CA1124955A - Whirlpool system - Google Patents
Whirlpool systemInfo
- Publication number
- CA1124955A CA1124955A CA378,491A CA378491A CA1124955A CA 1124955 A CA1124955 A CA 1124955A CA 378491 A CA378491 A CA 378491A CA 1124955 A CA1124955 A CA 1124955A
- Authority
- CA
- Canada
- Prior art keywords
- water
- air
- passageway
- inlet opening
- outlets
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Percussion Or Vibration Massage (AREA)
Abstract
ABSTRACT OF THE DISCLOSURE
A whirlpool system has a pair of channels which connect sources of water and air to a plurality of outlets in a water receptacle. Each of the channels is formed in a piece of tubing which is connected to the outlets by a plurality of connector assemblies removably mounted to the tubing between the ends thereof.
A whirlpool system has a pair of channels which connect sources of water and air to a plurality of outlets in a water receptacle. Each of the channels is formed in a piece of tubing which is connected to the outlets by a plurality of connector assemblies removably mounted to the tubing between the ends thereof.
Description
llZ4955 This application is a division of Canadian patent application Serial No. 332,319, filed on Ju]y 23, 1979.
The present invention relates to whirlpool systems and, more particularly, to such systems which are adapted for use in conventional bathtub installations.
Recently, travelers, businessmen, skiers, golfers, tennis players and other sportsmen have become increasingly aware of the benefits of a whirlpool bath in which water is agitated to create an invigorating whirlpool motion. The swirling waters of a whirlpool bath are believed by many to calm frayed nerves, ease the pain of aching muscles, and soothe sore feet. In recognition of the increasing popularity of whirlpool baths, many motels, hotels, and inns are installing in-room whirlpool baths in an effort to gain a competitive edge. However, in order to be profitable, and therefore result in a true competitive edge, such whirlpool baths must be simple to install, operate, and service.
Some known whirlpool baths, such as the one dis-closed in Jacuzzi U.S. Patent No. 3,571,820, include a number of jet assemblies spaced around the outer periphery of a bathtub for agitating water in the bathtub. In these known whirlpool baths, water and air supply piping systems, including several pieces of pipe joined together by elbows and T-fittings, are used to supply each of the jet assem-blies with water and air, respectively, i.e., separate air supply and water supply pipes. The installation of the elbows and T-fittings increases construction time and costs, in terms of both materials and labor. The elbows and T-fittings also complicate repairs and replacement.
~1~4955 Everston U.S. Patent No. 3,263,678 discloses a therapeutic bathtub having a plurality of aspirating fit-tings designed specifically to diffuse finely divided air bubbles throughout the water in the bathtub. Thus, the aspirating fittings perform a function, i.e., the diffusion of finely divided bubbles, which is difrerent than and may be performed in addition to the conventional function of providing agitated water to produce a whirlpool bath. Never-theless, the aspirator fittings are supplied water and air from a piping network in which several individual pieces of pipe are interconnected by elbows and T-fittings.
Efforts have been made to avoid the problems and disadvantages resulting from the use of elbows and T-fittings in whirlpool systems. For instance, in Mathis U.S.
Patent No. 3,890,656, there is disclosed a whirlpool jet for bathtubs which purportedly eliminates the use of T-fittings by making all water and air pipe connections directly to a corresponding water jet outlet. However, because the water jet outlets described and claimed in the Mathis patent are actually T-fittings, which have been designed to perform a jetting function, the water jet outlets of each pair of adjacent outlets are connected by separate pieces of water and air supply pipes. The pro-vision of several pieces of pipe not only complicates installation, thereby increasing initial construction time and costs, but also complicates repairs and replacements resulting in increased maintenance costs. Furthermore, inasmuch as the individual outlets are permanently cemented to the water and air supply pipes, the outlets are totally incapable of quick and easy on-site removal independently of the water and air supply pipes for inspection, cleaning and replacement purposes.
Many of the disadvantages and shortcomings of the whirlpool baths and other devices discussed above are over-come by the present invention which teaches new and improved piping arrangements and connector assemblies for use in a whirlpool system normally including a plurality of outlets spaced around the interior of a water receptacle, such as a bathtub, a water supply channel connected to a source of water, and an air supply channel connected to a source of air. In accordance with one aspect of the improve-ment, each of the outlets is connected to the air and watersupply channels by a unique removable connector assembly which, in one advantageous embodiment, includes a nozzle adapted to extend into both of the channels, one end of the nozzle being connected to a respective one of the outlets.
The nozzle includes a passageway, which extends through the nozzle from one end thereof to the other end, and a pair of inlet openings. One of the inlet openings communicates between the passageway and one of the channels to permit air to flow from the channel to an associated outlet. The other inlet opening communicates between the passageway and the other channel to form a flow path for water from the channel to a corresponding outlet. Although both the water and the air can be supplied under pressure, the portion of the passageway between the inlet openings includes a ven-turi for enhancing the mixture of air and water and for speeding their flow through the passageway.
Because the nozzle is inserted into the channels, it can be installed simply by providing an appropriate number of access openings to the channels, thereby permitting the channels to be formed in a single piece of dual channel tubing or a pair of individual continuous conduits. If the other end of the passageway lies outside ilZ4~55 of the channels, it can be capped with a removable plug which, when removed, provides quick and easy access to the interior of the nozzle for cleaning and inspection purposes without necessitating the removal of the nozzle or the dismantling of the entire whirlpool system.
Alternatively, the connector assemblies can be saddle clamps having a pair of saddle members which are movable with respect to each other so as to clamp over the outer surface of a piece of dual channel tubing or a pair of individual continuous conduits. One of the saddle members has a passageway which communicates with the water and air channels and a respective one of the outlets. A
venturi is provided, either in the passageway or, if the channels are formed in a single piece of dual channel tubing, in the partition between adjacent channels of the dual channel tubing, for enhancing the mixture of air and water and for speeding the flow of air and water through the passageway.
Like the nozzles discussed above, the saddle clamps may be removed without dismantling the entire whirl-pool system. Also, by providing a suitable access opening to the passageway, it can be made accessible for quick and easy inspection, and if necessary, cleaning or removal.
For a more complete understanding of the inven-tion, reference may be had to the following description of the exemplary embodiments taken in conjunction with the accompanying figures of the drawings, in which:
Figure 1 is a perspective view of one embodiment of a whirlpool system constructed in accordance with the present invention;
~1~4~55 Figure 2 is a partial cross-sectional view of a first exemplary embodiment of a connector assembly con-structed in accordance with the present invention;
Figure 3 is a cross-sectional view of a nozzle utilized in the connector assembly illustrated in Figure 2;
Figure 4 is a partial elevational view of a second exemplary embodiment of a whirlpool system con-structed in accordance with the present invention;
Figure 5 is a cross-sectional view of a second exemplary embodiment of a connector assembly constructed in accordance with the present invention;
Figure 6 is a cross-sectional view of a third exemplary embodiment of a connector assembly constructed in accordance with the present invention;
Figure 7 is a cross-sectional view of a fourth exemplary embodiment of a connector assembly constructed in accordance with the present invention;
Figure 8 is a cross-sectional view of a fifth exemplary embodiment of a connector assembly constructed in accordance with the present invention;
Figure 9 is a cross-sectional view of a sixth exemplary embodiment of a connector assembly constructed in accordance with the present invention;
Figure 10 is a perspective view of a third exem-plary embodiment of a whirlpool system constructed in accor-dance with the present invention; and Figure 11 is an exploded view of a clamp assembly useful in bending dual channel tubing in accordance with the present invention.
l~Z4955 The Overall System The whirlpool system shown in Figure 1 includes a number of outlets 10 which are spaced apart around the periphery of a bathtub 12. Each of the outlets 10 extends through a sidewall 14 of the bathtub 12 below a predeter-mined water level line and is connected to a continuous loop of dual channel tubing 16 by a connector assembly 18.
The loop of dual channel tubing 16 has a shape which generally matches the outer contour of the bathtub 12.
A pump 20, driven by a motor 22, receives water from the bathtub 12 through a return line 24, which com-municates with the interior of the bathtub 12 below its predetermined water level line. Water under pressure is supplied from the pump 20 to one channel of the dual channel tubing 16 through a flexible hose 26 and a saddle clamp type connector 28. Another saddle clamp type con-nector 30 is connected by a flexible hose 32 to an air port 34 located above the predetermined water level line of the bathtub 12, so that the port 34 will always be open to the atmosphere for supplying air to the other channel of the dual channel tubing 16 at atmospheric pressure.
Other exemplary embodiments of the whirlpool system of Figure 1 are illustrated in Figures 4 and 10. The various elements illustrated in Figures 4 and 10 which cor-respond to elements described above with respect to Figure 1 have been designated by corresponding reference numerals increased by 100 and 200, respectively. The embodi-ments of Figures 4 and 10 operate in the same manner as the embodiment of Figure 1, unless it is otherwise stated.
Referring now to Figure 4, a pump 120 and a com-pressor 136 are driven by a double-ended motor 122, so that air at greater than atmospheric pressure can be supplied to one channel of dual channel tubing 116 through a supply line 138 and a saddle clamp type connector 130. Alter-natively, the pump 120 and the compressor 136 can be driven by a pair of separate motors. The pressure of the air can be regulated from inside the bathtub 112 by a conventional air pressure regulator 140 communicating with the supply line 138. Supplying air under pressure via the compressor 136, the supply line 138, and the regulator 140 eliminates the need for the flexible hose 32 and the port 34 of the embodiment of Figure 1.
The whirlpool system shown in Figure 10 includes dual channel tubing 216 and a number of connector assem-blies 218 removably mounted to the dual channel tubing 216, which therefore acts as a header. Because the dual channel tubing 216 is located at one end of a bathtub 212, the connector assemblies 218 are relatively remote from at least some outlets 210, each of which is connected to a corresponding one of the connector assemblies 218 by a flexible hose 242 or any other suitable conduit. The loca-tion of the dual channel tubing 216 can be changed depending upon the configuration of the overall whirlpool system.
A saddle clamp type connector 244 replaces the saddle clamp type connectors 28 and 30 of the embodiment shown in Figure 1. More particularly, the saddle clamp type connector 244 has an upper clamp member 246, which connects a pump 220 to one channel of the dual channel tubing 216, and a lower clamp member 248, which connects an air port 234 to the other channel of the dual channel tubing 216.
llZ49SS
The Nozzle Type Connector Assembly Embodiments Referring now to Figures 2 and 3, there is shown dual channel tubing 310. It has a cylindrical shape, although any other suitable shape may be used, and a partition 312 extending across the interior of the tubing 310 to form an air channel 314 and a water channel 316.
Although the partition 312 is shown extending across a diameter of the dual channel tubing 310, the partition 312 may extend across any chord of the tubing 310.
At each location where a connector assembly 318 is to be inserted through the dual channel tubing 310, a pair of holes 320, 322 is provided, the hole 320 being formed in the top of the tubing 310 diametrically opposite the hole 322, which is formed in the bottom of the tubing 310. Another hole 324, having a diameter substantially equal to the diameter of the hole 320 but somewhat less than the diameter of the hole 322, is formed in the par-tition 312 and aligned with the holes 320, 322, so that a nozzle 326 can be inserted therethrough.
The nozzle 326, which forms a part of a corres-ponding connector assembly 318, includes a small diameter portion 330, which extends through the holes 320, 324 and the water channel 316, and a large diameter portion 332, which extends through the hole 322 and into the air channel 314. An 0-ring 334 interposed between the partition 312 and a shoulder 336 formed at the juncture of the small diameter portion 330 and the large diameter portion 332 forms a fluid-tight seal between the air channel 314 and the water channel 316.
1~24~S5 A fluid passageway 338 (see Fig. 3) runs the length of the nozzle 326 and communicates with the air channel 314 and the water channel 316 through an air inlet opening 340 and a water inlet opening 342, respectively. To facilitate drainage of water from the dual channel tubing 310, the bottoms of the air inlet opening 340 and the water inlet opening 342 are at an elevation substantially no higher than the elevation of the bottoms of the air chan-nel 314 and the water channel 316, respectively. The por-tion of the passageway 338 between the air inlet opening340 and the water inlet opening 342 includes a venturi 344 (see Fig. 3) designed to enhance the mixing of water and air in the passageway 338 and to speed the flow of water and air through the passageway 338.
The free end of the small diameter portion 330 extends upwardly through the hole 320 formed in the top of the dual channel tubing 310 and is provided with an exter-nally threaded portion 346 designed to threadedly engage an internally threaded cap 348. By removing the cap 348, access may be had to the passageway 338 for the purposes of inspection and cleaning.
An 0-ring 350, disposed about the free end of the small diameter portion 330, seals the hole 320 formed in the top of the dual channel tubing 310. The 0-ring 350 is held in sealing engagement against the top of the tubing 310 by a jaw member 352, slidably received on the free end of the small diameter portion 330 of the nozzle 326, and a lock nut 354, having an internally threaded portion (not shown) which threadedly engages the externally threaded portion 346 of the free end of the small diameter portion 330, for forcing the jaw member 352 into positive engage-ment with the 0-ring 350.
~;24~55 The free end of the large diameter portion 332 of the nozzle 326 extends downwardly through the hole 322 in the bottom of the dual channel tubing 310. An externally threaded portion 356 provided on the free end of the large diameter portion 332 threadedly engages an internally threaded portion (not shown) formed in the vertical end 358 of a relatively rigid elbow 360. The horizontal end 362 of the elbow 360 has in internally threaded portion 364 which threadedly engages an externally threaded portion 366 formed on a stem portion 368 of an outlet 370. Although the elbow 360 is shown as having a 90 bend, the bend can be more or less than 90 depending upon the designs and relative positions of the nozzle 326 and the outlet 370.
Moreover, the elbow 360 could be replaced by a flexible hose or any other suitable connecting device.
An 0-ring 372, disposed about the free end of the . large diameter portion 332, seals the hole 322 formed in the bottom of the dual channel tubing 310. The 0-ring 372 is held in sealing engagement against the bottom of the tubing 310 by a jaw member 374, which is slidably received on the free end of the large diameter portion 332 and forced into positive engagement with the 0-ring 372 by a lock nut 376 threadedly engaged on the free end of the large diameter portion 332.
A fluid-tight seal is also formed between the outlet 370 and a sidewall 382 of a bathtub 384 by an 0-ring 386, a gasket 388, and a lock nut 390. The 0-ring 386 is disposed about the stem portion 368 of the outlet 370 between the outlet 370 and the sidewall 382. The gasket 388 and the lock nut 390 are also disposed about the stem portion 392, but on the opposite side of the sidewall 382 from the 0-ring 386. The lock nut 390 threadedly engages ~ZD,9S5 the externally threaded portion 366 of the stem portion 368 so as to force the 0-ring 386 and the gasket 388, both of which can be made of rubber or any other suitable material, into sealing engagement with the sidewall 382 of the bath-tub 384.
Referring now to Figures 6 and 9, there are shown two further embodiments of the exemplary connector assembly embodiment of Figures 2 and 3. The various elements illus-trated in Figures 6 and 9 which correspond to elements described above with respect to Figures 2 and 3 have been designated by corresponding reference numerals increased by 100 and 200, respectively. Unless otherwise stated, the further embodiments operate in the same manner as the embodiment of Figures 2 and 3.
In the embodiment of Figure 6, a horizontally extending nozzle 426 has a small diameter portion 430 which communicates with a water channel 416 but does not extend therethrough. The interior end of a passageway 438 ; extending through the nozzle 426 functions as a water inlet, thereby replacing the water inlet opening 432 of the embodiment of Figures 2 and 3. An outlet 470 is adapted to threadedly engage a threaded portion 4S6 on the nozzle 426.
An 0-ring 472, jaw member 474, gasket 488, and lock nut 476 are positioned between a sidewall 482 of a bathtub 484 and the outer circumferential surface of a continuous loop of dual channel tubing 410 to form a water-tight seal for an opening in the side of the tubing 410. The lock nut 476 forces the 0-ring 472 into sealing engagement with the dual channel tubing 410. Another 0-ring 486 and the gasket 488 are forced into sealing engagement with the sidewall 482 of the bathtub 484 by the outlet 470. Although the direct con-nection of the nozzle 426 with the outlet 470 eliminates the elbow 360 of the embodiment of Figures 2 and 3, it necessitates arranging the water channel 416 alongside an air channel 414, rather than above it.
The embodiment of Figure 9 also includes a con-tinuous piece of dual channel tubing 510 having a water channel 516, which is arranged alongside an air channel 514. Because the elbow 360 of the embodiment of Figures 2 and 3 is dispensed with, an outlet 580 is internally threaded so that it can threadedly engage an externally threaded portion 556 on the free end of a large diameter portion 532 of a nozzle 526. 0-rings 572, 586, jaw member 574, gasket 588, and lock nut 576 form a water-tight seal for an opening 522 in the side of the tubing 510 and an opening in a sidewall 582 of a bathtub 584.
The Saddle Clamp Type Connector Assembly Embodiments As shown in Figure 5, a saddle clamp 610 includes a pair of clamp members 612, 614. The saddle member 612 is positioned on the upper side of a piece of dual channel tubing 616, the saddle member 614 being positioned on the lower side of the tubing 616 substantially diametrically opposite the saddle member 612.
The saddle member 612 has holes 618 passing com-pletely therethrough. The holes 618 are aligned with blind bores 620 in the adjacent surface of the saddle member 614.
The holes 618 and the bores 620 are internally threaded so as to receive externally threaded bolts 622 which maintain the saddle members 612 and 614 clamped about the tubing 616. The bolts 622 also permit the position of the saddle members 612, 614 to be adjusted with respect to each other.
llZ4~55 The saddle member 614 includes a passageway 624 extending therethrough below the dual channel tubing 616. A
water inlet opening 626 communicates between a water chan-nel 628 of the tubing 616 and the passageway 624. The passageway 624 also communicates with an air channel 630 through an air inlet opening 632 in the saddle member 614.
The portion of the passageway 624 between the water inlet opening 626 and the air inlet opening 632 includes a venturi 634 for enhancing the mixture of water and air and for speeding the flow of the water and air through the passageway 624. The end of the passageway 624 nearest the air inlet opening 632 is internally threaded so as to receive an externally threaded portion of an outlet (not shown) mounted in the sidewall of a water receptacle, such as a bathtub. A plug 636 has an externally threaded portion 638 which threadedly engages an internally threaded portion of the passageway 624 at the opposite end thereof. An 0-ring 640 is disposed about a shank portion 642 of the plug 636 to provide a water-tight seal.
The saddle member 612 has an internally threaded opening 644 which communicates at one end with the air channel 630 of the tubing 610. An externally threaded plug 646 is threadedly received in the opening 644, so that the air channel 630 may be selectively opened and closed to the atmosphere.
Figures 7 and 8 illustrate further exemplary embodiments of the connector assembly of Figure 5. The various elements illustrated in Figures 7 and 8 which cor-respond to elements described above with respect to Figure 5 have been designated by corresponding reference numerals increased by 100 and 200, respectively. The embodiments of Figures 7 and 8 operate in the same manner as the embodi-ment of Figure 5, unless it is otherwise stated.
1~24955 Referring to Figure 7, a water inlet opening 726 of a passageway 724 communicates with the interior of a water supply conduit 750. An air inlet opening 732 communi-cates between the passageway 724 and the interior of an air supply conduit 752.
As shown in Figure 8, a piece of dual channel tubing 816 is flanked on either side by saddle members 812, 814. The tubing 816 includes a partition 860 which extends across the interior thereof along a diameter or any other chord. An aperture 862 in the partition 860 permits a water channel 828 on one side of the partition 860 to communicate with an air channel 830 on the other side of the partition 860, the aperture 862 acting as a venturi for enhancing the mixture of water and air and for speeding the flow of water and air out of the tubing 816 and through a passageway 824 provided in the saddle member 814.
A vertical opening 842 in the saddle member 814 connects the air channel 830 to the atmosphere. A plug 844 threadedly received in the opening 842 permits the selec-tive opening and closing of the air channel 830 to theatmosphere.
A horizontal internally threaded opening 870 in the saddle member 812 communicates with a water channel 828 of the tubing 816. A plug 872 has an externally threaded opening 870 in the saddle member 812 for permitting access to the water channel 828. An 0-ring 876 disposed about a shank portion 878 of the plug 872 forms a water-tight seal.
Method of Bending Dual Channel Tubing When a piece of dual channel tubing, like the dual channel tubing described above, is extruded in a single straight length of thermoplastic material, the tubing must be bent in order to match the contour of a l~Z4~5i5 water receptacle, such as a bathtub. One especially advan-tageous method of bending such tubing involves using a Greenlee No. 850 PVC Bender which is filled with triethy-lene glycol. After the triethylene glycol is heated to about 230-260F., the dual channel tubing is inserted into the bath and maintained therein until the thermoplastic material is sufficiently soft so as to render the tubing bendable. The tubing can then be bent, either in a direc-tion perpendicular to or parallel to the partition ex-tending across the interior of the tubing.
If difficulties are encountered in maintaining the original shape of the softened tubing, including the partition, during its cooling, the following procedure, which is described below with reference to Figure 11, may be followed. Referring to Figure 11, dual channel tubing 910 has a partition 912 which runs the length thereof. At predetermined locations, corresponding to the locations where a connector assembly will be attached to the tubing, three aligned holes 914, 916, 918 are formed in the tubing 910 prior to its softening. The holes 914, 916 are formed in opposite sides of the tubing 910, the other hole 918 being formed in the partition 912.
Either prior to, simultaneously with or imme-diately after the bending of the tubing 910 into a desired shape, a peg 920, which extends upwardly from a lower saddle member 922 of a saddle clamp 924, is inserted through the holes 914, 916, 918, and into a hole 926 in an upper saddle member 928 of the saddle clamp 924 to help maintain the original shape of the partition 912 as well as its proper orientation with respect to the rest of the tubing 910. The saddle members 922 and 928 are then clamped over the outer surface of the tubing to help maintain its original cross-sectional shape, thereby aiding in the sup-port of -the softened partition 912.
3 ~;24955 The tubing 910 can be cooled at room temperature.
Alternatively, cooling of the tubing 910 can be expedited by passing a cool fluid, such as air or water, in and/or around the softened tubing 910.
It will be understood that the embodiments described herein are merely exemplary and that a person skilled in the art may make many variations and modifica-tions without departing from the spirit and scope of the invention. All such modifications and variations are : 10 intended to be included within the scope of the invention and defined in the appended claims.
The present invention relates to whirlpool systems and, more particularly, to such systems which are adapted for use in conventional bathtub installations.
Recently, travelers, businessmen, skiers, golfers, tennis players and other sportsmen have become increasingly aware of the benefits of a whirlpool bath in which water is agitated to create an invigorating whirlpool motion. The swirling waters of a whirlpool bath are believed by many to calm frayed nerves, ease the pain of aching muscles, and soothe sore feet. In recognition of the increasing popularity of whirlpool baths, many motels, hotels, and inns are installing in-room whirlpool baths in an effort to gain a competitive edge. However, in order to be profitable, and therefore result in a true competitive edge, such whirlpool baths must be simple to install, operate, and service.
Some known whirlpool baths, such as the one dis-closed in Jacuzzi U.S. Patent No. 3,571,820, include a number of jet assemblies spaced around the outer periphery of a bathtub for agitating water in the bathtub. In these known whirlpool baths, water and air supply piping systems, including several pieces of pipe joined together by elbows and T-fittings, are used to supply each of the jet assem-blies with water and air, respectively, i.e., separate air supply and water supply pipes. The installation of the elbows and T-fittings increases construction time and costs, in terms of both materials and labor. The elbows and T-fittings also complicate repairs and replacement.
~1~4955 Everston U.S. Patent No. 3,263,678 discloses a therapeutic bathtub having a plurality of aspirating fit-tings designed specifically to diffuse finely divided air bubbles throughout the water in the bathtub. Thus, the aspirating fittings perform a function, i.e., the diffusion of finely divided bubbles, which is difrerent than and may be performed in addition to the conventional function of providing agitated water to produce a whirlpool bath. Never-theless, the aspirator fittings are supplied water and air from a piping network in which several individual pieces of pipe are interconnected by elbows and T-fittings.
Efforts have been made to avoid the problems and disadvantages resulting from the use of elbows and T-fittings in whirlpool systems. For instance, in Mathis U.S.
Patent No. 3,890,656, there is disclosed a whirlpool jet for bathtubs which purportedly eliminates the use of T-fittings by making all water and air pipe connections directly to a corresponding water jet outlet. However, because the water jet outlets described and claimed in the Mathis patent are actually T-fittings, which have been designed to perform a jetting function, the water jet outlets of each pair of adjacent outlets are connected by separate pieces of water and air supply pipes. The pro-vision of several pieces of pipe not only complicates installation, thereby increasing initial construction time and costs, but also complicates repairs and replacements resulting in increased maintenance costs. Furthermore, inasmuch as the individual outlets are permanently cemented to the water and air supply pipes, the outlets are totally incapable of quick and easy on-site removal independently of the water and air supply pipes for inspection, cleaning and replacement purposes.
Many of the disadvantages and shortcomings of the whirlpool baths and other devices discussed above are over-come by the present invention which teaches new and improved piping arrangements and connector assemblies for use in a whirlpool system normally including a plurality of outlets spaced around the interior of a water receptacle, such as a bathtub, a water supply channel connected to a source of water, and an air supply channel connected to a source of air. In accordance with one aspect of the improve-ment, each of the outlets is connected to the air and watersupply channels by a unique removable connector assembly which, in one advantageous embodiment, includes a nozzle adapted to extend into both of the channels, one end of the nozzle being connected to a respective one of the outlets.
The nozzle includes a passageway, which extends through the nozzle from one end thereof to the other end, and a pair of inlet openings. One of the inlet openings communicates between the passageway and one of the channels to permit air to flow from the channel to an associated outlet. The other inlet opening communicates between the passageway and the other channel to form a flow path for water from the channel to a corresponding outlet. Although both the water and the air can be supplied under pressure, the portion of the passageway between the inlet openings includes a ven-turi for enhancing the mixture of air and water and for speeding their flow through the passageway.
Because the nozzle is inserted into the channels, it can be installed simply by providing an appropriate number of access openings to the channels, thereby permitting the channels to be formed in a single piece of dual channel tubing or a pair of individual continuous conduits. If the other end of the passageway lies outside ilZ4~55 of the channels, it can be capped with a removable plug which, when removed, provides quick and easy access to the interior of the nozzle for cleaning and inspection purposes without necessitating the removal of the nozzle or the dismantling of the entire whirlpool system.
Alternatively, the connector assemblies can be saddle clamps having a pair of saddle members which are movable with respect to each other so as to clamp over the outer surface of a piece of dual channel tubing or a pair of individual continuous conduits. One of the saddle members has a passageway which communicates with the water and air channels and a respective one of the outlets. A
venturi is provided, either in the passageway or, if the channels are formed in a single piece of dual channel tubing, in the partition between adjacent channels of the dual channel tubing, for enhancing the mixture of air and water and for speeding the flow of air and water through the passageway.
Like the nozzles discussed above, the saddle clamps may be removed without dismantling the entire whirl-pool system. Also, by providing a suitable access opening to the passageway, it can be made accessible for quick and easy inspection, and if necessary, cleaning or removal.
For a more complete understanding of the inven-tion, reference may be had to the following description of the exemplary embodiments taken in conjunction with the accompanying figures of the drawings, in which:
Figure 1 is a perspective view of one embodiment of a whirlpool system constructed in accordance with the present invention;
~1~4~55 Figure 2 is a partial cross-sectional view of a first exemplary embodiment of a connector assembly con-structed in accordance with the present invention;
Figure 3 is a cross-sectional view of a nozzle utilized in the connector assembly illustrated in Figure 2;
Figure 4 is a partial elevational view of a second exemplary embodiment of a whirlpool system con-structed in accordance with the present invention;
Figure 5 is a cross-sectional view of a second exemplary embodiment of a connector assembly constructed in accordance with the present invention;
Figure 6 is a cross-sectional view of a third exemplary embodiment of a connector assembly constructed in accordance with the present invention;
Figure 7 is a cross-sectional view of a fourth exemplary embodiment of a connector assembly constructed in accordance with the present invention;
Figure 8 is a cross-sectional view of a fifth exemplary embodiment of a connector assembly constructed in accordance with the present invention;
Figure 9 is a cross-sectional view of a sixth exemplary embodiment of a connector assembly constructed in accordance with the present invention;
Figure 10 is a perspective view of a third exem-plary embodiment of a whirlpool system constructed in accor-dance with the present invention; and Figure 11 is an exploded view of a clamp assembly useful in bending dual channel tubing in accordance with the present invention.
l~Z4955 The Overall System The whirlpool system shown in Figure 1 includes a number of outlets 10 which are spaced apart around the periphery of a bathtub 12. Each of the outlets 10 extends through a sidewall 14 of the bathtub 12 below a predeter-mined water level line and is connected to a continuous loop of dual channel tubing 16 by a connector assembly 18.
The loop of dual channel tubing 16 has a shape which generally matches the outer contour of the bathtub 12.
A pump 20, driven by a motor 22, receives water from the bathtub 12 through a return line 24, which com-municates with the interior of the bathtub 12 below its predetermined water level line. Water under pressure is supplied from the pump 20 to one channel of the dual channel tubing 16 through a flexible hose 26 and a saddle clamp type connector 28. Another saddle clamp type con-nector 30 is connected by a flexible hose 32 to an air port 34 located above the predetermined water level line of the bathtub 12, so that the port 34 will always be open to the atmosphere for supplying air to the other channel of the dual channel tubing 16 at atmospheric pressure.
Other exemplary embodiments of the whirlpool system of Figure 1 are illustrated in Figures 4 and 10. The various elements illustrated in Figures 4 and 10 which cor-respond to elements described above with respect to Figure 1 have been designated by corresponding reference numerals increased by 100 and 200, respectively. The embodi-ments of Figures 4 and 10 operate in the same manner as the embodiment of Figure 1, unless it is otherwise stated.
Referring now to Figure 4, a pump 120 and a com-pressor 136 are driven by a double-ended motor 122, so that air at greater than atmospheric pressure can be supplied to one channel of dual channel tubing 116 through a supply line 138 and a saddle clamp type connector 130. Alter-natively, the pump 120 and the compressor 136 can be driven by a pair of separate motors. The pressure of the air can be regulated from inside the bathtub 112 by a conventional air pressure regulator 140 communicating with the supply line 138. Supplying air under pressure via the compressor 136, the supply line 138, and the regulator 140 eliminates the need for the flexible hose 32 and the port 34 of the embodiment of Figure 1.
The whirlpool system shown in Figure 10 includes dual channel tubing 216 and a number of connector assem-blies 218 removably mounted to the dual channel tubing 216, which therefore acts as a header. Because the dual channel tubing 216 is located at one end of a bathtub 212, the connector assemblies 218 are relatively remote from at least some outlets 210, each of which is connected to a corresponding one of the connector assemblies 218 by a flexible hose 242 or any other suitable conduit. The loca-tion of the dual channel tubing 216 can be changed depending upon the configuration of the overall whirlpool system.
A saddle clamp type connector 244 replaces the saddle clamp type connectors 28 and 30 of the embodiment shown in Figure 1. More particularly, the saddle clamp type connector 244 has an upper clamp member 246, which connects a pump 220 to one channel of the dual channel tubing 216, and a lower clamp member 248, which connects an air port 234 to the other channel of the dual channel tubing 216.
llZ49SS
The Nozzle Type Connector Assembly Embodiments Referring now to Figures 2 and 3, there is shown dual channel tubing 310. It has a cylindrical shape, although any other suitable shape may be used, and a partition 312 extending across the interior of the tubing 310 to form an air channel 314 and a water channel 316.
Although the partition 312 is shown extending across a diameter of the dual channel tubing 310, the partition 312 may extend across any chord of the tubing 310.
At each location where a connector assembly 318 is to be inserted through the dual channel tubing 310, a pair of holes 320, 322 is provided, the hole 320 being formed in the top of the tubing 310 diametrically opposite the hole 322, which is formed in the bottom of the tubing 310. Another hole 324, having a diameter substantially equal to the diameter of the hole 320 but somewhat less than the diameter of the hole 322, is formed in the par-tition 312 and aligned with the holes 320, 322, so that a nozzle 326 can be inserted therethrough.
The nozzle 326, which forms a part of a corres-ponding connector assembly 318, includes a small diameter portion 330, which extends through the holes 320, 324 and the water channel 316, and a large diameter portion 332, which extends through the hole 322 and into the air channel 314. An 0-ring 334 interposed between the partition 312 and a shoulder 336 formed at the juncture of the small diameter portion 330 and the large diameter portion 332 forms a fluid-tight seal between the air channel 314 and the water channel 316.
1~24~S5 A fluid passageway 338 (see Fig. 3) runs the length of the nozzle 326 and communicates with the air channel 314 and the water channel 316 through an air inlet opening 340 and a water inlet opening 342, respectively. To facilitate drainage of water from the dual channel tubing 310, the bottoms of the air inlet opening 340 and the water inlet opening 342 are at an elevation substantially no higher than the elevation of the bottoms of the air chan-nel 314 and the water channel 316, respectively. The por-tion of the passageway 338 between the air inlet opening340 and the water inlet opening 342 includes a venturi 344 (see Fig. 3) designed to enhance the mixing of water and air in the passageway 338 and to speed the flow of water and air through the passageway 338.
The free end of the small diameter portion 330 extends upwardly through the hole 320 formed in the top of the dual channel tubing 310 and is provided with an exter-nally threaded portion 346 designed to threadedly engage an internally threaded cap 348. By removing the cap 348, access may be had to the passageway 338 for the purposes of inspection and cleaning.
An 0-ring 350, disposed about the free end of the small diameter portion 330, seals the hole 320 formed in the top of the dual channel tubing 310. The 0-ring 350 is held in sealing engagement against the top of the tubing 310 by a jaw member 352, slidably received on the free end of the small diameter portion 330 of the nozzle 326, and a lock nut 354, having an internally threaded portion (not shown) which threadedly engages the externally threaded portion 346 of the free end of the small diameter portion 330, for forcing the jaw member 352 into positive engage-ment with the 0-ring 350.
~;24~55 The free end of the large diameter portion 332 of the nozzle 326 extends downwardly through the hole 322 in the bottom of the dual channel tubing 310. An externally threaded portion 356 provided on the free end of the large diameter portion 332 threadedly engages an internally threaded portion (not shown) formed in the vertical end 358 of a relatively rigid elbow 360. The horizontal end 362 of the elbow 360 has in internally threaded portion 364 which threadedly engages an externally threaded portion 366 formed on a stem portion 368 of an outlet 370. Although the elbow 360 is shown as having a 90 bend, the bend can be more or less than 90 depending upon the designs and relative positions of the nozzle 326 and the outlet 370.
Moreover, the elbow 360 could be replaced by a flexible hose or any other suitable connecting device.
An 0-ring 372, disposed about the free end of the . large diameter portion 332, seals the hole 322 formed in the bottom of the dual channel tubing 310. The 0-ring 372 is held in sealing engagement against the bottom of the tubing 310 by a jaw member 374, which is slidably received on the free end of the large diameter portion 332 and forced into positive engagement with the 0-ring 372 by a lock nut 376 threadedly engaged on the free end of the large diameter portion 332.
A fluid-tight seal is also formed between the outlet 370 and a sidewall 382 of a bathtub 384 by an 0-ring 386, a gasket 388, and a lock nut 390. The 0-ring 386 is disposed about the stem portion 368 of the outlet 370 between the outlet 370 and the sidewall 382. The gasket 388 and the lock nut 390 are also disposed about the stem portion 392, but on the opposite side of the sidewall 382 from the 0-ring 386. The lock nut 390 threadedly engages ~ZD,9S5 the externally threaded portion 366 of the stem portion 368 so as to force the 0-ring 386 and the gasket 388, both of which can be made of rubber or any other suitable material, into sealing engagement with the sidewall 382 of the bath-tub 384.
Referring now to Figures 6 and 9, there are shown two further embodiments of the exemplary connector assembly embodiment of Figures 2 and 3. The various elements illus-trated in Figures 6 and 9 which correspond to elements described above with respect to Figures 2 and 3 have been designated by corresponding reference numerals increased by 100 and 200, respectively. Unless otherwise stated, the further embodiments operate in the same manner as the embodiment of Figures 2 and 3.
In the embodiment of Figure 6, a horizontally extending nozzle 426 has a small diameter portion 430 which communicates with a water channel 416 but does not extend therethrough. The interior end of a passageway 438 ; extending through the nozzle 426 functions as a water inlet, thereby replacing the water inlet opening 432 of the embodiment of Figures 2 and 3. An outlet 470 is adapted to threadedly engage a threaded portion 4S6 on the nozzle 426.
An 0-ring 472, jaw member 474, gasket 488, and lock nut 476 are positioned between a sidewall 482 of a bathtub 484 and the outer circumferential surface of a continuous loop of dual channel tubing 410 to form a water-tight seal for an opening in the side of the tubing 410. The lock nut 476 forces the 0-ring 472 into sealing engagement with the dual channel tubing 410. Another 0-ring 486 and the gasket 488 are forced into sealing engagement with the sidewall 482 of the bathtub 484 by the outlet 470. Although the direct con-nection of the nozzle 426 with the outlet 470 eliminates the elbow 360 of the embodiment of Figures 2 and 3, it necessitates arranging the water channel 416 alongside an air channel 414, rather than above it.
The embodiment of Figure 9 also includes a con-tinuous piece of dual channel tubing 510 having a water channel 516, which is arranged alongside an air channel 514. Because the elbow 360 of the embodiment of Figures 2 and 3 is dispensed with, an outlet 580 is internally threaded so that it can threadedly engage an externally threaded portion 556 on the free end of a large diameter portion 532 of a nozzle 526. 0-rings 572, 586, jaw member 574, gasket 588, and lock nut 576 form a water-tight seal for an opening 522 in the side of the tubing 510 and an opening in a sidewall 582 of a bathtub 584.
The Saddle Clamp Type Connector Assembly Embodiments As shown in Figure 5, a saddle clamp 610 includes a pair of clamp members 612, 614. The saddle member 612 is positioned on the upper side of a piece of dual channel tubing 616, the saddle member 614 being positioned on the lower side of the tubing 616 substantially diametrically opposite the saddle member 612.
The saddle member 612 has holes 618 passing com-pletely therethrough. The holes 618 are aligned with blind bores 620 in the adjacent surface of the saddle member 614.
The holes 618 and the bores 620 are internally threaded so as to receive externally threaded bolts 622 which maintain the saddle members 612 and 614 clamped about the tubing 616. The bolts 622 also permit the position of the saddle members 612, 614 to be adjusted with respect to each other.
llZ4~55 The saddle member 614 includes a passageway 624 extending therethrough below the dual channel tubing 616. A
water inlet opening 626 communicates between a water chan-nel 628 of the tubing 616 and the passageway 624. The passageway 624 also communicates with an air channel 630 through an air inlet opening 632 in the saddle member 614.
The portion of the passageway 624 between the water inlet opening 626 and the air inlet opening 632 includes a venturi 634 for enhancing the mixture of water and air and for speeding the flow of the water and air through the passageway 624. The end of the passageway 624 nearest the air inlet opening 632 is internally threaded so as to receive an externally threaded portion of an outlet (not shown) mounted in the sidewall of a water receptacle, such as a bathtub. A plug 636 has an externally threaded portion 638 which threadedly engages an internally threaded portion of the passageway 624 at the opposite end thereof. An 0-ring 640 is disposed about a shank portion 642 of the plug 636 to provide a water-tight seal.
The saddle member 612 has an internally threaded opening 644 which communicates at one end with the air channel 630 of the tubing 610. An externally threaded plug 646 is threadedly received in the opening 644, so that the air channel 630 may be selectively opened and closed to the atmosphere.
Figures 7 and 8 illustrate further exemplary embodiments of the connector assembly of Figure 5. The various elements illustrated in Figures 7 and 8 which cor-respond to elements described above with respect to Figure 5 have been designated by corresponding reference numerals increased by 100 and 200, respectively. The embodiments of Figures 7 and 8 operate in the same manner as the embodi-ment of Figure 5, unless it is otherwise stated.
1~24955 Referring to Figure 7, a water inlet opening 726 of a passageway 724 communicates with the interior of a water supply conduit 750. An air inlet opening 732 communi-cates between the passageway 724 and the interior of an air supply conduit 752.
As shown in Figure 8, a piece of dual channel tubing 816 is flanked on either side by saddle members 812, 814. The tubing 816 includes a partition 860 which extends across the interior thereof along a diameter or any other chord. An aperture 862 in the partition 860 permits a water channel 828 on one side of the partition 860 to communicate with an air channel 830 on the other side of the partition 860, the aperture 862 acting as a venturi for enhancing the mixture of water and air and for speeding the flow of water and air out of the tubing 816 and through a passageway 824 provided in the saddle member 814.
A vertical opening 842 in the saddle member 814 connects the air channel 830 to the atmosphere. A plug 844 threadedly received in the opening 842 permits the selec-tive opening and closing of the air channel 830 to theatmosphere.
A horizontal internally threaded opening 870 in the saddle member 812 communicates with a water channel 828 of the tubing 816. A plug 872 has an externally threaded opening 870 in the saddle member 812 for permitting access to the water channel 828. An 0-ring 876 disposed about a shank portion 878 of the plug 872 forms a water-tight seal.
Method of Bending Dual Channel Tubing When a piece of dual channel tubing, like the dual channel tubing described above, is extruded in a single straight length of thermoplastic material, the tubing must be bent in order to match the contour of a l~Z4~5i5 water receptacle, such as a bathtub. One especially advan-tageous method of bending such tubing involves using a Greenlee No. 850 PVC Bender which is filled with triethy-lene glycol. After the triethylene glycol is heated to about 230-260F., the dual channel tubing is inserted into the bath and maintained therein until the thermoplastic material is sufficiently soft so as to render the tubing bendable. The tubing can then be bent, either in a direc-tion perpendicular to or parallel to the partition ex-tending across the interior of the tubing.
If difficulties are encountered in maintaining the original shape of the softened tubing, including the partition, during its cooling, the following procedure, which is described below with reference to Figure 11, may be followed. Referring to Figure 11, dual channel tubing 910 has a partition 912 which runs the length thereof. At predetermined locations, corresponding to the locations where a connector assembly will be attached to the tubing, three aligned holes 914, 916, 918 are formed in the tubing 910 prior to its softening. The holes 914, 916 are formed in opposite sides of the tubing 910, the other hole 918 being formed in the partition 912.
Either prior to, simultaneously with or imme-diately after the bending of the tubing 910 into a desired shape, a peg 920, which extends upwardly from a lower saddle member 922 of a saddle clamp 924, is inserted through the holes 914, 916, 918, and into a hole 926 in an upper saddle member 928 of the saddle clamp 924 to help maintain the original shape of the partition 912 as well as its proper orientation with respect to the rest of the tubing 910. The saddle members 922 and 928 are then clamped over the outer surface of the tubing to help maintain its original cross-sectional shape, thereby aiding in the sup-port of -the softened partition 912.
3 ~;24955 The tubing 910 can be cooled at room temperature.
Alternatively, cooling of the tubing 910 can be expedited by passing a cool fluid, such as air or water, in and/or around the softened tubing 910.
It will be understood that the embodiments described herein are merely exemplary and that a person skilled in the art may make many variations and modifica-tions without departing from the spirit and scope of the invention. All such modifications and variations are : 10 intended to be included within the scope of the invention and defined in the appended claims.
Claims (6)
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. In a whirlpool system including a water recep-tacle, a plurality of outlets spaced around the interior of the water receptacle, a water supply conduit connected to a source of water, an air supply conduit connected to a source of air, and connecting means for receiving water and air from the water and air supply conduits, respectively, for mixing the received water and air, and for delivering the mixed water and air to each of the outlets, the improvement wherein said connecting means is removably mounted to the water supply conduit and the air supply conduit between the respective ends of the conduits, where-by said connecting means may be replaced independently of the water and air supply conduits.
2. A whirlpool system according to Claim 1, where-in said connecting means includes a plurality of nozzles, one for each of the outlets, each of said nozzles extending through the water and air supply conduits, one end of each of said nozzles extending outwardly from the air supply conduit for connection to a corresponding one of the out-lets, the other end of each of said nozzles extending outwardly from the water supply conduit, each of said nozzles including a passageway extending therethrough from said one end to said other end, a water inlet opening communicating between the water supply channel and said passageway, and an air inlet opening communicating between the air supply channel and said passageway, the portion of said passageway between said air inlet opening and said water inlet opening including a venturi.
3. A whirlpool system according to Claim 2, where-in said connecting means includes a plurality of saddle clamps, one for each of the outlets, each of said saddle clamps including a pair of saddle members, one of said saddle members being positioned to one side of the air and water supply conduits and the other of said saddle members being positioned to an opposite side of the air and water supply conduits, said one of said saddle members having a passageway extending therethrough and communicating with a corresponding one of the outlets, a water inlet opening communicating between said passageway and the water supply conduit, and an air inlet opening communicating between said passageway and the air supply conduit, the portion of said passageway between said air inlet opening and said water inlet opening including a venturi.
4. A whirlpool system according to Claim 1, where-in said connector means includes a plurality of saddle clamps, one for each of the outlets, each of said saddle clamps including a pair of saddle members, one of said saddle members being positioned to one side of the water and air supply conduits and the other of said saddle members being positioned to an opposite side of the water and air supply conduits, one of said saddle members having a passageway extending therethrough and communicating between the air supply conduit and a corresponding one of the outlets.
5. A whirlpool system according Claim 1, wherein said connecting means includes a plurality of nozzles, one for each of the outlets, each of said nozzles extending through the air supply conduit, one end of each of said nozzles extending outwardly of the air supply conduit for connection to a corresponding one of the outlets and the other end of each of said nozzles communicating with the water supply conduit, each of said nozzles including a passageway extending therethrough from said one end to said other end, and an air inlet opening communicating between said passageway and the air supply conduit, the portion of said passageway between said air inlet opening and said other end of said nozzle including a venturi.
6. A whirlpool system according to Claim 1, where-in said connecting means includes a plurality of saddle clamps, one for each of the outlets, each of said saddle clamps including a pair of saddle members, one of said saddle members having a passageway communicating with a corresponding one of the outlets, a water inlet opening communicating between said passageway and the water supply conduit, and an air inlet opening communicating between said passageway and the air supply conduit, the portion of said passageway between said air inlet opening and said water inlet opening including a venturi.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA378,491A CA1124955A (en) | 1979-01-22 | 1981-05-27 | Whirlpool system |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US5,377 | 1979-01-22 | ||
US06/005,377 US4240166A (en) | 1979-01-22 | 1979-01-22 | Whirlpool system |
CA000332319A CA1118551A (en) | 1979-01-22 | 1979-07-23 | Whirlpool system |
CA378,491A CA1124955A (en) | 1979-01-22 | 1981-05-27 | Whirlpool system |
Publications (1)
Publication Number | Publication Date |
---|---|
CA1124955A true CA1124955A (en) | 1982-06-08 |
Family
ID=27166342
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA378,491A Expired CA1124955A (en) | 1979-01-22 | 1981-05-27 | Whirlpool system |
Country Status (1)
Country | Link |
---|---|
CA (1) | CA1124955A (en) |
-
1981
- 1981-05-27 CA CA378,491A patent/CA1124955A/en not_active Expired
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4240166A (en) | Whirlpool system | |
US4358862A (en) | Connector assembly for whirlpool system | |
US4419775A (en) | Whirlpool bath | |
EP0708866B1 (en) | Water recirculating bath fixture | |
US7987533B2 (en) | Shower water toy construction system | |
US6662384B1 (en) | Motorized control of water delivery through ports of tub, Spa of shower | |
US20050050627A1 (en) | Spa jet mounting assembly and method of installation | |
RU2047571C1 (en) | Floating aerator | |
US6567998B2 (en) | Shower apparatus | |
US20090205122A1 (en) | Whirlpool tub and faucet/handheld shower combination | |
US4553299A (en) | Method for installing a whirlpool bath on an in-place bathtub | |
CA1124955A (en) | Whirlpool system | |
US4973432A (en) | Aeration header module | |
US4533512A (en) | Method and apparatus for bending multiple channel tubing | |
CA1124954A (en) | Connector assembly for whirlpool system | |
CA1124975A (en) | Method and apparatus for bending multiple channel tubing | |
US4763366A (en) | Combined drain and return line and valve therefor | |
ES8205132A1 (en) | Apparatus for admixing a gas to a liquid, in particular for admixing oxygen to polluted water. | |
US6957451B2 (en) | Flow control device for tub, spa, or shower | |
JPH0368272B2 (en) | ||
GB2159404A (en) | Hydrotherapy apparatus | |
CN101067306B (en) | Three-pipe integrated drinking separated water supply pipe and assembling fittings | |
US4947494A (en) | Valve for combined drain and return line | |
GB2161072A (en) | Hydrotherapy apparatus | |
RU2238712C1 (en) | Baby's air-saturated hydraulic massaging bath |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MKEX | Expiry |