novozymes As | Bacterial adhesion prevention |
WO2014090940A1 (en) | 2012-12-14 | 2014-06-19 | Novozymes A/S | Removal of skin-derived body soils |
MX363360B (en) | 2012-12-21 | 2019-03-21 | Novozymes As | Polypeptides having protease activiy and polynucleotides encoding same. |
WO2014106593A1 (en) | 2013-01-03 | 2014-07-10 | Novozymes A/S | Alpha-amylase variants and polynucleotides encoding same |
MX2015011690A (en) | 2013-03-05 | 2015-12-07 | Procter & Gamble | Mixed sugar compositions. |
EP2970830B1 (en) | 2013-03-14 | 2017-12-13 | Novozymes A/S | Enzyme and inhibitor contained in water-soluble films |
US9631164B2 (en) | 2013-03-21 | 2017-04-25 | Novozymes A/S | Polypeptides with lipase activity and polynucleotides encoding same |
WO2014173980A2 (en) | 2013-04-23 | 2014-10-30 | Novozymes A/S | Liquid automatic dish washing detergent compositions |
WO2014177709A1 (en) | 2013-05-03 | 2014-11-06 | Novozymes A/S | Microencapsulation of detergent enzymes |
RU2712877C2 (en) | 2013-05-14 | 2020-01-31 | Новозимс А/С | Detergent compositions |
US20160083703A1 (en) | 2013-05-17 | 2016-03-24 | Novozymes A/S | Polypeptides having alpha amylase activity |
CN105229116A (en) | 2013-05-28 | 2016-01-06 | 宝洁公司 | Comprise the surface treating composition of photochromic dyes |
WO2014195356A2 (en) | 2013-06-06 | 2014-12-11 | Novozymes A/S | Alpha-amylase variants and polynucleotides encoding same |
US20160145596A1 (en) | 2013-06-27 | 2016-05-26 | Novozymes A/S | Subtilase Variants and Polynucleotides Encoding Same |
CN105874067A (en) | 2013-06-27 | 2016-08-17 | 诺维信公司 | Subtilase variants and polynucleotides encoding same |
KR20160029080A (en) | 2013-07-04 | 2016-03-14 | 노보자임스 에이/에스 | Polypeptides with xanthan lyase activity having anti-redeposition effect and polynucleotides encoding same |
WO2015004102A1 (en) | 2013-07-09 | 2015-01-15 | Novozymes A/S | Polypeptides with lipase activity and polynucleotides encoding same |
WO2015014803A1 (en) | 2013-07-29 | 2015-02-05 | Novozymes A/S | Protease variants and polynucleotides encoding same |
US10150957B2 (en) | 2013-07-29 | 2018-12-11 | Novozymes A/S | Protease variants and polynucleotides encoding same |
CA2921432A1 (en) | 2013-09-18 | 2015-03-26 | The Procter & Gamble Company | Laundry care composition comprising carboxylate dye |
US9834682B2 (en) | 2013-09-18 | 2017-12-05 | Milliken & Company | Laundry care composition comprising carboxylate dye |
CN105555935A (en) | 2013-09-18 | 2016-05-04 | 宝洁公司 | Laundry care composition comprising carboxylate dye |
MX2016003538A (en) | 2013-09-18 | 2016-06-28 | Procter & Gamble | Laundry care compositions containing thiophene azo carboxylate dyes. |
WO2015049370A1 (en) | 2013-10-03 | 2015-04-09 | Novozymes A/S | Detergent composition and use of detergent composition |
US10030239B2 (en) | 2013-12-20 | 2018-07-24 | Novozymes A/S | Polypeptides having protease activity and polynucleotides encoding same |
EP3097172A1 (en) | 2014-01-22 | 2016-11-30 | The Procter & Gamble Company | Method of treating textile fabrics |
WO2015112340A1 (en) | 2014-01-22 | 2015-07-30 | The Procter & Gamble Company | Method of treating textile fabrics |
EP3097173B1 (en) | 2014-01-22 | 2020-12-23 | The Procter and Gamble Company | Fabric treatment composition |
WO2015112341A1 (en) | 2014-01-22 | 2015-07-30 | The Procter & Gamble Company | Fabric treatment composition |
WO2015109972A1 (en) | 2014-01-22 | 2015-07-30 | Novozymes A/S | Polypeptides with lipase activity and polynucleotides encoding same |
CN106062270A (en) | 2014-03-05 | 2016-10-26 | 诺维信公司 | Compositions and methods for improving properties of non-cellulosic textile materials with xyloglucan endotransglycosylase |
EP3114272A1 (en) | 2014-03-05 | 2017-01-11 | Novozymes A/S | Compositions and methods for improving properties of cellulosic textile materials with xyloglucan endotransglycosylase |
EP3521434A1 (en) | 2014-03-12 | 2019-08-07 | Novozymes A/S | Polypeptides with lipase activity and polynucleotides encoding same |
EP2924105A1 (en) | 2014-03-28 | 2015-09-30 | The Procter and Gamble Company | Water soluble unit dose article |
EP2924106A1 (en) | 2014-03-28 | 2015-09-30 | The Procter and Gamble Company | Water soluble unit dose article |
CN106103708A (en) | 2014-04-01 | 2016-11-09 | 诺维信公司 | There is the polypeptide of alpha amylase activity |
CA2943029C (en) | 2014-04-11 | 2022-09-20 | Novozymes A/S | Detergent composition |
CN106715465B (en) | 2014-04-15 | 2021-10-08 | 诺维信公司 | Polypeptides having lipase activity and polynucleotides encoding same |
WO2015171592A1 (en) | 2014-05-06 | 2015-11-12 | Milliken & Company | Laundry care compositions |
US10683489B2 (en) | 2014-05-27 | 2020-06-16 | Novozymes A/S | Methods for producing lipases |
EP3760713A3 (en) | 2014-05-27 | 2021-03-31 | Novozymes A/S | Lipase variants and polynucleotides encoding same |
WO2015189371A1 (en) | 2014-06-12 | 2015-12-17 | Novozymes A/S | Alpha-amylase variants and polynucleotides encoding same |
US20170121646A1 (en) | 2014-07-03 | 2017-05-04 | Novozymes A/S | Improved Stabilization of Non-Protease Enzyme |
EP3164486B1 (en) | 2014-07-04 | 2020-05-13 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
WO2016001449A1 (en) | 2014-07-04 | 2016-01-07 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
CA2967658A1 (en) | 2014-11-17 | 2016-05-26 | The Procter & Gamble Company | Benefit agent delivery compositions |
EP3221447A1 (en) | 2014-11-20 | 2017-09-27 | Novozymes A/S | Alicyclobacillus variants and polynucleotides encoding same |
CN116286218A (en) | 2014-12-04 | 2023-06-23 | 诺维信公司 | Liquid cleaning compositions comprising protease variants |
MX2017006695A (en) | 2014-12-04 | 2017-08-21 | Novozymes As | Subtilase variants and polynucleotides encoding same. |
CA2965231A1 (en) | 2014-12-05 | 2016-06-09 | Novozymes A/S | Lipase variants and polynucleotides encoding same |
EP3608403A3 (en) | 2014-12-15 | 2020-03-25 | Henkel AG & Co. KGaA | Detergent composition comprising subtilase variants |
CN107002049A (en) | 2014-12-16 | 2017-08-01 | 诺维信公司 | Polypeptide with N acerylglucosamine oxidase actives |
WO2016097350A1 (en) | 2014-12-19 | 2016-06-23 | Novozymes A/S | Protease variants and polynucleotides encoding same |
CN107109388A (en) | 2014-12-19 | 2017-08-29 | 诺维信公司 | Ease variants and the polynucleotides encoded to it |
US10280386B2 (en) | 2015-04-03 | 2019-05-07 | Ecolab Usa Inc. | Enhanced peroxygen stability in multi-dispense TAED-containing peroxygen solid |
US9783766B2 (en) | 2015-04-03 | 2017-10-10 | Ecolab Usa Inc. | Enhanced peroxygen stability using anionic surfactant in TAED-containing peroxygen solid |
WO2016162556A1 (en) | 2015-04-10 | 2016-10-13 | Novozymes A/S | Laundry method, use of dnase and detergent composition |
CN107636134A (en) | 2015-04-10 | 2018-01-26 | 诺维信公司 | Detergent composition |
PL3088502T3 (en) | 2015-04-29 | 2018-10-31 | The Procter & Gamble Company | Method of treating a fabric |
WO2016176240A1 (en) | 2015-04-29 | 2016-11-03 | The Procter & Gamble Company | Method of treating a fabric |
CN107548415A (en) | 2015-04-29 | 2018-01-05 | 宝洁公司 | The method of laundering of textile fabrics |
CN107532116B (en) | 2015-04-29 | 2021-05-07 | 宝洁公司 | Method for treating fabric |
EP3088506B1 (en) | 2015-04-29 | 2018-05-23 | The Procter and Gamble Company | Detergent composition |
EP3292173A1 (en) | 2015-05-04 | 2018-03-14 | Milliken & Company | Leuco triphenylmethane colorants as bluing agents in laundry care compositions |
CN107835853B (en) | 2015-05-19 | 2021-04-20 | 诺维信公司 | Odor reduction |
WO2016202739A1 (en) | 2015-06-16 | 2016-12-22 | Novozymes A/S | Polypeptides with lipase activity and polynucleotides encoding same |
EP3872175A1 (en) | 2015-06-18 | 2021-09-01 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
EP3106508B1 (en) | 2015-06-18 | 2019-11-20 | Henkel AG & Co. KGaA | Detergent composition comprising subtilase variants |
WO2016207373A1 (en) | 2015-06-26 | 2016-12-29 | Novozymes A/S | Polypeptides having peroxygenase activity |
US20180171271A1 (en) | 2015-06-30 | 2018-06-21 | Novozymes A/S | Laundry detergent composition, method for washing and use of composition |
MX2017016610A (en) | 2015-07-01 | 2018-05-15 | Novozymes As | Methods of reducing odor. |
EP3320089B1 (en) | 2015-07-06 | 2021-06-16 | Novozymes A/S | Lipase variants and polynucleotides encoding same |
CA2991114A1 (en) | 2015-09-17 | 2017-03-23 | Novozymes A/S | Polypeptides having xanthan degrading activity and polynucleotides encoding same |
PL3350303T3 (en) | 2015-09-17 | 2021-01-25 | Henkel Ag & Co. Kgaa | Detergent compositions comprising polypeptides having xanthan degrading activity |
US10954497B2 (en) | 2015-10-07 | 2021-03-23 | Novozymes A/S | Polypeptides |
US10479981B2 (en) | 2015-10-14 | 2019-11-19 | Novozymes A/S | DNase variants |
WO2017064253A1 (en) | 2015-10-14 | 2017-04-20 | Novozymes A/S | Polypeptides having protease activity and polynucleotides encoding same |
WO2016203064A2 (en) | 2015-10-28 | 2016-12-22 | Novozymes A/S | Detergent composition comprising protease and amylase variants |
WO2017089366A1 (en) | 2015-11-24 | 2017-06-01 | Novozymes A/S | Polypeptides having protease activity and polynucleotides encoding same |
CN108291180A (en) | 2015-11-26 | 2018-07-17 | 宝洁公司 | Include the liquid detergent composition of protease and encapsulated lipase |
US10870838B2 (en) | 2015-12-01 | 2020-12-22 | Novozymes A/S | Methods for producing lipases |
WO2017097866A1 (en) | 2015-12-07 | 2017-06-15 | Novozymes A/S | Polypeptides having beta-glucanase activity, polynucleotides encoding same and uses thereof in cleaning and detergent compositions |
EP3397061A1 (en) | 2015-12-28 | 2018-11-07 | Novozymes BioAG A/S | Heat priming of bacterial spores |
US9719056B1 (en) | 2016-01-29 | 2017-08-01 | The Procter & Gamble Company | Bis-azo colorants for use as bluing agents |
MX2018008051A (en) | 2016-01-29 | 2018-08-23 | Novozymes As | Beta-glucanase variants and polynucleotides encoding same. |
EP3433347B1 (en) | 2016-03-23 | 2020-05-06 | Novozymes A/S | Use of polypeptide having dnase activity for treating fabrics |
WO2017174769A2 (en) | 2016-04-08 | 2017-10-12 | Novozymes A/S | Detergent compositions and uses of the same |
BR112018072282A2 (en) | 2016-04-29 | 2019-02-12 | Novozymes A/S | detergent compositions and uses thereof |
US11186833B2 (en) | 2016-05-09 | 2021-11-30 | Novozymes A/S | Variant polypeptides with improved performance and use of the same |
PL3243896T3 (en) | 2016-05-09 | 2020-03-31 | The Procter And Gamble Company | Detergent composition comprising a fatty acid decarboxylase |
WO2017210188A1 (en) | 2016-05-31 | 2017-12-07 | Novozymes A/S | Stabilized liquid peroxide compositions |
EP3464582A1 (en) | 2016-06-03 | 2019-04-10 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
CN109563495A (en) | 2016-06-30 | 2019-04-02 | 诺维信公司 | Lipase Variant and composition comprising surfactant and lipase Variant |
WO2018002261A1 (en) | 2016-07-01 | 2018-01-04 | Novozymes A/S | Detergent compositions |
EP3481949B1 (en) | 2016-07-05 | 2021-06-09 | Novozymes A/S | Pectate lyase variants and polynucleotides encoding same |
WO2018007573A1 (en) | 2016-07-08 | 2018-01-11 | Novozymes A/S | Detergent compositions with galactanase |
EP3485011B1 (en) | 2016-07-13 | 2021-06-09 | Novozymes A/S | Bacillus cibi dnase variants |
US11326152B2 (en) | 2016-07-18 | 2022-05-10 | Novozymes A/S | Lipase variants, polynucleotides encoding same and the use thereof |
KR102483218B1 (en) | 2016-08-24 | 2023-01-02 | 헨켈 아게 운트 코. 카게아아 | Detergent composition comprising xanthan lyase variant I |
WO2018037065A1 (en) | 2016-08-24 | 2018-03-01 | Henkel Ag & Co. Kgaa | Detergent composition comprising gh9 endoglucanase variants i |
WO2018037061A1 (en) | 2016-08-24 | 2018-03-01 | Novozymes A/S | Xanthan lyase variants and polynucleotides encoding same |
CN109863244B (en) | 2016-08-24 | 2023-06-06 | 诺维信公司 | GH9 endoglucanase variants and polynucleotides encoding same |
CN110023474A (en) | 2016-09-29 | 2019-07-16 | 诺维信公司 | Purposes, washing methods and utensil washing composition of the enzyme for washing |
WO2018060475A1 (en) | 2016-09-29 | 2018-04-05 | Novozymes A/S | Spore containing granule |
US20210284933A1 (en) | 2016-10-25 | 2021-09-16 | Novozymes A/S | Detergent compositions |
US11753605B2 (en) | 2016-11-01 | 2023-09-12 | Novozymes A/S | Multi-core granules |
US20180119056A1 (en) | 2016-11-03 | 2018-05-03 | Milliken & Company | Leuco Triphenylmethane Colorants As Bluing Agents in Laundry Care Compositions |
US10577571B2 (en) | 2016-11-08 | 2020-03-03 | Ecolab Usa Inc. | Non-aqueous cleaner for vegetable oil soils |
WO2018108865A1 (en) | 2016-12-12 | 2018-06-21 | Novozymes A/S | Use of polypeptides |
US11149233B2 (en) | 2017-03-31 | 2021-10-19 | Novozymes A/S | Polypeptides having RNase activity |
WO2018177938A1 (en) | 2017-03-31 | 2018-10-04 | Novozymes A/S | Polypeptides having dnase activity |
WO2018177936A1 (en) | 2017-03-31 | 2018-10-04 | Novozymes A/S | Polypeptides having dnase activity |
US20200109352A1 (en) | 2017-04-04 | 2020-04-09 | Novozymes A/S | Polypeptide compositions and uses thereof |
WO2018185150A1 (en) | 2017-04-04 | 2018-10-11 | Novozymes A/S | Polypeptides |
CN114480034A (en) | 2017-04-04 | 2022-05-13 | 诺维信公司 | Glycosyl hydrolase |
ES2728758T3 (en) | 2017-04-05 | 2019-10-28 | Henkel Ag & Co Kgaa | Detergent compositions comprising bacterial mannanas |
EP3385362A1 (en) | 2017-04-05 | 2018-10-10 | Henkel AG & Co. KGaA | Detergent compositions comprising fungal mannanases |
EP3626809A1 (en) | 2017-04-06 | 2020-03-25 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2018184818A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Cleaning compositions and uses thereof |
CA3058519A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Cleaning compositions comprosing a dnase and a protease |
CN110662829B (en) | 2017-04-06 | 2022-03-01 | 诺维信公司 | Cleaning composition and use thereof |
JP7267931B2 (en) | 2017-04-06 | 2023-05-02 | ノボザイムス アクティーゼルスカブ | Detergent composition and its use |
WO2018185280A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Cleaning compositions and uses thereof |
EP3607042A1 (en) | 2017-04-06 | 2020-02-12 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2018184816A1 (en) | 2017-04-06 | 2018-10-11 | Novozymes A/S | Cleaning compositions and uses thereof |
EP3619304A1 (en) | 2017-05-05 | 2020-03-11 | Novozymes A/S | Compositions comprising lipase and sulfite |
EP3622063A1 (en) | 2017-05-08 | 2020-03-18 | Novozymes A/S | Mannanase variants and polynucleotides encoding same |
WO2018206535A1 (en) | 2017-05-08 | 2018-11-15 | Novozymes A/S | Carbohydrate-binding domain and polynucleotides encoding the same |
EP3401385A1 (en) | 2017-05-08 | 2018-11-14 | Henkel AG & Co. KGaA | Detergent composition comprising polypeptide comprising carbohydrate-binding domain |
US11492605B2 (en) | 2017-05-08 | 2022-11-08 | Novozymes A/S | Mannanase variants and polynucleotides encoding same |
WO2018224544A1 (en) | 2017-06-08 | 2018-12-13 | Novozymes A/S | Compositions comprising polypeptides having cellulase activity and amylase activity, and uses thereof in cleaning and detergent compositions |
WO2019038059A1 (en) | 2017-08-24 | 2019-02-28 | Henkel Ag & Co. Kgaa | Detergent compositions comprising gh9 endoglucanase variants ii |
CA3071078A1 (en) | 2017-08-24 | 2019-02-28 | Novozymes A/S | Xanthan lyase variants and polynucleotides encoding same |
WO2019038058A1 (en) | 2017-08-24 | 2019-02-28 | Novozymes A/S | Gh9 endoglucanase variants and polynucleotides encoding same |
EP3673060A1 (en) | 2017-08-24 | 2020-07-01 | Henkel AG & Co. KGaA | Detergent composition comprising xanthan lyase variants ii |
EP3684899A1 (en) | 2017-09-22 | 2020-07-29 | Novozymes A/S | Novel polypeptides |
MX2020002964A (en) | 2017-09-27 | 2020-07-22 | Novozymes As | Lipase variants and microcapsule compositions comprising such lipase variants. |
BR112020006621A2 (en) | 2017-10-02 | 2020-10-06 | Novozymes A/S | polypeptides with mannanase activity and polynucleotides encoding the same |
US11746310B2 (en) | 2017-10-02 | 2023-09-05 | Novozymes A/S | Polypeptides having mannanase activity and polynucleotides encoding same |
US20200318037A1 (en) | 2017-10-16 | 2020-10-08 | Novozymes A/S | Low dusting granules |
WO2019076800A1 (en) | 2017-10-16 | 2019-04-25 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2019076833A1 (en) | 2017-10-16 | 2019-04-25 | Novozymes A/S | Low dusting granules |
US11866748B2 (en) | 2017-10-24 | 2024-01-09 | Novozymes A/S | Compositions comprising polypeptides having mannanase activity |
EP3701016A1 (en) | 2017-10-27 | 2020-09-02 | Novozymes A/S | Dnase variants |
WO2019084349A1 (en) | 2017-10-27 | 2019-05-02 | The Procter & Gamble Company | Detergent compositions comprising polypeptide variants |
US11505767B2 (en) | 2017-11-01 | 2022-11-22 | Novozymes A/S | Methods for cleansing medical devices |
DE102017125559A1 (en) | 2017-11-01 | 2019-05-02 | Henkel Ag & Co. Kgaa | CLEANSING COMPOSITIONS CONTAINING DISPERSINE II |
CN111479919A (en) | 2017-11-01 | 2020-07-31 | 诺维信公司 | Polypeptides and compositions comprising such polypeptides |
BR112020008737A2 (en) | 2017-11-01 | 2020-10-13 | Novozymes A/S | polypeptides and compositions comprising such polypeptides |
DE102017125558A1 (en) | 2017-11-01 | 2019-05-02 | Henkel Ag & Co. Kgaa | CLEANING COMPOSITIONS CONTAINING DISPERSINE I |
DE102017125560A1 (en) | 2017-11-01 | 2019-05-02 | Henkel Ag & Co. Kgaa | CLEANSING COMPOSITIONS CONTAINING DISPERSINE III |
US11725197B2 (en) | 2017-12-04 | 2023-08-15 | Novozymes A/S | Lipase variants and polynucleotides encoding same |
MX2020005458A (en) | 2017-12-08 | 2020-08-27 | Novozymes As | Alpha-amylase variants and polynucleotides encoding same. |
CN111788305A (en) | 2018-02-08 | 2020-10-16 | 诺维信公司 | Lipase variants and compositions thereof |
CN111868239A (en) | 2018-02-08 | 2020-10-30 | 诺维信公司 | Lipase, lipase variants and compositions thereof |
KR20200124258A (en) | 2018-02-23 | 2020-11-02 | 헨켈 아게 운트 코. 카게아아 | Detergent composition comprising xanthan lyase and endoglucanase variant |
CN111770788B (en) | 2018-03-13 | 2023-07-25 | 诺维信公司 | Microencapsulation using amino sugar oligomers |
WO2019180111A1 (en) | 2018-03-23 | 2019-09-26 | Novozymes A/S | Subtilase variants and compositions comprising same |
US11535837B2 (en) | 2018-03-29 | 2022-12-27 | Novozymes A/S | Mannanase variants and polynucleotides encoding same |
CN112262207B (en) | 2018-04-17 | 2024-01-23 | 诺维信公司 | Polypeptides comprising carbohydrate binding activity in detergent compositions and their use for reducing wrinkles in textiles or fabrics |
CN118530973A (en) | 2018-04-19 | 2024-08-23 | 诺维信公司 | Stabilized cellulase variants |
EP3781679A1 (en) | 2018-04-19 | 2021-02-24 | Novozymes A/S | Stabilized cellulase variants |
US10870818B2 (en) | 2018-06-15 | 2020-12-22 | Ecolab Usa Inc. | Enhanced peroxygen stability using fatty acid in bleach activating agent containing peroxygen solid |
WO2020002604A1 (en) | 2018-06-28 | 2020-01-02 | Novozymes A/S | Detergent compositions and uses thereof |
WO2020002608A1 (en) | 2018-06-29 | 2020-01-02 | Novozymes A/S | Detergent compositions and uses thereof |
US20210189297A1 (en) | 2018-06-29 | 2021-06-24 | Novozymes A/S | Subtilase variants and compositions comprising same |
US12012573B2 (en) | 2018-07-02 | 2024-06-18 | Novozymes A/S | Cleaning compositions and uses thereof |
EP3818138A1 (en) | 2018-07-03 | 2021-05-12 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2020008024A1 (en) | 2018-07-06 | 2020-01-09 | Novozymes A/S | Cleaning compositions and uses thereof |
EP3818140A1 (en) | 2018-07-06 | 2021-05-12 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2020070063A2 (en) | 2018-10-01 | 2020-04-09 | Novozymes A/S | Detergent compositions and uses thereof |
WO2020070209A1 (en) | 2018-10-02 | 2020-04-09 | Novozymes A/S | Cleaning composition |
WO2020070011A1 (en) | 2018-10-02 | 2020-04-09 | Novozymes A/S | Cleaning composition |
EP3861110A1 (en) | 2018-10-02 | 2021-08-11 | Novozymes A/S | Endonuclease 1 ribonucleases for cleaning |
WO2020070014A1 (en) | 2018-10-02 | 2020-04-09 | Novozymes A/S | Cleaning composition comprising anionic surfactant and a polypeptide having rnase activity |
WO2020070249A1 (en) | 2018-10-03 | 2020-04-09 | Novozymes A/S | Cleaning compositions |
WO2020070199A1 (en) | 2018-10-03 | 2020-04-09 | Novozymes A/S | Polypeptides having alpha-mannan degrading activity and polynucleotides encoding same |
EP3864123A1 (en) | 2018-10-09 | 2021-08-18 | Novozymes A/S | Cleaning compositions and uses thereof |
EP3864122A1 (en) | 2018-10-09 | 2021-08-18 | Novozymes A/S | Cleaning compositions and uses thereof |
EP3864124A1 (en) | 2018-10-11 | 2021-08-18 | Novozymes A/S | Cleaning compositions and uses thereof |
EP3647398B1 (en) | 2018-10-31 | 2024-05-15 | Henkel AG & Co. KGaA | Cleaning compositions containing dispersins v |
EP3647397A1 (en) | 2018-10-31 | 2020-05-06 | Henkel AG & Co. KGaA | Cleaning compositions containing dispersins iv |
EP3891277A1 (en) | 2018-12-03 | 2021-10-13 | Novozymes A/S | Powder detergent compositions |
CN113302270A (en) | 2018-12-03 | 2021-08-24 | 诺维信公司 | Low pH powder detergent compositions |
EP3898919A1 (en) | 2018-12-21 | 2021-10-27 | Novozymes A/S | Detergent pouch comprising metalloproteases |
US11959111B2 (en) | 2018-12-21 | 2024-04-16 | Novozymes A/S | Polypeptides having peptidoglycan degrading activity and polynucleotides encoding same |
EP3702452A1 (en) | 2019-03-01 | 2020-09-02 | Novozymes A/S | Detergent compositions comprising two proteases |
MX2021011287A (en) | 2019-03-21 | 2021-10-13 | Novozymes As | Alpha-amylase variants and polynucleotides encoding same. |
WO2020201403A1 (en) | 2019-04-03 | 2020-10-08 | Novozymes A/S | Polypeptides having beta-glucanase activity, polynucleotides encoding same and uses thereof in cleaning and detergent compositions |
WO2020207944A1 (en) | 2019-04-10 | 2020-10-15 | Novozymes A/S | Polypeptide variants |
WO2020208056A1 (en) | 2019-04-12 | 2020-10-15 | Novozymes A/S | Stabilized glycoside hydrolase variants |
WO2021001400A1 (en) | 2019-07-02 | 2021-01-07 | Novozymes A/S | Lipase variants and compositions thereof |
EP3997202A1 (en) | 2019-07-12 | 2022-05-18 | Novozymes A/S | Enzymatic emulsions for detergents |
US11873465B2 (en) | 2019-08-14 | 2024-01-16 | Ecolab Usa Inc. | Methods of cleaning and soil release of highly oil absorbing substrates employing optimized extended chain nonionic surfactants |
EP4022020A1 (en) | 2019-08-27 | 2022-07-06 | Novozymes A/S | Composition comprising a lipase |
WO2021037895A1 (en) | 2019-08-27 | 2021-03-04 | Novozymes A/S | Detergent composition |
EP4031644A1 (en) | 2019-09-19 | 2022-07-27 | Novozymes A/S | Detergent composition |
WO2021064068A1 (en) | 2019-10-03 | 2021-04-08 | Novozymes A/S | Polypeptides comprising at least two carbohydrate binding domains |
US20230045289A1 (en) | 2019-12-20 | 2023-02-09 | Henkel Ag & Co. Kgaa | Cleaning compositions comprising dispersins ix |
CN114846128A (en) | 2019-12-20 | 2022-08-02 | 汉高股份有限及两合公司 | Cleaning compositions comprising disperse protein VIII |
US20220411726A1 (en) | 2019-12-20 | 2022-12-29 | Novozymes A/S | Stabilized liquid boron-free enzyme compositions |
AU2020404593A1 (en) | 2019-12-20 | 2022-08-18 | Henkel Ag & Co. Kgaa | Cleaning compositions comprising dispersins VI |
KR20220121235A (en) | 2019-12-20 | 2022-08-31 | 헨켈 아게 운트 코. 카게아아 | Cleaning Composition Comprising Dispersin and Carbohydrase |
WO2021123307A2 (en) | 2019-12-20 | 2021-06-24 | Novozymes A/S | Polypeptides having proteolytic activity and use thereof |
WO2021130167A1 (en) | 2019-12-23 | 2021-07-01 | Novozymes A/S | Enzyme compositions and uses thereof |
US20230159861A1 (en) | 2020-01-23 | 2023-05-25 | Novozymes A/S | Enzyme compositions and uses thereof |
MX2022008955A (en) | 2020-01-31 | 2022-08-15 | Novozymes As | Mannanase variants and polynucleotides encoding same. |
EP4097226A1 (en) | 2020-01-31 | 2022-12-07 | Novozymes A/S | Mannanase variants and polynucleotides encoding same |
EP3892708A1 (en) | 2020-04-06 | 2021-10-13 | Henkel AG & Co. KGaA | Cleaning compositions comprising dispersin variants |
US20230143128A1 (en) | 2020-04-08 | 2023-05-11 | Novozymes A/S | Carbohydrate binding module variants |
US20230167384A1 (en) | 2020-04-21 | 2023-06-01 | Novozymes A/S | Cleaning compositions comprising polypeptides having fructan degrading activity |
EP3907271A1 (en) | 2020-05-07 | 2021-11-10 | Novozymes A/S | Cleaning composition, use and method of cleaning |
EP4158011A1 (en) | 2020-05-26 | 2023-04-05 | Novozymes A/S | Subtilase variants and compositions comprising same |
US20220002636A1 (en) | 2020-07-06 | 2022-01-06 | Ecolab Usa Inc. | Peg-modified castor oil based compositions for microemulsifying and removing multiple oily soils |
JP2023533311A (en) | 2020-07-06 | 2023-08-02 | エコラボ ユーエスエー インコーポレイティド | A foaming mixed alcohol/water composition containing an alkylsiloxane and a hydrotrope/solubilizer combination |
CA3185062A1 (en) | 2020-07-06 | 2022-01-13 | Gang Pu | Foaming mixed alcohol/water compositions comprising a structured alkoxylated siloxane |
EP3936593A1 (en) | 2020-07-08 | 2022-01-12 | Henkel AG & Co. KGaA | Cleaning compositions and uses thereof |
JP2023538740A (en) | 2020-08-25 | 2023-09-11 | ノボザイムス アクティーゼルスカブ | Variants of family 44 xyloglucanase |
WO2022043563A1 (en) | 2020-08-28 | 2022-03-03 | Novozymes A/S | Polyester degrading protease variants |
EP4225905A2 (en) | 2020-10-07 | 2023-08-16 | Novozymes A/S | Alpha-amylase variants |
WO2022084303A2 (en) | 2020-10-20 | 2022-04-28 | Novozymes A/S | Use of polypeptides having dnase activity |
EP4237552A2 (en) | 2020-10-29 | 2023-09-06 | Novozymes A/S | Lipase variants and compositions comprising such lipase variants |
CN116670261A (en) | 2020-11-13 | 2023-08-29 | 诺维信公司 | Detergent compositions comprising lipase |
WO2022106404A1 (en) | 2020-11-18 | 2022-05-27 | Novozymes A/S | Combination of proteases |
WO2022106400A1 (en) | 2020-11-18 | 2022-05-27 | Novozymes A/S | Combination of immunochemically different proteases |
EP4039806A1 (en) | 2021-02-04 | 2022-08-10 | Henkel AG & Co. KGaA | Detergent composition comprising xanthan lyase and endoglucanase variants with im-proved stability |
EP4291646A2 (en) | 2021-02-12 | 2023-12-20 | Novozymes A/S | Alpha-amylase variants |
EP4291625A1 (en) | 2021-02-12 | 2023-12-20 | Novozymes A/S | Stabilized biological detergents |
WO2022189521A1 (en) | 2021-03-12 | 2022-09-15 | Novozymes A/S | Polypeptide variants |
WO2022194673A1 (en) | 2021-03-15 | 2022-09-22 | Novozymes A/S | Dnase variants |
EP4060036A1 (en) | 2021-03-15 | 2022-09-21 | Novozymes A/S | Polypeptide variants |
WO2022268885A1 (en) | 2021-06-23 | 2022-12-29 | Novozymes A/S | Alpha-amylase polypeptides |
CA3228918A1 (en) | 2021-08-10 | 2023-02-16 | Nippon Shokubai Co., Ltd. | Polyalkylene-oxide-containing compound |
EP4453160A1 (en) | 2021-12-21 | 2024-10-30 | Novozymes A/S | Composition comprising a lipase and a booster |
EP4206309A1 (en) | 2021-12-30 | 2023-07-05 | Novozymes A/S | Protein particles with improved whiteness |
WO2023165507A1 (en) | 2022-03-02 | 2023-09-07 | Novozymes A/S | Use of xyloglucanase for improvement of sustainability of detergents |
WO2023165950A1 (en) | 2022-03-04 | 2023-09-07 | Novozymes A/S | Dnase variants and compositions |
WO2023194204A1 (en) | 2022-04-08 | 2023-10-12 | Novozymes A/S | Hexosaminidase variants and compositions |
WO2023247348A1 (en) | 2022-06-21 | 2023-12-28 | Novozymes A/S | Mannanase variants and polynucleotides encoding same |
WO2023247664A2 (en) | 2022-06-24 | 2023-12-28 | Novozymes A/S | Lipase variants and compositions comprising such lipase variants |
GB202210371D0 (en) | 2022-07-14 | 2022-08-31 | Reckitt Benckiser Finish Bv | Detergents |
US20240026248A1 (en) | 2022-07-20 | 2024-01-25 | Ecolab Usa Inc. | Novel nonionic extended surfactants, compositions and methods of use thereof |
WO2024110541A1 (en) | 2022-11-22 | 2024-05-30 | Novozymes A/S | Colored granules having improved colorant stability |
WO2024121070A1 (en) | 2022-12-05 | 2024-06-13 | Novozymes A/S | Protease variants and polynucleotides encoding same |
WO2024121058A1 (en) | 2022-12-05 | 2024-06-13 | Novozymes A/S | A composition comprising a lipase and a peptide |
WO2024131880A2 (en) | 2022-12-23 | 2024-06-27 | Novozymes A/S | Detergent composition comprising catalase and amylase |
WO2024156628A1 (en) | 2023-01-23 | 2024-08-02 | Novozymes A/S | Cleaning compositions and uses thereof |
WO2024194245A1 (en) | 2023-03-21 | 2024-09-26 | Novozymes A/S | Detergent compositions based on biosurfactants |
WO2024213513A1 (en) | 2023-04-12 | 2024-10-17 | Novozymes A/S | Compositions comprising polypeptides having alkaline phosphatase activity |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4264466A (en) * | 1980-02-14 | 1981-04-28 | The Procter & Gamble Company | Mulls containing chain structure clay suspension aids |
ATE22920T1 (en) * | 1982-05-24 | 1986-11-15 | Procter & Gamble | DETERGENT COMPOSITIONS CONTAINING FATTY ACIDS. |
US4713194A (en) * | 1986-04-15 | 1987-12-15 | The Procter & Gamble Company | Block polyester and like compounds having branched hydrophilic capping groups useful as soil release agents in detergent compositions |
US5073274A (en) * | 1988-02-08 | 1991-12-17 | The Procter & Gamble Co. | Liquid detergent containing conditioning agent and high levels of alkyl sulfate/alkyl ethoxylated sulfate |
US5037992A (en) * | 1989-12-18 | 1991-08-06 | The Procter & Gamble Company | Process for sulfating unsaturated alcohols |
JP2974780B2 (en) * | 1992-02-18 | 1999-11-10 | ザ、プロクター、エンド、ギャンブル、カンパニー | Detergent composition having highly active cellulase and quaternary ammonium compound |
JP2968340B2 (en) * | 1994-04-25 | 1999-10-25 | ザ、プロクター、エンド、ギャンブル、カンパニー | Stable aqueous laundry detergent composition with improved softening properties |
JPH11512761A (en) * | 1995-09-29 | 1999-11-02 | ザ、プロクター、エンド、ギャンブル、カンパニー | Liquid laundry detergent containing selected quaternary ammonium compounds |
-
1997
- 1997-10-02 HU HU0000117A patent/HUP0000117A2/en unknown
- 1997-10-02 WO PCT/US1997/017815 patent/WO1998017767A1/en not_active Application Discontinuation
- 1997-10-02 EP EP97909943A patent/EP0934389B1/en not_active Expired - Lifetime
- 1997-10-02 BR BR9712360-9A patent/BR9712360A/en not_active IP Right Cessation
- 1997-10-02 DE DE69726747T patent/DE69726747T2/en not_active Expired - Lifetime
- 1997-10-02 ES ES97909943T patent/ES2210501T3/en not_active Expired - Lifetime
- 1997-10-02 AT AT97909943T patent/ATE256173T1/en not_active IP Right Cessation
- 1997-10-02 CA CA002268772A patent/CA2268772C/en not_active Expired - Fee Related
- 1997-10-17 MA MA24837A patent/MA24378A1/en unknown
- 1997-10-17 AR ARP970104801A patent/AR010001A1/en unknown
-
1999
- 1999-04-19 MX MX9903628A patent/MX228479B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
HUP0000117A2 (en) | 2000-06-28 |
BR9712360A (en) | 2001-06-19 |
WO1998017767A1 (en) | 1998-04-30 |
ATE256173T1 (en) | 2003-12-15 |
AR010001A1 (en) | 2000-05-17 |
MA24378A1 (en) | 1998-07-01 |
DE69726747T2 (en) | 2004-10-14 |
EP0934389A4 (en) | 2001-02-07 |
CA2268772A1 (en) | 1998-04-30 |
EP0934389A1 (en) | 1999-08-11 |
MX228479B (en) | 2005-06-14 |
DE69726747D1 (en) | 2004-01-22 |
MX9903628A (en) | 1999-08-31 |
ES2210501T3 (en) | 2004-07-01 |
EP0934389B1 (en) | 2003-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2268772C (en) | Detergent compositions comprising an amylolytic enzyme and a cationic surfactant | |
CA2268672C (en) | Detergent compositions | |
US6127329A (en) | Detergent compositions | |
EP0934378B1 (en) | Detergent compositions comprising a mixture of cationic, anionic and nonionic surfactants | |
CA2268518C (en) | Detergent compositions comprising a mixture of quaternary ammonium cationic surfactant and alkyl sulfate anionic surfactant | |
US6087314A (en) | Detergent composition with low-odor cationic surfactant | |
CA2268651C (en) | Detergent compositions | |
GB2323371A (en) | Detergent compositions | |
EP0968269A1 (en) | Detergent compositions | |
WO1998017751A1 (en) | Detergent compositions | |
EP0934391B1 (en) | Detergent composition comprising lipase enzyme and cationic surfactant | |
CA2268633A1 (en) | Detergent compositions | |
GB2323385A (en) | Detergent compositions | |
CA2268526A1 (en) | Detergent compositions | |
GB2323382A (en) | Detergent compositions | |
WO1998017753A1 (en) | Detergent compositions containing alkyl polysaccharide and cationic surfactants | |
GB2323375A (en) | Detergent compositions | |
GB2323376A (en) | Detergent compositions | |
GB2323373A (en) | Detergent compositions | |
GB2323381A (en) | Detergent compositions | |
GB2323379A (en) | Detergent compositions | |
GB2323378A (en) | Detergent compositions | |
GB2323370A (en) | Detergent compositions | |
GB2323377A (en) | Detergent compositions | |
GB2323374A (en) | Detergent compositions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request | ||
MKLA | Lapsed |
Effective date: 20141002 |