BRPI0616533A2 - polinucleotìdeo isolado, fragmento de ácido nucléico isolado, construções de dna recombinante, plantas, sementes, células vegetais, tecidos vegetais, método de isolamento de fragmentos de ácidos nucléico, método de mapeamento de variações genéticas, método de cultivo molecular, plantas de milho, métodos de alteração do transporte de nitrogênio das plantas e variantes de hat de plantas alteradas - Google Patents

polinucleotìdeo isolado, fragmento de ácido nucléico isolado, construções de dna recombinante, plantas, sementes, células vegetais, tecidos vegetais, método de isolamento de fragmentos de ácidos nucléico, método de mapeamento de variações genéticas, método de cultivo molecular, plantas de milho, métodos de alteração do transporte de nitrogênio das plantas e variantes de hat de plantas alteradas Download PDF

Info

Publication number
BRPI0616533A2
BRPI0616533A2 BRPI0616533-8A BRPI0616533A BRPI0616533A2 BR PI0616533 A2 BRPI0616533 A2 BR PI0616533A2 BR PI0616533 A BRPI0616533 A BR PI0616533A BR PI0616533 A2 BRPI0616533 A2 BR PI0616533A2
Authority
BR
Brazil
Prior art keywords
plant
sequence
seq
plants
recombinant dna
Prior art date
Application number
BRPI0616533-8A
Other languages
English (en)
Inventor
Stephen M Allen
Lu Liu
Victor Llaca
Kanwarpal Singh Dhugga
Xiaomu Niu
Kevin Fengler
Dale Loussaert
Howard P Hershey
Haiyin Wang
Original Assignee
Pioneer Hi Bred Int
Du Pont
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Hi Bred Int, Du Pont filed Critical Pioneer Hi Bred Int
Publication of BRPI0616533A2 publication Critical patent/BRPI0616533A2/pt

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8237Externally regulated expression systems
    • C12N15/8238Externally regulated expression systems chemically inducible, e.g. tetracycline
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8222Developmentally regulated expression systems, tissue, organ specific, temporal or spatial regulation
    • C12N15/8223Vegetative tissue-specific promoters
    • C12N15/8227Root-specific
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/14Heterocyclic carbon compound [i.e., O, S, N, Se, Te, as only ring hetero atom]
    • Y10T436/142222Hetero-O [e.g., ascorbic acid, etc.]
    • Y10T436/143333Saccharide [e.g., DNA, etc.]

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Botany (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

POLINUCLEOTìDEO ISOLADO, FRAGMENTO DE áCIDO NUCLéICO ISOLADO, CONSTRUçõES DE DNA RECOMBINANTE, PLANTAS, SEMENTES, CéLULAS VEGETAIS, TECIDOS VEGETAIS, MéTODO DE ISOLAMENTO DE FRAGMENTOS DE ACIDO NUCLéICO, MéTODO DE MAPEAMENTO DE VARIAçõES GENéTICAS, MéTODO DE CULTIVO MOLECULAR, PLANTAS DE MILHO, MéTODOS DE ALTERAçãO DO TRANSPORTE DE NITROGêNIO DAS PLANTAS E VARIANTES DE HAT DE PLANTAS ALTERADAS. A presente invenção refere-se a fragmentos de ácido nucléico isolado que codificam componentes de transporte de nitrato com alta afinidade. A presente invenção também se refere à elaboração de construções de DNA recombinante que codificam, no todo ou em parte, componentes de transporte de nitrato, em orientação com ou sem sentido, em que a expressão da construção de DNA recombinante pode alterar os níveis dos componentes de transporte de nitrato em célula hospedeira transformada.

Description

"POLINUCLEOTÍDEO ISOLADO, FRAGMENTO DE ÁCIDO NUCLÉICOISOLADO, CONSTRUÇÕES DE DNA RECOMBINANTE, PLANTAS,SEMENTES, CÉLULAS VEGETAIS, TECIDOS VEGETAIS, MÉTODO DEISOLAMENTO DE FRAGMENTOS DE ÁCIDO NUCLÉICO, MÉTODO DEMAPEAMENTO DE VARIAÇÕES GENÉTICAS, MÉTODO DE CULTIVOMOLECULAR, PLANTAS DE MILHO, MÉTODOS DE ALTERAÇÃO DOTRANSPORTE DE NITROGÊNIO DAS PLANTAS E VARIANTES DE HAT DEPLANTAS ALTERADAS"
Campo da Invenção
A presente invenção encontra-se no campo de biologia moleculardas plantas. Mais especificamente, a presente invenção refere-se a fragmentosde ácido nucléico que codificam transportadores de nitrato com alta afinidadeem plantas e sementes.
Antecedentes da Invenção
As plantas superiores são organismos autotróficos que podemsintetizar todos os seus componentes moleculares a partir de nutrientesinorgânicos obtidos do ambiente local. Nitrogênio é elemento fundamental emmuitos compostos presentes em células de plantas. Ele é encontrado nosfosfatos de nucleosídeos e aminoácidos que formam os blocos de construçãode ácidos nucléicos e proteínas, respectivamente. A disponibilidade denitrogênio para plantas de safras é fator limitador importante na produçãoagrícola e a importância de nitrogênio é demonstrada pelo fato de que somenteoxigênio, carbono e hidrogênio são mais abundantes em células de plantassuperiores. O nitrogênio presente na forma de amônia ou nitrato é facilmenteabsorvido e assimilado por plantas superiores.
Nitrato é a principal fonte de nitrogênio que é disponível paraplantas superiores sob condições normais de campo. Desta forma, o processode assimilação de nitrato é o principal ponto de entrada de nitrogênioinorgânico para compostos orgânicos (Hewitt et al (1976), Plant Biochemistry,págs. 633-6812, Bonner e Varner1 eds., Academic Press, Nova Iorque).Embora algumas plantas utilizem amônia diretamente, sob certas condições,nitrato é geralmente a principal forma de nitrogênio disponível para as plantas.
A absorção de nitrato por células de raízes é a primeira etapa doprocesso de assimilação de nitrato em plantas superiores (Orsel et al (2002),Plant Physiology 129: 886-896). As plantas desenvolveram dois sistemas deabsorção diferentes para adequar-se à disponibilidade variável de nitrato emsolos cultivados. O sistema de transporte de nitrato com baixa afinidade épreferencialmente utilizado quando a concentração de nitrato externo é alta,enquanto o sistema de transporte com alta afinidade (HATS) tem lugar emconcentrações externas muito baixas.
Em plantas superiores, foram identificadas duas famíliasgenéticas: as famílias NRT1 e NRT2 envolvidas no sistema de transporte combaixa afinidade e HATs, respectivamente. A complexidade de transporte denitrato e nitrito é aumentada pela regulagem fina que ocorre no nível detranscrição: sistemas com baixa e alta afinidade possuem componentesconstitutivos e indutíveis que são claramente distintos. Além disso, algunsmembros dos transportadores de nitrato necessitam de segundo produtogenético, polipeptídeo do tipo NAR2, para funcionar (Tong et al (2005), ThePlant JournaIAI: 442-450).
As seqüências de nucleotídeos de acordo com o presente pedidoe os métodos de sua utilização podem aumentar a eficiência com a qualnitrogênio pode ser utilizado.
Descrição Resumida da Invenção
A presente invenção inclui polinucleotídeos isolados quecodificam polipeptídeo necessário para transporte de nitrato com alta afinidade,em que a seqüência de aminoácidos do polipeptídeo e a seqüência deaminoácidos de SEQ ID N0 36 ou 49 possuem pelo menos 80%, 85%, 90%,95%, 99% ou 100% de identidade para (b) o complemento da seqüência denucleotídeos, em que o complemento e a seqüência de nucleotídeos contêm omesmo número de nucleotídeos e são 100% complementares. O polipeptídeocompreende preferencialmente a seqüência de aminoácidos de SEQ ID N0 36ou 49. A seqüência de nucleotídeos compreende preferencialmente aseqüência de nucleotídeos de SEQ ID N0 35 ou 48.
Em primeira realização, a presente invenção inclui polinucleotídeoisolado que compreende: (a) seqüência de nucleotídeos que codificapolipeptídeo necessário para transporte de nitrato com alta afinidade, em que opolipeptídeo contém seqüência de aminoácidos com pelo menos 80%, 85%,90%, 95%, 99% ou 100% de identidade de seqüências com base no método dealinhamento Clustal V em comparação com polipeptídeo SEQ ID N0 36 ou 49.
(b) complemento da seqüência de nucleotídeos, em que ocomplemento e a seqüência de nucleotídeos contêm a mesma quantidade denucleotídeos e são 100% complementares.
Em segunda realização, a presente invenção refere-se a essaseqüência de nucleotídeos isolados ou seu complemento que compreende pelomenos dois motivos que correspondem substancialmente a qualquer dasseqüências de aminoácidos descritas em SEQ ID N0 50, 51 ou 52, em que omencionado motivo é substancialmente subseqüência conservada. Exemplosdesses motivos, entre outros que podem ser identificados, são exibidos emSEQ ID N0 50, 51 ou 52. Também é de interesse o uso desse fragmento ou suaparte em inibição sem sentido ou co-supressão em planta transformada.
Em terceira realização, a presente invenção refere-se a seucomplemento de fragmento de nucleotídeo isolado, em que o fragmento ouparte dele é útil em inibição sem sentido ou co-supressão de proteína quealtere o transporte de nitrato em planta transformada.Em quarta realização, a presente invenção refere-se a fragmentode ácido nucléico isolado que compreende promotor em que o mencionadopromotor consiste essencialmente da seqüência de nucleotídeos descrita emSEQ ID N0 37, 38, 46, 47, 56, 65, 67, 68, 69, 70, 71, 72, 73, 74, 89 ou 90, ou omencionado promotor consiste essencialmente de fragmento ou subfragmentoque é substancialmente similar e funcionalmente equivalente à seqüência denucleotídeos descrita em SEQ ID N0 37, 38, 46, 47, 56, 65, 67, 68, 69, 70, 71,72, 73, 74, 89 ou 90.
Em quinta realização, a presente invenção refere-se aconstruções de DNA recombinantes que compreendem qualquer fragmento deácido nucléico acima ou seu complemento, ou parte de qualquer deles, ligadooperativamente a pelo menos uma seqüência reguladora. Também são deinteresse plantas que compreendem essas construções de DNA recombinantesno seu genoma, tecido de plantas ou células obtidas dessas plantas esementes obtidas dessas plantas.
Em sexta realização, a presente invenção refere-se a método dealteração do transporte de nitrato em plantas, que compreende:
a. transformação de planta com construção de DNArecombinante que compreende:
i. primeira construção de DNA recombinante quecompreende polinucleotídeo isolado que codifica polipeptídeo HAT, ligadooperativamente a pelo menos uma seqüência reguladora; e
ii. pelo menos uma construção de DNA recombinanteadicional que compreende polinucleotídeo isolado que codifica polipeptídeoNAR, ligado operativamente a pelo menos uma seqüência reguladora;
b. cultivo da planta transformada de a sob condiçõesapropriadas para a expressão das construções de DNA recombinante; eseleção das plantas transformadas que possuem transporte de nitrato alterado.Plantas de milho que compreendem essas construções recombinantes tambémsão parte da presente invenção.
Em sétima realização, a presente invenção refere-se a método deisolamento de fragmentos de ácidos nucléicos que codificam polipeptídeosassociados à alteração do transporte de nitrato que compreende:
a. comparação de SEQ ID N0 36, 49, 55 ou 58 com outrasseqüências de polipeptídeos associadas à alteração do transporte de nitrato daplanta;
b. identificação da(s) seqüência(s) conservada(s) de quatroou mais aminoácidos obtidos na etapa a;
c. elaboração de oligômero(s) ou sonda(s) de nucleotídeosespecíficos de região com base nas seqüências conservadas identificadas naetapa b; e
d. uso do(s) oligômero(s) ou sonda(s) de nucleotídeos daetapa c para isolar seqüências associadas à alteração do transporte de nitratopor meio de protocolos dependentes de seqüências.
Em oitava realização, a presente invenção também se refere amétodo de mapeamento de variações genéticas referentes à alteração dotransporte de nitrato das plantas:
a. cruzamento de duas variedades de plantas; e
b. avaliação de variações genéticas com relação a:
i. seqüência de ácidos nucléicos selecionada a partirdo grupo que consiste de SEQ ID N0 35, 48, 54 e 57; ou
ii. seqüência de ácidos nucléicos que codificapolipeptídeo selecionado a partir do grupo que consiste de SEQ ID N0 36, 49,55 e 58;
em plantas progenitoras resultantes do cruzamento da etapa (a), emque a avaliação é realizada utilizando método selecionado a partir do grupo queconsiste de: análise de RFLP, análise de SNP e análise com base em PCR.
Em nona realização, a presente invenção refere-se a método decultivo molecular para obter transporte de nitrato de plantas alterado, quecompreende:
a. cruzamento de duas variedades de plantas; e
b. avaliação de variações genéticas com relação a:
i. seqüência de ácidos nucléicos selecionada a partirdo grupo que consiste de SEQ ID N0 35, 48, 54 e 57; ou
ii. seqüência de ácidos nucléicos que codificapolipeptídeo selecionado a partir do grupo que consiste de SEQ ID N0 36, 49,55 e 58;
em plantas progenitoras resultantes do cruzamento da etapa a,em que a avaliação é realizada utilizando método selecionado a partir do grupo queconsiste de: análise de RFLP, análise de SNP e análise com base em PCR.
Em décima realização, a presente invenção refere-se a método dealteração do nível de expressão de polipeptídeo transportador de nitrato comalta afinidade em célula hospedeira que compreende: (a) transformação decélula hospedeira com construção de DNA recombinante que compreende:
b. seqüência de nucleotídeos que codifica polipeptídeotransportador de nitrato com alta afinidade, em que o polipeptídeo contémseqüência de aminoácidos com pelo menos 80% de identidade de seqüências,com base no método de alinhamento Clustal V, em comparação com umadentre SEQ ID N0 36 ou 49, e o polipeptídeo altera o transporte de nitrato, seucomplemento ou pelo menos dois motivos que correspondem substancialmentea qualquer das seqüências de aminoácidos descritas em SEQ ID N0 50, 51 e52, em que o mencionado motivo é subseqüência substancialmenteconservada ligada operativamente a pelo menos uma seqüência reguladora; e
c. cultivo da célula hospedeira transformada sob condiçõesque são apropriadas para expressão da construção de DNA recombinante, emque a expressão da construção de DNA recombinante resulta na produção deníveis alterados do polipeptídeo necessário para transporte de nitrato na célulahospedeira transformada.
Em décima-primeira realização, a presente invenção refere-se aplanta de milho, que compreende primeira construção de DNA quecompreende polipeptídeo HAT isolado, ligado operativamente a pelo menosuma seqüência reguladora; e pelo menos uma construção de DNArecombinante adicional que compreende polinucleotídeo isolado, ligadooperativamente a pelo menos uma seqüência reguladora, que codificapolipeptídeo selecionado a partir do grupo que consiste de NAR2.
Realização adicional da presente invenção refere-se a método dealteração do transporte de nitrogênio das plantas, que compreende:
a. transformação de planta com construção de DNArecombinante que compreende:
i. primeira construção de DNA recombinante quecompreende polinucleotídeo isolado que codifica polipeptídeo HAT, ligadooperativamente a pelo menos uma seqüência reguladora; e
ii. pelo menos uma construção de DNA recombinanteadicional que compreende polinucleotídeo isolado, ligado operativamente apelo menos uma seqüência reguladora, que codifica polipeptídeo selecionado apartir do grupo que consiste de NAR;
b. cultivo da planta transformada de a sob condiçõesapropriadas para a expressão da construção de DNA recombinante; e
c. seleção das plantas transformadas que possuem transportede nitrato alterado.
Realizações adicionais da presente invenção incluem variantesde HAT alteradas (shuffled HAT variants) com parâmetros cinéticosaprimorados, construções de DNA recombinante que compreendem asseqüências de nucleotídeos que codificam estas variantes e plantas ecélulas transformadas que compreendem no seu genoma estas construçõesde DNA recombinante. Também são incluídas na presente invenção plantasde milho que compreendem primeira construção de DNA recombinante quecompreende seqüência de nucleotídeos que codificam variante de HATalterada, ligada operativamente a pelo menos uma seqüência reguladora epelo menos uma construção de DNA recombinante adicional quecompreende polinucleotídeo isolado, ligada operativamente a pelo menosuma seqüência reguladora, que codifica polipeptídeo selecionado a partir dogrupo que consiste de NAR.
Ainda outra realização da presente invenção descreve método dealteração do transporte de nitrogênio das plantas, que compreende: a)transformação de planta com construção de DNA recombinante quecompreende primeira construção de DNA recombinante que compreendeseqüência de nucleotídeos que codifica variante de HAT alterada, ligadaoperativamente a pelo menos uma seqüência reguladora e pelo menos umaconstrução de DNA recombinante adicional que compreende polinucleotídeoisolado, ligada operativamente a pelo menos uma seqüência reguladora, quecodifica polipeptídeo selecionado a partir do grupo que consiste de NAR; e b)cultivo da planta transformada de (a) sob condições apropriadas para aexpressão da construção de DNA recombinante; e seleção das plantastransformadas que possuem transporte de nitrato alterado.
Depósitos Biológicos
Os plasmídeos a seguir foram depositados junto à Coleção Norte-Americana de Cultivos de Tipos (ATCC), 10801 University Boulevard,Manassas VA 20110-2209, e contêm as designações, números de acesso edatas de depósito a seguir:<table>table see original document page 10</column></row><table>
Breve Descrição das Listagens de Seqüências
A presente invenção pode ser mais completamente compreendidaa partir do relatório descritivo detalhado a seguir e das figuras e Listagens deSeqüências anexas, que fazem parte do presente pedido.
A Fig. 1 é esquema do vetor PHP 27621.
A Fig. 2 é esquema do vetor PHP 27660.
A Fig. 3 é esquema do vetor PHP 27860.
A Fig. 4 é esquema do vetor PHP 27280.
A Fig. 5 é esquema do vetor PHP 27281.
A Fig. 6 é esquema do vetor PHP 27282.
A Fig. 7 é esquema do vetor PHP 27283.
SEQ ID N0 1 é o primer frontal utilizado no Exemplo 3.
SEQ ID N0 2 é o primer reverso utilizado no Exemplo 3.
SEQ ID N0 3 é o primer T7 utilizado no Exemplo 3 para
seqüenciamento de extremidades de BAC confirmadoras.
SEQ ID N0 4 é o primer SP6 utilizado no Exemplo 3 paraseqüenciamento de extremidades de BAC confirmadoras.
SEQ ID N0 5 a 33 são os primers de seqüenciamento utilizados paracobrir a região sobre o clone de BAC bacc.pk139.d24 que contém o gene HAT4.
SEQ ID N0 34 representa os 3924 bp da seqüência genômica demilho que contém ORF (nucleotídeos 2015-3583 (Parada)) do gene quecodifica o transportador de nitrato com alta afinidade (HAT4) isolado do clonede BAC bacc.pk139.d24.
SEQ ID N0 35 é 1569 bp da seqüência de nucleotídeos de ORFde SEQ ID N0 34.
SEQ ID N0 36 é a seqüência de aminoácidos codificada pelosnucleotídeos 2015 a 3580 de SEQ ID N0 34.
SEQ ID N0 37 é 2014 bp, que se estende a partir dos nucleotídeos1 a 2014 do suposto promotor da seqüência genômica transportadora de nitratocom alta afinidade de milho exibida em SEQ ID N0 34.
SEQ ID N0 38 é 1014 bp, que se estende a partir dos nucleotídeos1001 a 2014 do suposto promotor da seqüência genômica transportadora denitrato com alta afinidade de milho exibida em SEQ ID N0 34.
SEQ ID N0 39 a 42 são os primers frontal e reverso utilizados noExemplo 4.
SEQ ID N0 43 é o primer T3 utilizado no Exemplo 4.
SEQ ID N0 44 é o primer T7 utilizado no Exemplo 4.
SEQ ID N0 45 representa 5812 bp da seqüência genômica demilho que contém ORF (nucleotídeos 2264 a 3450 e 5087 a 5357 (Parada)) dogene que codifica transportador de nitrato com alta afinidade (HAT7).
SEQ ID N0 46 é 2263 bp, que se estende a partir dos nucleotídeos1 a 2263 do suposto promotor da seqüência genômica transportadora de nitratocom alta afinidade de milho exibida em SEQ ID N0 45.
SEQ ID N0 47 é 1263 bp, que se estende a partir dos nucleotídeos1001 a 2263 do suposto promotor da seqüência genômica transportadora denitrato com alta afinidade de milho exibida em SEQ ID N0 45.
SEQ ID N0 48 é 1455 bp da seqüência de codificação, que seestende a partir dos nucleotídeos 2264 a 3450 e 5087 a 5354 de SEQ ID N0 45.
SEQ ID N0 49 é a seqüência de aminoácidos codificada por SEQID N0 48.
SEQ ID N0 50 é motivo de seqüência conservada útil naidentificação de genes pertencentes ao transportador de nitrato com altaafinidade de genes.
SEQ ID N0 51 é motivo de seqüência conservada útil naidentificação de genes pertencentes ao transportador de nitrato com altaafinidade de genes.
SEQ ID N0 52 é motivo de seqüência conservada útil naidentificação de genes pertencentes ao transportador de nitrato com altaafinidade de genes.
SEQ ID N0 53 é 1561 bp da seqüência que contém ORF(nucleotídeos 757 a 1368 (Parada)) que codifica polipeptídeo tipo NAR2 demilho (NAR2.1).
SEQ ID N0 54 é 612 bp da seqüência de codificação, que seestende a partir dos nucleotídeos 758 a 1369 (Parada) de SEQ ID N0 53.
SEQ ID N0 55 é a seqüência de aminoácidos codificada pelosnucleotídeos 758 a 1366 de SEQ ID N0 54.
SEQ ID N0 56 é 756 bp, que se estende a partir dos nucleotídeos1 a 756 do suposto promotor da seqüência exibida em SEQ ID N0 53.
SEQ ID N0 57 é 594 bp de ORF (nucleotídeos 1 a 594 (Parada))que codifica polipeptídeo tipo NAR2 (NAR2.2).
SEQ ID N0 58 é a seqüência de aminoácidos codificada pelosnucleotídeos 1 a 591 de ORF de SEQ ID N0 57.
SEQ ID N0 59 é o primer externo específico NAR2.1 utilizado noExemplo 6.
SEQ ID N0 60 é o primer interno específico NAR2.1 utilizado noExemplo 6.
SEQ ID N0 61 a 64 são os primers de seqüenciamento utilizadospara seqüenciar a região acima no fluxo promotora de NAR2.1.
SEQ ID N0 65 exibe 2917 bp adicionais do suposto promotor deNAR2.1.
SEQ ID N0 66 exibe 4498 bp do gene NAR2.1 completo, incluindointron que se estende a partir dos nucleotídeos 3655 a 3841.SEQ ID N0 67 é 3506 bp, que se estende a partir dos nucleotídeos1 a 3506 do suposto promotor da seqüência genômica de NAR2.1 exibida emSEQ ID N0 66.
SEQ ID N0 68 é 1014 bp, que se estende a partir dos nucleotídeos1001 a 2014 do suposto promotor da seqüência genômica de NAR2.1 exibidaem SEQ ID N0 66.
SEQ ID N0 69 é 1492 bp, que se estende a partir dos nucleotídeos2015 a 3506 do suposto promotor da seqüência genômica de NAR2.1 exibidaem SEQ ID N0 66.
SEQ ID N0 70 é 3621 bp do fragmento genômico isolado noExemplo 14.
SEQ ID N0 71 é 3236 bp do suposto promotor de Nar de B73, quese estende a partir dos nucleotídeos 1 a 3236 de SEQ ID N0 70.
SEQ ID N0 72 é 1000 bp do suposto promotor de Nar de B73, quese estende a partir dos nucleotídeos 1 a 1000 de SEQ ID N0 70.
SEQ ID N0 73 é 2236 bp do suposto promotor de Nar de B73, quese estende a partir dos nucleotídeos 1001 a 3236 de SEQ ID N0 70.
SEQ ID N0 74 é 1237 bp do suposto promotor de Nar de B73, quese estende a partir dos nucleotídeos 2000 a 3236 de SEQ ID N0 70.
SEQ ID N0 75 a 78 são os primers frontal e reverso descritos noExemplo 14.
SEQ ID N0 79 a 84 são os primers de seqüenciamento utilizadospara seqüenciar o promotor de Nar de B73 conforme descrito no Exemplo 14.
SEQ ID N0 85 é a seqüência do vetor pENTR-5' descrita noExemplo 14.
SEQ ID N0 86 é a seqüência do vetor PHP27621 descrita noExemplo 16.
SEQ ID N0 87 é a seqüência do vetor PHP27660 descrita noExemplo 17.
SEQ ID N0 88 é a seqüência do vetor PHP27860 descrita noExemplo 17.
SEQ ID N0 89 é 3324 bp do suposto promotor de Nar de B73, quecompreende os nucleotídeos 1 a 1523 e 1821 a 3324 de SEQ ID N0 70.
SEQ ID N0 90 é 500 bp do suposto promotor de Nar de B73, quese estende a partir dos nucleotídeos 2825 a 3324 de SEQ ID N0 70.
SEQ ID N0 91 representa 2025 bp da seqüência de milho quecontém ORF (nucleotídeos 250 a 1812 (Parada)) do gene que codifica otransportador de nitrato com alta afinidade (HAT5) isolado do clonecfp4n.pk008.p6:fis.
SEQ ID N0 92 é a seqüência de aminoácidos codificada por ORFde SEQ ID N0 91.
SEQ ID N0 93 é a seqüência do vetor PHP27280 descrita noExemplo 20.
SEQ ID N0 94 é a seqüência do vetor PHP27281 descrita noExemplo 20.
SEQ ID N0 95 é a seqüência do vetor PHP27282 descrita noExemplo 20.
SEQ ID N0 96 é a seqüência do vetor PHP27283 descrita noExemplo 20.
A Listagem de Seqüências contém o código de uma letra paracaracteres de seqüência de nucleotídeos e os códigos de três letras paraaminoácidos conforme definido de acordo com os padrões IUPAC-IUBMB descritosem NucleicAcids Research 13: 3021-3030 (1985) e em Biochemical Joumal 219 (n°2): 345-373 (1984), que são incorporados ao presente como referência. Ossímbolos e formato utilizados para dados de seqüência de nucleotídeos e deaminoácidos atendem às regras estabelecidas em 37 C. F. R. § 1.822.Descrição Detalhada da Invenção
O relatório descritivo de cada referência indicada no presente éintegralmente incorporado ao presente como referência.
O termo "NAR" indica genes relativos à assimilação de nitrato.Este tipo de genes e os polipeptídeos de NAR por eles codificados sãocomponente do sistema de absorção de nitrato com alta afinidade em plantas.
O termo "HAT" é utilizado de forma intercambiável comtransportador de nitrato com alta afinidade.
Da forma utilizada no presente, "fragmento de ácido nucléicoisolado" é utilizado de forma intercambiável com "polinucleotídeo isolado" e éum polímero de RNA ou DNA que possui fita simples ou dupla e contémopcionalmente bases de nucleotídeos sintéticas, não naturais ou alteradas.Fragmento de ácido nucléico isolado na forma de polímero de DNA pode sercomposto de um ou mais segmentos de cDNA, DNA genômico ou DNAsintético. Nucleotídeos (normalmente encontrados na sua forma de 5'-monofosfato) são indicados pela sua designação de letra única conformesegue: "A" para adenilato ou desoxiadenilato (para RNA ou DNA,respectivamente), "C" para citidilato ou desoxicitidilato, "G" para guanilato oudesoxiguanilato, "U" para uridilato, "T" para desoxitimidilato, "R" para purinas (Aou G), Ύ" para pirimidinas (C ou Τ), "K" para G ou Τ, Ή" para A ou C ou Τ, "I"para inosina e "N" para qualquer nucleotídeo.
O termo "isolado" designa materiais, tais como moléculas de ácidonucléico e/ou proteínas, que são substancialmente livres ou removidos de outraforma de componentes que normalmente acompanham ou interagem com osmateriais em ambiente de ocorrência natural. Os polinucleotídeos isoladospodem ser purificados a partir de célula hospedeira na qual ocorremnaturalmente. Métodos convencionais de purificação de ácido nucléicoconhecidos dos técnicos no assunto podem ser utilizados para a obtenção depolinucleotídeos isolados. A expressão também engloba polinucleotídeosrecombinantes e polinucleotídeos sintetizados quimicamente.
As expressões "subfragmento que é funcionalmente equivalente"e "subfragmento funcionalmente equivalente" são utilizadas de formaintercambiável no presente. Estas expressões designam uma parte ousubseqüência de fragmento de ácido nucléico isolado em que a capacidade dealteração da expressão genética ou produção de um certo fenótipo é retidacaso a parte ou subseqüência codifique ou não uma enzima ativa ou proteínafuncional (a parte ou subseqüência pode ser, por exemplo, uma parte deregiões de codificação e/ou não codificação e não necessita codificar umaenzima ativa ou proteína funcional). O fragmento ou subfragmento pode serutilizado, por exemplo, no projeto de construções de DNA recombinantes paraproduzir o fenótipo desejado em planta transformada. Construções de DNArecombinantes podem ser projetadas para uso em co-supressão ou semsentido por meio da ligação de um de seus fragmentos ou subfragmentos deácido nucléico, codifique ou não uma enzima ativa ou proteína funcional, naorientação apropriada com relação a uma seqüência promotora vegetal.
As expressões "homologia", "homólogo", "substancialmentesimilar" e "substancialmente correspondente" são utilizadas no presente deforma intercambiável. Elas designam fragmentos de ácidos nucléicos em quemodificações em uma ou mais bases de nucleotídeos não afetam a capacidadedo fragmento de ácido nucléico de mediar a expressão genética ou produzir umcerto fenótipo. Estas expressões também designam modificações dosfragmentos de ácidos nucléicos de acordo com a presente invenção, tais comoexclusão ou inserção de um ou mais nucleotídeos que não alteremsubstancialmente as propriedades funcionais do fragmento de ácido nucléicoresultante com relação ao fragmento não modificado inicial. Compreende-se,portanto, como apreciarão os técnicos no assunto, que a presente invençãoengloba mais que as seqüências de exemplos específicas.
Além disso, os técnicos no assunto reconhecem que seqüênciasde ácido nucléico substancialmente similares englobadas pela presenteinvenção também são definidas pela sua capacidade de hibridização sobcondições moderadamente estringentes (tais como 1 X SSC1 0,1% SDS, 60 0C)com as seqüências exemplificadas no presente, ou a qualquer parte dasseqüências de nucleotídeos relatadas no presente e que são funcionalmenteequivalentes ao gene ou ao promotor de acordo com a presente invenção. Ascondições de estringência podem ser ajustadas para selecionar fragmentosmoderadamente similares, tais como seqüências homólogas de organismoscom relacionamento distante, até fragmentos altamente similares, tais comogenes que duplicam enzimas funcionais de organismos intimamenterelacionados. Lavagens após a hibridização determinam as condições deestringência. Um conjunto de condições preferidas envolve uma série delavagens a partir de 6X SSC, 0,5% SDS à temperatura ambiente por quinzeminutos, repetidas em seguida com 2X SSC, 0,5% SDS a 45°C por trintaminutos, repetidas em seguida por duas vezes com 0,2X SSC, 0,5% SDS a50°C por trinta minutos. Um conjunto de condições estringentes de maiorpreferência envolve o uso de temperaturas mais altas em que as lavagens sãoidênticas às acima, exceto pela temperatura das duas lavagens finais de trintaminutos em 0,2X SSC, 0,5% SDS, que foi aumentada para 60°C. Outroconjunto preferido de condições altamente estringentes envolve o uso de duaslavagens finais em 0,1X SSC, 0,1% SDS a 65°C.
Com relação ao grau de similaridade substancial entre o mRNAalvo (endógeno) e a região de RNA na construção que possui homologia para omRNA alvo, essas seqüências deverão possuir pelo menos 25 nucleotídeos decomprimento, preferencialmente pelo menos cinqüenta nucleotídeos decomprimento, de maior preferência pelo menos cem nucleotídeos decomprimento, novamente de maior preferência pelo menos duzentosnucleotídeos de comprimento e, de preferência superior, pelo menos trezentosnucleotídeos de comprimento; e deverão ser pelo menos 80% idênticas,preferencialmente pelo menos 85% idênticas, de maior preferência pelo menos90% idênticas e, de preferência superior, pelo menos 95% idênticas.
Fragmentos de ácidos nucléicos substancialmente similarespodem ser selecionados por meio da seleção de fragmentos de ácidosnucléicos que representam subfragmentos ou modificações dos fragmentos deácidos nucléicos de acordo com a presente invenção, em que um ou maisnucleotídeos são substituídos, excluídos e/ou inseridos, pela sua capacidadede afetar o nível do polipeptídeo codificado pelo fragmento de ácido nucléiconão modificado em planta ou célula vegetal. Fragmento de ácido nucléicosubstancialmente similar que representa pelo menos trinta nucleotídeoscontíguos, preferencialmente pelo menos quarenta nucleotídeos contíguos, demaior preferência pelo menos sessenta nucleotídeos contíguos derivados dofragmento de ácido nucléico do presente, por exemplo, pode ser construído eintroduzido em planta ou célula vegetal. O nível do polipeptídeo codificado pelofragmento de ácido nucléico não modificado presente em planta ou célulavegetal exposta ao fragmento nucléico substancialmente similar pode sercomparado em seguida com o nível do polipeptídeo em planta ou célula vegetalque não é exposta ao fragmento de ácido nucléico substancialmente similar.
Alinhamentos seqüenciais e cálculos de similaridade percentualpodem ser determinados utilizando uma série de métodos de comparaçãoprojetados para detectar seqüências homólogas que incluem, mas sem Iimitar-se ao programa Megalign da suíte de computação bioinformática LASARGENE(DNASTAR Inc., Madison Wl, Estados Unidos). O alinhamento múltiplo dasseqüências é realizado utilizando o método de alinhamento Clustal V (Higgins eSharp (1989), CABIOS. 5: 151-153) com os parâmetros padrão (PENALIDADEDO INTERVALO = 10, PENALIDADE DO COMPRIMENTO DO INTERVALO =10). Os parâmetros padrão para alinhamentos em pares e cálculo dopercentual de identidade de seqüências de proteínas utilizando o métodoClustal são COMPRIMENTO DE PALAVRA = 1, PENALIDADE DOINTERVALO = 3, VISUALIZAÇÃO DO MELHOR RESULTADO = 5 eESPAÇAMENTO EM DIAGONAIS = 5. Para ácidos nucléicos, essesparâmetros são COMPRIMENTO DE PALAVRA = 1, PENALIDADE DOINTERVALO = 5, VISUALIZAÇAO DO MELHOR RESULTADO = 4 eESPAÇAMENTO EM DIAGONAIS = 4.
"Gene" indica fragmento de ácido nucléico que expressa proteínaespecífica, que inclui seqüências reguladoras anteriores (seqüências nãocodificadoras 5') e posteriores (seqüências não codificadoras 3') à seqüênciacodificadora. "Gene nativo" indica gene encontrado na natureza com suaspróprias seqüências reguladoras. "Construção de DNA recombinante" indicacombinação de fragmentos de ácido nucléico que normalmente não sãoencontrados juntos na natureza. Conseqüentemente, construção de DNArecombinante pode compreender seqüências reguladoras e seqüências decodificação que são derivadas de diferentes fontes, ou seqüências reguladorase seqüências de codificação derivadas da mesma fonte, mas dispostas demaneira diferente da normalmente encontrada na natureza. Gene "exógeno"indica gene normalmente não encontrado no organismo hospedeiro, mas que éintroduzido no organismo hospedeiro por meio de transferência genética. Osgenes exógenos podem compreender genes nativos inseridos em organismonão nativo ou construções de DNA recombinante. "Transgene" é gene que foiintroduzido no genoma por meio de procedimento de transformação.
"Seqüência codificadora" indica seqüência de DNA que codificaseqüência de aminoácidos específica. "Seqüências reguladoras" indicamseqüências de nucleotídeos localizadas acima (seqüências não codificadoras5'), na própria ou abaixo (seqüências não codificadores 3') de seqüênciacodificadora e que influenciam a transcrição, estabilidade ou processamento deRNA ou tradução da seqüência codificadora associada. As seqüênciasreguladoras podem incluir, mas sem limitar-se a promotores, seqüênciaslíderes de tradução, introns e seqüências de reconhecimento de poliadenilação.
"Promotor" designa seqüência de DNA capaz de controlar aexpressão de seqüência codificadora ou RNA funcional. A seqüênciapromotora consiste de elementos próximos e mais distantes no fluxo, com osúltimos elementos freqüentemente denominados amplificadores.Conseqüentemente, "amplificador" é seqüência de DNA que pode estimular aatividade promotora e pode ser elemento inato do promotor ou elementoheterólogo inserido para amplificar o nível ou a especificidade de tecido depromotor. As seqüências promotoras podem também estar localizadas dentrodas partes transcritas de genes e/ou abaixo no fluxo das seqüênciastranscritas. Os promotores podem ser derivados em sua totalidade de genenativo ou ser compostos de diferentes elementos derivados de diferentespromotores encontrados na natureza, ou mesmo compreendem segmentos deDNA sintéticos. Os técnicos no assunto compreendem que diferentespromotores podem dirigir a expressão de fragmento de ácido nucléico isoladoem diferentes tecidos ou tipos de células, em diferentes estágios dedesenvolvimento, ou em resposta a diferentes condições ambientais. Ospromotores que fazem com que fragmento de ácido nucléico isolado sejaexpresso na maior parte dos tipos de células na maior parte das vezes sãocomumente denominados "promotores constitutivos". Novos promotores dediversos tipos úteis em células vegetais estão constantemente sendorevelados; numerosos exemplos podem ser encontrados na compilação deOkamuro e Goldberg (1989), BiochemistryofPIants 15: 1-82.
Reconhece-se adicionalmente que, como na maior parte doscasos, as fronteiras exatas de seqüências reguladoras não foramcompletamente definidas, fragmentos de DNA com alguma variação podemapresentar atividade promotora idêntica. Da forma utilizada no presente,"subfragmento substancialmente similar e funcionalmente equivalente depromotor" indica uma parte ou subseqüência de seqüência promotora que écapaz de controlar a expressão de seqüência de codificação ou RNA funcional.
Exemplos específicos de promotores que podem ser úteis naexpressão dos fragmentos de ácidos nucléicos de acordo com a presenteinvenção incluem, mas sem limitar-se aos promotores descritos no presentepedido (SEQ ID N0 37, 38, 46, 47, 56, 65, 67, 68, 69, 70, 71, 72, 73, 74, 89 ou 90).
"Intron" é seqüência interveniente em gene que não codifica parteda seqüência de proteína. Desta forma, estas seqüências são transcritas emRNA mas são extirpadas em seguida e não são traduzidas. O termo também éutilizado para as seqüências de RNA extirpadas.
Έχοη" é parte da seqüência de gene que é transcrita eencontrada no RNA mensageiro maduro derivado do gene, mas não énecessariamente parte da seqüência que codifica o produto genético final.
A expressão "seqüência de nucleotídeos deduzida" designaseqüência de DNA após a remoção das seqüências intervenientes, com basena homologia para outras seqüências de DNA que codificam a mesmaproteína.
A expressão "seqüência de aminoácidos deduzida" refere-se aseqüência de polipeptídeos derivada de seqüência de DNA após a remoção deseqüências intervenientes, com base na homologia para outras proteínascodificadas por seqüências de DNA que codificam a mesma proteína.
A expressão "seqüência líder de tradução" designa seqüência deDNA localizada entre a seqüência promotora de gene e a seqüênciacodificadora. A seqüência líder de tradução está presente no mRNA totalmenteprocessado após a seqüência inicial de tradução. A seqüência líder detradução pode afetar o processamento do transcrito primário em mRNA, aestabilidade do mRNA ou a eficiência da tradução. Foram descritos exemplosde seqüências líderes de tradução (Turner, R. e Foster1 G. D. (1995), MolecularBiotechnology 3: 225).
A expressão "seqüências não-codificadoras 3"' designaseqüências de DNA em local posterior a seqüência codificadora e incluiseqüências de reconhecimento de poliadenilação e outras seqüênciascodificadoras de sinais reguladores capazes de afetar o processamento demRNA ou a expressão genética. O sinal de poliadenilação é normalmentecaracterizado por afetar a adição de traços de ácido poliadenílico à extremidade 3'do precursor de mRNA. A utilização de diferentes seqüências não-codificadoras 3' éexemplificada por Ingelbrecht et al (1989), Plant Cell 1:671-680.
"Transcrito de RNA" designa o produto resultante da transcriçãocatalisada por polimerase de RNA de seqüência de DNA. Quando o transcritode RNA for cópia complementar perfeita da seqüência de DNA, ele édenominado transcrito primário ou pode ser seqüência de RNA derivada doprocessamento pós-transcricional do transcrito primário, sendo denominadoRNA maduro. "RNA mensageiro" ("mRNA") designa o RNA que não contémintrons e que pode ser traduzido em proteína pela célula. "cDNA" designa DNAque é complementar a modelo de mRNA e sintetizado a partir dele utilizando aenzima transcriptase reversa. O cDNA pode ser de fita única ou convertido emforma de fita dupla utilizando o fragmento Klenow de polimerase I de DNA.RNA "com sentido" designa transcrito de RNA que inclui o mRNA e pode sertraduzido em proteína em célula ou in vitro. "RNA sem sentido" designatranscrito de RNA que é complementar a mRNA ou transcrito primário alvo, notodo ou em parte, e que bloqueia a expressão de fragmento de ácido nucléicoisolado alvo (Patente Norte-Americana n° 5.107.065). A complementaridade deRNA sem sentido pode dar-se com qualquer parte do transcrito genéticoespecífico, ou seja, na seqüência não codificadora 5', seqüência nãocodificadora 3', introns ou na seqüência codificadora. "RNA funcional" designaRNA sem sentido, RNA de ribozima ou outro RNA que pode não ser traduzido,mas que ainda tenha efeito sobre processos celulares. As expressões"complemento" e "complemento reverso" são utilizadas de forma intercambiávelno presente com relação a transcritos de mRNA e destinam-se a definir o RNAsem sentido da mensagem.
A expressão "RNA endógeno" designa qualquer RNA que sejacodificado por qualquer seqüência de ácido nucléico presente no genoma dohospedeiro, seja de ocorrência natural ou não de ocorrência natural, ou seja,introduzida por meios recombinantes, mutagênese etc.
A expressão "não de ocorrência natural" indica artificial, nãoconsistente com o que normalmente é encontrado na natureza.
A expressão "ligado operativamente" designa a associação deseqüências de ácido nucléico sobre fragmento de ácido nucléico isolado, de talforma que a função de um seja regulada pelo outro. Promotor é ligadooperativamente a seqüência codificadora, por exemplo, quando for capaz deregular a expressão daquela seqüência codificadora (ou seja, que a seqüênciacodificadora esteja sob o controle transcricional do promotor). As seqüênciascodificadoras podem ser ligadas operativamente a seqüências reguladoras emorientação com sentido ou sem sentido. Em outro exemplo, as regiões de RNAcomplementar de acordo com a presente invenção podem ser ligadasoperativamente, seja direta ou indiretamente, 5' ao mRNA alvo, ou 3' ao mRNAalvo, ou no mRNA alvo, ou primeira região complementar é 5' e seucomplemento é 3' para o mRNA alvo.
O termo "expressão", da forma utilizada no presente, designa ageração de produto terminal funcional. A expressão de fragmento de ácidonucléico isolado envolve a transcrição do fragmento de ácido nucléico isolado etradução do mRNA em precursor ou proteína madura. "Inibição sem sentido"designa a produção de transcritos de RNA sem sentido capazes de suprimir aexpressão da proteína alvo. "Co-supressão" designa a produção de transcritos de RNA com sentido capazes de suprimir a expressão de genes endógenos ouexógenos idênticos ou substancialmente similares (Patente Norte-Americana n°5.231.020).
Proteína "madura" designa polipeptídeo processado após atradução, ou seja, aquele do qual quaisquer pré ou pró-peptídeos presentes noproduto de tradução original tenham sido removidos. Proteína "precursora"designa o produto original de tradução de mRNA; ou seja, com pré e pró-peptídeos ainda presentes. Os pré e pró-peptídeos podem ser, mas não selimitam a sinais de localização intracelular.
"Transformação estável" designa a transferência de fragmento deácido nucléico para o genoma de organismo hospedeiro, incluindo os genomasnucleares e organelares, resultando em herança geneticamente estável. Poroutro lado, "transformação transitória" indica a transferência de fragmento deácido nucléico para o núcleo, ou organela que contém DNA, de organismohospedeiro, resultando em expressão genética sem integração ou herançaestável. Os organismos hospedeiros que contêm os fragmentos de ácidosnucléicos transformados são denominados organismos "transgênicos". Ométodo preferido de transformação celular de arroz, milho e outrosmonocotiledôneos é o uso de tecnologia de transformação acelerada porpartículas ou por "disparador de genes" (Klein et al (1987), Nature (London)327: 70-73 (1987); Patente Norte-Americana n° 4.945.050) ou método mediadopor agrobactérias, utilizando plasmídeo de Ti apropriado que contém otransgene (Ishida, Y. et al, 1996, Nature Biotech., 14: 745-750). Os termos"transformação" e "transformado", da forma utilizada no presente, designamtransformação estável e transformação transitória.
As técnicas padrão de DNA recombinante e clonagem molecularutilizadas no presente são bem conhecidas na técnica e são descritas de formamais completa em Sambrook, J., Fritsch1 E. F. e Maniatis, T., MolecularCloning: A Laboratory Manual; Cold Spring Harbor Laboratory Press: ColdSpring Harbor, 1989 (a seguir, "Sambrook").
O termo "recombinante" designa combinação artificial de doissegmentos de seqüência de outra forma separados, por meio, por exemplo, desíntese química ou da manipulação de segmentos isolados de ácidos nucléicospor meio de técnicas de engenharia genética.
"PCR" ou "Reação em Cadeia de Polimerase" é técnica de síntesede grandes quantidades de segmentos de DNA específicos e consiste de umasérie de ciclos repetitivos (Perkin Elmer Cetus Instruments, Norwalk CT).Tipicamente, o DNA de fita dupla é desnaturado por calor, os dois primerscomplementares para as fronteiras 3' do segmento desejado são combinadossob baixa temperatura e estendidos em seguida sob temperatura intermediária.Um conjunto destas três etapas consecutivas é denominado ciclo.
Reação em cadeia de polimerase ("PCR") é técnica poderosautilizada para amplificar milhões de dobras de DNA, por meio da reproduçãorepetida de modelo em curto período de tempo (Mullis et al, Cold Spring HarborSymp. Quant. Bioi 51: 263-273 (1986); Erlich et al, Pedido de Patente Europeun° 50.424; Pedido de Patente Europeu n° 84.796; Pedido de Patente Europeun° 258.017; Pedido de Patente Europeu n° 237.362; Mullis, Pedido de PatenteEuropeu n° 201.184; Mullis et al, Patente Norte-Americana n° 4.683.202; Erlich,Patente Norte-Americana n° 4.582.788; e Saiki et al, Patente Norte-Americanan° 4.683.194). O processo utiliza conjuntos de oligonucleotídeos sintetizados invitro específicos para que sirvam de primer para a síntese de DNA. O projetodos primers depende das seqüências de DNA cuja análise é desejada. Atécnica é conduzida ao longo de vários ciclos (normalmente 20 a 50) de fusãodo modelo sob temperatura alta, o que permite que os primers se combinem aseqüências complementares no modelo e, em seguida, reproduzindo o modelocom polimerase de DNA.
Os produtos de reações de PCR são analisados por meio deseparação em géis de agarose seguida por manchas com brometo de etídio evisualização com transiluminação UV. Alternativamente, dNTPs radioativospodem ser adicionados ao PCR, a fim de incorporar marca aos produtos. Nestecaso, os produtos de PCR são visualizados por meio de exposição do gel afilme de raio X. A vantagem adicional de radiomarcar produtos de PCR é queos níveis de produtos de amplificação individuais podem ser quantificados.
As expressões "construção recombinante", "construção deexpressão" e "construção de expressão recombinante" são utilizadas de formaintercambiável no presente. Estas expressões designam unidade funcional dematerial genético que pode ser inserida no genoma de célula utilizandometodologia padrão bem conhecida dos técnicos no assunto. Esta construçãopode ser por si própria ou pode ser utilizada em conjunto com vetor. Caso sejautilizado vetor, a seleção do vetor depende do método a ser utilizado paratransformar as plantas hospedeiras, como é bem conhecido dos técnicos noassunto. Pode ser utilizado, por exemplo, vetor de plasmídeo. Os técnicos noassunto conhecem bem os elementos genéticos que necessitam estarpresentes sobre o vetor a fim de transformar, selecionar e propagar comsucesso células hospedeiras que compreendem qualquer dos fragmentos deácidos nucléicos isolados de acordo com a presente invenção. Os técnicos noassunto também reconhecerão que eventos diferentes e independentes detransformação resultarão em níveis e padrões diferentes de expressão (Joneset al (1985), EMBO J. 4: 2411-2418; De Almeida et al (1989), Moi Gen.Genetics 218: 78-86) e, portanto, que diversos eventos devem serselecionados a fim de obter-se linhagens que exibam o nível e padrão desejadode expressão. Esta seleção pode ser atingida por meio de análise Southern deDNA1 análise Northern de expressão de mRNA, análise Western de expressãode proteínas ou análise fenotípica.
Construções de co-supressão em plantas foram anteriormenteprojetadas concentrando-se na sobreexpressão de seqüência de ácido nucléicoque possui homologia para mRNA endógeno, na orientação com sentido, o queresulta na redução de todo o RNA que possui homologia para a seqüênciasobreexpressa (vide Vaucheret et al (1998), Plant J. 16: 651-659; e Gura(2000), Nature 404: 804-808). A eficiência geral deste fenômeno é baixa e aextensão da redução de RNA é amplamente variável. Trabalhos recentesdescreveram o uso de estruturas de "grampo de cabelo" que incorporam, notodo ou em parte, seqüência de codificação de mRNA em orientaçãocomplementar que resulta em potencial estrutura de "circuito de haste" para oRNA expresso (Patente Internacional PCT n0 WO 99/53050, publicada em 21de outubro de 1999). Isso aumenta a freqüência de co-supressão nas plantastransgênicas recuperadas. Outra variação descreve o uso de seqüências viraisde plantas para dirigir a supressão ou "silenciamento" de seqüências decodificação de mRNA próximas (Patente PCT n0 WO 98/36083, publicada em20 de agosto de 1998). Ambos estes fenômenos de co-supressão não foramelucidados mecanicamente, embora recentes evidências genéticas tenhamcomeçado a desemaranhar esta complexa situação (Elmayan et al (1998),Plant Ce//10: 1747-1757).
Em um aspecto, a presente invenção inclui polinucleotídeo isoladoque compreende seqüência de nucleotídeos que codifica polipeptídeonecessário para o transporte de nitrato com alta afinidade, em que opolipeptídeo contém seqüência de aminoácidos com pelo menos 80%, 85%,90%, 95% ou 99% de identidade de seqüências, com base no método dealinhamento Clustal V, em comparação com um dentre SEQ ID N0 36 ou 49. Opolipeptídeo pode também compreender SEQ ID N0 36 ou 49 e a seqüência denucleotídeos pode compreender SEQ ID N0 35 ou 48.
Também é incluído na presente invenção complemento dequalquer das seqüências de nucleotídeos acima, em que o complemento e aseqüência de nucleotídeos consistem da mesma quantidade de nucleotídeos esão 100% complementares.
Em outro aspecto, a presente invenção inclui polinucleotídeosisolados conforme descrito no presente (ou complementos), em que aseqüência de nucleotídeos compreende pelo menos dois, três, quatro ou cincomotivos selecionados a partir do grupo que consiste de SEQ ID N0 50, 51 e 52,em que o mencionado motivo é subseqüência substancialmente conservada.
"Motivos" ou "subseqüências" designam regiões curtas deseqüências conservadas de ácidos nucléicos ou aminoácidos que compreendem parte de seqüência mais longa. Espera-se, por exemplo, queessas subseqüências conservadas (tais como SEQ ID N0 50, 51 e 52) seriamimportantes para funcionamento e possam ser utilizadas para identificar novoshomólogos de homólogos de transportador de nitrato com alta afinidade emplantas. Espera-se que alguns ou todos os elementos possam ser encontradosem homólogo de transportador de nitrato com alta afinidade. Também seespera que pelo menos um ou dois dos aminoácidos conservados em qualquerdado motivo possam diferir de homólogo de transportador de nitrato com altaafinidade verdadeiro.
Em outro aspecto, polinucleotídeo de acordo com a presenteinvenção ou seu subfragmento funcionalmente equivalente é útil em inibiçãosem sentido ou co-supressão da expressão de seqüências de ácido nucléicoque codificam proteínas necessárias para transporte de nitrato com altaafinidade, de maior preferência em inibição sem sentido ou co-supressão detransportador de nitrato com alta afinidade endógeno ou gene transportador denitrato com alta afinidade heterólogo.
Protocolos para inibição sem sentido ou co-supressão são bemconhecidos dos técnicos no assunto e são descritos acima.
Em ainda outro aspecto, a presente invenção inclui fragmento deácido nucléico isolado que compreende (a) promotor que consisteessencialmente de SEQ ID N0 37, 38, 46, 47, 56, 65, 67, 68, 69, 70, 71, 72, 73,74, 89 ou 90 ou (b) subfragmento substancialmente similar e funcionalmenteequivalente do mencionado promotor.
Também são de interesse construções de DNA recombinantesque compreendem qualquer dos fragmentos de ácidos nucléicos isoladosidentificados acima ou polinucleotídeos isolados, seus complementos ou partesdesses fragmentos ou complementos, ligados operativamente a pelo menosuma seqüência reguladora.
Plantas, tecido de plantas ou células de plantas quecompreendem essas construções de DNA recombinantes no seu genomatambém se encontram dentro do escopo da presente invenção. Métodos detransformação são bem conhecidos dos técnicos no assunto e são descritosacima. Qualquer planta, dicotiledônea ou monocotiledônea, pode sertransformada com essas construções de DNA recombinante.
Exemplos de monocotiledôneas incluem, mas sem limitar-se amilho, trigo, arroz, sorgo, milho branco, cevada, palma, lírio, Alstroemeria,centeio e aveia. Exemplos de dicotiledôneas incluem, mas sem limitar-se asoja, colza, girassol, canola, uva, guaiule, aquilégia, algodão, fumo, ervilha,feijão, linho, açafrão e alfafa.
Tecido vegetal inclui tecidos ou plantas diferenciados e nãodiferenciados, que incluem, mas sem limitar-se a raízes, hastes, brotos, folhas,pólen, sementes, tecidos tumorosos e várias formas de células e cultivo taiscomo células isoladas, protoplasma, embriões e tecido de calo. O tecidovegetal pode estar em planta ou em cultivo de órgãos, tecidos ou células.
Em outro aspecto, a presente invenção inclui método de alteraçãode transporte de nitrato das plantas, que compreende:
a. transformação de planta com construção de DNArecombinante que compreende:
i. construção de DNA recombinante que compreendepolinucleotídeo isolado que codifica polipeptídeo de HAT1 ligadooperativamente a pelo menos uma seqüência reguladora; e
ii. pelo menos uma construção de DNA recombinanteadicional que compreende polinucleotídeo isolado que codifica polipeptídeo deNAR, ligado operativamente a pelo menos uma seqüência reguladora; e
b. cultivo da planta transformada de a sob condiçõesapropriadas para a expressão da construção de DNA recombinante; e seleçãodas plantas transformadas que possuem transporte de nitrato alterado.
Conforme utilizado no presente, a alteração do transporte denitrato das plantas pode resultar em aumento ou redução das alterações.
A regeneração, desenvolvimento e cultivo de plantas a partir detransformadores de protoplastas de plantas isoladas ou de vários explantestransformados é bem conhecida na técnica (Weissbach e Weissbach, Methodsfor Plant Molecular Biology (Eds.), Academic Press, Inc., San Diego CA(1988)). Este processo de regeneração e crescimento inclui tipicamente asetapas de seleção de células transformadas, cultivo das célulasindividualizadas ao longo dos estágios habituais de desenvolvimentoembriônico ao longo do estágio de plantícula enraizada. Os embriões esementes transgênicas são regenerados de forma similar. Os brotosenraizados transgênicos resultantes são plantados em seguida em meio decultivo vegetal apropriado tal como solo.O desenvolvimento ou regeneração de plantas que contêm ofragmento de ácido nucléico isolado exógeno externo que codifica proteína deinteresse é bem conhecido na técnica. Preferencialmente, as plantasregeneradas são autopolinizadas para fornecer plantas transgênicashomozigóticas. Caso contrário, o pólen obtido das plantas regeneradas écruzado para plantas cultivadas com sementes de linhagens agronomicamenteimportantes. Por outro lado, pólen de plantas dessas linhagens importantes éutilizado para polinizar plantas regeneradas. Planta transgênica de acordo coma presente invenção que contém polipeptídeo desejado é cultivada utilizandométodos bem conhecidos dos técnicos no assunto.
Existe uma série de métodos de regeneração de plantas a partirde tecido vegetal.
O método específico de regeneração dependerá do tecido vegetalinicial e da espécie vegetal específica a ser regenerada.
Métodos de transformação de dicotiledôneas, principalmente pormeio do uso de Agrobacterium tumefaciens, e obtenção de plantastransgênicas foram publicados para algodão (Patente Norte-Americana n°5.004.863, Patente Norte-Americana n° 5.159.135, Patente Norte-Americana n°5.518.908); soja (Patente Norte-Americana n° 5.569.834, Patente Norte-Americana n° 5.416.011, McCabe et al, Bio/Technology 6: 923 (1988), Christouet al, Plant Physiol. 87: 671-674 (1988)); Brassica (Patente Norte-Americana n°5.463.174), amendoim (Cheng et al, Plant Cell Rep. 15: 653-657 (1996);McKentIy et al, Plant Cell Rep. 14: 699-703 (1995)); mamão e ervilha (Grant etal, Plant Cell Rep. 15: 254-258 (1995)).
A transformação de monocotiledôneas utilizando eletroporação,bombardeamento de partículas e Agrobacterium também foi relatada.Transformação e regeneração vegetal foram atingidas em aspargos (Bytebieret al, Proc. Natl. Acad. Sei. (U. S. A.) 84: 5354 (1987)); cevada (Wan e Lemaux,Plant Physioi 104: 37 (1994)); Zea mays (Rhodes et al, Science 240: 204(1988), Gordon-Kamm et al, Plant Cell 2: 603-618 (1990), Fromm et al,Bio/Technology 8: 833 (1990), Koziel et al, Bio/Technology 11: 194 (1993),Armstrong et al, Crop Science 35: 550-557 (1995)); aveia (Somers et al,Bio/Technology 10: 15-89 (1992)); grama de orquídea (Horn et al, Plant CellRep. 7: 469 (1988)), arroz (Toriyama et al, Theor. Appi Genet. 205: 34 (1986);Part et al, Plant Mol. Bioi 32: 1135-1148 (1996); Abedinia et al, Aust. J. PlantPhysiol. 24: 133-141 (1997); Zhang e Wu, Theor. Appl. Genet. 76: 835 (1988);Zhang et al, Plant Cell Rep. 7: 379 (1988); Battraw e Halll Plant Sei. 86: 191-202 (1992); Christou et al, Bio/Technology 9: 957 (1991)); centeio (De La Penaet al, Nature 325: 274 (1987)); cana de açúcar (Bower e Birch, Plant J. 2: 409(1992); festuca alta (Wang et al, Bio/Technology 10: 691 (1992)) e trigo (Vasilet al, Bio/Technology 10: 667 (1992); Patente Norte-Americana n° 5.631.152).
Testes de expressão genética com base na expressão transitóriade construções de ácido nucléico clonado foram desenvolvidos por meio daintrodução das moléculas de ácido nucléico em células vegetais por meio detratamento com polietileno glicol, eletroporação ou bombardeamento departículas (Marcotte et al, Nature 335: 454-457 (1988), Marcotte et al, Plant Cell1: 523-532 (1989); McCarty et al, Cell 66: 895-905 (1991), Hattori et al, GenesDev. 6: 609-618 (1992); Goff et al, EMBO J. 9: 2517-2522 (1990)).
Sistemas de expressão transitória podem ser utilizados paradissecar funcionalmente construções de fragmentos de ácidos nucléicosisolados (vide, de forma geral, Maliga et al, Methods in Plant Molecular Biology,Cold Spring Harbor Press (1995)). Compreende-se que qualquer das moléculasde ácido nucléico de acordo com a presente invenção pode ser introduzida emcélulas vegetais de maneira transitória ou permanente em combinação comoutros elementos genéticos tais como vetores, promotores, amplificadores etc.
Além dos procedimentos discutidos acima, os praticantes sãofamiliares com os materiais de recursos padrão que descrevem condiçõesespecíficas e procedimentos de construção, manipulação e isolamento demacromoléculas (tais como moléculas de DNA1 plasmídeos etc.), geração deorganismos recombinantes e seleção e isolamento de clones (vide, porexemplo, Sambrook et al, Molecular Cloning: A Laboratory Manual, Cold SpringHarbor Press (1989); Maliga et al, Methods in Plant Molecular Biology, ColdSpring Harbor Press (1995); Birren et al, GenomeAnaIysis: Detecting Genes, 1,Cold Spring Harbor, Nova Iorque (1998); Birren et al, Genome Analysis:Analyzing DNA, 2, Cold Spring Harbor, Nova Iorque (1998); Plant MolecularBiology: A Laboratory Manual, eds. Clark, Springer, Nova Iorque (1997)).
Em ainda outro aspecto, a presente invenção inclui método deisolamento de fragmentos de ácidos nucléicos que codificam polipeptídeosassociados à alteração de transporte de nitrato das plantas, que compreende:
(a) comparação de SEQ ID N0 36 ou 49 com outras seqüências de polipeptídeos associadas à alteração de transporte de nitrato de
plantas;
(b) identificação de seqüências conservadas de quatro ou mais
aminoácidos obtidos na etapa (a);
(c) elaboração de oligômero(s) ou sonda(s) de nucleotídeosespecíficos de regiões com base nas seqüências conservadas identificadas na
etapa (b); e
(d) uso do(s) oligômero(s) ou sonda(s) de nucleotídeos daetapa (c) para isolar seqüências associadas à alteração do transporte de nitratodas plantas por meio de protocolos dependentes de seqüências.
Exemplos de elementos de seqüências conservados que seriamúteis na identificação de outras seqüências vegetais associadas à alteração dotransporte de nitrato de plantas podem ser encontrados no grupo quecompreende, mas sem limitar-se aos nucleotídeos que codificam ospolipeptídeos de SEQ ID N0 50, 51 e 52.
Em outro aspecto, a presente invenção também inclui método demapeamento de variações genéticas relativas à alteração de transporte denitrato de plantas, que compreende:
(a) cruzamento de duas variedades de plantas; e
(b) avaliação de variações genéticas com relação a:
(i) seqüência de ácidos nucléicos selecionada a partirdo grupo que consiste de SEQ ID N0 35 e 48; ou
(ii) seqüência de ácidos nucléicos que codificapolipeptídeo selecionado a partir do grupo que consiste de SEQ ID N0 36 e 49em plantas progenitoras resultantes do cruzamento da etapa (a) em que aavaliação é realizada utilizando método selecionado a partir do grupo queconsiste de: análise RFLP, análise SNP e análise com base em PCR.
Em outra realização, a presente invenção inclui método desemeadura molecular para obter transporte de nitrato das plantas alterado:
(a) cruzamento de duas variedades de plantas; e
(b) avaliação de variações genéticas com relação a:
(i) seqüência de ácidos nucléicos selecionada a partirdo grupo que consiste de SEQ ID N0 35 e 48; ou
(ii) seqüência de ácidos nucléicos que codificapolipeptídeo selecionado a partir do grupo que consiste de SEQ ID N0 36 e 49;
em plantas progenitoras resultantes do cruzamento da etapa (a)em que a avaliação é realizada utilizando método selecionado a partir do grupoque consiste de: análise RFLP, análise SNP e análise com base em PCR.
As expressões "variação genética de mapeamento" ou "variabilidadegenética de mapeamento" são utilizadas de forma intercambiável e definem oprocesso de identificação de alterações de seqüências de DNA1 seja de causasnaturais ou induzidas, em região genética que diferencia entre diferenteslinhagens vegetais, cultivos, variedades, famílias ou espécies. A variabilidadegenética em local específico (gene) devido até mesmo a mudanças de basemenores pode alterar o padrão de fragmentos de digestão de enzimas de restriçãoque podem ser geradas. Alterações patogênicas do genótipo podem dever-se aexclusões ou inserções no gene sendo analisado ou mesmo substituições denucleotídeos isolados que podem criar ou excluir local de reconhecimento deenzimas de restrição. Análise RFLP (polimorfismos de comprimento de fragmentode restrição) utiliza isso e emprega Southem Blot com uma sonda correspondenteao fragmento de ácido nucléico isolado de interesse.
Desta forma, caso polimorfismo (ou seja, variação de ocorrêncianatural em gene ou segmento de DNA; além disso, a existência de váriasformas de gene (alelos) na mesma espécie) crie ou destrua local de divisão deendonuclease de restrição, ou caso resulte na perda ou inserção de DNA (talcomo polimorfismo de repetição conjunta de nucleotídeos variáveis (VNTR), elealterará o tamanho ou o perfil dos fragmentos de DNA que são gerados pormeio de digestão com aquela endonuclease de restrição. Desta forma,indivíduos que possuam seqüência variante podem ser diferenciados dos quepossuem a seqüência original por meio de análise de fragmentos de restrição.
Polimorfismos que podem ser identificados desta maneira são denominadosRFLPs. RFLPs vêm sendo amplamente utilizados em análises genéticasvegetais e humanas (Glassberg, Pedido de Patente Britânico n° 2.135.774;Skolnick et al, Cytogen, Cell Genet. 32: 58-67 (1982); Botstein et al, Ann. J.Hum. Genet. 32: 314-331 (1980); Fischer et al (Pedido PCT n0 WO 90/13668,Uhlen, Pedido PCT n0 WO 90/11369).
Atributo central de "polimorfismos de nucleotídeos isolados" ou"SNPs" é que o local do polimorfismo encontra-se em nucleotídeo isolado. OsSNPs possuem certas vantagens relatadas sobre RFLPs ou VNTRs. Emprimeiro lugar, os SNPs são mais estáveis que outras classes depolimorfismos. A sua velocidade de mutação espontânea é de cerca de 10"9(Kornberg1 DNA Replication, W. H. Freeman & Co., San Francisco, 1980),cerca de mil vezes menos freqüente que VNTRs (Patente Norte-Americana n°5.679.524). Em segundo lugar, SNPs ocorrem em freqüência maior e commaior uniformidade que RFLPs e VNTRs. Como SNPs resultam de variação deseqüências, seqüenciamento de moléculas de cDNA ou genômicas aleatóriaspode identificar novos polimorfismos. SNPs podem também resultar deexclusões, mutações pontuais e inserções. Qualquer alteração de base isolada,seja qual for a causa, pode ser SNP. A maior freqüência de SNPs significa que eles podem ser identificados mais facilmente que as outras classes depolimorfismos.
SNPs podem ser caracterizados utilizando qualquer dentre umasérie de métodos. Esses métodos incluem o seqüenciamento direto ou indiretodo local, o uso de enzimas de restrição em que os alelos correspondentes dolocal criam ou destroem local de restrição, o uso de sondas de hibridizaçãoespecíficas de alelos, o uso de anticorpos que são específicos para asproteínas codificadas pelos diferentes alelos do polimorfismos ou por outrainterpretação bioquímica. SNPs podem ser seqüenciados por meio de umasérie de métodos. Dois métodos básicos podem ser utilizados paraseqüenciamento de DNA, o método de término de cadeias de Sanger et al,Proc. Nati Acad. Sei. (U. S. A.) 74: 5463-5467 (1977) e o método dedegradação química de Maxam e Gilbert, Proc. Natl. Acad. Sei. (U. S. A.) 74:560-564 (1977).
Além disso, mutações de pontos isolados podem ser detectadaspor meio de métodos de PCR modificados tais como reação em cadeia deligase ("LCR") e análise de polimorfismos de conformação de fita única-PCR("PCR-SSCP"). O método de PCR pode também ser utilizado para identificar onível de expressão de genes em amostras extremamente pequenas dematerial, tais como tecidos ou células de corpo. O método é denominadotranscrição reversa-PCR ("RT-PCR").
A expressão "cultivo molecular" define o processo derastreamento de marcadores moleculares durante o processo de cultivo. Écomum que os marcadores moleculares sejam ligados a característicasfenotípicas que são desejáveis. Seguindo-se a segregação do marcadormolecular ou característica genética, em vez de avaliar fenótipo, o processo decultivo pode ser acelerado por meio de cultivo de menos plantas e eliminaçãodo teste ou inspeção visual em busca de variação fenotípica. Os marcadoresmoleculares úteis neste processo incluem, mas sem limitar-se a qualquermarcador útil na identificação de variações genéticas mapeáveis mencionadasanteriormente, bem como quaisquer genes ligados intimamente que exibemsintenia entre as espécies vegetais. O termo "sintenia" designa a conservaçãode ordem/colocação genética sobre cromossomos entre diferentes organismos.Isso significa que dois ou mais locais genéticos, que podem ou não ser ligadosintimamente, são encontrados sobre o mesmo cromossomo entre espéciesdiferentes. Outra expressão para sintenia é "colinearidade de genoma".
Os fragmentos de ácidos nucléicos de acordo com a presenteinvenção podem ser utilizados para criar plantas transgênicas nas quais ospolipeptídeos descritos estão presentes em níveis mais altos ou mais baixosque os normais ou em tipos de células ou etapas de desenvolvimento em quenormalmente não são encontradas. Isso teria o efeito de alterar o nível detransporte de nitrogênio e acúmulo nessas células. Deficiência de nitrogênioem plantas resulta em crescimento retardado e, muitas vezes, em hastesdelgadas e freqüentemente lenhosas. Em muitas plantas, o primeiro sinal dedeficiência de nitrogênio é clorose (amarelamento das folhas).
A sobreexpressão das proteínas de acordo com a presenteinvenção pode ser obtida elaborando-se em primeiro lugar construção de DNArecombinante na qual a região de codificação é ligada operativamente apromotor capaz de dirigir a expressão de gene nos tecidos desejados na etapade desenvolvimento desejada. Por motivos de conveniência, a construção deDNA recombinante pode compreender seqüências promotoras e seqüênciaslíderes de tradução derivadas dos mesmos genes. Seqüências nãocodificadoras 3' que codificam sinais de término de transcrição podem tambémser fornecidas. A construção de DNA recombinante do presente pode tambémcompreender um ou mais introns, a fim de facilitar a expressão genética.
Podem ser elaborados vetores de plasmídeos que compreendem aconstrução de DNA recombinante do presente. A seleção de vetor de plasmídeodepende do método que será utilizado para transformar plantas hospedeiras. Ostécnicos no assunto conhecem bem os elementos genéticos que devem estarpresentes sobre o vetor de plasmídeo para transformar, selecionar e propagarcom sucesso células hospedeiras que contêm a construção de DNArecombinante. Os técnicos no assunto também reconhecerão que diferenteseventos de transformação independentes resultarão em níveis e padrões deexpressão diferentes (Jones et al (1985), EMBO J. 4: 2411-2418; de Almeida et al(1989), Moi Gen. Genetics 218: 78-86) e, portanto, que diversos eventos devemser selecionados a fim de obter linhagens que exibam o padrão e nível deexpressão desejado. Esta seleção pode ser realizada por meio de análiseSouthern de DNA, análise Northern da expressão de mRNA, análise Western deexpressão de proteínas ou análise fenotípica.
Para algumas aplicações, pode ser útil dirigir os polipeptídeos dopresente para diferentes compartimentos celulares, ou facilitar a sua secreçãoda célula. Idealiza-se, portanto, que a construção de DNA recombinantedescrita acima pode ser adicionalmente suplementada por meio da alteraçãoda seqüência de codificação para codificar os polipeptídeos do presente comseqüências de direcionamento intracelular apropriadas, tais como seqüênciasde trânsito (Keegstra (1989), Cell 56: 247-253), seqüências de sinal ouseqüências que codificam a localizam do retículo endoplasmático (Chrispeels(1991), Ann. Rev. Plant Phys. Plant Mol. Bioi 42: 21-53) ou sinais delocalização nuclear (Raikhel (1992), Plant Phys. 100: 1627-1632) adicionadose/ou com seqüências de direcionamento que já são removidas no presente.Embora as referências mencionadas forneçam exemplos de cada um destes, alista não é exaustiva e mais sinais de direcionamento úteis podem serrevelados no futuro.
Pode também ser desejável reduzir ou eliminar a expressão degenes que codificam os polipeptídeos do presente em plantas para algumasaplicações. A fim de conseguir isso, construção de DNA recombinanteprojetada para co-supressão do polipeptídeo do presente pode ser elaboradapor meio de ligação de gene ou fragmento genético que codifica aquelepeptídeo para seqüências promotoras de plantas. Alternativamente, construçãode DNA recombinante projetada para expressar RNA sem sentido para ofragmento de ácido nucléico d o presente, no todo ou em parte, pode serelaborada por meio de ligação do gene ou fragmento de gene em orientaçãoreversa a seqüências promotoras de plantas. As construções de DNArecombinante de co-supressão ou sem sentido poderão ser introduzidas emplantas por meio de transformação, em que a expressão dos genes endógenoscorrespondentes é reduzida ou eliminada.
Soluções genéticas moleculares para a geração de plantas comexpressão genética alterada possuem vantagem decisiva sobre abordagens decultivo de plantas mais tradicionais. Alterações dos fenótipos das plantaspodem ser produzidas por meio da inibição específica da expressão de um oumais genes por meio de inibição sem sentido ou co-supressão (Patentes Norte-Americanas n° 5.190.931, 5.107.065 e 5.283.323). Construção sem sentido oude co-supressão agiria como regulador negativo dominante da atividadegenética. Embora mutações convencionais possam gerar regulagem negativada atividade genética, estes efeitos são mais provavelmente recessivos. Aregulagem genética dominante disponível com abordagem transgênica podeser vantajosa do ponto de vista de cultivo. Além disso, a capacidade derestrição da expressão de fenótipo específico aos tecidos reprodutores daplanta utilizando promotores específicos de tecidos pode conferir vantagensagronômicas com relação às mutações convencionais, o que pode ter efeito emtodos os tecidos nos quais gene mutante normalmente é expresso.
Os técnicos no assunto saberão que considerações especiais sãoassociadas ao uso de tecnologias de co-supressão ou sem sentido, a fim dereduzir a expressão de genes específicos. O nível adequado de expressão degenes com ou sem sentido, por exemplo, pode exigir o uso de diferentesconstruções de DNA recombinante utilizando elementos reguladores diferentesconhecidos dos técnicos no assunto. Após a obtenção de plantas transgênicaspor meio de um dos métodos descritos acima, será necessário selecionartransgênicos individuais em busca dos que exibam mais eficientemente ofenótipo desejado. Conseqüentemente, os técnicos no assunto desenvolverãométodos de seleção de grandes quantidades de transformadores. A naturezadestas seleções será geralmente selecionada em bases práticas e não é parteinerente da presente invenção. Pode-se selecionar, por exemplo, buscandoalterações da expressão genética utilizando anticorpos específicos para aproteína codificada pelo gene sendo suprimido, ou pode-se estabelecer testesque meçam especificamente a atividade enzimática. Método preferido seráaquele que permite que grandes quantidades de amostras sejam processadasrapidamente, pois esperar-se-á que grande quantidade de transformadoresseja negativa para o fenótipo desejado.
Os polipeptídeos do presente (ou suas partes) podem serproduzidos em células hospedeiras heterólogas, particularmente nas células dehospedeiros microbianos, e podem ser utilizados para preparar anticorpos paraessas proteínas por meio de métodos bem conhecidos dos técnicos noassunto. Os anticorpos são úteis para detectar os polipeptídeos de acordo coma presente invenção in situ em células ou in vitro em extratos de células.Células hospedeiras heterólogas preferidas para a produção dos polipeptídeosdo presente são hospedeiros microbianos. Sistemas de expressão microbianose vetores de expressão que contêm seqüências reguladoras que dirigemexpressão de alto nível de proteínas exógenas são bem conhecidos dostécnicos no assunto. Qualquer destes poderá ser utilizado para elaborar construção de DNA recombinante para a produção dos polipeptídeos dopresente. Esta construção de DNA recombinante poderá ser introduzida emseguida em microorganismos apropriados por meio de transformação parafornecer expressão de alto nível do transportador de amônio codificado. Éfornecido exemplo de vetor para expressão de alto nível dos polipeptídeos do presente em hospedeiro bacteriano (Exemplo 7).
Além disso, os polipeptídeos do presente podem ser utilizadoscomo alvos para possibilitar o projeto e/ou identificação de inibidores dessasenzimas que podem ser úteis como herbicidas. Isso é desejável porque ospolipeptídeos descritos no presente catalisam várias etapas da absorção de nitrogênio. Conseqüentemente, a inibição da atividade de uma ou mais dasenzimas descritas no presente poderá gerar a inibição do crescimento daplanta. Desta forma, os polipeptídeos do presente poderão ser apropriadospara a revelação e projeto de novos herbicidas.
Os fragmentos de ácidos nucléicos de acordo com a presenteinvenção, no todo ou em parte substancial, podem também ser utilizados comosondas para mapeamento físico e genético dos genes de que são parte e comomarcadores para características ligadas a esses genes. Estas informaçõespodem ser úteis no cultivo de plantas, a fim de desenvolver linhagens comfenótipos desejados. Os fragmentos de ácido nucléico do presente podem serutilizados, por exemplo, como marcadores de polimorfismo de comprimento defragmento de restrição (RFLP). Manchas Southern (Maniatis) de DNAgenômico de plantas digerido por restrição podem ser sondadas com osfragmentos de ácido nucléico de acordo com a presente invenção. Os padrõesde faixas resultantes podem ser submetidos em seguida a análises genéticasutilizando programas de computador tais como MapMaker (Lander et al (1987),Genomics 1: 174-181), a fim de construir mapa genético. Além disso, osfragmentos de ácidos nucléicos de acordo com a presente invenção podem serutilizados para sondar manchas Southern que contêm DNAs genômicostratados com endonuclease de restrição de conjunto de indivíduos querepresentam pais e prole de cruzamento genético definido. A segregação dospolimorfismos de DNA é observada e utilizada para calcular a posição daseqüência de ácido nucléico do presente no mapa genético obtidoanteriormente utilizando esta população (Botstein et al (1980), Am. J. Hum.Genet. 32: 314-331).
A produção e uso de sondas derivadas de genes de plantas parauso em mapeamento genético é descrita em Bernatzky e Taknsley (1986),Plant Mol. Bioi Repórter 4 (1): 37-41. Numerosas publicações descrevem omapeamento genético de clones de cDNA específicos utilizando a metodologiadescrita acima ou suas variações. Populações intercruzadas F2, por exemplo,populações de cruzamentos anteriores, populações acasaladas aleatoriamente,linhagens próximas da isogênica e outros conjuntos de indivíduos podem serutilizados para mapeamento. Estas metodologias são bem conhecidas dostécnicos no assunto.
Pode-se também utilizar sondas de ácidos nucléicos derivadasdas seqüências de ácidos nucléicos do presente para mapeamento físico (ouseja, colocação de seqüências sobre mapas físicos; vide Hoheisel et al,Nonmammalian Genomic Analysis: A Practical Guide\ Academic Press, 1996;págs. 319-346 e referências ali mencionadas).
Em outra realização, sondas de ácidos nucléicos derivadas dasseqüências de ácidos nucléicos do presente podem ser utilizadas emmapeamento por hibridização in situ por fluorescência direta (FISH) (Trask(1991), Trends Genet. 7: 149-154). Embora os métodos atuais de mapeamentopor FISH favoreçam a utilização de clones grandes (vários a várias centenasde kb; vide Laan et al (1995), Genome Res. 5: 13-20), aprimoramentos desensibilidade podem permitir a realização de mapeamento por FISH utilizandosondas mais curtas.
Uma série de métodos com base em amplificação de ácidosnucléicos de mapeamento físico e genético pode ser conduzida utilizando asseqüências de ácidos nucléicos do presente. Exemplos incluem amplificaçãoespecífica de alelos (Kazazian (1989), J. Lab. Clin. Med. 11: 95-96),polimorfismo de fragmentos amplificados por PCR (CAPS; Sheffield et al(1993), Genomics 16: 325-332), ligação específica de alelos (Landegren et al(1988), Science 241: 1077-1080), reações de extensão de nucleotídeos(Sokolov (1990), Nucleic Acid Res. 18: 3671), Mapeamento Híbrido deRadiação (Walter et al (1997), Nature Geneties 7: 22-28) e Mapeamento Happy(Dear e Cook (1989), Nueleie Aeid Res. 17: 6795-6807). Para estes métodos,utiliza-se a seqüência de fragmento de ácido nucléico para projetar e produzirpares de primers para uso na reação de amplificação ou em reações deextensão de primers. O projeto desses primers é bem conhecido dos técnicosno assunto. Em métodos que empregam mapeamento genético com base emPCR, pode ser necessário identificar diferenças de seqüências de DNA entreos pais da cruz de mapeamento na região correspondente à seqüência deácido nucléico do presente. Isso, entretanto, geralmente não é necessário paramétodos de mapeamento.A perda de fenótipos mutantes de função pode ser identificada paraos clones de cDNA do presente por meio de protocolos de rompimento de genesdirecionados ou da identificação de mutantes específicos para os genes contidosem população de milho que conduz mutações em todos os genes possíveis(Ballinger e Benzer (1989), Proc. Nati Acad. Sei. U. S. A. 86: 9402-9406; Koes etal (1995), Proc. Natl. Acad. Sei. U. S. A. 92: 8149-8153; Bensen e al (1995),Plant Cell 7: 75-84). Esta última abordagem pode ser atingida de duas formas.
Primeiramente, os segmentos curtos dos fragmentos de ácidos nucléicos dopresente podem ser utilizados em protocolos de reação em cadeia de polimeraseem conjunto com primer de seqüência de marca de mutação sobre DNAspreparados a partir de população de plantas em que transposons mutantes oualgum outro elemento de DNA causador de mutação tenha sido introduzido (videBensen, acima). A amplificação de um fragmento de DNA específico com essesprimers indica a inserção do elemento de marca de mutação no gene vegetalcodificador dos polipeptídeos do presente ou perto dele. Alternativamente, ofragmento de ácido nucléico do presente pode ser utilizado na forma de sondade hibridização contra produtos de amplificação de PCR gerados a partir dapopulação em mutação, utilizando o primer de seqüência de marca de mutaçãoem conjunto com primer de local genômico arbitrário, tal como para adaptadorsintético ancorado a local da enzima de restrição. Com qualquer dos métodos,pode ser identificada e obtida uma planta que contém mutação no geneendógeno codificador dos polipeptídeos do presente. Esta planta mutante podeser utilizada em seguida para determinar ou confirmar a função natural dospolipeptídeos do presente aqui descritos.
A função dos transportadores de nitrato com alta afinidade epolipeptídeos necessários para transporte de nitrato com alta afinidade podeser confirmada utilizando a população mutante TUSC. O Sistema de Utilidadede Características para Milho (TUSC) é método que emprega técnicasmoleculares e genéticas para facilitar o estudo de função genética em milho. Oestudo da função genética indica que a seqüência do gene já é conhecida e,desta forma, o método funciona na direção contrária: da seqüência para ofenótipo. Este tipo de aplicação é denominado "genética reversa", ao contráriodos métodos "para a frente" (tais como marcação de transposons) que sãoprojetados para identificar e isolar o(s) gene(s) responsável(is) porcaracterística específica (fenótipo).
A Pioneer Hi-Bred International, Inc. possui a sua coleçãoparticular de DNA genômico de milho de cerca de 42.000 plantas F1 individuais(Reverse Genetics for Maize\ Meeley, R. e Briggs, S., 1995, Maize Genet.
Coop. Newslett. 69: 67, 82).
O genoma de cada um destes indivíduos contém diversas cópiasda família de elementos transportáveis, Mutante (Mu). A família Mu é altamentemutagênica; na presença do elemento ativo Mu-DR, estes elementostransportam-se ao longo de todo o genoma, inserindo em regiões gênicas e,freqüentemente, rompendo a função genética. Ao recolher DNA genômico degrande quantidade de indivíduos (42.000), a Pioneer reuniu biblioteca dogenoma de milho que sofreu mutagênese. Eventos de inserção de Mu sãopredominantemente heterozigóticos, de forma que, dada a natureza recessivada maior parte das mutações de inserção, as plantas Fi parecerão do tiposelvagem. Cada uma das plantas foi isolada para produzir semente de F2, quefoi recolhida. Ao gerar a prole de F2, mutações de inserção segregam-se emforma de Mendel e, portanto, são úteis para a investigação do efeito de alelomutante sobre o fenótipo. O sistema TUSC vem sendo utilizado com sucessopor uma série de laboratórios para identificar a função de uma série de genes(Cloning and Characterization of the Maize An1 Gene, Bensen, R. J. et al,1995, Plant Cell 7: 75-84; Diversification of C-Function Aetivity in Maize FlowerDevelopment, Mena, M. et al, 1996, Science 274: 1537-1540; Analysis of aChemical Plant Defense Mechanism in Grasses, Frey, M. et al, 1997, Science277: 696-699; The Control of Maize Spikelet Meristem Fate by the APETALA2-Like Gene Indeterminate Spikelet 1, Chuck1 G., Meeley, R. B. e Hake1 S., 1998,Genes & Development 12: 1145-1154; A SecY Homologue is Required for theElaboration of the Chloroplast Thylakoid Membrane and for Normal ChloroplastGene Expression, Roy1 L. M. e Barkan, A., 1998, J. Cell Bioi 141: 1-11).
Seqüências de polinucleotídeos produzidas por meio de métodosde geração de diversidade ou métodos de recombinação de seqüênciasrecursivas ("RSR") (tais como alteração de DNA) são função da presenteinvenção. Métodos de mutação e recombinação utilizando os ácidos nucléicosdescritos no presente são função da presente invenção. Um método de acordocom a presente invenção inclui, por exemplo, a recombinação recursiva de umaou mais seqüências de nucleotídeos de acordo com a presente invençãoconforme descrito acima e abaixo com um ou mais nucleotídeos adicionais. Asetapas de recombinação são opcionalmente realizadas in vivo, ex vivo, in silicoou in vitro. Esta geração de diversidade ou recombinação de seqüênciasrecursivas produz pelo menos uma biblioteca de polinucleotídeos HATmodificados recombinantes. Os polipeptídeos codificados por membros destabiblioteca são incluídos na presente invenção.
Descrições de uma série de procedimentos geradores dediversidade, que incluem alterações de multigenes e métodos de geração deseqüências de ácidos nucléicos modificadas que codificam diversos domíniosenzimáticos, são encontradas nas publicações a seguir e nas referências alimencionadas: Soong1 N. et al (2000), Molecular Breeding of Viruses, Nat.Genet. 25 (4): 436-39; Stemmer et al (1999), MoIecuIarBreeding of Viruses forTargeting and Other Clinicai Properties, Tumor Targeting 4: 1-4; Ness et al(1999), DNA Shuffling of Subgenomic Sequences of Subtilisin, NatureBiotechnology 17: 893-896; Chang et al (1999), Evolution of a Cytokine UsingDNA Family Shuffling, Nature Biotechnology 17: 793-797; Minshull e Stemmer(1989), Protein Evolution by Molecular Breeding, Current Opinion in ChemicalBiology 3: 284-290; Christians et al (1999), Directed Evolution of ThymidineKinase for AZT Phosphorylation Using DNA Family Shuffling, NatureBiotechnology 17: 259-264; Crameri et al (1998), DNA Shuffling of a Family ofGenes from Diverse Species Aceelerates Direeted Evolution, Nature 391: 288-291; Crameri et al (1997), Molecular Evolution of an Arsenate DetoxificationPathway by DNA Shuffling, Nature Biotechnology 15: 436-438; Zhang et al(1997), Directed Evolution of an Effective Fucosidase from a Galactosidase byDNA Shuffling and Screening, Proc. Nati Acad. Sei. U. S. A. 94: 4504-4509;Patten et al (1997), Applications of DNA Shuffling to Pharmaceuticals andVaccines, Current Opinion in Biotechnology 8: 724-733; Crameri et al (1996),Construction and Evolution of Antibody-Phage Libraries by DNA-ShuffIing,Nature Medicine 2: 100-103; Crameri et al (1996), Improved Green FluorescentProtein by Molecular Evolution Using DNA Shuffling, Nature Biotechnology 14:315-319; Gates et al (1996), Affinity Selective Isolation of Ligands from PeptideLibraries Through Display on a Iac Repressor "Headpieace Dimerj', Journal ofMolecular Biology 255: 373-386; Stemmer (1996), Sexual PCR and AssemblyPCR, em The Encyclopedia of Molecular Biology, VCH Publishers, NovaIorque, págs. 447-457; Crameri e Stemmer (1995), Combinatorial MultipleCassette Mutagenesis Creates ali the Permutations of Mutant and WildtypeCassettes, BioTechniques 18: 194-195; Stemmer et al (1995), Single-StepAssembly of a Gene and Entire Plasmid from Large Numbers of Oligodeoxy-Ribonucleotides, Gene, 164: 49-53; Stemmer (1995), The Evolution ofMolecular Computation, Science 270: 1510; Stemmer (1995), SearchingSequence Space, Bio/Technology 13: 549-553; Stemmer (1994), RapidEvolution of a Protein in Vitro by DNA Shuffling, Nature 370: 389-391; eStemmer (1994), DNA Shuffling by Random Fragmentation and Reassembly: InVitro Recombination for Molecular Evolution, Proc. Natl. Acad. Sei. U. S. A. 91:10747-10751. Detalhes adicionais referentes a diversos métodos de geraçãode diversidade podem ser encontrados nas patentes norte-americanas,publicações PCT e publicações EPO a seguir: Patente Norte-Americana n°5.605.793 de Stemmer (25 de fevereiro de 1997), Methods for in VitroRecombination-, Patente Norte-Americana n° 5.811.238 de Stemmer et al (22 desetembro de 1998), Methods for Generating Polynucleotides Having DesiredCharacteristics by Iterative Seleetion and Recombination-, Patente Norte-Americana n° 5.830.721 de Stemmer et al (três de novembro de 1998), DNAMutagenesis by Random Fragmentation and Reassembly, Patente Norte-Americana n° 5.834.252 de Stemmer et al (dez de novembro de 1998), End-Complementary Polymerase Reaction-, Patente Norte-Americana n° 5.837.458de Minshull et al (17 de novembro de 1998), Methods and Compositions forCellular and Metabolie Engineering; WO 95/22625, Stemmer e Crameri,Mutagenesis by Random Fragmentation and Reassembly, WO 96/33207 deStemmer e Lipschutz, End Complementary Polymerase Chain Reaction-, WO97/20078 de Stemmer e Crameri, Methods for Generating PolynucleotidesHaving Desired Characteristics by Iterative Selection and Recombination-, WO97/35966 de Minshull e Stemmer, Methods and Compositions for Cellular andMetabolic Engineering; WO 99/41402 de Punnonen et al, Targeting of GenetieVaccine Vectors\ WO 99/41383 de Punnonen et al, Antigen LibraryImmunization-, WO 99/41369 de Punnonen et al, Genetic Vaccine VectorEngineering-, WO 99/41368 de Punnonen et al, Optimization ofImmunomodulatory Properties of Genetic Vaccines] EP 752008 de Stemmer eCrameri, DNA Mutagenesis by Random Fragmentation and Reassembly, EP0932670 de Stemmer, Evolving Cellular DNA Uptake by Recursive SequenceRecombination-, WO 99/23107 de Stemmer et al, Modification of Virus Tropismand Host Range by Viral Genome Shuffling: WO 99/21979 de Apt et al, HumanPapillomavirus Vectors; WO 98/31837 de dei Cardayre et al, Evolution of WholeCells and Organisms by Recursive Sequence Recombination; WO 98/27230 dePattern e Stemmer, Methods and Compositions for Polypeptide Engineering;WO 98/13487 de Stemmer et al, Methods for Optimization of Gene Therapy byReeursive Sequenee Shuffling and Seleetion; WO 00/00632, Methods forGenerating Highly Diverse Libraries; WO 00/09679, Methods for Obtaining inVitro Reeombined Polynucleotide Sequenee Banks and Resulting Sequenees,WO 98/42832 de Arnold et al, Reeombination of Polynucleotide SequeneesUsing Random or Defined Primers; WO 99/29902 de Arnold et al, Method forCreating Polynucleotide and Polypeptide Sequenees; WO 98/41653 de Vind,An in Vitro Method for Construetion ofa DNA Library·, WO 98/41622 de Borchertet al, Method for Construeting a Library Using DNA Shuffling] WO 98/42727 dePati e Zarling, Sequenee Alterations Using Homologous Reeombination; WO00/18906 de Patten et al, Shuffling of Codon-Altered Genes; WO 00/04190 dedei Cardayre et al, Evolution of Whole Cells and Organisms by ReeursiveRecombination-, WO 00/42561 de Crameri et al, Oligonucleotide MediatedNueleie Aeid Recombination-, WO 00/42559 de Selifonov e Stemmer, Methodsof Populating Data Struetures for Use in Evolutionary Simulations; WO00/42560 de Selifonov et al, Methods for Making Charaeter Strings,Polynucleotides & Polypeptides Having Desired Characteristics\ WO 01/23401de Welch et al, Use of Codon-Varied Oligonucleotide Synthesis for SynthetieShuffling-, e WO 01/64864, Single-Stranded Nueleie Aeid Template-MediatedRecombination and Nucleic Aeid Fragment Isolation de Affholter.
Certos pedidos norte-americanos fornecem detalhes adicionaisreferentes a vários métodos de geração de diversidade, que incluem Shufflingof Codon Altered Genes de Patten et al, depositado em 28 de setembro de1999 (USSN 09/407.800); Evolution of Whole Cells and Organisms byReeursive Sequenee Recombination, de dei Cardayre et al, depositado emquinze de julho de 1998 (USSN 09/166.188), e quinze de julho de 1999(Patente Norte-Americana n° 6.379.964); Oligonucleotide Mediated NucleicAcid Recombination de Crameri et al, depositado em 28 de setembro de 1999(Patente Norte-Americana n° 6.376.246); Oligonucleotide Mediated Nueleie- Aeid Reeombination de Crameri et al, depositado em 18 de janeiro de 2000(WO 00/42561); Use of Codon-Based Oligonucleotide Synthesis for SynthetieShuffling de Weleh et al, depositado em 28 de setembro de 1999 (PatenteNorte-Amerieana n° 6.436.675); Methods for Making Charaeter Stríngs,Polynucleotides & Polypeptides Having Desired Charaeteristies de Selifonov etal, depositado em 18 de janeiro de 2000 (WO 00/42560); Methods for MakingCharaeter Stríngs, Polynucleotides & Polypeptides Having DesiredCharaeteristies de Selifonov et al, depositado em 18 de julho de 2000 (USSN09/618.579); Methods of Populating Data Struetures for Use in EvolutionarySimulations de Selifonov e Stemmer (WO 00/42559), depositado em 18 dejaneiro de 2000; e Single-Stranded Nueleie Aeid Template-MediatedReeombination and Nueleie Aeid Fragment Isolation de Affholter (USSN60/186.482, depositado em dois de março de 2000). Podem também serutilizados métodos de recombinação sintética, nos quais oligonucleotídeoscorrespondentes a alvos de interesse são sintetizados e novamente reunidosem PCR ou reações de ligação que incluem oligonucleotídeos quecorrespondem a mais de um ácido nucléico parental, de forma a gerar novosácidos nucléicos recombinados. Oligonucleotídeos podem ser elaborados pormeio de métodos de adição de nucleotídeos padrão, ou podem ser elaborados,por exemplo, por meio de abordagens sintéticas trinucleotídeos. Detalhesreferentes a essas abordagens são encontrados nas referências indicadasacima, que incluem, por exemplo, WO 00/42561 de Crameri et al,Oligonucleotide Mediated Nueleie Aeid Recombination-, WO 01/23401 de Welchet al, Use of Codon-Varied Oligonucleotide Synthesis for Synthetie Shuffling·,WO 00/42560 de Selifonov et al, Methods for Making Character Strings,Polinucleotides and Polypeptides Having Desired Characteristics; e WO00/42559 de Selifonov e Stemmer, Methods of Populating Data Structures forUse in Evolutionary Simulations.
Podem ser efetuados métodos de recombinação in silico, nosquais algoritmos genéticos são utilizados em computador para recombinarconjuntos de seqüências que correspondem a ácidos nucléicos homólogos (oumesmo não homólogos). Os conjuntos de seqüências recombinadosresultantes são opcionalmente convertidos em ácidos nucléicos por meio desíntese de ácidos nucléicos, que correspondem às seqüências recombinadas,tal como em conjunto com métodos de reunião de genes por síntese deoligonucleotídeos. Esta abordagem pode gerar variantes aleatórias,parcialmente aleatórias ou projetadas. Muitos detalhes referentes àrecombinação in silico, que incluem o uso de algoritmos genéticos, operadoresgenéticos e similares em sistemas de computadores, combinados com ageração de ácidos nucléicos correspondentes (e/ou proteínas), bem comocombinações de ácidos nucléicos projetados e/ou proteínas (tal como combase em seleção de local por cruzamento), bem como métodos derecombinação projetada, pseudoaleatória ou aleatória, são descritos em WO00/42560 por Selifonov et al, Methods for Making Charaeter Strings,Polynucleotides and Polypeptides Having Desired Characteristies, e WO00/42559 de Selifonov e Stemmer, Methods of Populating Data Struetures forUse in Evolutionary Simulations. Extensos detalhes referentes a métodos derecombinação in silico são encontrados nesses pedidos. Esta metodologiageralmente é aplicável à presente invenção ao proporcionar recombinação deseqüências de ácido nucléico e/ou construções de fusão genética quecodificam proteínas envolvidas em diversos processos metabólicos (tais comoprocessos biossintéticos de carotenóide, processos biossintéticos de ectoína,processos biossintéticos de poli-hidroxialcanoato, processos biossintéticos depolicetídeos aromáticos e similares) in silico e/ou a geração de proteínas ouácidos nucléicos correspondentes.
Muitas das metodologias descritas acima para a geração depolinucleotídeos modificados geram grande quantidade de variantesdiversas de seqüência(s) parental(is). Em algumas realizações preferidasda presente invenção, o método de modificação (tal como alguma formade alteração) é utilizado para gerar biblioteca de variantes que éselecionada em seguida para polinucleotídeo modificado ou conjunto depolinucleotídeos modificados que codificam algum atributo funcionaldesejado, tal como maior atividade de HAT. Exemplos de atividadesenzimáticas que podem ser selecionadas incluem, mas sem limitar-se avelocidades catalíticas (convencionalmente caracterizadas em termos deconstantes cinéticas, tais como kcat e KM), especificidade de substrato esuscetibilidade à ativação ou inibição por substrato, produto ou outrasmoléculas (tais como inibidores ou ativadores) e a velocidade máxima dereação enzimática quando o local de união for saturado com substrato(Vmax).
Exemplos
A presente invenção é adicionalmente definida nos Exemplos aseguir, nos quais as partes e percentuais são em peso e os graus são Celsius1a menos que indicado em contrário. Dever-se-á compreender que estesExemplos, embora indiquem realizações preferidas da presente invenção, sãofornecidos unicamente como forma de ilustração. A partir da discussão acima edestes Exemplos, os técnicos no assunto podem determinar as característicasessenciais da presente invenção e, sem abandonar seu espírito e escopo,podem elaborar várias mudanças e modificações da presente invenção paraadaptá-la a vários usos e condições.Exemplo 1
Composição de Bibliotecas de cDNA: Isolamento ε Seqüenciamento deClones de cDNA
Foram preparadas bibliotecas de cDNA que representammRNAs de vários tecidos de milho. As características das bibliotecas sãodescritas na Tabela 1.
Bibliotecas de cDNA podem ser preparadas por meio de qualquerdentre diversos métodos disponíveis. Os cDNAs podem ser introduzidos, porexemplo, em vetores de plasmídeos, preparando-se em primeiro lugar asbibliotecas de cDNA em vetores Uni-ZAP® XR1 de acordo com o protocolo dofabricante (Stratagene Cloning Systems, La Jolla CA). As bibliotecas Uni-ZAP®XR são convertidas em bibliotecas de plasmídeos de acordo com o protocolofornecido pela Stratagene. Mediante conversão, os insertos de cDNA estarãocontidos no vetor de plasmídeo pBluescript. Além disso, os cDNAs podem serintroduzidos diretamente em vetores Bluescript Il SK(+) cortados previamente(Stratagene), utilizando T4 DNA Iigase (New England Biolabs), seguida portransfecção em células DH10B de acordo com o protocolo do fabricante(GIBCO BRL Products). Uma vez que os insertos de cDNA encontrem-se emvetores de plasmídeos, DNAs de plasmídeos são preparados a partir decolônias bacterianas tomadas aleatoriamente, contendo plasmídeos pBluescriptrecombinantes, ou as seqüências de cDNA do inserto são amplificadas pormeio de reação em cadeia de polimerase, utilizando primers específicos paraseqüências de vetores que ladeiam as seqüências de cDNA inseridas. DNAsde plasmídeos ou DNAs de insertos amplificados são seqüenciados emreações de seqüenciamento de primers de tintura para gerar seqüências decDNA parciais (marcas de seqüências expressas ou "ESTs"; vide Adams et al(1991), Science 252: 1651-1656). Os ESTs resultantes são analisadosutilizando seqüenciador fluorescente Perkin Elmer Modelo 377.Tabela 1
Bibliotecas de cDNA ε Clones que Contêm Seqüências Similares a NAR2de Milho
<table>table see original document page 54</column></row><table>
Exemplo 2
Identificação de Clones de cDNA
Clones de cDNA que codificam componentes associados aotransporte de nitrato foram identificados por meio da condução de BLAST(Ferramenta de Busca de Alinhamento Local Básico; Altschul et al (1993), J.Mol. Biol. 215: 403-410) e são exibidos na Tabela 1.
Os clones de cDNA codificadores de transportadores oucomponentes associados ao transporte de nitrato podem ser identificados pormeio da condução de buscas BLAST (Ferramenta de Busca de AlinhamentoLocal Básico; Altschul et al (1993), J. Mol. Biol. 215: 403-410) de similaridade aseqüências contidas no banco de dados "nr" do BLAST (que compreende todasas traduções de CDS GenBank não redundantes, seqüências derivadas doBanco de Dados de Proteínas Brookhaven de estrutura tridimensional, a últimapublicação principal do banco de dados de seqüências de proteínas SWISS-PROT, dos bancos de dados EMBL e DDBJ). As seqüências de cDNA obtidaspodem ter analisada sua similaridade com todas as seqüências de DNAdisponíveis ao público contidas no banco de dados "nr", utilizando o algoritmoBLASTN fornecido pelo Centro Nacional de Informações Biotecnológicas(NCBI). As seqüências de DNA podem ser traduzidas em todas as estruturasde leitura e ter sua similaridade comparada com todas as seqüências deproteínas disponíveis ao público, contidas no banco de dados "nr", utilizando oalgoritmo BLASTX (Gish e States (1993), Nat. Genet. 3: 266-272) fornecidopelo NCBI. Para melhor conveniência, o valor P (probabilidade) de observaçãode coincidência entre seqüência de cDNA e seqüência contida nos bancos dedados pesquisados meramente ao acaso, conforme calculado por meio deBLAST, é relatado no presente como valor "pLog", que representa o negativodo Iogaritmo do valor P relatado. Conseqüentemente, quanto maior o valorpLog, maior a probabilidade da seqüência de cDNA e do "encontrado" peloBLAST representarem proteínas homólogas.
Exemplo 3
Identificação ε Seqüenciamento de Transportadores de Nitrato com AltaAfinidade de Milho (HAT4 ε HAT5)
A fim de identificar homólogos de HATs, gene HAT público(número de acesso Genbank AY129953) foi utilizado para selecionar conjuntode genoma de milho MAGI versão 2.31 da Universidade do Estado de lowa.Clone parcial, MAGI 17514, que exibiu 85% de identidade em nível denucleotídeo e aparentemente é HAT anteriormente não identificado foiidentificado utilizando Blast no conjunto ISU MAGI. Esta seqüência foi utilizadapara selecionar o conjunto de dados Genbank GSS e alguns homólogosadicionais da seqüência de MAGI foram identificados; estes agregaram cercade 0,5 kb à seqüência. O conjunto de dados GSS consiste de seqüênciasestabelecidas em números de identificação geral: 33941728, 34245424,32105143, 34245411, 34082540 e 33992813. A tradução do conjunto cobriu cercade metade do gene, na extremidade 3'. Faltou completamente a metade 5' do gene.
A fim de isolar a seqüência de HAT4 de comprimento total, clonesde BAC de duas bibliotecas de BAC derivadas da linha congênita B73 de milhoforam selecionados utilizando PCR. As bibliotecas haviam sido anteriormenteconstruídas por meio de digestão parcial de DNA genômico e inseridas noslocais BamHI e EcoRI do pCUGI (Tomkins, J. P. et al, 2002, Construction andCharacterization of a Deep-Coverage Bacterial Artificial Chromosome Libraryfor Maize, Crop Science 42: 928-933) e pTARBAC (biblioteca pTARBAC2.1,Osoegawa, K. et al, Construction of New Maize, Bovine, Equine and ZebrafishBac Libraries, Plant and Animal Genome Conference Proceedings, 2001). Parafacilitar seleção com base em PCR, conjunto de 36 superconjuntos com quatrodimensões foi solicitado à Amplicon Express (Amplicon Express, 161 ONEEastgate Blvd Pullman, WA 99163). Cada superconjunto foi derivado após ocrescimento independente, isolamento e reunião de 4608 clones, mais de165.000 clones de BAC reunidos no total. Os superconjuntos foram submetidosa reações de PCR, seguidas por determinação mais-menos de fragmentos emeletroforese de gel de agarose. Primers de PCR foram projetados paraamplificar fragmento de 495 bp localizado a 289 bp abaixo no fluxo do códonde parada de homólogo de HAT localizado no conjunto Tigr ID AZM4_32787,que é idêntico às seqüências reunidas dos bancos de dados MAGI e GSSdescritos acima. Reações de PCR foram realizadas com 5 ng de DNA modeloem 10 μΙ de reação que incluiu 5 μΙ de mistura de polimerase Taq Hotstar(Qiagen) e 5 pmol dos primers frontal e reverso (SEQ ID N0 1 e SEQ ID N0 2,respectivamente). As condições de ciclo foram etapa de desnaturação inicial a95 0C por quinze minutos, seguida por 35 ciclos de 95 0C por trinta segundos,60 0C por trinta segundos e 72 0C por um minuto. Segunda rodada de PCR foirealizada em placas matriz que consistem de conjuntos combinatórios decomplexidade mais baixa derivados de clones representados em conjuntospositivos. Isso reduziu os positivos para clones específicos. Dois clones,bacc.pk139.d24 e bacc.pk142.b21, foram identificados e confirmados por meio deanálise de PCR. O clone bacc.pk139.d24 foi utilizado em trabalho subseqüente.
DNA de BAC do clone bacc.pk139.d24 foi isolado a partir decultivos de 250 ml de 2xYT+cloranfenicol utilizando método de Iise alcalinamodificada. As células foram colhidas por meio de centrifugação e novamentesuspensas em 20 ml de 10 mM de EDTA, Iisadas em seguida por meio desuave adição de 40 ml de 0,2 N NaOH/1% SDS e neutralizadas com 30 ml de 3M acetato de potássio frio (pH 4,8). Fragmentos celulares foram removidos pormeio de centrifugação a 4 0C por quinze minutos a 15000 xg, seguida porfiltragem por meio de Miracloth. DNA em sobrenadante foi precipitado com 0,7volumes de isopropanol e novamente suspenso em 9 ml de 50 mM de Tris/50mM de EDTA, misturado com 4,5 ml de 7,5 M de acetato de potássio, colocadoa -70 0C1 descongelado e centrifugado por vinte minutos a 3500 xg. Osobrenadante foi decantado, precipitado com etanol e novamente suspenso em0,7 ml de 50 mM de Tris/50 mM de EDTA. RNase A livre de DNases foiadicionada até concentração final de 150 pg/ml e incubada por uma hora a 370C, seguida por extração com fenolxlorofórmio e precipitação de etanol. DNAfinal foi novamente suspenso em total de 400 μΙ de água livre de nucleaseestéril. O tamanho, quantidade e qualidade do inserto de DNA foramdeterminados por meio de Eletroforese de Gel de Campo Pulsado utilizandomapeador CHEF-III (Bio-Rad). Para seqüenciamento de extremidades de BACconfirmatórias, foram utilizados os primers T7 (SEQ ID N0 3) e SP6 (SEQ ID N04), empregando condições de seqüenciamento descritas abaixo.
A estratégia geral de obtenção de informações de seqüênciascontíguas de fita dupla junto com o gene HAT4 foi partir da seqüência "inicial"conhecida definida pelos primers de identificação de PCR, descritaanteriormente. DNA de BAC bacc.pk139.d24 foi utilizado como modelo. Oseqüenciamento foi realizado em seqüenciador capilar ABI3730 de acordo comos protocolos do fabricante. As reações de seqüenciamento consistiram de 2 μlde mistura BigDye V3.1 Terminator (Applied Biosystems), 2 μl de tampão dediluição (600 mM de Tris HCI, pH 9,0, 15 mM de MgCI2), 20 pmol de primer ecerca de 1 μg de DNA modelo em volume final de reação de 20 μl. Ascondições de ciclo foram desnaturação inicial a 95°C por cinco minutos,seguida por 99 ciclos de 95°C por trinta segundos, 58°C por trinta segundos e64°C por quatro minutos. Algumas regiões de difícil leitura necessitaram sernovamente seqüenciadas utilizando condições especiais de ciclo e reação. Oexcesso de término de tintura foi removido por meio de precipitação cometanol. Avaliação de traços, chamada de bases e reunião foram baseadas emsoftware Phred/Phrap (Ewing et al (1998), Genome Res. 8: 186-194; Ewing etal (1998), Genome Res. 8: 175-185). Consed (Gordon et al (1998), GenomeRes. 8: 195-202) foi utilizado para análise de conjunto. Após cada etapa deandamento da seqüência, primers foram projetados nas extremidades, evitandoregiões de alta homologia para outros genes e repetições de DNA. A busca dehomologia foi realizada utilizando o programa BLAST (Ferramenta de Busca deAlinhamento Local Básico; Altschul et al (1993), J. Moi Biol. 215: 403-410)contra gss, TIGR 4.0, não redundante, EST e bancos de dados de proteínas(Altschul et al, 1990). O vetor NTI foi utilizado para projeto de primers e osprimers foram sintetizados comercialmente pela MWG Biotech. Primers (SEQID N0 5 até SEQ ID N0 33) foram projetados, testados e utilizados para cobrir aregião que inclui o gene HAT. SEQ ID N0 34 descreve a seqüência genômicaque contém o gene HAT 4. SEQ ID N0 35 e 36 descrevem a seqüência denucleotídeos de codificação e de aminoácidos do HAT4 de milho,respectivamente.
SEQ ID N0 37 e 38 exibem as supostas seqüências promotorasde 2014 bp e 1014 bp do gene HAT4.A família de HAT-5 foi identificada por meio de homologia de Blastpara os HATs públicos. Um clone 3' cco1n.pk072.i13 apresentou homologia paraMAGI_56254, que aparentemente representa a seqüência completa. O conjuntode TIGR AZM4_2103 correspondeu bem ao clone de MAGI. Bancos de dados quecontêm bibliotecas induzidas por nitrogênio sofreram novamente Blast utilizandoeste clone e foi identificado o clone cfp4n.pk008.p6. Este clone foi seqüenciado econtém a seqüência de gene HAT5 completa (SEQ ID N0 91 e 92).
Exemplo 4
Identificação ε Seqüenciamento de Transportador de Nitrato com AltaAfinidade de Milho Adicional (HAT7)
Gene HAT público (HAT1, número de acesso GenbankAY129953) foi utilizado para pesquisa com Blast, seqüências de pesquisagenômica (GSS) de milho Genbank e conjuntos genômicos de milho (MAGI daUniversidade do Estado de Iowa e Tigr), para tentar identificar parálogos deAY129953. Junto com o gene HAT4 (Exemplo 3), havia outros homólogos maisdistantes, que incluem MAGI_65216 que correspondeu a AZM4_79242, quecontinha pouco mais informação de seqüências que MAGI_65216). Nenhumdestes dois clones continha metionina inicial. Coincidência adicional paraAZM4 79246 exibiu percentual de identidade similar em comparação comAY129953. AZM4_79246 codificou metionina inicial no nucleotídeo 2264-2266e cerca de 110 aminoácidos de seqüência de codificação. Exame adicionaldemonstrou que estes dois conjuntos compartilharam clones coincidentes,OGUKX93 e OGUCS47, da biblioteca filtrada por metilação de Tigr.Considerou-se, portanto, que AZM4_79242 e AZM4_79246 codificam o mesmogene, mas não possuem sobreposição de seqüências.
A fim de recuperar a seqüência de comprimento total, realizou-sePCR utilizando dois primers reversos diferentes e dois frontais diferentes (SEQID N0 39, 40 e 41, 42, respectivamente) com extensões T3 (SEQ ID N0 43) e T7(SEQ ID N0 44 na extremidade 5' e 3', respectivamente). PCR HotStart1 comtemperatura de combinação de 58 0C1 foi realizada utilizando DNA de oitolinhas congênitas de milho (B73, Co159, GT119, Mo17, T218, Oh43 e W23)como modelos. Todos os 32 produtos de reação de PCR foram conduzidossobre gel 1x TBE de agarose, extirpados, limpos e seqüenciados emSeqüenciador Capilar 3100 ABI utilizando métodos conhecidos dos técnicoscomuns no assunto. As seqüências foram alinhadas e as informações deseqüência faltantes foram recuperadas. A seqüência de nucleotídeos completado gene HAT7 é exibida em SEQ ID N0 45. SEQ ID N0 46 e 47 descrevem assupostas seqüências promotoras 2263 bp e 1263 bp do gene HAT7 e SEQ IDN0 48 e 49 descrevem a seqüência de nucleotídeos de codificação e deaminoácidos do HAT7 de milho, respectivamente.
Exemplo 5
Caracterização de Polipeptídeos que Codificam Transportador de Nitratocom Alta Afinidade
Os dados da Tabela 2 representam cálculo do percentual deidentidade das seqüências de aminoácidos descritas em SEQ ID N0 36 e 49 e dasseqüências de Oryza sativa (Identificador Geral NCBI n° 34913806 e 50904699).
Tabela 2
Percentual de Identidade de Seqüências de Aminoácidos Deduzidas dasSeqüências de Nucleotídeos de Clones de cDNA que CodificamPolipeptídeos Homólogos a Transportador de Nitrato com Alta Afinidade
<table>table see original document page 60</column></row><table>
Alinhamentos seqüenciais e cálculos de identidade percentualforam realizados utilizando o programa Megalign da suíte de computaçãobioinformática LASERGENE (DNASTAR Inc., Madison Wl). O alinhamentomúltiplo das seqüências foi realizado utilizando o método de alinhamentoClustal (Higgins e Sharp (1989), CABIOS. 5: 151-153) com os parâmetrospadrão (PENALIDADE DO INTERVALO = 10, PENALIDADE DOCOMPRIMENTO DO INTERVALO = 10). Os parâmetros padrão paraalinhamentos em pares utilizando o método Clustal foram COMPRIMENTO DEPALAVRA = 1, PENALIDADE DO INTERVALO = 3, VISUALIZAÇÃO DOMELHOR RESULTADO = 5 e ESPAÇAMENTO EM DIAGONAIS = 5. Alinhamentosde seqüências e avaliações e probabilidades de BLAST indicam que os fragmentosde ácidos nucléicos que compreendem os clones de cDNA do presente codificamtransportadores de nitrogênio com alta afinidade de milho.
Exemplo 6
Identificação ε Seqüenciamento de Genes Relativos ao Transporte deNitrogênio de Milho fNAR2-1 e NAR2-2)
Exame de coincidências de Blast da biblioteca de raiz de milhocnrlc, descrita no Exemplo 1 e na Tabela 2, exibiu uma série de genesrelativos ao transporte de nitrogênio. Coincidências de Blast foram pesquisadascom palavras chave tais como nitrato, nitrogênio e transportador. Algumasdestas foram homólogas ao número de acesso NCBI CAC36942, supostocomponente de transportador de nitrato com alta afinidade (gene NAR2).Pesquisa TbIastN de ESTs de milho, utilizando a seqüência de CAC36942como pesquisa, produziu uma série de coincidências significativas dediferentes bibliotecas de milho. O clone mais 5' foi identificado por meio dealinhamento da pesquisa de comprimento total e as coincidências de Blast.Clone da biblioteca de cnrlc (cnr1c.pk003.m9.f) exibiu metionina que seencontrava na mesma região da metionina inicial de CAC36942. Este clonetambém exibiu códon de parada em quadro acima no fluxo da metionina. Esteclone foi submetido a seqüenciamento de inserto total (FIS) padrão e continhaos 971 bp do NAR2.1, cobrindo os nucleotídeos 591 a 1561 de SEQ ID N0 53.SEQ ID N0 53 exibe a seqüência de 1561 bp do gene NAR2.1, que foi reunida apartir das informações de seqüências obtidas a partir do clonecnr1c.pk003.m9.f:fis e da seqüência de Tigr AZM4_81138. SEQ ID N0 54 e 55exibem a seqüência de nucleotídeos de codificação e de aminoácidos do geneNAR2.1, respectivamente. SEQ ID N0 56 exibe 756 bp do suposto promotor deNAR2.1. O uso de CAC36942 como pesquisa também exibiu diferentehomólogo de NAR2, cbn2.pk0042.g4. Este clone também continha metioninainicial mas, devido à qualidade da seqüência de EST1 a homologia paraCAC36942 foi curta. Versão completa (clone de Tigr AZM4_1475) destemembro da família foi identificada por meio de pesquisa do conjunto genômicode milho Tigr utilizando cbn2.pk0042.g4 como pesquisa. SEQ ID N0 57 e 58exibem a seqüência de nucleotídeos de codificação e de aminoácidos doNAR2.2 (clone Tigr AZM4_1475), respectivamente.
Isolamento do promotor NAR2.1
As informações de seqüências sobre o promotor NAR2.1 foramestendidas mais acima no fluxo realizando-se andamento de DNA GenomeWalker® (BD BioSciences). Este método emprega PCR para facilitar aclonagem de seqüências de DNA genômicas desconhecidas adjacentes aseqüência conhecida. Em primeiro lugar, conjuntos de DNA genômicodesconhecido foram digeridos com diferentes enzimas de restrição que deixamextremidades obtusas. Cada conjunto foi ligado a adaptadores para criarbibliotecas Genome Walker®. Foram obtidas oito bibliotecas de HG11 de milhodiferentes. Estas bibliotecas foram digeridas com as enzimas de restrição aseguir: Stul, EcoRV, Pmll, Pvull, Seal, Dral, Smal e Pmel.
Em seguida, foram realizadas duas rodadas de amplificação porPCR reunidas por biblioteca. Para a primeira rodada, foram utilizados o primeradaptador externo (AP1, equipado com kit) e o primer externo específico deNar2.1 (SEQ ID N0 59).
PCR foi realizada utilizando a Mistura de Polimerase GenômicaAdvantage® GC (BD Biosciences) em 50 μΙ de reação contendo 1 μΙ debiblioteca de DNA1 0,5 μΙ de cada primer (10 μΜ), 4 μΙ de dNTPs (2,5 mM), 2,2μΙ de Mg(OAc)2, 10 μΙ de 5x Tampão de Reação de PCR Genômico GC, 10 μΙde GC-MeIt (5 M), 20,8 μΙ de ddH20 e 1 μΙ de Polimerase Genômica AdvantageGC. As condições de ciclização foram as seguintes: sete ciclos dedesnaturação a 94 0C por 25 segundos e combinação/extensão a 72 0C porseis minutos seguida por 32 ciclos de desnaturação a 94 0C por 25 segundos ecombinação/extensão a 67 0C por seis minutos coberta porcombinação/extensão a 67 0C por sete minutos.
O produto de PCR primário foi diluído em seguida a 1:50 e 1 μΙ foiservido como modelo para a segunda rodada de PCR que utilizou a mesmaconfiguração de PCR da primeira rodada. Os primers da segunda rodada foramo primer adaptador interno (AP2, fornecido com o kit) e o primer internoespecífico de Nar2.1 (SEQ ID N0 60). As condições de ciclização para asegunda rodada foram as seguintes: cinco ciclos de desnaturação a 94 0C por 25segundos e combinação/extensão a 72 0C por seis minutos seguida por 25 ciclos dedesnaturação a 94 0C por 25 segundos e combinação/extensão a 67 0C por seisminutos coberta por combinação/extensão a 67 0C por sete minutos.
Produto de PCR importante (cerca de 3 kb) foi observado nabiblioteca de Stul. Esta faixa foi cortada do gel e purificada utilizando o Kit deExtração de Gel Quiaquick (Qiagen) e ligada a Vetor pGEM®-T Easy(Promega). A reação de ligação de 20 μΙ foi a seguinte: 10 μΙ 2X Tampão deLigação Rápida, 1 μΙ de Vetor pGEM®-T Easy (50 ng), 1 μΙ de T4 DNA Iigase (2unidades Weiss/μΙ) e 8 μΙ de DNA de inserto (13 ng/μΙ). A reação foi incubada a4 'C por uma noite.O produto de ligação foi transformado em células competentesDH10B de Máxima Eficiência (Invitrogen). Um microlitro de ligado foiadicionado a 20 μl de células e colocado sobre gelo por trinta minutos. Ascélulas sofreram choque de calor a 42°C por 45 segundos e foram novamentecolocadas sobre gelo por dois minutos. As células foram adicionadas a 1 ml de SOCe colocadas sobre agitador a 250 rpm por uma hora a 37°C. Em seguida, 100 μl decélulas foram colocados em placas sobre meios LB com ampicilina, IPTG e X-Galpara permitir seleção azul/branca. Somente uma colônia branca foi obtida.
DNA de plasmídeo foi purificado utilizando o Mini Kit Plasmid(Qiagen). O inserto de plasmídeo que representa a região promotora acima nofluxo de NAR2 foi seqüenciado utilizando primers padrão (SP6 e T7) e primersespecíficos (SEQ ID N0 61, 62, 63 e 64). SEQ ID N0 65 exibe a seqüência dosuposto promotor de NAR 2.1 de 2917 bp adicional.
A seqüência do gene NAR2.1 completo é exibida em SEQ ID N0 66.
Exemplo 7
Padrão de Expressão dos Polipeptídeos de Acordo com a PresenteInvenção
O padrão de expressão de transportadores de nitrato com altaafinidade (HAT) e outros polipeptídeos (NAR) necessários para transporte denitrato com alta afinidade foi analisado por meio de Lynx MPSS, Brenner et al(2000), Proc. Natl. Acad. Sei. U. S. A. 97: 1665-70.
Os padrões de expressão de genes NAR2.1 e HAT, são similaresao longo de mais de duzentas bibliotecas estudadas por meio de Lynx MPSS(Brenner et al (2000), Proc. Natl. Acad. Sei. U. S. A. 97: 1665-70). Eles sãoambos expressos somente no cilindro cortical do tecido de raiz e são induzidosde forma similar por nitrato, o que indica que os produtos de polipeptídeodestes dois genes formam complexo funcional para transporte de nitrato emraízes de milho.Expressão específica de tecidos de NAR2.1 ε HAT-1 em milho:
das 210 bibliotecas de diferentes tecidos que englobam a plantade milho inteira, NAR2.1 e HAT-1 são expressos somente nas bibliotecas deraízes. Isso indica a função específica de raízes para cada um destes genes.
Análise de expressão de NAR2.1 e HAT-1 em tecidos de milho.Foi calculada a média das abundâncias de marca de MPSS ao longo dediferentes bibliotecas de tecidos. A quantidade de bibliotecas para cada tecidofoi: antera, 3; espiga, 15; semente, 44; folha, 39; pólen, 1; raiz, 36; seda, 9;haste, 19; e cabelo, 14.
Indução da absorção de nitrato ε localização em raízes de milhodentre as bibliotecas de raízes derivadas de linhagem congênitaA63, a expressão de NAR2.1 e HAT-1 é induzida de forma similar por nitrato.
Raízes de milho de mudas etioladas obtidas sete dias após ocultivo em rolos de papel em água foram colhidas e submetidas a diferentestratamentos em paralelo. As raízes recém colhidas foram mantidas sobre gelocomo controles. As raízes foram incubadas em solução aerada que contémdiferentes nutrientes por diferentes períodos de tempo e rapidamente congeladasem N líquido e armazenadas a -80 0C até o uso para análises de expressão ouguardadas entre duas camadas de papel toalha úmido em gelo para manipulaçãoadicional. Uma batelada de raízes que havia sido tratada por quatro horas emnitrato foi dissecada manualmente em cilindro cortical e monólito.
Reação de NAR2.1 e expressão de HAT 1 a tratamentos comdiferentes nutrientes. As raízes foram tratadas por meia hora ou quatro horasem meio que contém 1 mM de nitrato (0,5 mM de KNO3 e 0,25 mM deCa(NO3)2) ou 1 mM de cloreto (0,5 mM de KCI e 0,25 mM de CaCI2). Bateladade raízes tratada por quatro horas com nitrato foi separada em cilindro cortical
e monólito e submetida a MPSS.
Os genes NAR2.1 e HAT1 de milho exibem reação similar anitrato (N) no meio de incubação que aumenta ao longo do tempo emcomparação com as raízes controle paralelas incubadas em solução de cloreto.Além disso, esses dois genes são localizados quase exclusivamente na mangacortical e não no monólito. Sua reação similar a nitrato e sua localizaçãoindicam fortemente que os produtos de proteína desses genes realizamcomplexo de transporte de nitrato funcional em raízes de milho.
Regulagem oposta da expressão de NAR2.1 em linhagens de milho com altoteor de proteína de illinois (IHP) e baixo teor de proteína de illinois (ILP)IHP e ILP são dois conjuntos de linhagens que são derivadas depopulação de milho após cerca de cem anos de seleção divergente paraproteína de grão nas direções de alto e baixo teor de proteína no grão,respectivamente (Uribelarrea et al, 2004). Embora os grãos IHP contenhammais de 20% de proteína, os de ILP contêm menos de 5%. As raízes destasduas linhagens foram submetidas a Lynx MPSS após vários tratamentos.
As raízes foram mantidas em solução de nitrato por todo o tempo,permaneceram sem nitrato por duas horas ou foram colocadas em solução denitrato após duas horas sem ele. Embora NAR2.1 em IHP reagisse atratamento com nitrato como A63, ILP exibiu reação oposta. Dado o nível deexpressão deste gene em ILP em raízes com ausência de nitrato que é similarao de raízes de IHP mantidas em nitrato, estes resultados sugerem queexistem mecanismos que reagem a nitrato nas duas direções em milho. Omecanismo de reação positiva, entretanto, aparentemente foi selecionadoconforme indicado por meio de reação similar entre IHP e A63, linhagemcongênita com teor normal de proteína do grão de cerca de 10%.
Apenas IHP continha a marca para seqüência HAT1 e exibiupadrão de expressão similar a NAR2.1, gerando suporte adicional à sugestãomencionada acima de que NAR2.1 e HAT1 formam complexo funcional emraízes de milho.Expressão de outros genes HAT em A63
HAT 4G foi expresso em mais de 10 ppm somente em quatrobibliotecas, todas derivadas do tecido de raiz. Desta forma, aparentemente estegene é específico de raiz. HAT 7 é expresso em mudas resfriadas e trêsbibliotecas de folhas, o que sugere que este gene pode codificar proteína paraabsorção de nitrato do apoplasta xylem para as células de folhas. Espera-seque as seqüências de HAT de acordo com o presente pedido formem complexode transporte de nitrato funcional com seqüência de NAR.
Exemplo 8
Confirmação de Função dos Transportadores de Nitrato com Alta
Afinidade ε Polipeptídeos Necessários para Transporte de Nitrato comAlta Afinidade Utilizando a População Mutante TUSC
A seqüência genômica completa para o local transportador denitrato com alta afinidade pode ser utilizada para projetar primers para seleçãoem busca de mutantes com inserção de Mu na população de TUSC (PatenteNorte-Americana n° 5.962.764, emitida em cinco de outubro de 1999). Apopulação de TUSC reunida pode ser selecionada com primers específicos degenes. Alelos dos transportadores de nitrato com alta afinidade de milho epolipeptídeos necessários para transporte de nitrato com alta afinidade podemser recuperados desta seleção e caracterizados. Além disso, a função dasseqüências do presente pedido pode ser confirmada por estudos decomplementação.
Exemplo 9
Expressão de Construções de DNA Recombinante em CélulasMonocotiledóneas
Pode ser elaborada construção de DNA recombinante quecompreende cDNA codificador dos polipeptídeos do presente em orientaçãocom sentido com relação ao promotor zeina de 27 kD de milho, que estálocalizado a 5' do fragmento de cDNA, e à extremidade 3' zeina de 10 kD queestá localizada a 3' do fragmento de cDNA. O fragmento de cDNA deste genepode ser gerado por meio de reação em cadeia de polimerase (PCR) do clonede cDNA utilizando primers de oligonucleotídeos apropriados. Os locais declonagem (Ncol ou Smal) podem ser incorporados aos oligonucleotídeos paraproporcionar orientação adequada do fragmento de DNA quando inserido novetor digerido pML103, conforme descrito abaixo. Realiza-se em seguidaamplificação em PCR padrão. O DNA amplificado é digerido em seguida comas enzimas de restrição Ncol e Smal e fracionado sobre gel de agarose. A faixaapropriada pode ser isolada do gel e combinada com fragmento Ncol-Smal de4,9 kb do plasmídeo pML103. O plasmídeo pML103 foi depositado com basenos termos do Tratado de Budapeste na ATCC (Coleção Norte-Americana deCultivo de Tipos, 10801 University Blvd., Manassas VA, 20110-2209) e possuio número de acesso ATCC 97366. O segmento de DNA de pML103 contémfragmento promotor de Sall-Ncol de 1,05 kb do gene zeina de 27 kD de milho efragmento Smal-Sall de 0,96 kb da extremidade 3' do gene zeina de 10 kD demilho no vetor pGem9Zf(+) (Promega). O DNA de inserto e o vetor podem serligados a 15 cC por uma noite, essencialmente conforme descrito (Maniatis). ODNA ligado pode ser utilizado em seguida para transformar XLI-BIue de E. coli(XL-1 Blue® de Epicurian colr, Stratagene). Transformadores bacterianospodem ser selecionados por meio de digestão de enzimas de restrição de DNAde plasmídeo e análise de seqüências de nucleotídeos limitada, utilizando ométodo de término de cadeia dideóxi (Kit de Seqüenciamento de DNASequenase®; U. S. Biochemical). A construção de plasmídeo resultantecompreenderia construção de DNA codificadora, na direção 5' a 3', do promotorzeina de 27 kD de milho, fragmento de cDNA codificador dos polipeptídeos dopresente, e da região 3' zeina de 10 kD.
A construção de DNA recombinante descrita acima pode serintroduzida em seguida em células de milho por meio do procedimento aseguir. Embriões de milho imaturos podem ser dissecados a partir de cariopsesem desenvolvimento derivadas de cruzamentos das linhagens de milhocongênitas H99 e LH132. Os embriões são isolados em dez a onze dias após apolinização, quando estão com 1,0 a 1,5 mm de comprimento. Em seguida, osembriões são colocados com o lado do eixo voltado para baixo e em contatocom meio N6 solidificado com agarose (Chu et al (1975), Sei. Sin. Peking 18:659-668). Os embriões são mantidos no escuro a 27°C. O calo embriogênicoesboroadiço que consiste de massas não-diferenciadas de células comembrióides e proembrióides somáticos cultivados sobre estruturas desuspensão prolifera-se a partir do escutelo desses embriões imaturos. O caloembriogênico isolado a partir do explante primário pode ser cultivado sobremeio N6 e subeultivado sobre esse meio a cada duas a três semanas.
O plasmídeo, p35S/Ac (obtido por meio do Dr. Peter Eckes,Hoechst Ag, Frankfurt, Alemanha), pode ser utilizado em experimentos detransformação, a fim de proporcionar marcador selecionável. Este plasmídeocontém o gene Pat (vide Patente Européia n° 0.242.236), que codificafosfinotricin acetil transferase (PAT). A enzima PAT oferece resistência ainibidores de glutamino sintetase herbicidas, tais como fosfinotricin. O gene patem p35S/Ac encontra-se sob o controle do promotor 35S do Vírus Mosaico daCouve-Flor (Odell et al (1985), Nature 313: 810-812) e da região 3' do genenopalino sintase do T-DNA do plasmídeo Ti de Agrobacterium tumefaciens.
O método de bombardeamento de partículas (Klein et al (1987),Nature 327: 70-73) pode ser utilizado para a transferência de genes para ascélulas de cultivo de calo. De acordo com este método, partículas de ouro (comdiâmetro de 1 pm) são revestidas com DNA utilizando a técnica a seguir. Dezpg de DNAs de plasmídeo são adicionados a 50 μΙ de suspensão de partículasde ouro (60 mg por ml). São adicionados cloreto de cálcio (50 μΙ de umasolução de 2,5 Μ) e base livre de espermidina (20 μΙ de solução de 1,0 M) àspartículas. A suspensão é turbilhonada durante a adição dessas soluções.Após dez minutos, os tubos são rapidamente centrifugados (5 seg a 15.000rpm) e o sobrenadante é removido. As partículas são novamente suspensas em 200 μΙ de etanol absoluto, novamente centrifugadas e o sobrenadante éremovido. O enxágüe em etanol é realizado novamente e as partículas sãonovamente suspensas em volume final de 30 μΙ de etanol. Uma parcela (5 μΙ)das partículas de ouro revestidas com DNA pode ser colocada no centro dedisco suspenso Kapton® (Bio-Rad Labs). As partículas são aceleradas emseguida no tecido de milho com Biolistic® PDS-1000/He (Bio-Rad Instruments,Hercules CA), utilizando pressão de hélio de 1000 psi, distância de lacuna de0,5 cm e distância aérea de 1,0 cm.
Para o bombardeamento, o tecido embriogênico é colocado sobrepapel-filtro sobre meio N6 solidificado com agarose. O tecido é disposto naforma de tecido fino e cobriu área circular com cerca de 5 cm de diâmetro. Aplaca petri que contém o tecido pode ser colocada na câmara do PDS-1000/Hea cerca de 8 cm da tela de vedação. O ar da câmara é evacuado em seguidaaté vácuo de 711 milímetros de Hg. O macroveículo é acelerado com onda dechoque de hélio, utilizando membrana de ruptura que se rompe quando apressão de He no tubo de choque atingir 1000 psi.
Sete dias após o bombardeamento, o tecido pode ser transferidopara meio N6 que contenha glufosinato (2 mg por litro) e que não contenhacaseína ou prolina. O tecido continua a crescer lentamente sobre este meio.Após duas semanas adicionais, o tecido pode ser transferido para meio N6novo contendo glufosinato. Após seis semanas, podem ser identificadas áreasde cerca de 1 cm de diâmetro de calos em crescimento ativo sobre algumasdas placas que contêm o meio suplementado por glufosinato. Estes calospodem continuar a crescer quando subcultivados sobre o meio seletivo.As plantas podem ser regeneradas a partir do calo transgênico,transferindo-se primeiramente conjuntos de tecido para meio N6 suplementadocom 0,2 mg de 2,4-D por litro. Após duas semanas, o tecido pode ser transferidopara meio de regeneração (Fromm et al (1990), Bio/Technology 8: 833-839).
Exemplo 10
Expressão de Construções de DNA Recombinante em CélulasDicotiledôneas
Conjunto de expressão específico de sementes composto dopromotor e término de transcrição do gene codificador da sub-unidade α dafaseolina de proteína de armazenagem de sementes do feijão Phaseolusvulgaris (Doyle et al (1986), J. Biol. Chem. 261: 9228-9238) pode ser utilizadopara expressão dos polipeptídeos do presente em soja transformada. Oconjunto de faseolina inclui cerca de 500 nucleotídeos acima (5') do códon deinício de tradução e cerca de 1650 nucleotídeos abaixo (3') do códon de parada detradução de faseolina. Entre as regiões 5' e 3', encontram-se os locais deendonuclease de restrição exclusivos Nco I (que inclui o códon de início de traduçãoATG), Sma I, Kpn I e Xba I. Todo o conjunto é ladeado por locais Hind III.
O fragmento de cDNA deste gene pode ser gerado por meio dereação em cadeia de polimerase (PCR) do clone de cDNA, utilizando primersde oligonucleotídeos apropriados. Os locais de clonagem podem serincorporados aos oligonucleotídeos para proporcionar orientação adequada dofragmento de DNA quando inserido no vetor de expressão. Realiza-se entãoamplificação conforme descrito acima e o fragmento isolado é inserido em vetorpUC18 que conduz o conjunto de expressão da semente.
Embriões de soja podem ser transformados em seguida com ovetor de expressão que compreende seqüências codificadoras dospolipeptídeos do presente. Para induzir embriões somáticos, cotilédones com 3a 5 mm de comprimento dissecados a partir de sementes imaturas eesterilizadas na superfície do cultivo de soja A2872 podem ser cultivados na luzou no escuro a 26°C sobre meio agar apropriado por seis a dez semanas.Embriões somáticos que produzem embriões secundários são extirpadosem seguida e colocados em meio líquido apropriado. Após a seleçãorepetida de conjuntos de embriões somáticos que se multiplicaram naforma de embriões precoces em estágio globular, as suspensões sãomantidas conforme descrito abaixo.
Cultivos de suspensão embriogênica de soja podem ser mantidosem 35 ml de meios líquidos em agitador giratório, 150 rpm, a 26°C com luzes fluorescentes em programa de 16:8 horas de dia/noite. Os cultivos sãosubcultivados a cada duas semanas, por meio da inoculação de cerca de 35mg de tecido em 35 ml de meio líquido.
Cultivos de suspensão embriogênica de soja podem sertransformados em seguida por meio do método de bombardeamento comdisparadores de partículas (Klein et al (1987), Nature (London) 327: 70-73,Patente Norte-Americana n° 4.945.050). Pode ser utilizado instrumento DuPontBiolistic® PDS1000/HE (retroajuste de hélio) para estas transformações.
Gene marcador selecionável que pode ser utilizado parapossibilitar a transformação de soja é construção de DNA recombinantecomposta do promotor 35S de Vírus Mosaico da Couve-Flor (Odell et al (1985),Nature 313: 810-812), o gene higromicino fosfotransferase do plasmídeopJR225 (de E. co//; Gritz et al (1983), Gene 25: 179-188) e a região 3' do genenopalino sintase do T-DNA do plasmídeo de Ti de Agrobacterium tumefaciens.O conjunto de expressão de sementes que compreende a região 5' defaseolina, o fragmento codificador dos polipeptídeos do presente e a região 3'de faseolina podem ser isolados na forma de fragmento de restrição. Estefragmento pode ser inserido em seguida em local de restrição exclusivo dovetor que conduz o gene marcador.A 50 μl de suspensão de 60 mg/ml de partículas de ouro de 1 μm,adiciona-se (nesta ordem): 5 μΙ de DNA (1 pg/μl), 20 μl de espermidina (0,1 M)e 50 μl de CaCl2 (2,5 Μ). A preparação de partículas é agitada em seguida portrês minutos, centrifugada em microcentrifugador por dez segundos e osobrenadante foi removido. As partículas revestidas com DNA são lavadas emseguida por uma vez em 400 μl de etanol a 70% e novamente suspensas em40 μl de etanol anidro. A suspensão de DNA/partículas pode ser sonicada portrês vezes por um segundo cada. Cinco μl das partículas de ouro revestidascom DNA são carregados em seguida sobre cada disco macro veículo.
Cerca de 300 a 400 mg de cultivo em suspensão com duassemanas de idade são colocados em placa petri de 60 χ 15 mm vazio e olíquido residual é removido do tecido com pipeta. Para cada experimento detransformação, são normalmente bombardeadas cerca de cinco a dez placasde tecido. A pressão de ruptura da membrana é ajustada a 1100 psi e acâmara é evacuada até vácuo de 711 milímetros de mercúrio. O tecido écolocado a cerca de 8,9 cm de distância da tela retentora e bombardeado portrês vezes. Em seguida ao bombardeamento, o tecido pode ser dividido aomeio, colocado de volta no líquido e cultivado conforme descrito acima.
Cinco a sete dias após o bombardeamento, o meio líquido podeser substituído por meio novo e, de onze a doze dias após o bombardeamento,por meios novos contendo 50 mg/ml de higromicina. Este meio seletivo podeser renovado semanalmente. Sete a oito semanas após o bombardeamento,pode-se observar tecido verde transformado crescendo a partir de conjuntosembriogênicos necróticos não transformados. O tecido verde isolado éremovido e inoculado em frascos individuais para gerar novos cultivos desuspensão embriogênica transformados e propagados de forma clonal. Cadanova linhagem pode ser tratada como evento de transformação independente.Essas suspensões podem ser então subcultivadas e mantidas na forma deconjuntos de embriões imaturos ou regeneradas em plantas inteiras, por meiode maturação e germinação de embriões somáticos individuais.
Exemplo 11
Expressão de Construções de DNA Recombinante em Células Microbianas
Os cDNAs codificadores dos polipeptídeos do presente podemser inseridos no vetor de expressão pBT430 de E. coli T7. Este vetor é umderivado de pET-3a (Rosenberg et al (1987), Gene 56: 125-135), queemprega o sistema bacteriófago T7 RNA polimerase/T7 promotor. Oplasmídeo pBT430 foi construído por meio, primeiramente, de destruiçãodos locais EcoR I e Hind Ill em pET-3a nas suas posições originais.
Adaptador de oligonucleotídeos que contém locais EcoR I e Hind Ill foiinserido no local BamH I de pET-3a. Isso criou pET-3aM com locais declonagem exclusivos adicionais para inserção de genes no vetor deexpressão. Em seguida, o local Nde I na posição de início de tradução foiconvertido em local Nco I, utilizando mutagênese dirigida poroligonucleotídeos. A seqüência de DNA de pET-3aM nessa região, 5'-CATATGG, foi convertida em 5'-CCCATGG em pBT430.
DNA de plasmídeo que contém cDNA pode, por exemplo, seradequadamente digerido para liberar fragmento de ácido nucléico codificador daproteína. Este fragmento pode ser purificado em seguida sobre gel de agarosede baixa fusão NuSieve GTG® a 1% (FMC). Tampão e agarose contêm 10pg/ml de brometo de etídio para visualização do fragmento de DNA. O fragmentopode ser purificado em seguida a partir do gel de agarose por meio de digestãocom GELase® (Epicentre Technologies), de acordo com as instruções dofabricante, precipitado em etanol, seco e novamente suspenso em 20 μΙ deágua. Adaptadores de oligonucleotídeos apropriados podem ser ligados aofragmento u tilizando T4 DNA Iigase (New England Biolabs, Beverly MA). Ofragmento que contém os adaptadores ligados pode ser purificado a partir doexcesso de adaptadores, utilizando agarose de baixa fusão conforme descritoacima. O vetor pBT430 é digerido, desfosforilado com fosfatase alcalina (NEB) edesproteinado com fenol/clorofórmio, conforme descrito acima. O vetorpreparado pBT430 e o fragmento podem ser ligados em seguida a 16°C porquinze horas, seguido por transformação em células eletrocompetentes DH5(GIBCO BRL). Os transformadores podem ser selecionados sobre placas agarque contêm meios LB e 100 pg/ml de ampicilina. Os transformadores quecontêm o gene codificador dos polipeptídeos do presente são selecionados emseguida para orientação correta com relação ao promotor T7 por meio de análisede enzimas de restrição.
Para expressão de alto nível, clone de plasmídeo com o insertode cDNA na orientação correta com relação ao promotor T7 pode sertransformado em linhagem BL21 (DE3) de E. coli (Studier et al (1986), J. Mol.Biol. 189: 113-130). Os cultivos crescem em meio LB contendo ampicilina (100mg/l) a 25°C. Sob densidade ótica a 600 nm de cerca de 1, pode-se adicionarIPTG (isopropiltio-p-galactosida, o indutor) até concentração final de 0,4 mM epode-se prosseguir com a incubação por três horas a 25°C. As células sãocolhidas em seguida por meio de centrifugação e novamente suspensas em 50μl de 50 mM Tris-HCI a pH 8,0 contendo 0,1 mM de DT T e 0,2 mM demetilsulfonil fluoreto de fenila. Pequena quantidade de esferas de vidro de 1mm pode ser adicionada e a mistura sonicada por três vezes, por cerca decinco segundos cada vez, com sonicador de microssonda. A mistura écentrifugada e a concentração de proteínas do sobrenadante é determinada.Um μg de proteína da fração solúvel do cultivo pode ser separado por meio deeletroforese de gel de poliacrilamida-SDS. Pode-se observar nos géis as faixasde proteína migrando no peso molecular esperado.
Exemplo 12
Eletroporação de Agrobacterium tumefaciens LBA4404:Células competentes de eletroporação (40 μΙ), tais comoAgrobacterium tumefaciens LBA4404 (contendo PHP10523), sãodescongeladas sobre gelo (vinte a trinta minutos). PHP10523 contém genesVIR para transferência de T-DNA1 origem de reprodução de plasmídeos combaixo número de cópias de Agrobacterium, gene de resistência a tetraciclina elocal Cos para recombinação bimolecular de DNA in vivo. PHP10523 éadicionalmente descrito no Exemplo 17. Enquanto isso, a cubeta deeletroporação é resfriada sobre gelo. As configurações do eletroporador sãoajustadas a 2,1 kV. Parcela de DNA (0,5 μΙ de DNA parental em concentraçãode 0,2 pg a 1,0 μg em tampão com baixo teor de sal ou H2O destilada duasvezes) é misturada com as células de Agrobacterium tumefaciens LBA4404descongeladas ainda sobre gelo. A mistura é transferida para o fundo dacubeta de eletroporação e mantida em repouso sobre gelo por um a doisminutos. As células são eletroporadas (eletroporador Eppendorf 2510)pressionando-se a tecla "pulso" duas vezes (atingindo idealmente pulso de 4,0milissegundos). Em seguida, 0,5 ml de meio 2xYT à temperatura ambiente (oumeio SOC) são adicionados à cubeta e transferidos para tubo com tampa deencaixe de 15 ml (tal como tubo Falcon®). As células são incubadas a 28-300C, 200-250 rpm por três horas.
Parcelas de 250 μΙ são espalhadas sobre placas contendo meioYM e 50 pg/ml de espectinomicina e incubadas por três dias a 28-30 0C. Paraaumentar a quantidade de transformadores, pode-se realizar uma dentre duasetapas opcionais:
Opção 1: sobrepor as placas com 30 μΙ de 15 mg/ml de rifampicin.LBA4404 possui gene de resistência cromossômica para rifampicin. Estaseleção adicional elimina algumas colônias contaminadoras observadas aoutilizar-se preparações mais fracas de células competentes LBA4404.
Opção 2: realizar duas réplicas da eletroporação para compensaras células eletrocompetentes mais fracas.
Identificação de transformadoresQuatro colônias independentes são tomadas e riscadas sobreplacas que contêm meio mínimo AB e 50 pg/ml de espectinomicin paraisolamento de colônias isoladas. As placas são incubadas a 28 0C por doisa três dias. Uma única colônia para cada suposto cointegrado é tomada einoculada com 4 ml de 10 g/l de bactopeptona, 10 g/l de extrato delevedura, 5 g/l de cloreto de sódio e 50 mg/l de espectinomicin. A mistura éincubada por 24 horas a 28 0C mediante agitação. DNA de plasmídeo de 4ml de cultivo é isolado utilizando Qiagen Miniprep e lavagem de TampãoBP opcional. O DNA é eluído em 30 μΙ. Parcelas de 2 μΙ são utilizadas paraeletroporar 20 μΙ de DH10b + 20 μΙ de H2O destilada duas vezes conformeacima. Opcionalmente, parcela de 15 μΙ pode ser utilizada para transformar75 a 100 μΙ de DH5a com Eficiência de Biblioteca Invitrogen. As células são espalhadas sobre placas que contêm meio LB e 50 pg/ml deespectinomicin e incubadas a 37 0C por uma noite.
Três a quatro colônias independentes são tomadas para cadasuposto cointegrado e inoculadas com 4 ml de meio 2xYT (10 g/l debactopeptona, 10 g/l de extrato de levedura, 5 g/l de cloreto de sódio), com 50 pg/ml de espectinomicin. As células são incubadas a 37 0C por uma noite comagitação. Em seguida, isolar o DNA de plasmídeo de 4 ml de cultivo utilizandoMiniprep QIAprep® com lavagem de Tampão PB opcional (eluir em 50 μΙ).Utilizar 8 μΙ para digestão com Sall (utilizando DNA parental e PHP10523 comocontroles). Três outras digestões utilizando enzimas de restrição BamHI1 EcoRIe Hindlll são realizadas para quatro plasmídeos que representam doissupostos cointegrados com padrão de digestão de Sall correto (utilizando DNAparental e PHP10523 como controles). Géis eletrônicos são recomendadospara comparação.Exemplo 13
Transformação de Milho Utilizando Agrobacterium
Transformação de milho mediada por Agrobacterium é realizadaessencialmente conforme descrito por Zhao et al em Meth. Mol. Biol. 318: 315-323 (2006) (vide também Zhao et al, Moi Breed. 8: 323-333 (2001) e PatenteNorte-Americana n° 5.981.840 emitida em nove de novembro de 1999,incorporada ao presente como referência). O processo de transformação envolveinoculação de bactérias, cocultivo, repouso, seleção e regeneração de plantas.
1. Preparação de embriões imaturos:
Embriões de milho imaturos são dissecados de cariopses ecolocados em microtubo de 2 ml que contém 2 ml de meio PHI-A.
2. Infecção com Agrobacterium e cocultivo de embriõesimaturos:
2.1 Etapa de infecção
Meio PHI-A de (1) é removido com 1 ml de micropipetador eadiciona-se 1 ml de suspensão de Agrobacterium (incluindo, mas sem limitar-se ao Agrobacterium descrito no Exemplo 7). O tubo é suavemente invertidopara mistura. A mistura é incubada por cinco minutos à temperatura ambiente.
2.2 Etapa de cocultivo
A suspensão de Agrobacterium é removida da etapa de infecçãocom micropipetador de 1 ml. Utilizando espátula estéril, os embriões sãoraspados do tubo e transferidos para placa de meio PHI-B em placa Petri de100 χ 15 mm. Os embriões são orientados com o eixo embriônico para baixosobre a superfície do meio. Placas com os embriões são cultivadas a 20 0C1 noescuro, por três dias. L-cisteína pode ser utilizada na fase de cocultivo. Com ovetor binário padrão, o meio de cocultivo que recebeu 100 a 400 mg/l de L-cisteína é crítico para a recuperação de eventos transgênicos estáveis.
3. Seleção de supostos eventos transgênicos:A cada placa de meio PHI-D em placa Petri 100 χ 15 mm, dezembriões são transferidos, mantendo a orientação, e as placas são vedadascom parafina. As placas são incubadas no escuro a 28°C. Espera-se quesupostos eventos de crescimento ativo, na forma de tecido embriônico amareloclaro, sejam visíveis em seis a oito semanas. Embriões que não produzemeventos podem ser marrons e necróticos e pouco crescimento de tecidoesboroadiço é aparente. Suposto tecido embriônico transgênico é subcultivadoem placas PHI-D novas em intervalos de duas a três semanas, dependendo davelocidade de crescimento. Os eventos são registrados.
4. Regeneração de plantas TO:
Tecido embriônico propagado sobre meio PHI-D é subcultivadoem meio PHI-E (meio de amadurecimento de embriões somáticos), em cemplacas Petri de 25 mm e incubado a 28°C, no escuro, até o amadurecimentode embriões somáticos, por cerca de dez a dezoito dias. Embriões somáticosamadurecidos individuais com escutelo e coleóptilo bem definidos sãotransferidos para meio de germinação de embriões PHI-F e incubados a 28°Cna luz (cerca de 80 μΕ de lâmpadas fluorescentes brancas frias ouequivalentes). Em sete a dez dias, plantas regeneradas, com cerca de 10 cmde altura, são colocadas em vasos em mistura para hortas e estabilizadasutilizando métodos padrão de horticultura.
Meios para transformação de plantas
1. PHI-A: 4 g/l de sais básicos CHU, 1,0 ml/l de mistura de1000X vitamina de Eriksson, 0,5 mg/l de tiamin HCI, 1,5 mg/l de 2,4-D, 0,69 g/lde L-prolina, 68,5 g/l de sacarose, 36 g/l de glicose, pH 5,2. Adicionar 100 u.mde acetosiringona (esterilizada em filtro).
2. PHI-B: PHI-A sem glicose, aumentar 2,4-D para 2 mg/l,reduzir sacarose para 30 g/l e suplementar com 0,85 mg/l de nitrato de prata(esterilizado em filtro), 3,0 g/l de Gelrite®, 100 μΜ de acetosiringona(esterilizada em filtro), pH 5,8.
3. PHI-C: PHI-B sem Gelrite® e acetosiringona, reduzir 2,4-Dpara 1,5 mg/l e suplementar com 8,0 g/l de agar, 0,5 g/l de tampão ácido 2-[N-morfolino]etano-sulfônico (MES), 100 mg/l de carbenicilin (esterilizada em filtro).
4. PHl-D: PHI-C suplementado com 3 mg/l de bialafós(esterilizado em filtro).
5. PHI-E: 4,3 g/l de sais de Murashige e Skoog (MS) (Gibco,BRL 11117-074), 0,5 mg/l de ácido nicotínico, 0,1 mg/l de tiamina HCI, 0,5 mg/lde piridoxina HCI, 2,0 mg/l de glicina, 0,1 g/l de mio-inositol, 0,5 mg/l de zeatin(Sigma, Cat. N0 Z-0164), 1 mg/l de ácido indol acético (IAA), 26,4 Mg/l de ácidoabscísico (ABA), 60 g/l de sacarose, 3 mg/l de bialafós (esterilizado em filtro),100 mg/l de carbenicilin (esterilizado em filtro), 8 g/l de agar, pH 5,6.
6. PHI-F: PHI-E sem zeatin, IAA, ABA; reduzir sacarose para40 g/l; substituir agar com 1,5 g/l de Gelrite®; pH 5,6.
As plantas podem ser regeneradas a partir do calo transgênicopor meio de transferência, em primeiro lugar, de conjuntos de tecido para meioN6 suplementado com 0,2 mg por litro de 2,4-D. Após duas semanas, o tecidopode ser transferido para meio de regeneração (Fromm et al, Bio/Technology 8:833-839 (1990)). Plantas TO transgênicas podem ser regeneradas e o seufenótipo determinado. Semente T1 pode ser recolhida.
Além disso, construção de DNA recombinante que contém genede Arabidopsis validado pode ser introduzida em linhagem congênita de milhode elite por meio de transformação direta ou introgressão a partir de linhagemtransformada separadamente.
Plantas transgênicas, sejam elas cultivadas ou híbridas, podempassar por experimentos de campo mais vigorosos para estudo do aumento dorendimento e/ou estabilidade sob condições de limitação de nitrogênio e semlimitação de nitrogênio.Pode-se realizar análise de rendimento subseqüente paradeterminar se as plantas que contêm o gene líder de Arabidopsis validadoapresentam melhoria do desempenho de rendimento (sob condições delimitação ou sem limitação de nitrogênio), em comparação com as plantascontrole (ou referência) que não contêm o gene líder de Arabidopsis validado.Plantas que contêm o gene líder de Arabidopsis validado apresentariam menorperda de rendimento com relação às plantas controle, preferencialmente 50%menos perda de rendimento, sob condições de limitação de nitrogênio, ouapresentariam aumento de rendimento com relação às plantas controle sobcondições sem limitação de nitrogênio.
Exemplo 14
Avaliação de Compostos para Determinar a sua Capacidade de Inibir aAtividade de Transportadores de Nitrato
Os polipeptídeos descritos no presente podem ser produzidosutilizando qualquer quantidade de métodos conhecidos pelos técnicos noassunto. Estes métodos incluem, mas sem limitar-se a expressão em bactériasconforme descrito no Exemplo 11 ou expressão em cultivo de célulaseucarióticas, in planta e utilizando sistemas de expressão viral em linhagenscelulares ou organismos adequadamente infectados. Os polipeptídeos dopresente podem ser expressos como formas maduras das proteínas conformeobservado in vivo ou como proteínas de fusão por meio de ligação covalente auma série de enzimas, proteínas ou marcas de afinidade. Parceiros deproteínas de fusão comuns incluem glutationa S-transferase ("GST"), tioredoxin("Trx"), proteína de união de maltose e polipeptídeo hexahistidina C e/ou N-terminal ("(His)6")- As proteínas de fusão podem ser elaboradas com local dereconhecimento de protease no ponto de fusão, de forma que os parceiros defusão possam ser separados por meio de digestão de protease para gerarenzima madura intacta. Exemplos dessas proteases incluem trombina,enteroquinase e fator Xa. Pode-se utilizar, entretanto, qualquer protease quedivida especificamente o peptídeo que conecta a proteína de fusão e a enzima.
A purificação dos polipeptídeos do presente, se desejado, podeutilizar qualquer quantidade de tecnologias de separação familiares para ostécnicos no assunto de purificação de proteínas. Exemplos desses métodosincluem, mas sem limitar-se a homogeneização, filtragem, centrifugação,desnaturação a quente, precipitação de sulfato de amônio, dessalinização,precipitação de pH, cromatografia de troca de íons, cromatografia de interaçãohidrofóbica e cromatografia de afinidade, em que o Iigante de afinidaderepresenta substrato, análogo de substrato ou inibidor. Quando ospolipeptídeos do presente forem expressos na forma de proteínas de fusão, oprotocolo de purificação pode incluir o uso de resina de afinidade, que éespecífica para a marca de proteína de fusão ligada à enzima expressa ouresina de afinidade que contém Iigantes que sejam específicos para a enzima.
Os polipeptídeos do presente podem ser expressos, por exemplo, na forma deproteína de fusão acoplada ao terminal C de tioredoxin. Além disso, peptídeo(His)6 pode ser elaborado no terminal N da porção de tioredoxin fundida paragerar oportunidades adicionais de purificação de afinidade. Outras resinas deafinidade apropriadas poderão ser sintetizadas por meio de ligação dos Iigantesapropriados a qualquer resina adequada, tal como Sepharose 4B. Emrealização alternativa, proteína de fusão de tioredoxina pode ser eluídautilizando ditiotreitol; entretanto, a eluição pode ser obtida utilizando outrosreagentes que interagem para deslocar a tioredoxina da resina. Estesreagentes incluem β-mercaptoetanol ou outro tiol reduzido. A proteína de fusãoeluída pode ser submetida a purificação adicional por meios tradicionais,conforme indicado acima, se desejado. A divisão proteolítica da proteína defusão de tioredoxina e a enzima pode ser realizada após a purificação daproteína de fusão ou enquanto a proteína ainda estiver unida à resina deafinidade ThioBond® ou outra resina.
Enzima bruta, parcialmente purificada ou purificada, sejaisoladamente ou na forma de proteína de fusão, pode ser utilizada em testes deavaliação de compostos para determinar a sua capacidade de inibição daativação enzimática dos polipeptídeos descritos no presente. Podem serconduzidos testes sob condições experimentais bem conhecidas que permitama atividade enzimática ideal.
Testes que permitem a rápida seleção da atividade de transportede nitrato foram descritos na literatura, incluindo, mas sem limitar-se a testeque mede a absorção de nitrato enriquecido com 15N em oócitos de Xenopusque expressam as proteínas (Tong et al, The Plant J. (2005) 41: 442-450).
Exemplo 15
Expansão da Faixa de Absorção de Nitrato Linear de HATS de PlantasSuperiores por Meio de Alteração Genética
HATs conhecidamente possuem baixo Km (na faixa de 10 a100 μΜ) e baixo Vmax (Doddema et al, Kinetics Physiol. Plant (1979) 45:332-338, Meharg et al (1995), J. Membr. Bioi 145: 49-66, Touraine et al,Plant Physiol. (1997) 114: 137-144, Liu et al, Plant Cell (1999) 11 (5): 865-874). A velocidade de absorção de HATs permanece constante, portanto,desde que a concentração de nitrato atinja nível cerca de duas a três vezesmais alto que o seu Km.
A concentração de nitrato no campo mais relevante é de cerca de2 a 5 mM em fazenda de milho moderna típica. Dentro desta faixa deconcentração, a velocidade de absorção de HATs é bem saturada. A extensãoda absorção de nitrato linear de HATs de muito baixa para concentração nocampo relevante permitiria que a safra de milho utilizasse totalmente o nitratodisponível para melhor crescimento e produtividade. Esse transportadortambém permitiria que a planta de safra mantivesse a eficiência de absorçãonormal em ingresso de nitrato mais baixo pela sua maior capacidade deabsorção rápida em concentração de nitrato relativamente mais baixa.
Vários métodos de alteração genética (Stemmet, W. P., PNAS(1994) 91: 10747-10751, Crameri et al, Nature (1998) 391: 288-291, Ness et al, Nature Biotech. (1999) 17: 893-896) podem ser utilizados para gerar diferentestipos de bibliotecas de HATs alterados. Podem ser geradas bibliotecas, porexemplo, por alteração de gene familiar e gene único. Diversidades adicionaispodem ser introduzidas por oligos bloqueados que conduzem mutações deaminoácidos.
As bibliotecas de HAT alteradas podem ser expressas funcionalmenteem um dos hospedeiros heterólogos, tais como levedura, E. coli e algas verdes.Preferencialmente, o hospedeiro não possui o processo de assimilação de nitrato,exceto por nitrato reductase endógena ou introduzida. A velocidade de absorção denitrato por alteradores expressos funcionalmente pode ser testada por meio de medição direta ou esgotamento de nitrato no meio de teste por meio de HPLC ououtros meios analíticos ou por medição de nitrito gerado por nitrato reductase namesma célula. A concentração de nitrito pode ser facilmente determinada por meiode teste colorimétrico (tal como o uso de Reagente Greiss) ou outro meio analítico(HPLC). Caracterização adicional das supostas coincidências da seleção de váriasbibliotecas alteradas pode ser atingida por meio de medição das velocidades deabsorção contra diferentes concentrações de nitrato. Este teste forneceráparâmetros cinéticos de absorção de Km e Vmax.
Coincidências confirmadas com propriedades aprimoradas podemser novamente alteradas em seguida para gerar segunda rodada de bibliotecasalteradas e o esquema de seleção mencionado acima pode ser utilizado paraidentificar coincidências de segunda rodada. Este processo pode ser repetidoaté que sejam identificadas diversas variantes alteradas que atendam àspropriedades cinéticas desejadas.Exemplo 16
Isolamento. Clonagem ε Seqüenciamento do Promotor Nar da LinhagemCongênita B73 de Milho
Identificação de clone de BAC que conduz o gene Nar
Biblioteca de BAC derivada da linhagem congênita B71 de milhofoi selecionada por meio de PCR utilizando os primers frontal e reversoilustrados em SEQ ID N0 75 e 76, respectivamente. As condições de cicloforam etapa de ativação inicial a 95°C por quinze minutos, seguida por 35ciclos a 94°C por um minuto, 60°C por um minuto e 72°C por um minuto. Aextensão final foi a 72°C por dez minutos. Foi obtido produto de 377 bp. Oclone de BAC ZMMBBb0521a1 foi identificado como conduzindo o gene Nar.
Clonagem do promotor Nar da linhagem congênita B73 de milho
O promotor Nar foi clonado por meio de PCR utilizando o primerfrontal e reverso com locais de enzimas de restrição para BamHI e Hindlllilustrados em SEQ ID N0 77 e 78, respectivamente.
A 1 μl de DNA de BAC diluído (1:100) do clone de BACZMMBBb0521a1, foram adicionados 1 μl de mistura de primer emconcentração de 10 μΜ cada, 4 μl de DNTPs em concentração de 2,5 mM, 10μl de 5x tampão HF e 33,5 μl de H2O e 0,5 μl de DNA Polimerase de AltaFidelidade Phusion (Finnzymes). As condições de ciclo foram etapa deativação inicial a 98°C por trinta segundos, seguida por 35 ciclos de 98°C pordez segundos, 63°C por trinta segundos e 72°C por um minuto. A extensãofinal foi a 72°C por dez minutos. Foi obtido produto de 3621 bp. O produto de3621 bp foi purificado com gel utilizando o Kit de Extração de Gel Qiaquick®(Qiagen) e eluído com 88 μΙ de Tampão de Eluição.
À faixa purificada, foram adicionados 10 μl de tampão E(Promega) e 1 μl de cada uma das enzimas de restrição, BamHI e Hind III (a 10U/μl cada). A mistura de teste foi incubada a 37°C por três horas e limpa comKit de Purificação de PCR Qiaquick® (Qiagen).
0 vetor pENTR-5' (SEQ ID N0 85) foi digerido com BamHI eHindlll e desfosforilado. A faixa de PCR purificada foi inserida no vetor pENTR-5' preparado utilizando o Kit de Ligação Rápida Epicentre. A mistura de reaçãode ligação continha 1,5 μΙ de tampão (1 Ox), 1,5 μΙ de ATP (1 Ox), 1 μg de ligase,1 μΙ de vetor pENTR-5' (cerca de 10 ng/μΙ de BamHI/Hindlll/vetordesfosforilado), 1 μΙ de inserto de promotor (cerca de 30 ng) e 9 μΙ de H2O. Areação de ligação foi mantida em processamento por quinze minutos àtemperatura ambiente e foi suspensa por meio de incubação da mistura a 70 0Cpor quinze minutos.
Transformação em bactérias ε seleção por PCR em busca de inserto1 μΙ da mistura de ligação foi adicionado a 20 μΙ de célulaseletrocompetentes (DH10B EIectroMax-Invitrogen), a mistura foi eletroporada comPorador Celular Gibco BRL1 adicionou-se em seguida 1 ml de meios SOC e a misturafoi incubada em agitador a 37 0C por uma hora. 150 μΙ de células foram colocadossobre placas LB com seleção de canamicin e cultivados por uma noite a 37 0C.
Doze colônias foram tomadas e adicionou-se 30 μΙ de meios LB.As colônias foram selecionadas utilizando PCR. A 1 μΙ de DNA de colônia(colônia/30 μΙ de LB), foram adicionados 5 μΙ de 2x mistura mestre de HotTaq(Qiagen), 1 μΙ (10 mM de mistura de primers, SEQ ID N0 77 e 78) e 3 μΙ dedH20. As condições de ciclo foram ativação inicial a 95 0C por quinze minutos,seguida por 35 ciclos de 95 0C por cinqüenta segundos, 55 0C por cinqüentasegundos e 72 0C por quatro minutos.
A extensão final foi a 72 0C por dez minutos.
Seqüenciamento de insertos
DNA que conduz o inserto foi seqüenciado utilizando os primersde seqüências ilustrados em SEQ ID N0 79 a 84. A seqüência do inserto éexibida em SEQ ID N0 70. A construção de vetor que conduz o inserto de 3621bp foi denominada PHP27621 e é exibida em SEQ ID N0 86 e na Fig. 1.
Exemplo 17
Teste do Promotor de NAR em Milho Transgênico ε Arabidopsis
Utilizando tecnologia LR Clonase de portal da Invitrogen®,realizou-se reação de recombinação de LR MuItiSite Gateway® para criar ovetor binário promotor de NAR de milho::GUS::PINII, UBI::MO-PAT::PINII eLTP2::DS-RED PINII JT (PHP27660, SEQ ID N0 87 e Fig. 2). O vetorPHP27660 contém os conjuntos de expressão a seguir:
1. Conjunto de término promotor de ubiquitin::MO-PAT::PINIIque expressa o gene de resistência a herbicidas PAT utilizado para seleçãodurante o processo de transformação.
2. Conjunto de término promotor de LTP2::DS-RED2::Pinllque expressa o gene marcador de coloração DS-VERMELHO utilizado paraseleção de sementes.
3. Conjunto de término promotor de NAR::GUS::PINII queexpressa o gene GUS sob o controle do promotor de NAR de milho.
O vetor PHP27660 foi eletroporado utilizando o protocolo descritono Exemplo 16 em células de Agrobacterium LBA4404 que contêm PHP10523por meio de eletroporação, criando o vetor cointegrado final PHP27860 (SEQID N0 88 e Fig. 3), foi utilizado em seguida para transformação de milho combase em Agrobacterium conforme descrito no Exemplo 17. Plantastransgênicas TO foram amostradas para determinar a expressão de GUS.Separadamente, o mesmo vetor (PHP27860) também foi utilizado paratransformação de Arabidopsis, seguindo os procedimentos de mergulhamentode inflorescência padrão. Eventos transgênicos foram selecionados por meiode pulverização de herbicida glufosinato sobre as mudas T1. As plantas T1resistentes a herbicidas foram amostradas para determinar a expressão de GUS.
Amostras de tecido de folha e raiz foram recolhidas de plantastransgênicas em momentos diferentes, incluindo o estágio de muda e maduro.Amostras de tecidos recém colhidas foram dissecadas em pequenos pedaçospara facilitar a penetração da solução de manchas de GUS. Manchashistoquímicas de GUS foram realizadas seguindo o protocolo padrão(Jefferson1 R. A., Kavanagh1 Τ. A., Bevan1 M. W., 1987, Gus Fusions: Beta-Glucuronidase as a Sensitive and Versatile Gene Fusion Marker in HigherPlants, EMBO J. 6 (13): 3901-3907) em incubação a 37 0C por uma noite.
Nenhuma atividade promotora significativa foi observada em milhotransgênico e tecidos de Arabidopsis.
Exemplo 18
Teste dos Efeitos de Seqüências de Junção Externas Sobre o Promotor deNAR em Milho Transgênico ε Arabidopsis
O sistema de clonagem Gateway deixa fragmento curto deseqüências de "pegadas" entre os componentes, particularmente fragmentoATT-B1 de 21 bp entre o promotor de NAR e a região de codificação de GUS.
Demonstrou-se que isso enfraquece ou até elimina a atividade promotora emcertos casos. Isso se refere provavelmente à distância física entre elementospromotores básicos e o códon de início. Para determinar se a introdução dolocal ATT-B1 está afetando negativamente o promotor de NAR1 construção quecontém o conjunto promotor NAR de milho::GUS::PINII é elaborada commétodo de clonagem convencional, ou seja, sem o uso do sistema Gateway.Plantas de milho transgênicas são produzidas por meio de transformação combase em Agrobacteriume várias amostras de tecidos são recolhidas paraestudo de expressão de GUS conforme descrito no Exemplo 17.
Exemplo 19
Teste do Promotor de NAR de Milho em Série de Exclusão
O gene NAR possui padrão de expressão específico de raiz eindutível por nitrato. Para determinar os fragmentos que determinam aespecificidade e a atividade promotora de NAR1 uma série de construções quecontêm fragmentos promotores de NAR truncados ligados às seqüências deGUS e a extremidade PINII é elaborada e testada conforme descrito para opromotor de comprimento total nos Exemplos 17 e 18.
Utilizando BLASTN (Ferramenta de Busca de Alinhamento Local
Básico; Altschul et al (1993), J. Moi Biol. 215: 403-410), podem seridentificadas seqüências no promotor de NAR que poderão ser importantespara aumentar ou suprimir a atividade promotora. A seqüência em volta de 1,5a 1,9 kb do promotor de NAR exibe homologia para outro gene e elemento detransposon. Espera-se, portanto, que a exclusão deste fragmento conforme exibidoem SEQ ID N0 89 adicione informações sobre a atividade promotora de NAR.
Além disso, a truncagem que reduz o comprimento do promotorconforme exibido em SEQ ID N0 71, 72, 73, 74 e 90 pode também ser testadada mesma forma descrita para o promotor de comprimento total nos Exemplos17 e 18. Subfragmentos promotores adicionais podem ser preparados utilizandoprimers derivados da seqüência promotora de NAR de 3,6 kb em PCR.
Exemplo 20
Avaliação da Absorção de Nitrato em Milho Utilizando Seqüências de HATε NAR ε Suas Combinações
Foram preparadas as construções de expressão de milho a seguirpara avaliação da absorção de nitrato em milho: PHP27280 (SEQ ID N0 93 eFig. 4), PHP27281 (SEQ ID N0 94 e Fig. 5), PHP27282 (SEQ ID N0 95 e Fig. 6)e PHP27283 (SEQ ID N0 96 e Fig. 7).
Construções adicionais que compreendem seqüências de HAT ecombinações de seqüências de HAT e Nar serão preparadas e testadas paradeterminar a sua capacidade de alteração de transporte de nitrato. TO, T1 egerações subseqüentes serão avaliadas para determinar a biomassa alterada eo peso total da espiga sob condições de 1 mM de nitrato.Listagem de Seqüências
<110> Ε. I. DU PONT DE NEMOURS AND COMPANY
<120> COMPONENTES DE TRANSPORTADORES DE NITRATO
<130> BB1555
<150> 60/708318<151> 15-08-2005
<150> 60/784618<151> 22-03-2006
<150> 60/785143<151> 23-03-2006
<160> 96
<170> PATENT IN VERSION 3.3
<210> 1
<211> 25
<212> DNA
<213> PRIMER
<4 00> 1
CCAACTGGAG TCCAACACCC ACAAA
<210> 2
<211> 21
<212> DNA
<213> PRIMER
<400> 2
CATGCTGCTC GTCCACTGCG G
<210> 3
<211> 20
<212> DNA
<213> PRIMER
<4 00> 3
TAATACGACT CACTATAGGG
<210> 4
<211> 19
<212> DNA
<213> PRIMER
<4 00> 4
TATTTAGGTG ACACTATAG
<210> 5
<211> 20
<212> DNA
<213> PRIMER
<400> 5
ATGTTGTTGG TGGTGAGCTG<210> 6
<211> 18
<212> DNA
<213> PRIMER
<400> 6
ACACGAGGTT GGCCATGC
<210> 7
<211> 25
<212> DNA
<213> PRIMER
<400> 7
GTTTGACACC CCTTTTCTAG CAAGG
<210> 8
<211> 25
<212> DNA
<213> PRIMER
<400> 8
CCTTGCTAGA AAAGGGGTGT CAAAC
<210> 9
<211> 27
<212> DNA
<213> PRIMER
<400> 9
GGTCCCGTTT GGTTAGAGAG ACTAATC
<210> 10
<211> 22
<212> DNA
<213> PRIMER
<4 00> 10
GCGCAACGAA ATGCATTGGT CA
<210> 11
<211> 25
<212> DNA
<213> PRIMER
<400> 11
AGGGGAGAGA AGAGAAAAAG CGGGT<210> 12<211> 28<212> DNA<213> PRIMER
<4 00> 12
GCTGCATGTT TACGACTACA ATCTTTGG
<210> 13
<211> 25
<212> DNA
<213> PRIMER<400> 13
TTTGTGGGTG TTGGACTCCA GTTGG
<210> 14
<211> 23
<212> DNA
<213> PRIMER
<400> 14
TTTGTGGGTG TTGGACTCCA GTT
<210> 15
<211> 20
<212> DNA
<213> PRIMER
<400> 15
TTTGTGGGTG TTGGACTCCA
<210> 16
<211> 17
<212> DNA
<213> PRIMER
<4 00> 16
GGGATGACGC CGAAGGT
<210> 17
<211> 17
<212> DNA
<213> PRIMER
<400> 17
CTTCGGCGTC ATCCCCT
<210> 18
<211> 17
<212> DNA
<213> PRIMER
<400> 18
AAGGGGATGA CGCCGAA
<210> 19
<211> 17
<212> DNA
<213> PRIMER
<4 00> 19
TTCGGCGTCA TCCCCTT
<210> 20
<211> 21
<212> DNA
<213> PRIMER
<400> 20
CACATCGCCG TGGGCATCCT T<210> 21
<211> 18
<212> DNA
<213> PRIMER
<400> 21
AGGATGCCCA CGGCGATG
<210> 22
<211> 21
<212> DNA
<213> PRIMER
<400> 22
CACATCGCCG TGGGCATCCT
<210> 23
<211> 21
<212> DNA
<213> PRIMER
<400> 23
AAGGATGCCC ACGGCGATGT
<210> 24
<211> 18
<212> DNA
<213> PRIMER
<4 00> 24
TGCCCCGCGG TTAGCACA
<210> 25
<211> 18
<212> DNA
<213> PRIMER
<4 00> 25
TGTGCTAACC GCGGGGCA
<210> 26
<211> 18
<212> DNA
<213> PRIMER
<400> 26
GCGGTTAGCA CAAGGATG
<210> 27
<211> 18
<212> DNA
<213> PRIMER
<4 00> 27
CATCCTTGTG CTAACCGC
<210> 28
<211> 25
<212> DNA
<213> PRIMER<400> 28
GGTAGTTGGC GACGGCGTGC CAGAG
<210> 29
<211> 22
<212> DNA
<213> PRIMER
<400> 29
GCGACGGCGT GCCAGAGCAC CC
<210> 30
<211> 25
<212> DNA
<213> PRIMER
<4 00> 30
CAGGTTCTCC CGGATGATGG GGATC 25
<210> 31
<211> 26
<212> DNA
<213> PRIMER
<4 00> 31
GATCCCCATC ATCCGGGAGA ACCTGG 26
<210> 32
<211> 25
<212> DNA
<213> PRIMER
<4 00> 32
GATCCCCATC ATCCGGGAGA ACCTG 25
<210> 33
<211> 26
<212> DNA
<213> PRIMER
<4 00> 33
CCAGGTTCTC CCGGATGATG GGGATC 2 6
<210> 34<211> 3924<212> DNA
<213> Zea mays<400> 34
TTCGAGGGCA ATGGGTTCCA AAGAATGTCAAGGTTTTTTC TCCCCGAGTT AATTTGCTTCAGTTATTTGT TTTGACGGTT TATATATCCGTGACTTGACG GCACATGCAT GCATGCGTGGGCCAAACGTG CAATTGACTC ATTGAGTAGTACAAGCATTA ATATTTGCTG CATATATATATGCAACTTGA TCTTGTTAAT ΤΑΤΤΑΤΑΤΑΤCGACCATGCC TTGAGTAGAG CGTGAAAAATAGATGACACT ATTTGATATT GTTTAAAGATTTTAATCAGG GATGGTAGGG ACTAGTATTTATATACAATA ATAATAAGAA GCCACCAACCATGAGGGGTG TATCGGAATT TGACTTCCGA
TTTGAATTAG ACACTTAGTT ATTTATGAAA 60
CAAACTATAA TTAACCCTAA GCAAGGTGTT 120
TGTTAGCTTG GTGGCTAGCT TGTATCCATT 180
AGTGCACCGT GCGGCGGTTT GTGACGCGGT 24 0
CATCAGCAGG CTTGCGATCA TTAGACACTA 300
TATACACACA CATGCTTCAC TGACGACGCT 360
CCTAAGCACA ACGAACAAAC CTTAGATATG 4 20
AGGGGGTGAA AAAAAGGGAC GAGTAATTAT 4 80
GAGATAGGGA ATGTGCTGAA TAGATCAATT 54 0
CCTCTATGAT TTTCCATGTA ACACCTTTGA 600
TTTGAATTAT TATCTGTTCC AATATATTAG 660
GTTGTTCTTG CGTGTCCGTA CGCTCGTACG 720GTAGCTCGTT GGGTTGTTGT ACCAGCCATC CTGCTACTGC GCAACGAAAT GCATTGGTCA 780TCTCAATTAA GTCCAAAGAT TGTAGTCGTA AACATGCAGC CAATAAGAGC AAGGATAATA 840GTTTAGCCAT TGATATGTCT TCTAAAGCTA ATTATTACTG TATTGGACCC ACCTCGTACT 900CTCATTCTCT CACCACTTGT TTCGGAATCT GTACTGCTAC AACCAGCTCT TAGTCGACTG 960ATAATTAACT ACCCGCTTTT TCTCTTCTCT CCCCTCCAAC TGCAAAAATC TAATGTGGCA 1020AACCATTTAG CCTGCTTACA TCGTCAAAAA TCTAATGTGG TAAAGTGTGA AGTGTCCTAA 1080AGTTTTAGTC CTTAATTTCT TTCAATAAAC TAAACTAAAC TTTAGAAAAC TCAAACAAGT 1140CCTCATGTTT GCACATTTTA GGTCTCGTTT GGTTTGAGGG ACTAAAGATT AGTCCCTCCA 1200TTTTAGTCCC ATTTAGTTAC TAAATTACCA AACAGTAGGA CTAAAACAGG GACTAAATTG 1260TTTTAGTCCC TAGTCCCTTA AGATGGCTAA AAGGGACTAA ACCATATTAA TTCCACATTT 1320GCCCCTCATT TAGTTCAATT GTACTAATAG CAGGAGAATG TTAAAAGTCA TTTTAATCTT 1380CTTATGAGTC ATTTAGGCCC TGTTTGGTTC CATTAGTCAT AGAACTAAAG TTTAGTTGTA 1440GGGACTAAAT AGATTCTAAA TACATTAAAT GCAACACATA AAGACCAAAA TGCCCTTTTT 1500TGTTTGACAC CCCTTTTCTA GCAAGGGTAT TTGGAGTAAA TGTTGCCCTT TGGTCCCTTT 1560TAGCACCCAT GTGAGGGACT AGAGACTAAA ACCAATTAGT CCCTACTTTA GTCATTCCGT 1620TTAGCAAAAT AGAGACTAAA CGAGACTAAA AACGAGAGGC TAAAGATTAG TCTCTCTAAC 1680CAAACGGGAC CTAAAATTAC TATCTGTATG TATCTGTTGG ATGGAAAAGT CAGAACGTCG 17 4 0TGGGGACCAC CACGCTACCA CATGGTACGG TAATGTCAGA AAGTCGCTAT CTTCTTCGAT 1800CTGCATCTCC ACTCCAGCCA GCGCTGCTTA TCATCAGCAT TCACGAAGCC GCCCAACGAT 18 60AATAAAAAAT GTCAGCGCGA TCGCGCACTG CCTATAAAAC CCCGGCCGTC GCGTCCATGG 1920CGTTTCAGGA TCCGAGCACC AGAAAGAAGC TGAGTTAGCT AGGGTCAAGA AAGTAGTCAG 1980CACTCAGCAG GAAAAGAAGC AGAGACTACA CATCATGGCG AGTGACGCCG CGCATGGTAG 204 0CTCGCTGGAC GGGGTGACGC CGTCGAGCAA GTTCGACCTG CCGGTGGACT CGGAGCACAA 2100GGCCAAGACC ATCCGCCTGC TCTCCTTCGC GAACCCGCAC ATGCGTACCT TCCACCTCTC 2160CTGGATGTCC TTCTTCACCT GCGTCGTCTC CACCTTCGCG GCGGCGCCGC TGATCCCCAT 2220CATCCGGGAG AACCTGGGCC TGACCAAGGC CGACATCGGC AACGCCGGGG TGGCCTCCGT 2280CTCGGGCGCC ATCTTCTCGC GCCTCGCCAT GGGCGCCGTC TGCGACCTGC TGGGCCCGCG 234 0CTACGGCTGC GCCTTCGTCG TCATGCTGGC GGCGCCCGCG GTGTTCTGCA TGGCCGTCAT 24 00CGACAGCGCC GCGGGCTACG TCGCGTGCCG CTTCCTCATC GGCTTCTCCC TCGCCACCTT 24 60CGTCTCCTGC CAGTACTGGA CCAGCACCAT GTTCAACATC AAGATCATCG GCACCGTCAA 2520CGCGCTGGCG TCGGGGTGGG GCGACATGGG CGGCGGCGCC ACGCAGCTCA TCATGCCCTT 2580CGTCTACGAG GCCATCCTCC GCTGCGGCGC CACGCCGTTC GCCGCGTGGC GCATCGCCTA 2 64 0CTTCGTGCCG GGGATCATGC ACATCGCCGT GGGCATCCTT GTGCTAACCG CGGGGCAGGA 27 00CCTCCCCGAC GGCAACCTCC GCAGCCTCCG GAAGCAGCAG CAGCAGCAGC AGCAGGGTGA 27 60CGGCGGCGAT GCCAGCTGCT GCCGCAGGGA CAGCTTCTCC AGGGTGCTCT GGCACGCCGT 2820CGCCAACTAC CGCACCTGGG TCTTCGTCTT CGTGTACGGC TACAGCATGG GCGTGCAGCT 2880CACCACCAAC AACATCATCG CCGAGTTCTA CTACGACCAG TTCGAGCTCG ACATCCGCGT 2940GGCCGGCATC ATCGCCGCCT GCTTCGGCAT GGCCAACCTC GTGTCGCGGC CCCTGGGCGG 3000CGTGCTCTCC GACCTCGGCG CGCGGTACTG GGGCATGCGC GCGCGCCTCT GGAACATCTG 30 60GATCCTCCAG ACCGCCGGCG GCGCGTTCTG CTTCTGGCTC GGCCGCGCCA GCGAGCTCCC 3120GGCCTCCGTC ACCGCCATGG TGCTCTTCTC CTTCTGCGCG CAGGCCGCCT GCGGCGCCAC 3180CTTCGGCGTC ATCCCCTTCG TCTCCCGCCG CTCGCTGGGC GTCATCTCCG GGCTCACGGG 324 0CGCCGGCGGC AACGTGGGCG CCGGGCTCAC GCAGCTGCTC TTCTTCACCA CGTCCAGCTA 3300CTCCACGAGG AAGGGCATCG AGAACATGGG CATCATGGCC ATGGCGTGCA CGCTGCCGCT 3360CGTCCTCGTG CACTTCCCGC AGTGGGGTTC CATGCTCCTG CCGCCCAGCG CCGACGCCGA 3420CGAGGAGCGG TACTATGCCT CCGAGTGGAG CGAGGACGAG AAGAGCGTAG GCCGTCACAG 3480CGCAAGCCTA AAGTTCGCCG AGAACAGCCG GTCCGAGCGT GGCAAGCGCA ACGCCGTCGC 3540CGTCCTCGCC ACGGCCGCGG CCACGCCGGA GCACGTCGTG TAACAACTAG CGTACGTACT 3600TGTAGGTTCT GATCGAGCAT ACAGCAAACT GTGTAATGTA CTCTAGCAGT CTAGCTTGCT 3660CCGATACTCC TGCTTCCAAC AAAATTATGA AACATAGGCT AATATGGATC GGTGTACACG 3720TACGTCGTAG TATTTCCTGT GCAACATACA CAATTCAGTA AATGAACAAA CTTTGCTCAT 37 80GTGCATTCTT CTGCAAAGTA CAAATAAAAT CAAATAGAGA GGCCAGGACA ACGTCTATGA 38 40TCTATCAACT TGGTTGTTAA AATTAAAGAA AACCAACTGG AGTCCAACAC CCACAAAACA 3900TTTTGTCTCT AACACGTTGT TGTC 3924
<210> 35
<211> 1569
<212> DNA
<213> Zea mays<400> 35
ATGGCGAGTG ACGCCGCGCA TGGTAGCTCGGACCTGCCGG TGGACTCGGA GCACAAGGCCCCGCACATGC GTACCTTCCA CCTCTCCTGGTTCGCGGCGG CGCCGCTGAT CCCCATCATCATCGGCAACG CCGGGGTGGC CTCCGTCTCGGCCGTCTGCG ACCTGCTGGG CCCGCGCTACCCCGCGGTGT TCTGCATGGC CGTCATCGACCTCATCGGCT TCTCCCTCGC CACCTTCGTCAACATCAAGA TCATCGGCAC CGTCAACGCGGGCGCCACGC AGCTCATCAT GCCCTTCGTCCCGTTCGCCG CGTGGCGCAT CGCCTACTTCATCCTTGTGC TAACCGCGGG GCAGGACCTCCAGCAGCAGC AGCAGCAGCA GGGTGACGGCTTCTCCAGGG TGCTCTGGCA CGCCGTCGCCTACGGCTACA GCATGGGCGT GCAGCTCACCGACCAGTTCG AGCTCGACAT CCGCGTGGCCAACCTCGTGT CGCGGCCCCT GGGCGGCGTGATGCGCGCGC GCCTCTGGAA CATCTGGATCTGGCTCGGCC GCGCCAGCGA GCTCCCGGCCTGCGCGCAGG CCGCCTGCGG CGCCACCTTCCTGGGCGTCA TCTCCGGGCT CACGGGCGCCCTGCTCTTCT TCACCACGTC CAGCTACTCCATGGCCATGG CGTGCACGCT GCCGCTCGTCCTCCTGCCGC CCAGCGCCGA CGCCGACGAGGACGAGAAGA GCGTAGGCCG TCACAGCGCAGAGCGTGGCA AGCGCAACGC CGTCGCCGTCGTCGTGTAA
<210> 36
<211> 522
<212> PRT
<213> Zea mays
<400> 36
CTGGACGGGG TGACGCCGTC GAGCAAGTTC 60AAGACCATCC GCCTGCTCTC CTTCGCGAAC 120ATGTCCTTCT TCACCTGCGT CGTCTCCACC 180CGGGAGAACC TGGGCCTGAC CAAGGCCGAC 24 0GGCGCCATCT TCTCGCGCCT CGCCATGGGC 300GGCTGCGCCT TCGTCGTCAT GCTGGCGGCG 360AGCGCCGCGG GCTACGTCGC GTGCCGCTTC 420TCCTGCCAGT ACTGGACCAG CACCATGTTC 4 80CTGGCGTCGG GGTGGGGCGA CATGGGCGGC 54 0TACGAGGCCA TCCTCCGCTG CGGCGCCACG 600GTGCCGGGGA TCATGCACAT CGCCGTGGGC 660CCCGACGGCA ACCTCCGCAG CCTCCGGAAG 720GGCGATGCCA GCTGCTGCCG CAGGGACAGC 780AACTACCGCA CCTGGGTCTT CGTCTTCGTG 84 0ACCAACAACA TCATCGCCGA GTTCTACTAC 900GGCATCATCG CCGCCTGCTT CGGCATGGCC 960CTCTCCGACC TCGGCGCGCG GTACTGGGGC 1020CTCCAGACCG CCGGCGGCGC GTTCTGCTTC 1080TCCGTCACCG CCATGGTGCT CTTCTCCTTC 114 0GGCGTCATCC CCTTCGTCTC CCGCCGCTCG 1200GGCGGCAACG TGGGCGCCGG GCTCACGCAG 1260ACGAGGAAGG GCATCGAGAA CATGGGCATC 1320CTCGTGCACT TCCCGCAGTG GGGTTCCATG 1380GAGCGGTACT ATGCCTCCGA GTGGAGCGAG 14 40AGCCTAAAGT TCGCCGAGAA CAGCCGGTCC 1500CTCGCCACGG CCGCGGCCAC GCCGGAGCAC 1560
1569
MET ALA SER ASP ALA ALA HIS GLY SER SER LEU ASP GLY VAL THR PRO1 5 10 15
SER SER LYS PHE ASP LEU PRO VAL ASP SER GLU HIS LYS ALA LYS THR20 25 30
ILE ARG LEU LEU SER PHE ALA ASN PRO HIS MET ARG THR PHE HIS LEU35 40 45
SER TRP MET SER PHE PHE THR CYS VAL VAL SER THR PHE ALA ALA ALA50 55 60
PRO LEU ILE PRO ILE ILE ARG GLU ASN LEU GLY LEU THR LYS ALA ASP65 70 75 80
ILE GLY ASN ALA GLY VAL AI4A SER VAL SER GLY ALA ILE PHE SER ARG85 90 95
LEU ALA MET GLY ALA VAL CYS ASP LEU LEU GLY PRO ARG TYR GLY CYS100 105 HO
ALA PHE VAL VAL MET LEU ALA ALA PRO ALA VAL PHE CYS MET ALA VAL
115 120 125ILE ASP SER ALA ALA GLY TYR VAL ALA CYS ARG PHE LEU ILE GLY PHE130 135 140
SER LEU ALA THR PHE VAL SER CYS GLN TYR TRP THR SER THR MET PHE145 150 155 160
ASN ILE LYS ILE ILE GLY THR VAL ASN ALA LEU ALA SER GLY TRP GLY165 170 175
ASP MET GLY GLY GLY ALA THR GLN LEU ILE MET PRO PHE VAL TYR GLU180 185 190
ALA ILE LEU ARG CYS GLY ALA THR PRO PHE ALA ALA TRP ARG ILE ALA195 200 205
TYR PHE VAL PRO GLY ILE MET HIS ILE ALA VAL GLY ILE LEU VAL LEU210 215 220
THR ALA GLY GLN ASP LEU PRO ASP GLY ASN LEU ARG SER LEU ARG LYS225 230 235 240
GLN GLN GLN GLN GLN GLN GLN GLY ASP GLY GLY ASP ALA SER CYS CYS245 250 255
ARG ARG ASP SER PHE SER ARG VAL LEU TRP HIS ALA VAL ALA ASN TYR260 265 270
ARG THR TRP VAL PHE VAL PHE VAL TYR GLY TYR SER MET GLY VAL GLN275 280 285
LEU THR THR ASN ASN ILE ILE ALA GLU PHE TYR TYR ASP GLN PHE GLU290 295 300
LEU ASP ILE ARG VAL ALA GLY ILE ILE ALA ALA CYS PHE GLY MET ALA305 310 315 320
ASN LEU VAL SER ARG PRO LEU GLY GLY VAL LEU SER ASP LEU GLY ALA325 330 335
ARG TYR TRP GLY MET ARG ALA ARG LEU TRP ASN ILE TRP ILE LEU GLN340 345 350
THR ALA GLY GLY ALA PHE CYS PHE TRP LEU GLY ARG ALA SER GLU LEU355 360 365
PRO ALA SER VAL THR ALA MET VAL LEU PHE SER PHE CYS ALA GLN ALA370 375 380
ALA CYS GLY ALA THR PHE GLY VAL ILE PRO PHE VAL SER ARG ARG SER385 390 395 400
LEU GLY VAL ILE SER GLY LEU THR GLY ALA GLY GLY ASN VAL GLY ALA405 410 415
GLY LEU THR GLN LEU LEU PHE PHE THR THR SER SER TYR SER THR ARG420 425 430
LYS GLY ILE GLU ASN MET GLY ILE MET ALA MET ALA CYS THR LEU PRO435 440 445LEU VAL LEU VAL HIS PHE PRO GLN TRP GLY SER MET LEU LEU PRO PRO450 455 460
SER ALA ASP ALA ASP GLU GLU ARG TYR TYR ALA SER GLU TRP SER GLU465 470 475 480
ASP GLU LYS SER VAL GLY ARG HIS SER ALA SER LEU LYS PHE ALA GLU485 490 495
ASN SER ARG SER GLU ARG GLY LYS ARG ASN ALA VAL ALA VAL LEU ALA500 505 510
THR ALA ALA ALA THR PRO GLU HIS VAL VAL515 520
<210> 37
<211> 2014
<212> DNA
<213> Zea mays
<4 00> 37
TTCGAGGGCA ATGGGTTCCA AAGAATGTCA TTTGAATTAG ACACTTAGTT ATTTATGAAA 60AGGTTTTTTC TCCCCGAGTT AATTTGCTTC CAAACTATAA TTAACCCTAA GCAAGGTGTT 120AGTTATTTGT TTTGACGGTT TATATATCCG TGTTAGCTTG GTGGCTAGCT TGTATCCATT 180TGACTTGACG GCACATGCAT GCATGCGTGG AGTGCACCGT GCGGCGGTTT GTGACGCGGT 240GCCAAACGTG CAATTGACTC ATTGAGTAGT CATCAGCAGG CTTGCGATCA TTAGACACTA 300ACAAGCATTA ATATTTGCTG CATATATATA TATACACACA CATGCTTCAC TGACGACGCT 360TGCAACTTGA TCTTGTTAAT TATTATATAT CCTAAGCACA ACGAACAAAC CTTAGATATG 4 20CGACCATGCC TTGAGTAGAG CGTGAAAAAT AGGGGGTGAA AAAAAGGGAC GAGTAATTAT 4 80AGATGACACT ATTTGATATT GTTTAAAGAT GAGATAGGGA ATGTGCTGAA TAGATCAATT 54 0TTTAATCAGG GATGGTAGGG ACTAGTATTT CCTCTATGAT TTTCCATGTA ACACCTTTGA 600ATATACAATA ATAATAAGAA GCCACCAACC TTTGAATTAT TATCTGTTCC AATATATTAG 660ATGAGGGGTG TATCGGAATT TGACTTCCGA GTTGTTCTTG CGTGTCCGTA CGCTCGTACG 720GTAGCTCGTT GGGTTGTTGT ACCAGCCATC CTGCTACTGC GCAACGAAAT GCATTGGTCA 7 80TCTCAATTAA GTCCAAAGAT TGTAGTCGTA AACATGCAGC CAATAAGAGC AAGGATAATA 840GTTTAGCCAT TGATATGTCT TCTAAAGCTA ATTATTACTG TATTGGACCC ACCTCGTACT 900CTCATTCTCT CACCACTTGT TTCGGAATCT GTACTGCTAC AACCAGCTCT TAGTCGACTG 960ATAATTAACT ACCCGCTTTT TCTCTTCTCT CCCCTCCAAC TGCAAAAATC TAATGTGGCA 1020AACCATTTAG CCTGCTTACA TCGTCAAAAA TCTAATGTGG TAAAGTGTGA AGTGTCCTAA 1080AGTTTTAGTC CTTAATTTCT TTCAATAAAC TAAACTAAAC TTTAGAAAAC TCAAACAAGT 1140CCTCATGTTT GCACATTTTA GGTCTCGTTT GGTTTGAGGG ACTAAAGATT AGTCCCTCCA 1200TTTTAGTCCC ATTTAGTTAC TAAATTACCA AACAGTAGGA CTAAAACAGG GACTAAATTG 12 60TTTTAGTCCC TAGTCCCTTA AGATGGCTAA AAGGGACTAA ACCATATTAA TTCCACATTT 1320GCCCCTCATT TAGTTCAATT GTACTAATAG CAGGAGAATG TTAAAAGTCA TTTTAATCTT 1380CTTATGAGTC ATTTAGGCCC TGTTTGGTTC CATTAGTCAT AGAACTAAAG TTTAGTTGTA 14 4 0GGGACTAAAT AGATTCTAAA TACATTAAAT GCAACACATA AAGACCAAAA TGCCCTTTTT 1500TGTTTGACAC CCCTTTTCTA GCAAGGGTAT TTGGAGTAAA TGTTGCCCTT TGGTCCCTTT 1560TAGCACCCAT GTGAGGGACT AGAGACTAAA ACCAATTAGT CCCTACTTTA GTCATTCCGT 1620TTAGCAAAAT AGAGACTAAA CGAGACTAAA AACGAGAGGC TAAAGATTAG TCTCTCTAAC 1680CAAACGGGAC CTAAAATTAC TATCTGTATG TATCTGTTGG ATGGAAAAGT CAGAACGTCG 17 4 0TGGGGACCAC CACGCTACCA CATGGTACGG TAATGTCAGA AAGTCGCTAT CTTCTTCGAT 1800CTGCATCTCC ACTCCAGCCA GCGCTGCTTA TCATCAGCAT TCACGAAGCC GCCCAACGAT 1860AATAAAAAAT GTCAGCGCGA TCGCGCACTG CCTATAAAAC CCCGGCCGTC GCGTCCATGG 1920CGTTTCAGGA TCCGAGCACC AGAAAGAAGC TGAGTTAGCT AGGGTCAAGA AAGTAGTCAG 1980CACTCAGCAG GAAAAGAAGC AGAGACTACA CATC 2014
<210> 38
<211> 1014
<212> DNA
<213> Zea mays<400> 38
TGCAAAAATC TAATGTGGCA AACCATTTAG CCTGCTTACA TCGTCAAAAA TCTAATGTGG 60
TAAAGTGTGA AGTGTCCTAA AGTTTTAGTC CTTAATTTCT TTCAATAAAC TAAACTAAAC 120
TTTAGAAAAC TCAAACAAGT CCTCATGTTT GCACATTTTA GGTCTCGTTT GGTTTGAGGG 180
ACTAAAGATT AGTCCCTCCA TTTTAGTCCC ATTTAGTTAC TAAATTACCA AACAGTAGGA 240
CTAAAACAGG GACTAAATTG TTTTAGTCCC TAGTCCCTTA AGATGGCTAA AAGGGACTAA 300
ACCATATTAA TTCCACATTT GCCCCTCATT TAGTTCAATT GTACTAATAG CAGGAGAATG 360
TTAAAAGTCA TTTTAATCTT CTTATGAGTC ATTTAGGCCC TGTTTGGTTC CATTAGTCAT 420
AGAACTAAAG TTTAGTTGTA GGGACTAAAT AGATTCTAAA TACATTAAAT GCAACACATA 480
AAGACCAAAA TGCCCTTTTT TGTTTGACAC CCCTTTTCTA GCAAGGGTAT TTGGAGTAAA 540
TGTTGCCCTT TGGTCCCTTT TAGCACCCAT GTGAGGGACT AGAGACTAAA ACCAATTAGT 600
CCCTACTTTA GTCATTCCGT TTAGCAAAAT AGAGACTAAA CGAGACTAAA AACGAGAGGC 660
TAAAGATTAG TCTCTCTAAC CAAACGGGAC CTAAAATTAC TATCTGTATG TATCTGTTGG 720
ATGGAAAAGT CAGAACGTCG TGGGGACCAC CACGCTACCA CATGGTACGG TAATGTCAGA 780
AAGTCGCTAT CTTCTTCGAT CTGCATCTCC ACTCCAGCCA GCGCTGCTTA TCATCAGCAT 840
TCACGAAGCC GCCCAACGAT ΑΑΤΑΑΑΑΑΑΤ GTCAGCGCGA TCGCGCACTG CCTATAAAAC 900
CCCGGCCGTC GCGTCCATGG CGTTTCAGGA TCCGAGCACC AGAAAGAAGC TGAGTTAGCT 960AGGGTCAAGA AAGTAGTCAG CACTCAGCAG GAAAAGAAGC AGAGACTACA CATC 1014
<210> 39
<211> 18
<212> DNA
<213> PRIMER
<400> 39
CGGGGTTCGC CAGCCTCC 18
<210> 40
<211> 17
<212> DNA
<213> PRIMER
<400> 40
AGTGGGCTCC CTCTCCG 17
<210> 41
<211> 18
<212> DNA
<213> PRIMER
<400> 41
GCTCGTCATG CCGCTCGC
<210> 42
<211> 18
<212> DNA
<213> PRIMER
<400> 42
GCACTGGATG TCGGGCAT
<210> 43
<211> 20
<212> DNA
<213> PRIMER
<4 00> 43
AATTAACCCT CACTAAAGGG
<210> 44<211> 22<212> DNA
<213> PRIMER
<400> 44
GTAATACGAC TCACTATAGG GC 22
<210> 45
<211> 5812
<212> DNA
<213> Zea mays
<4 00> 45
GGTTGGCGAG CGGGTGTGGT CTGGGCAGTGGTGGGGGAGG GAGTGGCGAG AGAGGGAGGAGACGTACGTC GGCGCTTGTC AGGGTTTCGTTAAAGTAATG TTGGGAGTGT TTTGAAAAAACTTTAAGTAT AGTAGAGATT TAAAATTAAAAACTGCAGAT ATTACACTTT ATCTTAGCCAGAGACATGCC CTTTTATAAC TCACTCGGTCCTATTCGAGA ACGTTGTATT ACATGTGGTTACTAACTATC TGGGTGRTAA GATTGCTAGACTACACCGTT TCATGCGTGA CATGATATACAAATAAAGAT AGATAAACCA TAAATTACTACCAAGGAGGG CAAGGGCAAG ATGGCCGAGGGATGCAACAC ACTAGCTGTT CGGAGACAATTGAAACACAC AAGCTGTTAC AGTGGCTCTAGCATTCTTTA CGCAGGGCAA GAGTGTTATTTCTTTTTTTT TAATTGGTGC ATTTTCCTTAGTTCATCACG TCGTTGTGCC CTGGCACGTCGCTGAATGCG CACCACAGAC TCTTGGGCGAAGAGCGGCAG AGACGACAGA GATATGACGACGGAGTTTTA GATGTCTATT TCCACCCTGAGAATTTCTGC ATCTGCAATC ATTGGACCAGTTGCCCGGCC GAGATCCTCT GGGGTCAACCCCTGGGCCTC ACGGAGAGAC TCCTTCACGTGGCATCCGAC GCTCCTGGGC CCACTTGCCGCCCACGTAAT TAAAGTGTGA CTGGGTTAGTGATGCGACAA AACGGCCGCT AGATTGGATTTTCTGGAAGG TTGGTTAGCT CATGGAGTTGTGTTCACCTT CATATTTATC ATTCGTGTAAGGAGTTTTGT GTCAACCAAT AACCGATCAATAAAACACAT AATGTGTTCT AATTTTGTCTGCTTGAGGGT GGTGTTACGA CGAAAAACAAAATTAATCAA TCACATCGAT ATGCTAATGCAATGCAATGA GGTGATGGCA GGCAGCCGCAGTAGGCACGT ACAAAAGCCA CACGGACATGACACCGCTTG CCCTCCGCCT TCTCGTTCTCCCATCACCAC ACACATTTAA AACCACCAGCCCCACAGGTC TGGAACTAGT AGCCACTAGCTTCCTGCACA GCCACGAGGC CAGGCAGGCAAAAGCAGCAG CTGGCCGACG ACGAAGAGAAGGAGTGCGGC GTCGATGCCG AGTTCAGGGCGCCGCACACG CAGGCGTTCC ACCTCGCCTGCTTTGCCGCC CCGCCCATCC TCCCTGCGCTCGCCCCCGCC GCCGCAGTGG GCTCCCTCTCGCCCGCATGC GACCTCCTCG GCCCGCGCCGGCTCGCCGTC GCGGTCACCG CGGTCACCGCCTTCGTGGCG GGCCTCTCCC TCGCCAACTTCTTCGCGCCC TCCGCCGTGG GGCTCGCCAA
GCAATGGCGG GGGCAGCGAA GAGGAGGGCG 60AAGAGAGATG AGGCGTGTGC AACAACAGGA 120GCAATGAGAT ATGGGTGTGT GGGTTGATTC 180TTTGACGCAG GACGACCGTT GAAACTAGTG 24 0GTGGACACAT GGCCCACATA CTGAATATTA 300AAAGGTCGAG AAATGTATGA GTTAAAAAAG 360GCTTGTCCTA CTTCAACTAT TAAGTTTGTA 4 20TTGTGTCATA TTGGGTTTGG GTGTTTTCTC 4 80CGAGACGTAG AGGAGAAAAA CATATCTACT 54 0GAAACCCAAG TTTTAAAGGA GTAAAAATAA 600TCTACAAAAA CGTAGACAGC AGGCTAGATA 660CACTTGTGCC CGCCGGAGCT TTGGATGCAA 720CGGTGTATCA AAGAAGTAAA AAAATTTGGA 780GAGGAAAGAT TGGGATTTTC ATTTTCTGAT 84 0TCTGCTGATG TACACATAAT TAGAAGACTC 900TGAACCACAT GCGTAAAAAA CTGGGCCGAA 960ACCAATCGCA ACGCTCAGCT AGAAGCTGCT 1020AACCAGTTCA TCTGTTTTTT TTTTACGCGC 1080TGTATATTAT GGATTAATTA AAAAGCGATC 114 0GGAGCCAAAA AGGATTCATC GGAGATTCAG 1200AGCGGCGGTA GTATATTCCG ATCTACAGGC 1260TCGCTGCTAC GCGGGAGGGC GGGCGCAGCC 1320CTCCGGGCCC ACTACAGAAG GCCGAGTAGT 1380TCTCGAGTCA CCATACGCGC GGGCCCCCAG 14 4 0CCTGTCCGAG GCTAGCGCAG AGTGGGATGC 1500ATTAGTATAG AGAGTATACA GATTAGAGAG 1560ATCGATTCCC GCTCGTGTCA AACACGTATA 1620ATTCACGGAG AGTAATATAC ATTGCTTACT 1680AGATGTTGTT ATTTACTGCA TCCACACTAA 17 4 0TGGGKTAATT TTGTCCTGGA GATGACTTTA 1800TGCCGTATAG TTCTAAGGTT AGATTTTTGC 18 60TAAATTGCTA ATGCTATGCT TTAAATTGCT 1920GTCCCTTTTC ATGGCCTCGG GGAGCCGGTG 1980CAACGCGGCG CCCTGCATGC ACCCGCCGCG 204 0GGTCCACCAC CTTCTATTCC ATTTCCACAC 2100GAGTATCTAA ACCTTTCACC CCATTGGTCG 2160TCCATTCTCT GCTTGGCTGT GGTAGATCTC 2220GACGTCACTA GCTATGGTGG CGATGGGGAA 2280CTGCTGCTAC GGCGTCGGCA GCTCTGAGGC 234 0GACGGATCTG CGCCCTCTGT CACTGCTGTC 24 00GCTCTCCCTC TTCGCCTGCT TCTTCGCGGC 24 60GCGGCCGGCG CTCGTGCTCG CGCCCTCGGA 2520CGCCACGCTG GTCGGCAGGC TTGCCATGGG 2580CGCGTCGGGG TTCGCCAGCC TCCTGGCCGC 264 0GTCGTCGCCC GCGGGGTTCG TCGCGCTGCG 2700CGTCGCCAAC CAGCACTGGA TGTCGGGCAT 27 60CGCCGTCACG GCCGGCTGGG CCAACGTCGG 2820CAGCGCCGCG GCGCAGCTCG TCATGCCGCT CGCGTACGAG CTCGTCCTCC GCCTCGGCGT 2880GCCCATCACC GTCGCCTGGC GCGTCACCTA CCTCCTCCCC TGCGCGCTCC TCATCACCAC 2 94 0GGGCCTCGCC GTCCTCGCCT TCCCYTACGA CCTCCCGCGC GGCGCCGGCG TCGGCGGCGG 3000AGCCAAGACC GGCAAGAGCT TGTGGAAGGT GGTGCGCGGA GGGGTCAGCA ACTACCGCGC 3060GTGGGTGCTC GCGCTCACCT ACGGCTACTG CTACGGCGTC GAGCTCATCA TGGAGAACGT 3120GGCCGCCGAC TTCTTCCGGA AACGTTTCCA CCTCCCCATG GAGGCTGCGG GCGCCGCGGC 3180GGCGTGCTTC GGCGCGATGA ACGCGGTGGC GCGGCCCGCG GGCGGGTTGG CGTCGGACGC 3240GGTGGCGAGA CTGTTCGGCA TGCGCGGGAG GCTGTGGCTT CTCTGGGCCG TGCAGACCAC 3300CGGCGCGGCA CTGTGCGTGC TGGTCGGCAG GATGGGCGCA GCGGAAGCGC CGTCGCTGGC 3360GGCCACCATG GCGGTCATGG TGCTGTGCGC CGCGTTTGTG CAGGCCTCGT CGGGGCTCAC 3420CTTCGGCATC GTCCCGTTCG TGTCCAAGAG GTGAATCCAA CAAACTTCTT ACAACATCTA 34 80ATACAGATTA TTTTGCGTCG GATTAATTCA AAAATAGTTA TATATAGATT CTAAGTATAT 3540ATTCACATAT AGATTTTTTT TCCACCCAAA AAGTTATAAC TTACAAGGAA GGACATCTAT 3600CATGCATGTT TCATAAACAA ATTAACTAAA GATTTTTCTG TGTTTGGTTA TTTAGATATA 3660AATAGATCTT GAATTATATA TTGACGTACA GATCCCCTCC CTCAAAGTTA TAACGTAAAT 3720AATAAGGGCA AAGACGTTGA AGCTGATATA TACCTCTCAA TTGAAAGATG GCCACGCCAG 3780CTAGCTTTTT GAAGATATTT TCTAAGCACA CAAACACCTA ATTACTGCTC CGTTCATTTA 3840AAATTATAGC TTTAAAAATT AAAATCAAAG CGTTTAATTA GAAAAATCTA AAATTCTTCA 3900AGCTATAAGT TTAATTAGAA AAATCAAAAC ATTTAATAAT TTAAAATAGA TGAAACATAC 3960CCAACTAAGA GGGCCACATC GTTATCATAG GCCCTAATAT AGATTCTATA GTAGAATCCT 4 020GGTATACTAC TATTGTTGAT GTTCACCTGT TTTCTGATAT TTGTGGACGA AAATAATCAG 4 080AGAGGTTTCC AACAATAAAG CAACTCATTA ATTATTTCTC TGAACATATA GGAGGACGTG 4140TTTGGTTGCC ACGCTAGCCA TGTCCAAGCT CACGCGCGTG TACTTGGTTA TCTGCATGTA 4200ATTAACAAAG CGAACTCGCA CGCACGCGTA CAACCTAAGC ACCTTTTCCA CCTCCTACAT 4 2 60GCATATGTAG GGAAGCGGCC GGGTCCGCGC GAGTCAGGAG CTCTCAACTC ACAAACCAAT 4 320CACGTCCATA ACAACCAAGG ACTGTAAAAT GTGGCGTACA TATTTTTTAT GTCTAAGGGC 4 380TAGTTTGAGA CTCCATTATC CTAAGAGAAA GTGAATTAAT TAGATTCCTA AACTAGCCCT 4440GATATGAAAA AGAAACACCG GAAAAACTAC GGTAGCAAAA TAGCCAGTGG AAAATAAACT 4 500TGTCGTCACA AGTTACTCTT CTATTCCAAT ACCTCTTGTA TATGTATTTT AAAGACACGG 4 560CCTTAAACAT TTTTTTTAAA AAAAAAAAAT CCATCTAATG AATTAGCCTA GGAATATCAT 4 620GCATGGTTTT CTCAAAATAA TGTCTTCGAC CCCATTTGGT CACAAATTAA TTTATCTAAA 4 680CTAGATCTAA CTCGTAGCAT GAGTTTTAGA GCGCCAGAGG CAATTTGTTA TTACAGAAAG 4 74 0ATTAAGGTCA TGTTTGATAC ACTTCAGCTT TACAGGTGAA GGTGTTTTAA AAAAAAATAA 4 800CTTCACCAAT AACGATTGGA GAAGGAAATG AGGAAGAAAG CTACCCAAAG TTACTTTTTC 4 8 60GGCTTCACCT CTGTCTAATT CTGCGTCTGA GCATAAAAAG GAGTTTTACC TATGAATCTT 4 920TTTGAAAAAA AAGAATGTTT ACAAAAAAAT AAATAGCTCA ACAACTTATA AAGCTTCTGA 4980TTAATCTGTA CTAAAAAAGA ACTAACTATA AACAAAGGTC AAAGAAACCA TGACACATTT 5040CTTACGGCTT GTGTTGGGTC ACTTAATTTC GGTGGTGTGT GTGCAGGTCG TTGGGCGTGG 5100TGTCCGGGAT GACGGCGAGC GGCGGCGCGG TGGGCGCGAT CGTGACGAAC CGGCTCTTCT 5160TCAGCGGGTC GCGGTACACC ATTGAGGAGG CYATCTCGTT GACCGGCGCC GCCAGCCTCG 5220TGTGCACGCT CCCGCTGGCC CTCGTCCACT TCCCGCGCCA CGGTGGCATG CTCTGCGGCC 5280CAACCGCCGT CGTCGATGGC GACGATGCAG GATACGACAA CGATAATAGT GCTGGAGATT 5340ACACGCTCCT CAAATGAATT GAGGAACAAA TGTATGCAAC GGGGGGGTCG CATGTGAACT 54 00TTGTACATAG CACATCCAAT GGCCTTGATA GATTAGCAAA CGATTACTCA TGGTTTGTTT 54 60CAGGATCAGG GGTGCGATAT GAGCGACACA CGGATAGAAA TATGTCGAGT GGCTTCGTCT 5520GTCGATCACC TGCACATAAA TAGATAGAGA GTAGAGATGG CTCGTAGGTT GTTCACGTGT 5580CGCTGCCGCA TTGGCAATTG CGTGTCTTAT GTTTGTGTTG GTTCGAAGAG TGAGACAATA 564 0ATAAGTTGTC GGTGTTCGAA TCAGTACCAA CGAGTAAATT GTGTATGCGT GCATGTTTTG 5700GATTTGGATG ATGTGTTCAG TGAACGCAAG ATTTATACTG ATTCGGATAG AACGTCCCTA 5760CTTCTAGTCT TCGATGGCTC GCGTAATCGA TAACTTCTTG CTGAATGCTC AT 5812
<210> 46
<211> 2263
<212> DNA
<213> Zea mays
<400> 46
GGTTGGCGAG CGGGTGTGGT CTGGGCAGTG GCAATGGCGG GGGCAGCGAA GAGGAGGGCG 60GTGGGGGAGG GAGTGGCGAG AGAGGGAGGA AAGAGAGATG AGGCGTGTGC AACAACAGGA 120GACGTACGTC GGCGCTTGTC AGGGTTTCGTTAAAGTAATG TTGGGAGTGT TTTGAAAAAACTTTAAGTAT AGTAGAGATT TAAAATTAAAAACTGCAGAT ATTACACTTT ATCTTAGCCAGAGACATGCC CTTTTATAAC TCACTCGGTCCTATTCGAGA ACGTTGTATT ACATGTGGTTACTAACTATC TGGGTGRTAA GATTGCTAGACTACACCGTT TCATGCGTGA CATGATATACAAATAAAGAT AGATAAACCA TAAAT TAC TACCAAGGAGGG CAAGGGCAAG ATGGCCGAGGGATGCAACAC ACTAGCTGTT CGGAGACAATTGAAACACAC AAGCTGTTAC AGTGGCTCTAGCATTCTTTA CGCAGGGCAA GAGTGTTATTTCTTTTTTTT TAATTGGTGC ATTTTCCTTAGTTCATCACG TCGTTGTGCC CTGGCACGTCGCTGAATGCG CACCACAGAC TCTTGGGCGAAGAGCGGCAG AGACGACAGA GATATGACGACGGAGTTTTA GATGTCTATT TCCACCCTGAGAATTTCTGC ATCTGCAATC ATTGGACCAGTTGCCCGGCC GAGATCCTCT GGGGTCAACCCCTGGGCCTC ACGGAGAGAC TCCTTCACGTGGCATCCGAC GCTCCTGGGC CCACTTGCCGCCCACGTAAT TAAAGTGTGA CTGGGTTAGTGATGCGACAA AACGGCCGCT AGATTGGATTTTCTGGAAGG TTGGTTAGCT CATGGAGTTGTGTTCACCTT CATATTTATC ATTCGTGTAAGGAGTTTTGT GTCAACCAAT AACCGATCAATAAAACACAT AATGTGTTCT AATTTTGTCTGCTTGAGGGT GGTGTTACGA CGAAAAACAAAATTAATCAA TCACATCGAT ATGCTAATGCAATGCAATGA GGTGATGGCA GGCAGCCGCAGTAGGCACGT ACAAAAGCCA CACGGACATGACACCGCTTG CCCTCCGCCT TCTCGTTCTCCCATCACCAC ACACATTTAA AACCACCAGCCCCACAGGTC TGGAACTAGT AGCCACTAGCTTCCTGCACA GCCACGAGGC CAGGCAGGCA
GCAATGAGAT ATGGGTGTGT GGGTTGATTC 180TTTGACGCAG GACGACCGTT GAAACTAGTG 240GTGGACACAT GGCCCACATA CTGAATATTA 300AAAGGTCGAG AAATGTATGA GTTAAAAAAG 360GCTTGTCCTA CTTCAACTAT TAAGTTTGTA 420TTGTGTCATA TTGGGTTTGG GTGTTTTCTC 4 80CGAGACGTAG AGGAGAAAAA CATATCTACT 54 0GAAACCCAAG TTTTAAAGGA GTAAAAATAA 600TCTACAAAAA CGTAGACAGC AGGCTAGATA 660CACTTGTGCC CGCCGGAGCT TTGGATGCAA 720CGGTGTATCA AAGAAGTAAA AAAATTTGGA 780GAGGAAAGAT TGGGATTTTC ATTTTCTGAT 84 0TCTGCTGATG TACACATAAT TAGAAGACTC 900TGAACCACAT GCGTAAAAAA CTGGGCCGAA 960ACCAATCGCA ACGCTCAGCT AGAAGCTGCT 1020AACCAGTTCA TCTGTTTTTT TTTTACGCGC 1080TGTATATTAT GGATTAATTA AAAAGCGATC 114 0GGAGCCAAAA AGGATTCATC GGAGATTCAG 1200AGCGGCGGTA GTATATTCCG ATCTACAGGC 1260TCGCTGCTAC GCGGGAGGGC GGGCGCAGCC 1320CTCCGGGCCC ACTACAGAAG GCCGAGTAGT 1380TCTCGAGTCA CCATACGCGC GGGCCCCCAG 14 4 0CCTGTCCGAG GCTAGCGCAG AGTGGGATGC 1500ATTAGTATAG AGAGTATACA GATTAGAGAG 1560ATCGATTCCC GCTCGTGTCA AACACGTATA 1620ATTCACGGAG AGTAATATAC ATTGCTTACT 1680AGATGTTGTT ATTTACTGCA TCCACACTAA 174 0TGGGKTAATT TTGTCCTGGA GATGACTTTA 1800TGCCGTATAG TTCTAAGGTT AGATTTTTGC 18 60TAAATTGCTA ATGCTATGCT TTAAATTGCT 1920GTCCCTTTTC ATGGCCTCGG GGAGCCGGTG 1980CAACGCGGCG CCCTGCATGC ACCCGCCGCG 204 0GGTCCACCAC CTTCTATTCC ATTTCCACAC 2100GAGTATCTAA ACCTTTCACC CCATTGGTCG 2160TCCATTCTCT GCTTGGCTGT GGTAGATCTC 2220GACGTCACTA GCT 2263
<210> 47
<211> 1263
<212> DNA
<213> Zea mays
<400> 47
ACGCTCAGCT AGAAGCTGCT GCTGAATGCGTCTGTTTTTT TTTTACGCGC AGAGCGGCAGGGATTAATTA AAAAGCGATC CGGAGTTTTAAGGATTCATC GGAGATTCAG GAATTTCTGCGTATATTCCG ATCTACAGGC TTGCCCGGCCGCGGGAGGGC GGGCGCAGCC CCTGGGCCTCACTACAGAAG GCCGAGTAGT GGCATCCGACCCATACGCGC GGGCCCCCAG CCCACGTAATGCTAGCGCAG AGTGGGATGC GATGCGACAAAGAGTATACA GATTAGAGAG TTCTGGAAGGGCTCGTGTCA AACACGTATA TGTTCACCTTAGTAATATAC ATTGCTTACT GGAGTTTTGTATTTACTGCA TCCACACTAA TAAAACACATTTGTCCTGGA GATGACTTTA GCTTGAGGGTTTCTAAGGTT AGATTTTTGC AATTAATCAAATGCTATGCT TTAAATTGCT AATGCAATGA
CACCACAGAC TCTTGGGCGA AACCAGTTCA 60
AGACGACAGA GATATGACGA TGTATATTAT 120
GATGTCTATT TCCACCCTGA GGAGCCAAAA 180
ATCTGCAATC ATTGGACCAG AGCGGCGGTA 240
GAGATCCTCT GGGGTCAACC TCGCTGCTAC 300
ACGGAGAGAC TCCTTCACGT CTCCGGGCCC 360
GCTCCTGGGC CCACTTGCCG TCTCGAGTCA 4 20
TAAAGTGTGA CTGGGTTAGT CCTGTCCGAG 4 80
AACGGCCGCT AGATTGGATT ATTAGTATAG 540
TTGGTTAGCT CATGGAGTTG ATCGATTCCC 600
CATATTTATC ATTCGTGTAA ATTCACGGAG 660
GTCAACCAAT AACCGATCAA AGATGTTGTT 720
AATGTGTTCT AATTTTGTCT TGGGKTAATT 780
GGTGTTACGA CGAAAAACAA TGCCGTATAG 84 0
TCACATCGAT ATGCTAATGC TAAATTGCTA 900
GGTGATGGCA GGCAGCCGCA GTCCCTTTTC 960ATGGCCTCGG GGAGCCGGTG GTAGGCACGTCCCTGCATGC ACCCGCCGCG ACACCGCTTGCTTCTATTCC ATTTCCACAC CCATCACCACACCTTTCACC CCATTGGTCG CCCACAGGTCGCTTGGCTGT GGTAGATCTC TTCCTGCACAGCT
ACAAAAGCCA CACGGACATG CAACGCGGCG 1020CCCTCCGCCT TCTCGTTCTC GGTCCACCAC 1080ACACATTTAA AACCACCAGC GAGTATCTAA 1140TGGAACTAGT AGCCACTAGC TCCATTCTCT 1200GCCACGAGGC CAGGCAGGCA GACGTCACTA 1260
1263
<210> 48
<211> 1455
<212> DNA
<213> Zea mays
<400> 48
ATGGTGGCGA TGGGGAAAAA GCAGCAGCTGGTCGGCAGCT CTGAGGCGGA GTGCGGCGTCCCTCTGTCAC TGCTGTCGCC GCACACGCAGGCCTGCTTCT TCGCGGCCTT TGCCGCCCCGGTGCTCGCGC CCTCGGACGC CCCCGCCGCCGGCAGGCTTG CCATGGGGCC CGCATGCGACGCCAGCCTCC TGGCCGCGCT CGCCGTCGCGGGGTTCGTCG CGCTGCGCTT CGTGGCGGGCCACTGGATGT CGGGCATCTT CGCGCCCTCCGGCTGGGCCA ACGTCGGCAG CGCCGCGGCGGTCCTCCGCC TCGGCGTGCC CATCACCGTCGCGCTCCTCA TCACCACGGG CCTCGCCGTCGCCGGCGTCG GCGGCGGAGC CAAGACCGGCGTCAGCAACT ACCGCGCGTG GGTGCTCGCGCTCATCATGG AGAACGTGGC CGCCGACTTCGCTGCGGGCG CCGCGGCGGC GTGCTTCGGCGGGTTGGCGT CGGACGCGGT GGCGAGACTGTGGGCCGTGC AGACCACCGG CGCGGCACTGGAAGCGCCGT CGCTGGCGGC CACCATGGCGGCCTCGTCGG GGCTCACCTT CGGCATCGTCGTGTCCGGGA TGACGGCGAG CGGCGGCGCGTTCAGCGGGT CGCGGTACAC CATTGAGGAGGTGTGCACGC TCCCGCTGGC CCTCGTCCACCCAACCGCCG TCGTCGATGG CGACGATGCATACACGCTCC TCAAA
<210> 49
<211> 485
<212> PRT
<213> Zea mays
GCCGACGACG AAGAGAACTG CTGCTACGGC 60GATGCCGAGT TCAGGGCGAC GGATCTGCGC 120GCGTTCCACC TCGCCTGGCT CTCCCTCTTC 180CCCATCCTCC CTGCGCTGCG GCCGGCGCTC 240GCAGTGGGCT CCCTCTCCGC CACGCTGGTC 300CTCCTCGGCC CGCGCCGCGC GTCGGGGTTC 360GTCACCGCGG TCACCGCGTC GTCGCCCGCG 420CTCTCCCTCG CCAACTTCGT CGCCAACCAG 480GCCGTGGGGC TCGCCAACGC CGTCACGGCC 540CAGCTCGTCA TGCCGCTCGC GTACGAGCTC 600GCCTGGCGCG TCACCTACCT CCTCCCCTGC 660CTCGCCTTCC CYTACGACCT CCCGCGCGGC 720AAGAGCTTGT GGAAGGTGGT GCGCGGAGGG 780CTCACCTACG GCTACTGCTA CGGCGTCGAG 840TTCCGGAAAC GTTTCCACCT CCCCATGGAG 900GCGATGAACG CGGTGGCGCG GCCCGCGGGC 960TTCGGCATGC GCGGGAGGCT GTGGCTTCTC 1020TGCGTGCTGG TCGGCAGGAT GGGCGCAGCG 1080GTCATGGTGC TGTGCGCCGC GTTTGTGCAG 1140CCGTTCGTGT CCAAGAGGTC GTTGGGCGTG 1200GTGGGCGCGA TCGTGACGAA CCGGCTCTTC 1260GCYATCTCGT TGACCGGCGC CGCCAGCCTC 1320TTCCCGCGCC ACGGTGGCAT GCTCTGCGGC 1380GGATACGACA ACGATAATAG TGCTGGAGAT 1440
1455
<400> 49
MET VAL ALA MET GLY LYS LYS GLN1 5
CYS CYS TYR GLY VAL GLY SER SER20
GLU PHE ARG ALA THR ASP LEU ARG35 40
GLN LEU ALA ASP ASP GLU GLU ASN10 15
GLU ALA GLU CYS GLY VAL ASP ALA25 30
PRO LEU SER LEU LEU SER PRO HIS45
THR GLN ALA PHE HIS LEU ALA TRP LEU SER LEU PHE ALA CYS PHE PHE50 55 60ALA ALA PHE ALA ALA PRO PRO ILE LEU PRO ALA LEU ARG PRO ALA LEU65 70 75 80
VAL LEU ALA PRO SER ASP ALA PRO ALA ALA ALA VAL GLY SER LEU SER85 90 95
ALA THR LEU VAL GLY ARG LEU ALA MET GLY PRO ALA CYS ASP LEU LEU100 105 110
GLY PRO ARG ARG ALA SER GLY PHE ALA SER LEU LEU ALA ALA LEU ALAH5 120 125
VAL ALA VAL THR ALA VAL THR ALA SER SER PRO ALA GLY PHE VAL ALA130 135 140
LEU ARG PHE VAL ALA GLY LEU SER LEU ALA ASN PHE VAL ALA ASN GLN145 150 155 160
HIS TRP MET SER GLY ILE PHE ALA PRO SER ALA VAL GLY LEU ALA ASN165 170 175
ALA VAL THR ALA GLY TRP ALA ASN VAL GLY SER ALA ALA ALA GLN LEU180 185 190
VAL MET PRO LEU ALA TYR GLU LEU VAL LEU ARG LEU GLY VAL PRO ILE195 200 205
THR VAL ALA TRP ARG VAL THR TYR LEU LEU PRO CYS ALA LEU LEU ILE210 215 220
THR THR GLY LEU ALA VAL LEU ALA PHE PRO TYR ASP LEU PRO ARG GLY225 230 235 240
ALA GLY VAL GLY GLY GLY ALA LYS THR GLY LYS SER LEU TRP LYS VAL245 250 255
VAL ARG GLY GLY VAL SER ASN TYR ARG ALA TRP VAL LEU ALA LEU THR260 265 270
TYR GLY TYR CYS TYR GLY VAL GLU LEU ILE MET GLU ASN VAL ALA ALA275 280 285
ASP PHE PHE ARG LYS ARG PHE HIS LEU PRO MET GLU ALA ALA GLY ALA290 295 300
ALA ALA ALA CYS PHE GLY ALA MET ASN ALA VAL ALA ARG PRO ALA GLY305 310 315 320
GLY LEU ALA SER ASP ALA VAL ALA ARG LEU PHE GLY MET ARG GLY ARG325 330 335
LEU TRP LEU LEU TRP ALA VAL GLN THR THR GLY ALA ALA LEU CYS VAL340 345 350
LEU VAL GLY ARG MET GLY ALA ALA GLU ALA PRO SER LEU ALA ALA THR355 360 365
MET ALA VAL MET VAL LEU CYS ALA ALA PHE VAL GLN ALA SER SER GLY370 375 380LEU THR PHE GLY ILE VAL PRO PHE VAL SER LYS ARG SER LEU GLY VAL385 390 395 400
VAL SER GLY MET THR ALA SER GLY GLY ALA VAL GLY ALA ILE VAL THR405 410 415
ASN ARG LEU PHE PHE SER GLY SER ARG TYR THR ILE GLU GLU ALA ILE420 425 430
SER LEU THR GLY ALA ALA SER LEU VAL CYS THR LEU PRO LEU ALA LEU435 440 445
VAL HIS PHE PRO ARG HIS GLY GLY MET LEU CYS GLY PRO THR ALA VAL450 455 460
VAL ASP GLY ASP ASP ALA GLY TYR ASP ASN ASP ASN SER ALA GLY ASP465 470 475 480
TYR THR LEU LEU LYS485
<210> 50<211> 14<212> PRT<213> Zea mays
<220>
<221> DOMÍNIO
<222> (1)..(14)
<223> XAA=QUALQUER AMINOÁCIDO
<220>
<221> CARACTERÍSTICA MISC.<222> (6)..(6)
<223> XAA PODE SER QUALQUER AMINOÁCIDO DE OCORRÊNCIA NATURAL<220>
<221> CARACTERÍSTICA MISC.<222> (7) .. (7)
<223> XAA PODE SER QUALQUER AMINOÁCIDO DE OCORRÊNCIA NATURAL<4 00> 50
ARG LEU ALA MET GLY XAA XAA CYS ASP LEU LEU GLY PRO ARG15 10
<210> 51
<211> 28
<212> PRT
<213> Zea mays
<220>
<221> DOMÍNIO
<222> (1)..(28)
<223> XAA=QUALQUER AMINOÁCIDO
<220>
<221> CARACTERÍSTICA MISC.<222> (4) .. (4)
<223> XAA PODE SER QUALQUER AMINOÁCIDO DE OCORRÊNCIA NATURAL<220>
<221> CARACTERÍSTICA MISC.
<222> (5)..(5)
<223> XAA PODE SER QUALQUER AMINOÁCIDO DE OCORRÊNCIA NATURAL<220>
<221> CARACTERÍSTICA MISC.
<222> (10)..(10)
<223> XAA PODE SER QUALQUER AMINOÁCIDO DE OCORRÊNCIA NATURAL<220>
<221> CARACTERÍSTICA MISC.
<222> (16)..(16)
<223> XAA PODE SER QUALQUER AMINOÁCIDO DE OCORRÊNCIA NATURAL<220>
<221> CARACTERÍSTICA MISC.
<222> (19)..(19)
<223> XAA PODE SER QUALQUER AMINOÁCIDO DE OCORRÊNCIA NATURAL<220>
<221> CARACTERÍSTICA MISC.
<222> (21)..(21)
<223> XAA PODE SER QUALQUER AMINOÁCIDO DE OCORRÊNCIA NATURAL<220>
<221> CARACTERÍSTICA MISC.
<222> (22)..(22)
<223> XAA PODE SER QUALQUER AMINOÁCIDO DE OCORRÊNCIA NATURAL<220>
<221> CARACTERÍSTICA MISC.
<222> (25)..(25)
<223> XAA PODE SER QUALQUER AMINOÁCIDO DE OCORRÊNCIA NATURAL
<4 00> 51
THR PHE GLY XAA XAA PRO PHE VAL SER XAA ARG SER LEU GLY VAL XAA SER GLY XAA
15 10 15
THR XAA XAA GLY GLY XAA VAL GLY ALA
20 25<210> 52<211> 11<212> PRT<213> Zea mays<220> <221> DOMÍNIO<222> (1) ·· (14)<223> XAA=QUALQUER AMINOÁCIDO<220> <221> CARACTERÍSTICA MISC.<222> (6) . . (6)<223> XAA PODE SER QUALQUER AMINOÁCIDO DE OCORRÊNCIA NATURAL<400> 52
CYS THR LEU PRO LEU XAA LEU VAL HIS PHE PRO1 5 10
<210> 53
<211> 1561
<212> DNA
<213> Zea mays
<400> 53
TAGCTATATA CACATGTCTG GTCTGACGACCTTCCTATCA CTGTCATGAC ATGTGCTCTGTCGCTAATTC TTTCTTGTGC TAGAGGCGAGATCTGCGCTA AGGGTCACAT GACCCTGTTCCCTGACAGAT ACTTACGACG CGTCCGTACGCACCGGCGCC GGCATTCGCC CCCTGCCAGCCGCAGTTGCC GCATCCCAAA CGCCCGGGAATTGCTGCCCC TGGCTTCGTA AAGCTCTGACTCGCTCATAG GCCGACACGG CCGCAAAGTCGCCACGCGCC TATATATGTT CGCGGCCATGAACCCCGAGC TCAGATCCCT CGCCTCGTGTAGTGTGGGCC AGACGGACAC CGCCGAGCTACGGCCGGACC GGAGCACGTA CGTACGTACCGCCTTGTGTG TGCTGGCGGC GCTTCTCTTCGGGGTGCACC TCTCCTCGCT GCCCAAAGCGCAAGTCCTGC ACGCCGGCGT GGACTCGCTGCCGGCCGGCG CCGACGCCGG GTACAAGGGCAGCCAGAAGG ACCGCGGGTG GCGCAAGTCCCAGTTCAAGG TCACCGAGCA GGCGTACGCGGTCGCCCGCG ACGTCCCCTC GGGCTCCTACGGCGCCGAGG TGGCCTACGG CCAGACGGCGACCGGCATCC ACGCCTCTCT CAAGATCGCCGCGCTCGCCT TCTTCTTCGT CATCGAGACCCTGCGCGCCA TACATGCATA CATGTAAATCATTCATTGGT GCGCGCGACT ATTTTGGTGTCGTCAAAATT ACCAAATAAT AACTTAAGTTA
<210> 54<211> 612<212> DNA<213> Zea mays
AATCAAAAGG GATCGCTAGC TCGGGCTAGC 60CCTCTGCTGG TTGATAAGCC GTGCGCCTTC 120TCAAACAAAC GCTGCACCTC GTAGCCCTTA 180CCTATCGCTA GTTACCAACG ACCCATTCCC 24 0CGGCAGGCCT CGGCAGTTCG GCATCACCAG 300CGGTTCGCAG ATTCGCAGGG CGGAGTCGGC 360CCTTTGGGGC CCCTCTACGA GCAAATGAAG 4 20TTTTGATCAC TTGATTGGCA GTCGTACTCC 4 80AACTACCCGC TCCGCCATCC TTCAACCCCC 54 0TCCGTACTAG TCCTCCAACC CACAAGCCAC 600CGTGTCTCCG GTCGACGACG ACCAACAGCC 660TAGCGCTTGG TGATAGCAAG GGACGACCGG 720GCAGCGATGG CTCGGCAGCA AAGCGTGCAG 7 80GCCGCCTCCC TGCCGTCGCC GGCCGCCGCG 84 0CTCGACGTCA CCACCTCCGC CAAACCCGGC 900ACGGTGACGT GGAGCCTGAA CGCCACGGAG 960GTGAAGGTGA AGCTGTGCTA CGCGCCGGCG 1020GAGGACGACA TCAGCAAGGA CAAGGCGTGC 1080GCGGCGGCGC CCGGCAGCTT CCAGTACGCC 114 0TACCTGCGCG CCTTCGCCAC GGACGCGTCG 1200CCCACCGCCG CCTTCGACGT CGCCGGCATC 1260GCCGGCGTCT TCTCGGCCTT CTCCGTCGTC 1320CGCAAGAAGA ACAAGTAGAA CGAGTTGCGG 1380GTCGGCGGCG ATGAGTGGCT GTCGTTGCTG 1440ATCATGTAAG TTACTTTTCT GCAGTGTGTG 1500TCTCTGCTAA AAAAAAAAAA AAAAAAAAAA 1560
1561
<400> 54
ATGGCTCGGC AGCAAAGCGT GCAGGCCTTGTCCCTGCCGT CGCCGGCCGC CGCGGGGGTGGTCACCACCT CCGCCAAACC CGGCCAAGTCACGTGGAGCC TGAACGCCAC GGAGCCGGCCGTGAAGCTGT GCTACGCGCC GGCGAGCCAGGACATCAGCA AGGACAAGGC GTGCCAGTTCGCGCCCGGCA GCTTCCAGTA CGCCGTCGCCCGCGCCTTCG CCACGGACGC GTCGGGCGCCGCCGCCTTCG ACGTCGCCGG CATCACCGGCGTCTTCTCGG CCTTCTCCGT CGTCGCGCTCAAGAACAAGT AG
TGTGTGCTGG CGGCGCTTCT CTTCGCCGCC 60
CACCTCTCCT CGCTGCCCAA AGCGCTCGAC 120
CTGCACGCCG GCGTGGACTC GCTGACGGTG 180
GGCGCCGACG CCGGGTACAA GGGCGTGAAG 24 0
AAGGACCGCG GGTGGCGCAA GTCCGAGGAC 300
AAGGTCACCG AGCAGGCGTA CGCGGCGGCG 360
CGCGACGTCC CCTCGGGCTC CTACTACCTG 420
GAGGTGGCCT ACGGCCAGAC GGCGCCCACC 4 80
ATCCACGCCT CTCTCAAGAT CGCCGCCGGC 54 0
GCCTTCTTCT TCGTCATCGA GACCCGCAAG 600
612<210> 55
<211> 203
<212> PRT
<213> Zea mays
<400> 55
MET ALA ARG GLN GLN SER VAL GLN ALA LEU CYS VAL LEU ALA ALA LEU1 5 10 15
LEU PHE ALA ALA SER LEU PRO SER PRO ALA ALA ALA GLY VAL HIS LEU20 25 30
SER SER LEU PRO LYS ALA LEU ASP VAL THR THR SER ALA LYS PRO GLY35 40 45
GLN VAL LEU HIS ALA GLY VAL ASP SER LEU THR VAL THR TRP SER LEU50 55 60
ASN ALA THR GLU PRO ALA GLY ALA ASP ALA GLY TYR LYS GLY VAL LYS65 70 75 80
VAL LYS LEU CYS TYR ALA PRO ALA SER GLN LYS ASP ARG GLY TRP ARG85 90 95
LYS SER GLU ASP ASP ILE SER LYS ASP LYS ALA CYS GLN PHE LYS VAL100 105 110
THR GLU GLN ALA TYR ALA ALA ALA ALA PRO GLY SER PHE GLN TYR ALA115 120 125
VAL ALA ARG ASP VAL PRO SER GLY SER TYR TYR LEU ARG ALA PHE ALA130 135 140
THR ASP ALA SER GLY ALA GLU VAL ALA TYR GLY GLN THR ALA PRO THR145 150 155 160
ALA ALA PHE ASP VAL ALA GLY ILE THR GLY ILE HIS ALA SER LEU LYS165 170 175
ILE ALA ALA GLY VAL PHE SER ALA PHE SER VAL VAL ALA LEU ALA PHE180 185 190
PHE PHE VAL ILE GLU THR ARG LYS LYS ASN LYS195 200
<210> 56
<211> 756
<212> DNA
<213> Zea mays
<4 00> 56
TAGCTATATA CACATGTCTG GTCTGACGACCTTCCTATCA CTGTCATGAC ATGTGCTCTGTCGCTAATTC TTTCTTGTGC TAGAGGCGAGATCTGCGCTA AGGGTCACAT GACCCTGTTCCCTGACAGAT ACTTACGACG CGTCCGTACGCACCGGCGCC GGCATTCGCC CCCTGCCAGCCGCAGTTGCC GCATCCCAAA CGCCCGGGAATTGCTGCCCC TGGCTTCGTA AAGCTCTGAC
AATCAAAAGG GATCGCTAGC TCGGGCTAGC 60
CCTCTGCTGG TTGATAAGCC GTGCGCCTTC 120
TCAAACAAAC GCTGCACCTC GTAGCCCTTA 180
CCTATCGCTA GTTACCAACG ACCCATTCCC 24 0
CGGCAGGCCT CGGCAGTTCG GCATCACCAG 300
CGGTTCGCAG ATTCGCAGGG CGGAGTCGGC 360
CCTTTGGGGC CCCTCTACGA GCAAATGAAG 4 20
TTTTGATCAC TTGATTGGCA GTCGTACTCC 4 80TCGCTCATAG GCCGACACGG CCGCAAAGTCGCCACGCGCC TATATATGTT CGCGGCCATGAACCCCGAGC TCAGATCCCT CGCCTCGTGTAGTGTGGGCC AGACGGACAC CGCCGAGCTACGGCCGGACC GGAGCACGTA CGTACGTACC
AACTACCCGC TCCGCCATCC TTCAACCCCC 540
TCCGTACTAG TCCTCCAACC CACAAGCCAC 600
CGTGTCTCCG GTCGACGACG ACCAACAGCC 660
TAGCGCTTGG TGATAGCAAG GGACGACCGG 720
GCAGCG 7 56
<210> 57
<211> 594
<212> DNA
<213> Zea mays
<4 00> 57
ATGACGATGG CTCGTCCTGG GGCGGCTTTGTGCGCGCGCC TGGCGGCGGC AGTGCACCTCGCGTCGCCGA AGGCCGGACA AGTCCTGCACCACCTCAACG CGTCGGCGTC CAGCGTCGGGGCGCCGGCGA GCCAGGAGGA CCGCGGGTGGAAGGCGTGCC AGTTCAGGAT CGCCCGGCATTACAGGGTCG CCCGCGACGT CCCCACCGCGGCGTCCGGGG CGCCGGTGGG CTACGGCCAGGGCGTCTCGG GCGTCCACGC GTCCCTCCGGATCGCCGCGC TCGCCTTCTT TGTCGTCGTC
CCGCTGCTGC TGGTCGTGGT CGGCGCTTGC 60
TCCGCGCTCG GCAGGACACT CATCGTCGAG 120
GCCGGCGAGG ACACGATAAC CGTGACATGG 180
TACAAGGCGC TGGAGGTGAC CCTCTGCTAC 240
CGCAAGGCCA ACGACGACTT GAGCAAGGAC 300
GCATACGCCG GCGGCCAGGG GACGCTCCGG 360
TCCTACCACG TGCGCGCCTA CGCGCTGGAC 4 20
ACCGCGCCCG CCTACTACTT CCACGTCGCG 4 80
GTCGCCGCCG CCGTGCTCTC CGCGTTCTCC 54 0
GAGAAGAGGA GGAAGGACGA GTAG 594
<210> 58
<211> 197
<212> PRT
<213> Zea mays
<4 00> 58
MET THR MET ALA ARG PRO GLY ALA ALA LEU PRO LEU LEU LEU VAL VAL15 10 15
VAL GLY ALA CYS CYS ALA ARG LEU ALA ALA ALA VAL HIS LEU SER ALA20 25 30
LEU GLY ARG THR LEU ILE VAL GLU ALA SER PRO LYS ALA GLY GLN VAL35 40 45
LEU HIS ALA GLY GLU ASP THR ILE THR VAL THR TRP HIS LEU ASN ALA50 55 60
SER ALA SER SER VAL GLY TYR LYS ALA LEU GLU VAL THR LEU CYS TYR65 70 75 80
ALA PRO ALA SER GLN GLU ASP ARG GLY TRP ARG LYS ALA ASN ASP ASP85 90 95
LEU SER LYS ASP LYS ALA CYS GLN PHE ARG ILE ALA ARG HIS ALA TYR100 105 110
ALA GLY GLY GLN GLY THR LEU ARG TYR ARG VAL ALA ARG ASP VAL PRO115 120 125
THR ALA SER TYR HIS VAL ARG ALA TYR ALA LEU ASP ALA SER GLY ALA130 135 140
PRO VAL GLY TYR GLY GLN THR ALA PRO ALA TYR TYR PHE HIS VAL ALA145 150 155 160GLY VAL SER GLY VAL HIS ALA SER LEU ARG VAL ALA ALA ALA VAL LEU165 170 175
SER ALA PHE SER ILE ALA ALA LEU ALA PHE PHE VAL VAL VAL GLU LYS180 185 190
ARG ARG LYS ASP GLU195
<210> 59
<211> 30
<212> DNA
<213> PRIMER
<400> 59
GGTCGTTGGT AACTAGCGAT AGGGAACAGG 30
<210> 60
<211> 27
<212> DNA
<213> PRIMER
<400> 60
GTGCAGCGTT TGTTTGACTC GCCTCTA 27
<210> 61
<211> 18
<212> DNA
<213> PRIMER
<400> 61
CAACGGACCA GCTCTTGG 18
<210> 62
<211> 20
<212> DNA
<213> PRIMER
<400> 62
TCTTTGTGGG TTGTGGAAGG 20
<210> 63
<211> 20
<212> DNA
<213> PRIMER
<400> 63
CGAGCAGATC GTGCAAATAG 20
<210> 64
<211> 22
<212> DNA
<213> PRIMER
<400> 64
GGGCTTTGAT ATGTTTAGTT GG 22
<210><211>
65
2917<212> DNA
<213> Zea mays
<220>
<221> CARACTERÍSTICA MISC.
<222> (517)..(517)
<223> N É Α, C, G, OU T
<220>
<221> CARACTERÍSTICA MISC.<222> (590)..(590)<223> N É Α, C, G, OU T<400> 65
TTACTATAGG GCACGCGTGG TCGACGGCCCATTACATAAT CCAGCTTATA TCATAATCTATCTGTGTTGT TGTTTACCTA CTAACTTATTAATAAACGGG TTCTAAAATG GTCTAGGGTCGTAGTGTTAA GCTAAATCGA CATTTCTTTGGTTAAGCTAA AGCGACATTT CTTTGTGGGTTAGTGTTAAG CTAAATGTCG TTCTTTGTGGAAGCTAAATG TCGTTCTTTG TGGGTTGTGGTTAAGCTAAA TCGACATTTC TTTGTGGGTTAGTTGTGCAA GGTGTTCCTT ATAGCATCTCAATATAGGAC TCTAACCAAC AAAAACATACATCAAATGAT TATAGGGTCG ATTCTTCGGGTCTATCCTCA TTTTATATAT TATTTCTAAATTTATTTCCT AATACTATGA TATAGGGCTCATAAATACTT TAAATTAGGT CCTATTTTAATGTTTGTGCA TGATTGCTAT TTAGGTAGTTATTCTAGTAT TTTTTTTTGG TTCTCCGCTCAGCAGACTAT TTGATCTATT AAATTATGATTTTCACCATC AGTCCAAGTA TCTTTATAAAGTTAGATTAT AATTTAACGT ATCAGATGGTCTTGCATAAC AGTCGTTCTC TTTGTTATATACAAATGGTA CATACAAGTA GTGAACACATGACATCCTAT TTTTTAGAAC AAATTTCATACTAATTTTTT TATAGTATCA AGCATGTTATTTTATCCATT ATTTGCTCCC TACAATTAAAACCGAACCCG TATCCGTTTC ATATTCAAATAAAAATTTGA GGTTTAGTTT TTACAAATCTTGGATTTACA TGGTAAATTC TATGTCTTATATCTGACATT CGAATAAACA TTTGTTTCCATCCACTTCGT AATACGATAC AAAATCACCCCACTCAGTAA ACAATATTGT CTATGGTACAGATCTGCTCG ATTCAGGCAT CCTTGACACAAATAGAGCAG ACCTAATGGA TGGACCGTGGTCCGCCCGAT TGGTCATGGG GTCTGGGTTGCCACAGGTGC GCCACAACAG GATAGCCCAAATTATAGTTA GTATAAAGTA AAAAAACAAATTAAATAACT CTTTAAAGCT AGCAACTATGΤΤΤΤΤΤΤΑΤΤ TAAACAATAT GAGCCTTATAGACACATTAT AATTACTGAT CTAGCAGGCCGCGGACCAAG AGCTGGTCCG TTGGCTAATCCTGGGCCTAG CCGTGTCTGT GACTGGGCATGTACAAGAGG GGAATTTATA AATGAGGAGGGTTTTGTTGT GCTCAGCGAT AGATTTCAACGGGGGAAAAG GCCACATCAA AGGCGAGGTGTAAGTCCAGC AGCTAGCAAT GAAAGGGTACCATCCCCTCA ATGATCCGGT GCTCTCTTTT
TGGCTGGTCC TTGTTTGATT TACTTCCAGG 60GGTATCTAGA TTACATAATC TATCTAATAA 120TATAAGCTGG GTTATATAAT CTTGAGGCCA 180CAGTGTTAAG CTAAATCGAC ATTATGTCTA 24 0TGGGATGGGT CCGATGTGTC GTCTAGTAGT 300TGTGGAAGGT GTCCCTGCTC TCTAAGTTGT 360GTTGTGGCTG CTCCCTAAGT TGTTAGTGTT 4 20AAGGTGTTCC TTTTCCTTAA ATTGTTAGTG 4 80GTGGAANGTG TTCCTTTTCC TTAAGTTGTT 54 0CCACATGAGC CATAATGGAN TTTATTTTGA 600TCCAATAGGG ATTCTATTTT ACAAAAAAAT 660TCCTAAATAT AGTATCTAAT ATAATGGAGC 720ΤΤΤΤΤΑΤΤΤΑ CTAAATAACA TGTAACATGA 7 80AACTGTTGGA GCTGCAAACG TTTTTTGGCA 84 0TTTGAAAGAC TATATCATGC TCTTAGCGAG 900CAGTTGGGGG CTTTGATATG TTTAGTTGGA 960TTTTGACTAT CACAACGATC GCTATGCGCG 1020CCAACCATGT CACATTAAGC ACTTAAACTC 1080AAACCCTAAC AAACCACAAT TGCATATGTG 1140TCGCTTGCAC TCTTACACAC CTAGAAACTG 1200AATGCTTTAG TAATCATGAG CTAAGGGTAA 12 60CCTCGCTACC TATCTATAGG GGTGGAACTA 1320TTTTAAAATA GATATGCTTG AAAATTTATG 1380TACACATAAG AATAAAATTT TGTATAAATT 144 0AAGGTGAGAA AGCAAAAAGG TGAAGAAACA 1500TTTTACATCT ATTATTTGAG AATATATTTG 1560TTACAAGGTT AATGTTAAAT TATAAGACTG 1620TTGTCTGCGA TCGAAGAAAA ATGACAAAAA 1680CTCCTACCTA TCTCACCTCC TATTTCAAAC 17 40CCTATCTATC TCACCTCCTA TTTCAAACTC 1800AAATCAAGTG TTTTGTACAT CTATTTGCAC 18 60CAACATACTC CTTAGGGCTA TAAATGTCCA 1920CATGACACGA CTTATCCCAA CACAGCACAG 1980GTCTAGCCTG ATCATCGGGT CACTCTTGGG 204 0CCTATCCTAT TTTTTCATGC ATATATCTAT 2100AAGTATGTGT GTTATGTTGG CTAGATGTGT 2160GTTTAAATCA TACATATACA CATTTTTAGT 2220GGCACGTCGA GTGTGACGGG CCAGTGAGAT 2280GTATCTAGGT CTTTCTCGCG GACCTTTCTC 234 0TATACGGTAC CGATACTGTC CTAATTCATA 2400GGCTAGCGAA GCCCGCCCAT TTGAACACCT 24 60AATGTACTCA TGCGGTACAC CAGGGGAATT 2520GCAACGGTGA GCCAGTTTCA CCAAAAAAAA 2580CAGACGAGCA GAAGATGCTA GCAGTGCAGC 2 64 0TCAGGATTTA ACAATGCCTA GAGACGGCAT 2700TGTTTATTCA CCCGTTGGCG TAACTATΑΤΑ 27 60CACATGTCTG GTCTGACGAA CGAATCAAGGCTGTCATGAC ATGTGCTCTG CCTCTGCTGGTTTCTTGTGC TAGAGGCGAG TCAAACAAAC
GATCGCTAGC TCGGGCGAGC CTTCCTATCA 2820TTGATAAGCC GTGCGCCTTC TCGCTAATTC 2880GCTGCAC 2917
<210> 66
<211> 4498
<212> DNA
<213> Zea mays
<220>
<221> CARACTERÍSTICA MISC.
<222> (517)..(517)
<223> N É Α, C, G, OU T
<220>
<221> CARACTERÍSTICA MISC.
<222> (590)..(590)
<223> N É Α, C, G, OU T
<400> 66
TTACTATAGG GCACGCGTGG TCGACGGCCCATTACATAAT CCAGCTTATA TCATAATCTATCTGTGTTGT TGTTTACCTA CTAACTTATTAATAAACGGG TTCTAAAATG GTCTAGGGTCGTAGTGTTAA GCTAAATCGA CATTTCTTTGGTTAAGCTAA AGCGACATTT CTTTGTGGGTTAGTGTTAAG CTAAATGTCG TTCTTTGTGGAAGCTAAATG TCGTTCTTTG TGGGTTGTGGTTAAGCTAAA TCGACATTTC TTTGTGGGTTAGTTGTGCAA GGTGTTCCTT ATAGCATCTCAATATAGGAC TCTAACCAAC AAAAACATACATCAAATGAT TATAGGGTCG ATTCTTCGGGTCTATCCTCA TTTΤΑΤΑΤΑΤ TATTTCTAAATTTATTTCCT AATACTATGA TATAGGGCTCATAAATACTT TAAATTAGGT CCTATTTTAATGTTTGTGCA TGATTGCTAT TTAGGTAGTTATTCTAGTAT TTTTTTTTGG TTCTCCGCTCAGCAGACTAT TTGATCTATT AAATTATGATTTTCACCATC AGTCCAAGTA TCTTTATAAAGTTAGATTAT AATTTAACGT ATCAGATGGTCTTGCATAAC AGTCGTTCTC TTTGTTATATACAAATGGTA CATACAAGTA GTGAACACATGACATCCTAT TTTTTAGAAC AAATTTCATACTAATTTTTT TATAGTATCA AGCATGTTATTTTATCCATT ATTTGCTCCC TACAATTAAAACCGAACCCG TATCCGTTTC ATATTCAAATAAAAATTTGA GGTTTAGTTT TTACAAATCTTGGATTTACA TGGTAAATTC TATGTCTTATATCTGACATT CGAATAAACA TTTGTTTCCATCCACTTCGT AATACGATAC AAAATCACCCCACTCAGTAA ACAATATTGT CTATGGTACAGATCTGCTCG ATTCAGGCAT CCTTGACACAAATAGAGCAG ACCTAATGGA TGGACCGTGGTCCGCCCGAT TGGTCATGGG GTCTGGGTTGCCACAGGTGC GCCACAACAG GATAGCCCAAATTATAGTTA GTATAAAGTA AAAAAACAAATTAAATAACT CTTTAAAGCT AGCAACTATGΤΤΤΤΤΤΤΑΤΤ TAAACAATAT GAGCCTTATAGACACATTAT AATTACTGAT CTAGCAGGCC
TGGCTGGTCC TTGTTTGATT TACTTCCAGG 60GGTATCTAGA TTACATAATC TATCTAATAA 120TATAAGCTGG GTTATATAAT CTTGAGGCCA 180CAGTGTTAAG CTAAATCGAC ATTATGTCTA 240TGGGATGGGT CCGATGTGTC GTCTAGTAGT 300TGTGGAAGGT GTCCCTGCTC TCTAAGTTGT 360GTTGTGGCTG CTCCCTAAGT TGTTAGTGTT 420AAGGTGTTCC TTTTCCTTAA ATTGTTAGTG 4 80GTGGAANGTG TTCCTTTTCC TTAAGTTGTT 54 0CCACATGAGC CATAATGGAN TTTATTTTGA 600TCCAATAGGG ATTCTATTTT ACAAAAAAAT 660TCCTAAATAT AGTATCTAAT ATAATGGAGC 720ΤΤΤΤΤΑΤΤΤΑ CTAAATAACA TGTAACATGA 780AACTGTTGGA GCTGCAAACG TTTTTTGGCA 84 0TTTGAAAGAC TATATCATGC TCTTAGCGAG 900CAGTTGGGGG CTTTGATATG TTTAGTTGGA 960TTTTGACTAT CACAACGATC GCTATGCGCG 1020CCAACCATGT CACATTAAGC ACTTAAACTC 1080AAACCCTAAC AAACCACAAT TGCATATGTG 114 0TCGCTTGCAC TCTTACACAC CTAGAAACTG 1200AATGCTTTAG TAATCATGAG CTAAGGGTAA 1260CCTCGCTACC TATCTATAGG GGTGGAACTA 1320TTTTAAAATA GATATGCTTG AAAATTTATG 1380TACACATAAG AATAAAATTT TGTATAAATT 14 4 0AAGGTGAGAA AGCAAAAAGG TGAAGAAACA 1500TTTTACATCT ATTATTTGAG AATATATTTG 1560TTACAAGGTT AATGTTAAAT TATAAGACTG 1620TTGTCTGCGA TCGAAGAAAA ATGACAAAAA 1680CTCCTACCTA TCTCACCTCC TATTTCAAAC 17 40CCTATCTATC TCACCTCCTA TTTCAAACTC 1800AAATCAAGTG TTTTGTACAT CTATTTGCAC 18 60CAACATACTC CTTAGGGCTA TAAATGTCCA 1920CATGACACGA CTTATCCCAA CACAGCACAG 1980GTCTAGCCTG ATCATCGGGT CACTCTTGGG 2040CCTATCCTAT TTTTTCATGC ATATATCTAT 2100AAGTATGTGT GTTATGTTGG CTAGATGTGT 2160GTTTAAATCA TACATATACA CATTTTTAGT 2220GGCACGTCGA GTGTGACGGG CCAGTGAGAT 2280GTATCTAGGT CTTTCTCGCG GACCTTTCTC 234 0GCGGACCAAG AGCTGGTCCG TTGGCTAATCCTGGGCCTAG CCGTGTCTGT GACTGGGCATGTACAAGAGG GGAATTTATA AATGAGGAGGGTTTTGTTGT GCTCAGCGAT AGATTTCAACGGGGGAAAAG GCCACATCAA AGGCGAGGTGTAAGTCCAGC AGCTAGCAAT GAAAGGGTACCATCCCCTCA ATGATCCGGT GCTCTCTTTTCACATGTCTG GTCTGACGAA CGAATCAAGGCTGTCATGAC ATGTGCTCTG CCTCTGCTGGTTTCTTGTGC TAGAGGCGAG TCAAACAAACAGGGTCACAT GACCCTGTTC CCTATCGCTAACTTACGACG CGTCCGTACG CGGCAGGCCTGGCATTCGCC CCCTGCCAGC CGGTTCGCAGGCATCCCAAA CGCCCGGGAA CCTTTGGGGCTGGCTTCGTA AAGCTCTGAC TTTTGATCACGCCGACACGG CCGCAAAGTC AACTACCCGCTATATATGTT CGCGGCCATG TCCGTACTAGTCAGATCCCT CGCCTCGTGT CGTGTCTCCGAGACGGACAC CGCCGAGCTA TAGCGCTTGGGGAGCACGTA CGTACGTACC GCAGCGATGGTGCTGGCGGC GCTTCTCTTC GCCGCCTCCCTCTCCTCGCT GCCCAAAGCG CTCGACGTCAGCGCGTTCCG GCCCGGCTCA TAGTCATAGCGTTAATTCAT AGTCCTATTC TTCTCTATGTCAATCAAGGA GCTAGCTGAT TAAAATACACGTCCTGCACG CCGGCGTGGA CTCGCTGACGGCCGGCGCCG ACGCCGGGTA CAAGGGCGTGCAGAAGGACC GCGGGTGGCG CAAGTCCGAGTTCAAGGTCA CCGAGCAGGC GTACGCGGCGGCCCGCGACG TCCCCTCGGG CTCCTACTACGCCGAGGTGG CCTACGGCCA GACGGCGCCCGGCATCCACG CCTCTCTCAA GATCGCCGCCCTCGCCTTCT TCTTCGTCAT CGAGACCCGCCGCGCCATAC ATGCATACAT GTAAATCGTCCATTGGTGCG CGCGACTATT TTGGTGTATCCAAAATTACC AAATAATAAC TTAAGTTTCT
TATACGGTAC CGATACTGTC CTAATTCATA 24 00GGCTAGCGAA GCCCGCCCAT TTGAACACCT 24 60AATGTACTCA TGCGGTACAC CAGGGGAATT 2520GCAACGGTGA GCCAGTTTCA CCAAAAAAAA 2580CAGACGAGCA GAAGATGCTA GCAGTGCAGC 2640TCAGGATTTA ACAATGCCTA GAGACGGCAT 27 00TGTTTATTCA CCCGTTGGCG TAACTATATA 27 60GATCGCTAGC TCGGGCGAGC CTTCCTATCA 2820TTGATAAGCC GTGCGCCTTC TCGCTAATTC 2880GCTGCACCTC GTAGCCCTTA ATCTGCGCTA 294 0GTTACCAACG ACCCATTCCC CCTGACAGAT 3000CGGCAGTTCG GCATCACCAG CACCGGCGCC 3060ATTCGCAGGG CGGAGTCGGC CGCAGTTGCC 3120CCCTCTACGA GCAAATGAAG TTGCTGCCCC 3180TTGATTGGCA GTCGTACTCC TCGCTCATAG 324 0TCCGCCATCC TTCAACCCCC GCCACGCGCC 3300TCCTCCAACC CACAAGCCAC AACCCCGAGC 3360GTCGACGACG ACCAACAGCC AGTGTGGGCC 34 20TGATAGCAAG GGACGACCGG CGGCCGGACC 34 80CTCGGCAGCA AAGCGTGCAG GCCTTGTGTG 3540TGCCGTCGCC GGCCGCCGCG GGGGTGCACC 3600CCACCTCCGC CAAACCCGGC CAAGGTGCGC 3660CAAAGGATTA GCACTTTGAT TACTTGCTCG 3720TTGAAACCCC CCTTTAGATT TGTTCATTCA 3780ACGATTGCCA TAAAATATAT GCTTCTCGCA 3840GTGACGTGGA GCCTGAACGC CACGGAGCCG 3900AAGGTGAAGC TGTGCTACGC GCCGGCGAGC 3960GACGACATCA GCAAGGACAA GGCGTGCCAG 4 020GCGGCGCCCG GCAGCTTCCA GTACGCCGTC 4 080CTGCGCGCCT TCGCCACGGA CGCGTCGGGC 4140ACCGCCGCCT TCGACGTCGC CGGCATCACC 4 200GGCGTCTTCT CGGCCTTCTC CGTCGTCGCG 4 2 60AAGAAGAACA AGTAGAACGA GTTGCGGCTG 4 320GGCGGCGATG AGTGGCTGTC GTTGCTGATT 4 380ATGTAAGTTA CTTTTCTGCA GTGTGTGCGT 4440CTGCTAAAAA AAAAAAAAAA AAAAAAAA 4 4 98
<210> 67
<211> 3506
<212> DNA
<213> Zea mays
<220>
<221> CARACTERÍSTICA MISC.
<222> (517)..(517)
<223> N É A, C, G, OU T
<220>
<221> CARACTERÍSTICA MISC.
<222> (590)..(590)
<223> N É A, C, G, OU T
<4 00> 67
TTACTATAGG GCACGCGTGG TCGACGGCCCAT TACATAAT C CAG CTTATA T CATAAT CTATCTGTGTTGT TGTTTACCTA CTAACTTATTAATAAACGGG TTCTAAAATG GTCTAGGGTCGTAGTGTTAA GCTAAATCGA CATTTCTTTGGTTAAGCTAA AGCGACATTT CTTTGTGGGT
TGGCTGGTCC TTGTTTGATT TACTTCCAGG 60
GGTATCTAGA TTACATAATC TATCTAATAA 120
TATAAGCTGG GTTATATAAT CTTGAGGCCA 180
CAGTGTTAAG CTAAATCGAC ATTATGTCTA 240
TGGGATGGGT CCGATGTGTC GTCTAGTAGT 300
TGTGGAAGGT GTCCCTGCTC TCTAAGTTGT 360tagtgttaag ctaaatgtcg ttctttgtggaagctaaatg tcgttctttg tgggttgtggttaagctaaa tcgacatttc tttgtgggttagttgtgcaa ggtgttcctt atagcatctcaatataggac tctaaccaac aaaaacatacatcaaatgat tatagggtcg attcttcgggtctatcctca ttttatatat tatttctaaatttatttcct aatactatga tatagggctcataaatactt taaattaggt cctattttaatgtttgtgca tgattgctat ttaggtagttattctagtat ttttttttgg ttctccgctcagcagactat ttgatctatt aaattatgattttcaccatc agtccaagta tctttataaagttagattat aatttaacgt atcagatggtcttgcataac agtcgttctc tttgttatatacaaatggta catacaagta gtgaacacatgacatcctat tttttagaac aaatttcatactaatttttt tatagtatca agcatgttattttatccatt atttgctccc tacaattaaaaccgaacccg tatccgtttc atattcaaataaaaatttga ggtttagttt ttacaaatcttggatttaca tggtaaattc tatgtcttatatctgacatt cgaataaaca tttgtttccatccacttcgt aatacgatac aaaatcaccccactcagtaa acaatattgt ctatggtacagatctgctcg attcaggcat ccttgacacaaatagagcag acctaatgga tggaccgtggtccgcccgat tggtcatggg gtctgggttgccacaggtgc gccacaacag gatagcccaaattatagtta gtataaagta aaaaaacaaattaaataact ctttaaagct agcaactatgtttttttatt taaacaatat gagccttata
gacacattat aattactgat ctagcaggccgcggaccaag agctggtccg ttggctaatcctgggcctag ccgtgtctgt gactgggcatgtacaagagg ggaatttata aatgaggagggttttgttgt gctcagcgat agatttcaacgggggaaaag gccacatcaa aggcgaggtgtaagtccagc agctagcaat gaaagggtaccatcccctca atgatccggt gctctcttttcacatgtctg gtctgacgaa cgaatcaaggctgtcatgac atgtgctctg cctctgctggtttcttgtgc tagaggcgag tcaaacaaacagggtcacat gaccctgttc cctatcgctaacttacgacg cgtccgtacg cggcaggcctggcattcgcc ccctgccagc cggttcgcaggcatcccaaa cgcccgggaa cctttggggctggcttcgta aagctctgac ttttgatcacgccgacacgg ccgcaaagtc aactacccgctatatatgtt cgcggccatg tccgtactagtcagatccct cgcctcgtgt cgtgtctccgagacggacac cgccgagcta tagcgcttggggagcacgta cgtacgtacc gcagcg
gttgtggctg ctccctaagt tgttagtgtt 420aaggtgttcc ttttccttaa attgttagtg 480gtggaangtg ttccttttcc ttaagttgtt 540ccacatgagc cataatggan tttattttga 600tccaataggg attctatttt acaaaaaaat 660tcctaaatat agtatctaat ataatggagc 720tttttattta ctaaataaca tgtaacatga 780aactgttgga gctgcaaacg ttttttggca 840tttgaaagac tatatcatgc tcttagcgag 900cagttggggg ctttgatatg tttagttgga 960ttttgactat cacaacgatc gctatgcgcg 1020ccaaccatgt cacattaagc acttaaactc 1080aaaccctaac aaaccacaat tgcatatgtg 1140tcgcttgcac tcttacacac ctagaaactg 1200aatgctttag taatcatgag ctaagggtaa 1260cctcgctacc tatctatagg ggtggaacta 1320ttttaaaata gatatgcttg aaaatttatg 1380tacacataag aataaaattt tgtataaatt 1440aaggtgagaa agcaaaaagg tgaagaaaca 1500ttttacatct attatttgag aatatatttg 1560ttacaaggtt aatgttaaat tataagactg 1620ttgtctgcga tcgaagaaaa atgacaaaaa 1680ctcctaccta tctcacctcc tatttcaaac 1740cctatctatc tcacctccta tttcaaactc 1800aaatcaagtg ttttgtacat ctatttgcac 1860caacatactc cttagggcta taaatgtcca 1920catgacacga cttatcccaa cacagcacag 1980gtctagcctg atcatcgggt cactcttggg 2040cctatcctat tttttcatgc atatatctat 2100aagtatgtgt gttatgttgg ctagatgtgt 2160gtttaaatca tacatataca catttttagt 2220ggcacgtcga gtgtgacggg ccagtgagat 2280gtatctaggt ctttctcgcg gacctttctc 2340tatacggtac cgatactgtc ctaattcata 2400ggctagcgaa gcccgcccat ttgaacacct 2460aatgtactca tgcggtacac caggggaatt 2520gcaacggtga gccagtttca ccaaaaaaaa 2580cagacgagca gaagatgcta gcagtgcagc 2640tcaggattta acaatgccta gagacggcat 2700tgtttattca cccgttggcg taactatata 2760gatcgctagc tcgggcgagc cttcctatca 2820ttgataagcc gtgcgccttc tcgctaattc 2880gctgcacctc gtagccctta atctgcgcta 2940gttaccaacg acccattccc cctgacagat 3000cggcagttcg gcatcaccag caccggcgcc 3060attcgcaggg cggagtcggc cgcagttgcc 3120ccctctacga gcaaatgaag ttgctgcccc 3180ttgattggca gtcgtactcc tcgctcatag 3240tccgccatcc ttcaaccccc gccacgcgcc 3300tcctccaacc cacaagccac aaccccgagc 3360gtcgacgacg accaacagcc agtgtgggcc 3420tgatagcaag ggacgaccgg cggccggacc 3480
3506
<210> 68
<211> 1014
<212> dna
<213> Zea mays<400> 68
CACAACGATC GCTATGCGCG AGCAGACTATCACATTAAGC ACTTAAACTC TTTCACCATCAAACCACAAT TGCATATGTG GTTAGATTATTCTTACACAC CTAGAAACTG CTTGCATAACTAATCATGAG CTAAGGGTAA ACAAATGGTATATCTATAGG GGTGGAACTA GACATCCTATGATATGCTTG AAAATTTATG CTAATTTTTTAATAAAATTT TGTATAAATT TTTATCCATTAGCAAAAAGG TGAAGAAACA ACCGAACCCGATTATTTGAG AATATATTTG AAAAATTTGAAATGTTAAAT TATAAGACTG TGGATTTACATCGAAGAAAA ATGACAAAAA ATCTGACATTTCTCACCTCC TATTTCAAAC TCCACTTCGTTCACCTCCTA TTTCAAACTC CACTCAGTAATTTTGTACAT CTATTTGCAC GATCTGCTCGCTTAGGGCTA TAAATGTCCA AATAGAGCAGCTTATCCCAA CACAGCACAG TCCGCCCGAT
TTGATCTATT AAATTATGAT CCAACCATGT 60
AGTCCAAGTA TCTTTATAAA AAACCCTAAC 120
AATTTAACGT ATCAGATGGT TCGCTTGCAC 180
AGTCGTTCTC TTTGTTATAT AATGCTTTAG 240
CATACAAGTA GTGAACACAT CCTCGCTACC 300TTTTTAGAAC AAATTTCATA ΤΤΤΤΑΑΑΑΤΑ 360
TATAGTATCA AGCATGTTAT TACACATAAG 4 20
ATTTGCTCCC TACAATTAAA AAGGTGAGAA 4 80
TATCCGTTTC ATATTCAAAT TTTTACATCT 540
GGTTTAGTTT TTACAAATCT TTACAAGGTT 600
TGGTAAATTC TATGTCTTAT TTGTCTGCGA 660
CGAATAAACA TTTGTTTCCA CTCCTACCTA 720
AATACGATAC AAAATCACCC CCTATCTATC 780
ACAATATTGT CTATGGTACA AAATCAAGTG 84 0
ATTCAGGCAT CCTTGACACA CAACATACTC 900
ACCTAATGGA TGGACCGTGG CATGACACGA 960
TGGTCATGGG GTCTGGGTTG GTCT 1014
<210> 69
<211> 1492
<212> DNA
<213> Zea mays
<4 00> 69
AGCCTGATCA TCGGGTCACT CTTGGGCCACTCCTATTTTT TCATGCATAT ATCTATATTAATGTGTGTTA TGTTGGCTAG ATGTGTTTAAAAATCATACA TATACACATT TTTAGTTTTTCGTCGAGTGT GACGGGCCAG TGAGATGACACTAGGTCTTT CTCGCGGACC TTTCTCGCGGCGGTACCGAT ACTGTCCTAA TTCATACTGGAGCGAAGCCC GCCCATTTGA ACACCTGTACTACTCATGCG GTACACCAGG GGAATTGTTTCGGTGAGCCA GTTTCACCAA AAAAAAGGGGCGAGCAGAAG ATGCTAGCAG TGCAGCTAAGGATTTAACAA TGCCTAGAGA CGGCATCATCTATTCACCCG TTGGCGTAAC TATATACACAGCTAGCTCGG GCGAGCCTTC CTATCACTGTTAAGCCGTGC GCCTTCTCGC TAATTCTTTCCACCTCGTAG CCCTTAATCT GCGCTAAGGGCCAACGACCC ATTCCCCCTG ACAGATACTTAGTTCGGCAT CACCAGCACC GGCGCCGGCAGCAGGGCGGA GTCGGCCGCA GTTGCCGCATCTACGAGCAA ATGAAGTTGC TGCCCCTGGCTTGGCAGTCG TACTCCTCGC TCATAGGCCGCCATCCTTCA ACCCCCGCCA CGCGCCTATACCAACCCACA AGCCACAACC CCGAGCTCAGACGACGACCA ACAGCCAGTG TGGGCCAGACAGCAAGGGAC GACCGGCGGC CGGACCGGAG
AGGTGCGCCA CAACAGGATA GCCCAACCTA 60TAGTTAGTAT AAAGTAAAAA AACAAAAAGT 120ATAACTCTTT AAAGCTAGCA ACTATGGTTT 180TTTATTTAAA CAATATGAGC CTTATAGGCA 24 0CATTATAATT ACTGATCTAG CAGGCCGTAT 300ACCAAGAGCT GGTCCGTTGG CTAATCTATA 360GCCTAGCCGT GTCTGTGACT GGGCATGGCT 4 20AAGAGGGGAA TTTATAAATG AGGAGGAATG 4 80TGTTGTGCTC AGCGATAGAT TTCAACGCAA 54 0GAAAAGGCCA CATCAAAGGC GAGGTGCAGA 600TCCAGCAGCT AGCAATGAAA GGGTACTCAG 660CCCTCAATGA TCCGGTGCTC TCTTTTTGTT 720TGTCTGGTCT GACGAACGAA TCAAGGGATC 780CATGACATGT GCTCTGCCTC TGCTGGTTGA 84 0TTGTGCTAGA GGCGAGTCAA ACAAACGCTG 900TCACATGACC CTGTTCCCTA TCGCTAGTTA 960ACGACGCGTC CGTACGCGGC AGGCCTCGGC 1020TTCGCCCCCT GCCAGCCGGT TCGCAGATTC 1080CCCAAACGCC CGGGAACCTT TGGGGCCCCT 114 0TTCGTAAAGC TCTGACTTTT GATCACTTGA 1200ACACGGCCGC AAAGTCAACT ACCCGCTCCG 1260TATGTTCGCG GCCATGTCCG TACTAGTCCT 1320ATCCCTCGCC TCGTGTCGTG TCTCCGGTCG 1380GGACACCGCC GAGCTATAGC GCTTGGTGAT 14 4 0CACGTACGTA CGTACCGCAG CG 14 92
<210> 70
<211> 3621
<212> DNA
<213> Zea mays
<400> 70
TGGTCCTTGT TTGATTTACT TCCAGGATTA TATAATCCAG CTTATGGATT ATATAAGTAC 60CTATTGACGT CACGTGCTTA TGTATTATAA TAATCTAGGT ATATAGATTA TATAATCTAT 120CTAATAATAA TCTGTGTTGT TTGTTTATCT CTCAAAACAA ACAGGTCCTA AAATGGTCCC 180GGGCGTCCAA TGTGTCGTCA AGTAGTGTTA AGCTAAATCG ACATTTCTTT GTGGGTTGTG 24 0TGGAAGGTGT TCCTTTTCCT TAAGTTGTTA GTTGTGCAAG GTGTTCCTTA GAGCATCTCC 300AATAGGACCT ATAATGGATT CTATTTTGAA TTATAAGACT CTAACAACAA AAGCATACTT 360TAATGGGGAT TCTATTTTAC ΑΑΑΑΑΑΑΤΑΤ CAAATGATTA TATGGTCGAT TCCTCGGGTC 4 20CTAAATATAG TATCTCATAT AATAGAGCTC TATCCTCATT TTATATACTA TTTTTAAGTT 4 80TTTATTTACT AAATAACATG ATTTATTTTC TAATACTATG AACTCAACTA TTAGAGCTGT 54 0AAACGTTTTT GTGGTACTAA ACACTTTAAA TCAGGTCCTA TTTTAATTTG AAGGACTTAA 600ATATAAGACT TCTGGTTAGA GATGCTCTTA GCGAGTGTTT GTGCATGATT GCTATTTAGT 660CTTTGTGGAT TGTGGAAGGT GTTACTTTTC CTCAAGTTGT TAGTTGTGCA AGGTGTTTCT 720TAGAGCATCT CTAACAGGAG CCTTAACGGA ATCTATTTTG AAGTATAGTA CTTTAACACC 780AAAAACATAC TTTAATAGGG GTCCTATTTT ACAAAAAAAT TATCAAATGA TTATAAGGTC 84 0CACTCCTCGG GTCCTAAATA TAATATCTCA TATACTAGAG CTCTATCCTC ΑΤΤΤΤΑΤΑΤΑ 900CTATCCCTAG GTTTTTATTC CCTAAATAAC ATGATTTATT TCCTAATACT AAGATATAGG 960GCTCAACTAT TGGAGTTGCA AATGTTTTTT GGCACTAAAC ACTTTATATC AGGTCCTATT 1020ΤΤΑΑΤΤΤΤΑΑ TTTGAAGGAC TCAAATATAG GACTTCTCGT TAGAGATGCT CTTAGCGAGT 1080GTTTGTGCAT GATTGCTATT TATGTCTGTA GTTTAGTTGG GGGCTTTAAT ATGTTTAGTT 114 0GAAGTTCTAG TATTTTTTAG GTTCTCCACT CTTTGGATTA TGACAACGAC CACTATCCAA 1200GCAGTCTTTG AGTGCAAACG CGCGAGCAAA CTATCTGATC ΤΑΤΤΑΑΑΤΤΑ TGATCCAACC 12 60GTTATGTCAT ATTGAAGACT TAAACCCTTT CACCACCAGC CCAAGTATCT TTATGAAAAA 1320CCCTAACAAA CCACAATTGC ATCTATGGTT GGATTATAAT TTAACGTATC AGATGGTTCG 1380CTTGCATGCT TACATATCTA GAAACTGTTT GCATAACAGT CGTTCTCTTT GGTTATATAA 14 4 0TGCTTTAGTA ATCATCAGCC AAGTGTAAAC AAATGGTACA AACTAGTAGT GAACACATCC 1500TCCCTACCTA TCTCTAGGGG TGTAACTAGA TATCCGAATT CTTAGAACAA ATTTCATATT 1560TTAAAATAGA TATGCTTCAA AATTTATGCT AATCTTTTTT ATATTATCAA GCATATTATT 1620ACACATAAGA ΑΤΑΑΑΑΤΤΤΤ GTATAGAATT TTATCCATTA TTTGTTCCCT AGAATTTAAA 1680AAGTGAAAAA ACATTCGAAT CTGTATCAGT TTCGTATTCA AATTTTTACA TCTATTATTT 17 4 0GAGAATATAT ATGATAAATT TGAGGTTTAG TTTTTATGAA TCTTTACAAG GTTAATGTTA 1800AATACATGAC TATGGATTTA CATAGTAAAT TCTATGTCTT ATTTGTCCGC GATTGAAGAA 18 60AAATGACAAA AAGATCTGAC ATTCGAATAA ACATCTGTTT CCACTCCTAC CTATCTGACC 1920TCCTATTTCA AACTCCACTT TGTAACACGG TACAAAATCA CTCCCTACCT ATCTGACCTC 1980CTATTTCAAA CTCCACTCAG TAAACAATAT TGTCTATGGT ACAAAACCAA GTGTTTTATA 204 0CATCTATTTG CACGATCTGC TCGAGTCAGG CATCCTTGAC ACACAACATA CTCCTTGTGG 2100CTATAAATGT CCAAATAGAG CAGACCTAAT GGGTGGACCG TTGCATGACA CGACTTATCC 2160CAAGACGAGC ACAGTTCGCC CCATTGGTCA TGGGGGTCCG GGCTAGTCTA GCCTGATCAT 2220CGGGTCACAC TTAGGCCACA GGTGTGCCAC AACGGGATAG CCCAACATGT CCCTTTTTGT 22 80CATGCATATA TCTATATTAT AGTTAGTATA ATGTAAAAAA ACAAAAGGTA TGTGTGTTAT 234 0GTTGGTTAGA TGTGTTTAAA TAACTCTTTA AAGCTAGCAA CTATGGTTTA AATCATACAT 24 00ATACACATTT ΤΤΑΤΤΤΤΑΤΤ ΤΤΤΑΤΤΤΑΑΑ CGATATGGGC CTTCTAGGCA CGTCGAGTGT 24 60GACGGGCCAG TGAGATGACA CATTATAATT ACTGGTCTAG CAGGCCGTAC CTAGGTCTTT 2520CTCGTGGGCC AAGACTAAGG GTTGGCCCGT TGGCTAATCT GTACGGTACC GATACTGTCC 2580TAATTCATTT GAACACCTGT AGAAGAGGGG ΑΑΤΤΤΑΤΑΑΤ TGAGGAGGAA TGTACTCATG 2640CGGTACACCA GGGGAATTGT TTTGTTGTGC TCAGCGATAG ATTTCAACGC AACGGTGAGC 27 00CAGTTTCACT AAAAAAAGGG GGGGGGGGGG GGGGGGGGGA AGGCCACATC AAAGGCGAGG 27 60TGCTGACGAG CAGAAGATGC TAGCAGTGAC GCCAAGTCCA GCAGCTAGCA ATGAAAGGGT 2820ACTCGGGATT TAACAATGCC TAGAGACGGC ATCATCCCCT CAATAATCCG GTGCTCTCTT 2880TTTGTTTATT CACCAGTTGG CGTAGCTATA TACACATGTC TGGTCTGACG AACAAATCAA 2940GGGATCGCTA GCTCGGGCTA GCCTTCCTAT CACTGTCATG ACATGTGCTC TGCCTCTGCT 3000GGTTGATAAG CCGTGCGCCT TCTCGCTAAT TCTTTCTTGT GCTAGAGGCG AGTCAAACAA 3060ACGCTGCACC TCGTAGCCCT TAATCTGCGC TAAGGGTCAC ATGACCCTGT TCCCTATCGC 3120TAGTTACCAA CGACCCATTC CCCCTGACAG ATACTTACGA CGCGTCCGTA CGCGGCAGGC 3180CTCGGCAGTT CGGCATCACC AGCACCGGCG CCGGCATTCG CCCCCTGCCA GCCGGTTCGC 324 0AGATTCGCAG GGCGGAGTCG GCCGCAGTTG CCGCATCCCA AACGCCCGGG AACCTTTGGG 3300GCCCCTCTAC GAGCAAATGA AGTTGCTGCC CCTGGCTTCG TAAAGCTCTG ACTTTTGATC 3360ACTTGATTGG CAGTCGTACT CCTCGCTCAT AGGCCGACAC GGCCGCAAAG TCAACTACCC 3420GCTCCGCCAT CCTTCAACCC CCGCCACGCG CCTATATATG TTCGCGGCCA TGTCCGTACT 34 80AGTCCTCCAA CCCACAAGCC ACAACCCCGA GCTCAGATCC CTCGCCTCGT GTCGTGTCTC 354 0CGGTCGACGA CGACCAACAG CCAGTGTGGG CCAGACGGAC ACCGCCGAGC TATAGCGCTT 3600GGTGATAGCA AGGGACGACC G 3621<210> 71
<211> 3236
<212> DNA
<213> Zea mays
<400> 71
TGGTCCTTGT TTGATTTACT TCCAGGATTACTATTGACGT CACGTGCTTA TGTATTATAACTAATAATAA TCTGTGTTGT TTGTTTATCTGGGCGTCCAA TGTGTCGTCA AGTAGTGTTATGGAAGGTGT TCCTTTTCCT TAAGTTGTTAAATAGGACCT ATAATGGATT CTATTTTGAATAATGGGGAT TCTATTTTAC ΑΑΑΑΑΑΑΤΑΤCTAAATATAG TATCTCATAT AATAGAGCTCTTTATTTACT AAATAACATG ATTTATTTTCAAACGTTTTT GTGGTACTAA ACACTTTAAAATATAAGACT TCTGGTTAGA GATGCTCTTACTTTGTGGAT TGTGGAAGGT GTTACTTTTCTAGAGCATCT CTAACAGGAG CCTTAACGGAAAAAACATAC TTTAATAGGG GTCCTATTTTCACTCCTCGG GTCCTAAATA TAATATCTCACTATCCCTAG GTTTTTATTC CCTAAATAACGCTCAACTAT TGGAGTTGCA AATGTTTTTTΤΤΑΑΤΤΤΤΑΑ TTTGAAGGAC TCAAATATAGGTTTGTGCAT GATTGCTATT TATGTCTGTAGAAGTTCTAG TATTTTTTAG GTTCTCCACTGCAGTCTTTG AGTGCAAACG CGCGAGCAAAGTTATGTCAT ATTGAAGACT TAAACCCTTTCCCTAACAAA CCACAATTGC ATCTATGGTTCTTGCATGCT TACATATCTA GAAACTGTTTTGCTTTAGTA ATCATCAGCC AAGTGTAAACTCCCTACCTA TCTCTAGGGG TGTAACTAGATTAAAATAGA TATGCTTCAA AATTTATGCTACACATAAGA ΑΤΑΑΑΑΤΤΤΤ GTATAGAATTAAGTGAAAAA ACATTCGAAT CTGTATCAGTGAGAATATAT ATGATAAATT TGAGGTTTAGAATACATGAC TATGGATTTA CATAGTAAATAAAT GACAAA AAGATCTGAC ATTCGAATAATCCTATTTCA AACTCCACTT TGTAACACGGCTATTTCAAA CTCCACTCAG TAAACAATATCATCTATTTG CACGATCTGC TCGAGTCAGGCTATAAATGT CCAAATAGAG CAGACCTAATCAAGACGAGC ACAGTTCGCC CCATTGGTCACGGGTCACAC TTAGGCCACA GGTGTGCCACCATGCATATA TCTATATTAT AGTTAGTATAGTTGGTTAGA TGTGTTTAAA TAACTCTTTAATACACATTT TTATTTTATT ΤΤΤΑΤΤΤΑΑΑGACGGGCCAG TGAGATGACA CATTATAATTCTCGTGGGCC AAGACTAAGG GTTGGCCCGTTAATTCATTT GAACACCTGT AGAAGAGGGGCGGTACACCA GGGGAATTGT TTTGTTGTGCCAGTTTCACT AAAAAAAGGG GGGGGGGGGGTGCTGACGAG CAGAAGATGC TAGCAGTGACACTCGGGATT TAACAATGCC TAGAGACGGCTTTGTTTATT CACCAGTTGG CGTAGCTATAGGGATCGCTA GCTCGGGCTA GCCTTCCTATGGTTGATAAG CCGTGCGCCT TCTCGCTAATACGCTGCACC TCGTAGCCCT TAATCTGCGC
TATAATCCAG CTTATGGATT ATATAAGTAC 60TAATCTAGGT ATATAGATTA TATAATCTAT 120CTCAAAACAA ACAGGTCCTA AAATGGTCCC 180AGCTAAATCG ACATTTCTTT GTGGGTTGTG 240GTTGTGCAAG GTGTTCCTTA GAGCATCTCC 300TTATAAGACT CTAACAACAA AAGCATACTT 360CAAATGATTA TATGGTCGAT TCCTCGGGTC 4 20TATCCTCATT TTATATACTA TTTTTAAGTT 4 80TAATACTATG AACTCAACTA TTAGAGCTGT 54 0TCAGGTCCTA TTTTAATTTG AAGGACTTAA 600GCGAGTGTTT GTGCATGATT GCTATTTAGT 660CTCAAGTTGT TAGTTGTGCA AGGTGTTTCT 720ATCTATTTTG AAGTATAGTA CTTTAACACC 780ACAAAAAAAT TATCAAATGA TTATAAGGTC 84 0TATACTAGAG CTCTATCCTC ΑΤΤΤΤΑΤΑΤΑ 900ATGATTTATT TCCTAATACT AAGATATAGG 960GGCACTAAAC ACTTTATATC AGGTCCTATT 1020GACTTCTCGT TAGAGATGCT CTTAGCGAGT 1080GTTTAGTTGG GGGCTTTAAT ATGTTTAGTT 1140CTTTGGATTA TGACAACGAC CACTATCCAA 1200CTATCTGATC TATTAAATTA TGATCCAACC 12 60CACCACCAGC CCAAGTATCT TTATGAAAAA 1320GGATTATAAT TTAACGTATC AGATGGTTCG 1380GCATAACAGT CGTTCTCTTT GGTTATATAA 14 4 0AAATGGTACA AACTAGTAGT GAACACATCC 1500TATCCGAATT CTTAGAACAA ATTTCATATT 1560AATCTTTTTT ATATTATCAA GCATATTATT 1620TTATCCATTA TTTGTTCCCT AGAATTTAAA 1680TTCGTATTCA AATTTTTACA TCTATTATTT 174 0TTTTTATGAA TCTTTACAAG GTTAATGTTA 1800TCTATGTCTT ATTTGTCCGC GATTGAAGAA 18 60ACATCTGTTT CCACTCCTAC CTATCTGACC 1920TACAAAATCA CTCCCTACCT ATCTGACCTC 1980TGTCTATGGT ACAAAACCAA GTGTTTTATA 204 0CATCCTTGAC ACACAACATA CTCCTTGTGG 2100GGGTGGACCG TTGCATGACA CGACTTATCC 2160TGGGGGTCCG GGCTAGTCTA GCCTGATCAT 2220AACGGGATAG CCCAACATGT CCCTTTTTGT 2280ATGTAAAAAA ACAAAAGGTA TGTGTGTTAT 2340AAGCTAGCAA CTATGGTTTA AATCATACAT 2400CGATATGGGC CTTCTAGGCA CGTCGAGTGT 2 4 60ACTGGTCTAG CAGGCCGTAC CTAGGTCTTT 2520TGGCTAATCT GTACGGTACC GATACTGTCC 2580ΑΑΤΤΤΑΤAAT TGAGGAGGAA TGTACTCATG 264 0TCAGCGATAG ATTTCAACGC AACGGTGAGC 2700GGGGGGGGGA AGGCCACATC AAAGGCGAGG 27 60GCCAAGTCCA GCAGCTAGCA ATGAAAGGGT 2820ATCATCCCCT CAATAATCCG GTGCTCTCTT 2880TACACATGTC TGGTCTGACG AACAAATCAA 294 0CACTGTCATG ACATGTGCTC TGCCTCTGCT 3000TCTTTCTTGT GCTAGAGGCG AGTCAAACAA 3060TAAGGGTCAC ATGACCCTGT TCCCTATCGC 3120TAGTTACCAA CGACCCATTC CCCCTGACAG ATACTTACGA CGCGTCCGTA CGCGGCAGGC 3180CTCGGCAGTT CGGCATCACC AGCACCGGCG CCGGCATTCG CCCCCTGCCA GCCGGT 3236
<210> 72
<211> 1000
<212> DNA
<213> Zea mays
<400> 72
TGGTCCTTGT TTGATTTACT TCCAGGATTACTATTGACGT CACGTGCTTA TGTATTATAACTAATAATAA TCTGTGTTGT TTGTTTATCTGGGCGTCCAA TGTGTCGTCA AGTAGTGTTATGGAAGGTGT TCCTTTTCCT TAAGTTGTTAAATAGGACCT ATAATGGATT CTATTTTGAATAATGGGGAT TCTATTTTAC ΑΑΑΑΑΑΑΤΑΤCTAAATATAG TATCTCATAT AATAGAGCTCTTTATTTACT AAATAACATG ATTTATTTTCAAACGTTTTT GTGGTACTAA ACACTTTAAAATATAAGACT TCTGGTTAGA GATGCTCTTACTTTGTGGAT TGTGGAAGGT GTTACTTTTCTAGAGCATCT CTAACAGGAG CCTTAACGGAAAAAACATAC TTTAATAGGG GTCCTATTTTCACTCCTCGG GTCCTAAATA TAATATCTCACTATCCCTAG GTTTTTATTC CCTAAATAACGCTCAACTAT TGGAGTTGCA AATGTTTTTT
TATAATCCAG CTTATGGATT ATATAAGTAC 60
TAATCTAGGT ATATAGATTA TATAATCTAT 120
CTCAAAACAA ACAGGTCCTA AAATGGTCCC 180
AGCTAAATCG ACATTTCTTT GTGGGTTGTG 24 0
GTTGTGCAAG GTGTTCCTTA GAGCATCTCC 300
TTATAAGACT CTAACAACAA AAGCATACTT 360
CAAATGATTA TATGGTCGAT TCCTCGGGTC 4 20
TATCCTCATT TTATATACTA TTTTTAAGTT 480
TAATACTATG AACTCAACTA TTAGAGCTGT 54 0
TCAGGTCCTA TTTTAATTTG AAGGACTTAA 600
GCGAGTGTTT GTGCATGATT GCTATTTAGT 660
CTCAAGTTGT TAGTTGTGCA AGGTGTTTCT 720
ATCTATTTTG AAGTATAGTA CTTTAACACC 780
ACAAAAAAAT TATCAAATGA TTATAAGGTC 84 0
TATACTAGAG CTCTATCCTC ΑΤΤΤΤΑΤΑΤΑ 900
ATGATTTATT TCCTAATACT AAGATATAGG 960
GGCACTAAAC 1000
<210> 73
<211> 2236
<212> DNA
<213> Zea mays
<400> 73
ACTTTATATC AGGTCCTATT ΤΤΑΑΤΤΤΤΑΑTAGAGATGCT CTTAGCGAGT GTTTGTGCATGGGCTTTAAT ATGTTTAGTT GAAGTTCTAGTGACAACGAC CACTATCCAA GCAGTCTTTGTATTAAATTA TGATCCAACC GTTATGTCATCCAAGTATCT TTATGAAAAA CCCTAACAAATTAACGTATC AGATGGTTCG CTTGCATGCTCGTTCTCTTT GGTTATATAA TGCTTTAGTAAACTAGTAGT GAACACATCC TCCCTACCTACTTAGAACAA ATTTCATATT TTAAAATAGAATATTATCAA GCATATTATT ACACATAAGATTTGTTCCCT AGAATTTAAA AAGTGAAAAAAATTTTTACA TCTATTATTT GAGAATATATTCTTTACAAG GTTAATGTTA AATACATGACATTTGTCCGC GATTGAAGAA AAATGACAAACCACTCCTAC CTATCTGACC TCCTATTTCACTCCCTACCT ATCTGACCTC CTATTTCAAAACAAAACCAA GTGTTTTATA CATCTATTTGACACAACATA CTCCTTGTGG CTATAAATGTTTGCATGACA CGACTTATCC CAAGACGAGCGGCTAGTCTA GCCTGATCAT CGGGTCACACCCCAACATGT CCCTTTTTGT CATGCATATAACAAAAGGTA TGTGTGTTAT GTTGGTTAGACTATGGTTTA AATCATACAT ATACACATTTCTTCTAGGCA CGTCGAGTGT GACGGGCCAGCAGGCCGTAC CTAGGTCTTT CTCGTGGGCC
TTTGAAGGAC TCAAATATAG GACTTCTCGT 60
GATTGCTATT TATGTCTGTA GTTTAGTTGG 120
TATTTTTTAG GTTCTCCACT CTTTGGATTA 180
AGTGCAAACG CGCGAGCAAA CTATCTGATC 240
ATTGAAGACT TAAACCCTTT CACCACCAGC 300
CCACAATTGC ATCTATGGTT GGATTATAAT 360
TACATATCTA GAAACTGTTT GCATAACAGT 420
ATCATCAGCC AAGTGTAAAC AAATGGTACA 4 80
TCTCTAGGGG TGTAACTAGA TATCCGAATT 54 0
TATGCTTCAA AATTTATGCT AATCTTTTTT 600
ATAAAATTTT GTATAGAATT TTATCCATTA 660
ACATTCGAAT CTGTATCAGT TTCGTATTCA 720
ATGATAAATT TGAGGTTTAG TTTTTATGAA 7 80
TATGGATTTA CATAGTAAAT TCTATGTCTT 840
AAGATCTGAC ATTCGAATAA ACATCTGTTT 900
AACTCCACTT TGTAACACGG TACAAAATCA 960
CTCCACTCAG TAAACAATAT TGTCTATGGT 1020
CACGATCTGC TCGAGTCAGG CATCCTTGAC 1080
CCAAATAGAG CAGACCTAAT GGGTGGACCG 1140
ACAGTTCGCC CCATTGGTCA TGGGGGTCCG 1200
TTAGGCCACA GGTGTGCCAC AACGGGATAG 1260
TCTATATTAT AGTTAGTATA ATGTAAAAAA 1320
TGTGTTTAAA TAACTCTTTA AAGCTAGCAA 1380
ΤΤΑΤΤΤΤΑΤΤ ΤΤΤΑΤΤΤΑΑΑ CGATATGGGC 14 40
TGAGATGACA CATTATAATT ACTGGTCTAG 1500
AAGACTAAGG GTTGGCCCGT TGGCTAATCT 1560GTACGGTACC GATACTGTCC TAATTCATTT GAACACCTGT AGAAGAGGGG AATTTATAAT 1620TGAGGAGGAA TGTACTCATG CGGTACACCA GGGGAATTGT TTTGTTGTGC TCAGCGATAG 1680ATTTCAACGC AACGGTGAGC CAGTTTCACT AAAAAAAGGG GGGGGGGGGG GGGGGGGGGA 174 0AGGCCACATC AAAGGCGAGG TGCTGACGAG CAGAAGATGC TAGCAGTGAC GCCAAGTCCA 1800GCAGCTAGCA ATGAAAGGGT ACTCGGGATT TAACAATGCC TAGAGACGGC ATCATCCCCT 18 60CAATAATCCG GTGCTCTCTT TTTGTTTATT CACCAGTTGG CGTAGCTATA TACACATGTC 1920TGGTCTGACG AACAAATCAA GGGATCGCTA GCTCGGGCTA GCCTTCCTAT CACTGTCATG 1980ACATGTGCTC TGCCTCTGCT GGTTGATAAG CCGTGCGCCT TCTCGCTAAT TCTTTCTTGT 204 0GCTAGAGGCG AGTCAAACAA ACGCTGCACC TCGTAGCCCT TAATCTGCGC TAAGGGTCAC 2100ATGACCCTGT TCCCTATCGC TAGTTACCAA CGACCCATTC CCCCTGACAG ATACTTACGA 2160CGCGTCCGTA CGCGGCAGGC CTCGGCAGTT CGGCATCACC AGCACCGGCG CCGGCATTCG 2220CCCCCTGCCA GCCGGT 2236
<210> 74
<211> 1237
<212> DNA
<213> Zea mays
<400> 74
GTAAACAATA TTGTCTATGG TACAAAACCA AGTGTTTTAT ACATCTATTT GCACGATCTG 60CTCGAGTCAG GCATCCTTGA CACACAACAT ACTCCTTGTG GCTATAAATG TCCAAATAGA 120GCAGACCTAA TGGGTGGACC GTTGCATGAC ACGACTTATC CCAAGACGAG CACAGTTCGC 180CCCATTGGTC ATGGGGGTCC GGGCTAGTCT AGCCTGATCA TCGGGTCACA CTTAGGCCAC 24 0AGGTGTGCCA CAACGGGATA GCCCAACATG TCCCTTTTTG TCATGCATAT ATCTATATTA 300TAGTTAGTAT AATGTAAAAA AACAAAAGGT ATGTGTGTTA TGTTGGTTAG ATGTGTTTAA 360ATAACTCTTT AAAGCTAGCA ACTATGGTTT AAATCATACA TATACACATT ΤΤΤΑΤΤΤΤΑΤ 4 20TTTTATTTAA ACGATATGGG CCTTCTAGGC ACGTCGAGTG TGACGGGCCA GTGAGATGAC 4 80ACATTATAAT TACTGGTCTA GCAGGCCGTA CCTAGGTCTT TCTCGTGGGC CAAGACTAAG 54 0GGTTGGCCCG TTGGCTAATC TGTACGGTAC CGATACTGTC CTAATTCATT TGAACACCTG 600TAGAAGAGGG GAATTTATAA TTGAGGAGGA ATGTACTCAT GCGGTACACC AGGGGAATTG 660TTTTGTTGTG CTCAGCGATA GATTTCAACG CAACGGTGAG CCAGTTTCAC TAAAAAAAGG 720GGGGGGGGGG GGGGGGGGGG AAGGCCACAT CAAAGGCGAG GTGCTGACGA GCAGAAGATG 780CTAGCAGTGA CGCCAAGTCC AGCAGCTAGC AATGAAAGGG TACTCGGGAT TTAACAATGC 84 0CTAGAGACGG CATCATCCCC TCAATAATCC GGTGCTCTCT TTTTGTTTAT TCACCAGTTG 900GCGTAGCTAT ATACACATGT CTGGTCTGAC GAACAAATCA AGGGATCGCT AGCTCGGGCT 960AGCCTTCCTA TCACTGTCAT GACATGTGCT CTGCCTCTGC TGGTTGATAA GCCGTGCGCC 1020TTCTCGCTAA TTCTTTCTTG TGCTAGAGGC GAGTCAAACA AACGCTGCAC CTCGTAGCCC 1080TTAATCTGCG CTAAGGGTCA CATGACCCTG TTCCCTATCG CTAGTTACCA ACGACCCATT 114 0CCCCCTGACA GATACTTACG ACGCGTCCGT ACGCGGCAGG CCTCGGCAGT TCGGCATCAC 1200CAGCACCGGC GCCGGCATTC GCCCCCTGCC AGCCGGT 1237
<210> 75
<211> 21
<212> DNA
<213> PRIMER
<4 00> 75
GCCGTGCGCC TTCTCGCTAA T 21
<210> 76
<211> 24
<212> DNA
<213> PRIMER
<4 00> 76
GCGAGGAGTA CGACTGCCAA TCAA 24
<210> 77<211> 32<212> DNA
<213> PRIMER
<400> 77
TTCGGATCCT GGTCCTTGTT TGATTTACTT
<210> 78
<211> 27
<212> DNA
<213> PRIMER
<4 00> 78
GGCAAGCTTC GGTCGTCCCT TGCTATC
<210> 79
<211> 18
<212> DNA
<213> PRIMER
<400> 79
TGTAAAACGA CGGCCAGT
<210> 80
<211> 19
<212> DNA
<213> PRIMER
<4 00> 80
GGAAACAGCT ATGACCATG
<210> 81<211> 24<212> DNA
<213> PRIMER
<400> 81
TCAAATGATT ATATGGTCGA TTCC
<210> 82
<211> 20
<212> DNA
<213> PRIMER
<400> 82
CGAGCAGATC GTGCAAATAG
<210> 83
<211> 18
<212> DNA
<213> PRIMER
<400> 83
TGCTAGCTGC TGGACTTG
<210> 84
<211> 24
<212> DNA
<213> PRIMER<400> 84
TTGATTGGCA GTCGTACTCC TCGC 24
<210> 85
<211> 2777
<212> DNA
<213> VETOR
<400> 85
GAAAGGCCCA GTCTTCCGAC TGAGCCTTTCCTCGCGTTAA CGCTAGCATG GATGTTTTCCCTTAAGCTCG GGCCCGCGTT AACGCTACCATGATAGTGAC CTGTTCGTTG CAACAAATTGTGTATAGAAA AGTTGGGCCG AATTCGAGCTACCGAATTCG AGCTCGGTAC CCTGGGATCCCACCCGGTCC GGGCCTAGAA GGCCAGCTTCGTAAAATGAT ATAAATATCA ATATATTAAAATACTGTAAA ACACAACATA TGCAGTCACTCCTGTAGAAT TCGAGCTCTA GAGCTGCAGGATTACATGGT CATAGCTGTT TCCTGGCAGCACATTGCACA AGATAAAAAT ATATCATCATGTAATACAAG GGGTGTTATG AGCCATATTCCCAACATGGA TGCTGATTTA TATGGGTATAGTGCGACAAT CTATCGCTTG TATGGGAAGCGCAAAGGTAG CGTTGCCAAT GATGTTACAGAATTTATGCC TCTTCCGACC ATCAAGCATTTCACCACTGC GATCCCCGGA AAAACAGCATGTGAAAATAT TGTTGATGCG CTGGCAGTGTGTAATTGTCC TTTTAACAGC GATCGCGTATATAACGGTTT GGTTGATGCG AGTGATTTTGAAGTCTGGAA AGAAATGCAT AAACTTTTGCGTGATTTCTC ACTTGATAAC CTTATTTTTGTTGGACGAGT CGGAATCGCA GACCGATACCGTGAGTTTTC TCCTTCATTA CAGAAACGGCATATGAATAA ATTGCAGTTT CATTTGATGCATTGGTTGTA ACACTGGCAG AGCATTACGCCAAAATCCCT TAACGTGAGT TACGCGTCGTTCAAAGGATC TTCTTGAGAT CCTTTTTTTCAACCACCGCT ACCAGCGGTG GTTTGTTTGCAGGTAACTGG CTTCAGCAGA GCGCAGATACTAGGCCACCA CTTCAAGAAC TCTGTAGCACTACCAGTGGC TGCTGCCAGT GGCGATAAGTAGTTACCGGA TAAGGCGCAG CGGTCGGGCTTGGAGCGAAC GACCTACACC GAACTGAGATCGCTTCCCGA AGGGAGAAAG GCGGACAGGTAGCGCACGAG GGAGCTTCCA GGGGGAAACGGCCACCTCTG ACTTGAGCGT CGATTTTTGTAAAACGCCAG CAACGCGGCC TTTTTACGGTTGTTCTTTCC TGCGTTATCC CCTGATTCTGCTGATACCGC TCGCCGCAGC CGAACGACCGAAGAGCGCCC AATACGCAAA CCGCCTCTCCGGCACGACAG GTTTCCCGAC TGGAAAGCGGCCGCTAGCCA GGAAGAGTTT GTAGAAACGCCTTAGTTTGA TGCCTGGCAG TTTATGGCGGCTTCACAACG TTCAAATCCG CTCCCGGCGGCAAACAACAG ATAAAAC
GTTTTATTTG ATGCCTGGCA GTTCCCTACT 60CAGTCACGAC GTTGTAAAAC GACGGCCAGT 120TGGAGCTCCA AATAATGATT TTATTTTGAC 180ATAAGCAATG CTTTTTTATA ATGCCAACTT 240CGGTACGGCC AGAATGGCCC GGACCGGGTT 300GATATCGATG GGCCCTGGCC GAAGCTTGGT 360AAGTTTGTAC AAAAAAGTTG AACGAGAAAC 420TTAGATTTTG CATAAAAAAC AGACTACATA 480ATGAATCAAC TACTTAGATG GTATTAGTGA 540GCGGCCGCGA TATCCCCTAT AGTGAGTCGT 600TCTGGCCCGT GTCTCAAAAT CTCTGATGTT 660GAACAATAAA ACTGTCTGCT TACATAAACA 720AACGGGAAAC GTCGAGGCCG CGATTAAATT 780AATGGGCTCG CGATAATGTC GGGCAATCAG 840CCGATGCGCC AGAGTTGTTT CTGAAACATG 900ATGAGATGGT CAGACTAAAC TGGCTGACGG 960TTATCCGTAC TCCTGATGAT GCATGGTTAC 1020TCCAGGTATT AGAAGAATAT CCTGATTCAG 1080TCCTGCGCCG GTTGCATTCG ATTCCTGTTT 1140TTCGTCTCGC TCAGGCGCAA TCACGAATGA 1200ATGACGAGCG TAATGGCTGG CCTGTTGAAC 1260CATTCTCACC GGATTCAGTC GTCACTCATG 1320ACGAGGGGAA ATTAATAGGT TGTATTGATG 1380AGGATCTTGC CATCCTATGG AACTGCCTCG 1440TTTTTCAAAA ATATGGTATT GATAATCCTG 1500TCGATGAGTT TTTCTAATCA GAATTGGTTA 1560TGACTTGACG GGACGGCGCA AGCTCATGAC 1620TCCACTGAGC GTCAGACCCC GTAGAAAAGA 1680TGCGCGTAAT CTGCTGCTTG CAAACAAAAA 1740CGGATCAAGA GCTACCAACT CTTTTTCCGA 1800CAAATACTGT CCTTCTAGTG TAGCCGTAGT 1860CGCCTACATA CCTCGCTCTG CTAATCCTGT 1920CGTGTCTTAC CGGGTTGGAC TCAAGACGAT 1980GAACGGGGGG TTCGTGCACA CAGCCCAGCT 2040ACCTACAGCG TGAGCATTGA GAAAGCGCCA 2100ATCCGGTAAG CGGCAGGGTC GGAACAGGAG 2160CCTGGTATCT TTATAGTCCT GTCGGGTTTC 2220GATGCTCGTC AGGGGGGCGG AGCCTATGGA 2280TCCTGGCCTT TTGCTGGCCT TTTGCTCACA 2340TGGATAACCG TATTACCGCC TTTGAGTGAG 2400AGCGCAGCGA GTCAGTGAGC GAGGAAGCGG 2460CCGCGCGTTG GCCGATTCAT TAATGCAGCT 2520GCAGTGAGCG CAACGCAATT AATACGCGTA 2580AAAAAGGCCA TCCGTCAGGA TGGCCTTCTG 2640GCGTCCTGCC CGCCACCCTC CGGGCCGTTG 2700ATTTGTCCTA CTCAGGAGAG CGTTCACCGA 2760
2777
<210> 86<211> 6377<212> DNA<213> VETOR
<400> 86
GAAAGGCCCA GTCTTCCGAC TGAGCCTTTCCTCGCGTTAA CGCTAGCATG GATGTTTTCCCTTAAGCTCG GGCCCGCGTT AACGCTACCATGATAGTGAC CTGTTCGTTG CAACAAATTGTGTATAGAAA AGTTGGGCCG AATTCGAGCTACCGAATTCG AGCTCGGTAC CCTGGGATCCTACTTCCAGG ΑΤΤΑΤΑΤΑΑΤ CCAGCTTATGCTTATGTATT ATAATAATCT AGGTATATAGTTGTTTGTTT ATCTCTCAAA ACAAACAGGTGTCAAGTAGT GTTAAGCTAA ATCGACATTTTCCTTAAGTT GTTAGTTGTG CAAGGTGTTCGATTCTATTT TGAATTATAA GACTCTAACATTACAAAAAA ATATCAAATG ATTATATGGTATATAATAGA GCTCTATCCT CATTTTATATCATGATTTAT TTTCTAATAC TATGAACTCACTAAACACTT TAAATCAGGT CCTATTTTAATAGAGATGCT CTTAGCGAGT GTTTGTGCATAGGTGTTACT TTTCCTCAAG TTGTTAGTTGGGAGCCTTAA CGGAATCTAT TTTGAAGTATAGGGGTCCTA TTTTACAAAA AAATTATCAAAATATAATAT CTCATATACT AGAGCTCTATATTCCCTAAA TAACATGATT TATTTCCTAATGCAAATGTT TTTTGGCACT AAACACTTTAGGACTCAAAT ATAGGACTTC TCGTTAGAGATATTTATGTC TGTAGTTTAG TTGGGGGCTTTTAGGTTCTC CACTCTTTGG ATTATGACAAAACGCGCGAG CAAACTATCT GATCTATTAAGACTTAAACC CTTTCACCAC CAGCCCAAGTTTGCATCTAT GGTTGGATTA TAATTTAACGTCTAGAAACT GTTTGCATAA CAGTCGTTCTAGCCAAGTGT AAACAAATGG TACAAACTAGGGGGTGTAAC TAGATATCCG AATTCTTAGATCAAAATTTA TGCTAATCTT ΤΤΤΤΑΤΑΤΤΑTTTTGTATAG AATTTTATCC ATTATTTGTTGAATCTGTAT CAGTTTCGTA TTCAAATTTTAATTTGAGGT TTAGTTTTTA TGAATCTTTATTTACATAGT AAATTCTATG TCTTATTTGTTGACATTCGA ATAAACATCT GTTTCCACTCACTTTGTAAC ACGGTACAAA ATCACTCCCTTCAGTAAACA ATATTGTCTA TGGTACAAAACTGCTCGAGT CAGGCATCCT TGACACACAAAGAGCAGACC TAATGGGTGG ACCGTTGCATCGCCCCATTG GTCATGGGGG TCCGGGCTAGCACAGGTGTG CCACAACGGG ATAGCCCAACTTATAGTTAG TATAATGTAA AAAAACAAAATAAATAACTC TTTAAAGCTA GCAACTATGGΤΑΤΤΤΤΤΑΤΤ TAAACGATAT GGGCCTTCTAGACACATTAT AATTACTGGT CTAGCAGGCCAAGGGTTGGC CCGTTGGCTA ATCTGTACGGCTGTAGAAGA GGGGAATTTA TAATTGAGGATTGTTTTGTT GTGCTCAGCG ATAGATTTCAAGGGGGGGGG GGGGGGGGGG GGGAAGGCCAATGCTAGCAG TGACGCCAAG TCCAGCAGCTTGCCTAGAGA CGGCATCATC CCCTCAATAATTGGCGTAGC TATATACACA TGTCTGGTCT
GTTTTATTTG ATGCCTGGCA GTTCCCTACT 60CAGTCACGAC GTTGTAAAAC GACGGCCAGT 120TGGAGCTCCA AATAATGATT TTATTTTGAC 180ATAAGCAATG CTTTTTTATA ATGCCAACTT 240CGGTACGGCC AGAATGGCCC GGACCGGGTT 300GCAAGGGACG ACCGTGGTCC TTGTTTGATT 360GATTATATAA GTACCTATTG ACGTCACGTG 420ΑΤΤΑΤΑΤΑΑΤ CTATCTAATA ATAATCTGTG 4 80CCTAAAATGG TCCCGGGCGT CCAATGTGTC 54 0CTTTGTGGGT TGTGTGGAAG GTGTTCCTTT 600CTTAGAGCAT CTCCAATAGG ACCTATAATG 660ACAAAAGCAT ACTTTAATGG GGATTCTATT 720CGATTCCTCG GGTCCTAAAT ATAGTATCTC 7 80ACTATTTTTA AGTTTTTATT TACTAAATAA 84 0ACTATTAGAG CTGTAAACGT TTTTGTGGTA 900TTTGAAGGAC TTAAATATAA GACTTCTGGT 960GATTGCTATT TAGTCTTTGT GGATTGTGGA 1020TGCAAGGTGT TTCTTAGAGC ATCTCTAACA 1080AGTACTTTAA CACCAAAAAC ATACTTTAAT 114 0ATGATTATAA GGTCCACTCC TCGGGTCCTA 1200CCTCATTTTA TATACTATCC CTAGGTTTTT 1260TACTAAGATA TAGGGCTCAA CTATTGGAGT 1320TATCAGGTCC ΤΑΤΤΤΤΑΑΤΤ TTAATTTGAA 1380TGCTCTTAGC GAGTGTTTGT GCATGATTGC 14 40TAATATGTTT AGTTGAAGTT CTAGTATTTT 1500CGACCACTAT CCAAGCAGTC TTTGAGTGCA 1560ATTATGATCC AACCGTTATG TCATATTGAA 1620ATCTTTATGA AAAACCCTAA CAAACCACAA 1680TATCAGATGG TTCGCTTGCA TGCTTACATA 174 0CTTTGGTTAT ATAATGCTTT AGTAATCATC 1800TAGTGAACAC ATCCTCCCTA CCTATCTCTA 18 60ACAAATTTCA ΤΑΤΤΤΤΑΑΑΑ TAGATATGCT 1920TCAAGCATAT TATTACACAT AAGAATAAAA 1980CCCTAGAATT TAAAAAGTGA AAAAACATTC 204 0TACATCTATT ATTTGAGAAT ATATATGATA 2100CAAGGTTAAT GTTAAATACA TGACTATGGA 2160CCGCGATTGA AGAAAAATGA CAAAAAGATC 2220CTACCTATCT GACCTCCTAT TTCAAACTCC 2280ACCTATCTGA CCTCCTATTT CAAACTCCAC 234 0CCAAGTGTTT TATACATCTA TTTGCACGAT 2 4 00CATACTCCTT GTGGCTATAA ATGTCCAAAT 24 60GACACGACTT ATCCCAAGAC GAGCACAGTT 2520TCTAGCCTGA TCATCGGGTC ACACTTAGGC 2580ATGTCCCTTT TTGTCATGCA TATATCTATA 2 64 0GGTATGTGTG TTATGTTGGT TAGATGTGTT 2700TTTAAATCAT ACATATACAC ΑΤΤΤΤΤΑΤΤΤ 27 60GGCACGTCGA GTGTGACGGG CCAGTGAGAT 2820GTACCTAGGT CTTTCTCGTG GGCCAAGACT 2880TACCGATACT GTCCTAATTC ATTTGAACAC 2 94 0GGAATGTACT CATGCGGTAC ACCAGGGGAA 3000ACGCAACGGT GAGCCAGTTT CACTAAAAAA 3060CATCAAAGGC GAGGTGCTGA CGAGCAGAAG 3120AGCAATGAAA GGGTACTCGG GATTTAACAA 3180TCCGGTGCTC TCTTTTTGTT TATTCACCAG 324 0GACGAACAAA TCAAGGGATC GCTAGCTCGG 3300GCTAGCCTTC CTATCACTGT CATGACATGTGCCTTCTCGC TAATTCTTTC TTGTGCTAGACCCTTAATCT GCGCTAAGGG TCACATGACCATTCCCCCTG ACAGATACTT ACGACGCGTCCACCAGCACC GGCGCCGGCA TTCGCCCCCTGTCGGCCGCA GTTGCCGCAT CCCAAACGCCATGAAGTTGC TGCCCCTGGC TTCGTAAAGCTACTCCTCGC TCATAGGCCG ACACGGCCGCACCCCCGCCA CGCGCCTATA TATGTTCGCGAGCCACAACC CCGAGCTCAG ATCCCTCGCCACAGCCAGTG TGGGCCAGAC GGACACCGCCCACCCGGTCC GGGCCTAGAA GGCCAGCTTCGTAAAATGAT ATAAATATCA ATATATTAAAATACTGTAAA ACACAACATA TGCAGTCACTCCTGTAGAAT TCGAGCTCTA GAGCTGCAGGATTACATGGT CATAGCTGTT TCCTGGCAGCACATTGCACA AGATAAAAAT ATATCATCATGTAATACAAG GGGTGTTATG AGCCATATTCCCAACATGGA TGCTGATTTA TATGGGTATAGTGCGACAAT CTATCGCTTG TATGGGAAGCGCAAAGGTAG CGTTGCCAAT GATGTTACAGAATTTATGCC TCTTCCGACC ATCAAGCATTTCACCACTGC GATCCCCGGA AAAACAGCATGTGAAAATAT TGTTGATGCG CTGGCAGTGTGTAATTGTCC TTTTAACAGC GATCGCGTATATAACGGTTT GGTTGATGCG AGTGATTTTGAAGTCTGGAA AGAAATGCAT AAACTTTTGCGTGATTTCTC ACTTGATAAC CTTATTTTTGTTGGACGAGT CGGAATCGCA GACCGATACCGTGAGTTTTC TCCTTCATTA CAGAAACGGCATATGAATAA ATTGCAGTTT CATTTGATGCATTGGTTGTA ACACTGGCAG AGCATTACGCCAAAATCCCT TAACGTGAGT TACGCGTCGTTCAAAGGATC TTCTTGAGAT CCTTTTTTTCAACCACCGCT ACCAGCGGTG GTTTGTTTGCAGGTAACTGG CTTCAGCAGA GCGCAGATACTAGGCCACCA CTTCAAGAAC TCTGTAGCACTACCAGTGGC TGCTGCCAGT GGCGATAAGTAGTTACCGGA TAAGGCGCAG CGGTCGGGCTTGGAGCGAAC GACCTACACC GAACTGAGATCGCTTCCCGA AGGGAGAAAG GCGGACAGGTAGCGCACGAG GGAGCTTCCA GGGGGAAACGGCCACCTCTG ACTTGAGCGT CGATTTTTGTAAAACGCCAG CAACGCGGCC TTTTTACGGTTGTTCTTTCC TGCGTTATCC CCTGATTCTGCTGATACCGC TCGCCGCAGC CGAACGACCGAAGAGCGCCC AATACGCAAA CCGCCTCTCCGGCACGACAG GTTTCCCGAC TGGAAAGCGGCCGCTAGCCA GGAAGAGTTT GTAGAAACGCCTTAGTTTGA TGCCTGGCAG TTTATGGCGGCTTCACAACG TTCAAATCCG CTCCCGGCGGCAAACAACAG ATAAAACGCTCTGCCTC TGCTGGTTGA TAAGCCGTGC 3360GGCGAGTCAA ACAAACGCTG CACCTCGTAG 34 20CTGTTCCCTA TCGCTAGTTA CCAACGACCC 3480CGTACGCGGC AGGCCTCGGC AGTTCGGCAT 354 0GCCAGCCGGT TCGCAGATTC GCAGGGCGGA 3600CGGGAACCTT TGGGGCCCCT CTACGAGCAA 3660TCTGACTTTT GATCACTTGA TTGGCAGTCG 37 20AAAGTCAACT ACCCGCTCCG CCATCCTTCA 37 80GCCATGTCCG TACTAGTCCT CCAACCCACA 384 0TCGTGTCGTG TCTCCGGTCG ACGACGACCA 3900GAGCTATAGC GCTTGGTGAT AAAGCTTGGT 3960AAGTTTGTAC AAAAAAGTTG AACGAGAAAC 4 020TTAGATTTTG CATAAAAAAC AGACTACATA 4 080ATGAATCAAC TACTTAGATG GTATTAGTGA 414 0GCGGCCGCGA TATCCCCTAT AGTGAGTCGT 4 200TCTGGCCCGT GTCTCAAAAT CTCTGATGTT 4 2 60GAACAATAAA ACTGTCTGCT TACATAAACA 4 320AACGGGAAAC GTCGAGGCCG CGATTAAATT 4 380AATGGGCTCG CGATAATGTC GGGCAATCAG 4 4 40CCGATGCGCC AGAGTTGTTT CTGAAACATG 4 500ATGAGATGGT CAGACTAAAC TGGCTGACGG 4 560TTATCCGTAC TCCTGATGAT GCATGGTTAC 4 620TCCAGGTATT AGAAGAATAT CCTGATTCAG 4 680TCCTGCGCCG GTTGCATTCG ATTCCTGTTT 47 4 0TTCGTCTCGC TCAGGCGCAA TCACGAATGA 4 800ATGACGAGCG TAATGGCTGG CCTGTTGAAC 4 8 60CATTCTCACC GGATTCAGTC GTCACTCATG 4 920ACGAGGGGAA ATTAATAGGT TGTATTGATG 4 98 0AGGATCTTGC CATCCTATGG AACTGCCTCG 504 0TTTTTCAAAA ATATGGTATT GATAATCCTG 5100TCGATGAGTT TTTCTAATCA GAATTGGTTA 5160TGACTTGACG GGACGGCGCA AGCTCATGAC 5220TCCACTGAGC GTCAGACCCC GTAGAAAAGA 5280TGCGCGTAAT CTGCTGCTTG CAAACAAAAA 534 0CGGATCAAGA GCTACCAACT CTTTTTCCGA 54 00CAAATACTGT CCTTCTAGTG TAGCCGTAGT 54 60CGCCTACATA CCTCGCTCTG CTAATCCTGT 5520CGTGTCTTAC CGGGTTGGAC TCAAGACGAT 5580GAACGGGGGG TTCGTGCACA CAGCCCAGCT 564 0ACCTACAGCG TGAGCATTGA GAAAGCGCCA 57 00ATCCGGTAAG CGGCAGGGTC GGAACAGGAG 57 60CCTGGTATCT TTATAGTCCT GTCGGGTTTC 5820GATGCTCGTC AGGGGGGCGG AGCCTATGGA 5880TCCTGGCCTT TTGCTGGCCT TTTGCTCACA 594 0TGGATAACCG TATTACCGCC TTTGAGTGAG 6000AGCGCAGCGA GTCAGTGAGC GAGGAAGCGG 6060CCGCGCGTTG GCCGATTCAT TAATGCAGCT 6120GCAGTGAGCG CAACGCAATT AATACGCGTA 6180AAAAAGGCCA TCCGTCAGGA TGGCCTTCTG 6240GCGTCCTGCC CGCCACCCTC CGGGCCGTTG 6300ATTTGTCCTA CTCAGGAGAG CGTTCACCGA 6360
6377
<210> 87
<211> 17777
<212> DNA
<213> VETOR<400> 87
ATTATACAAA GTTGATAGAT ATCGGACCGAGCCTGCAGTG CAGCGTGACC CGGTCGTGCCTAAGTTATAA AAAATTACCA CATATTTTTTTATCTTTATA CATATATTTA AACTTTACTCAATATCAGTG TTTTAGAGAA TCATATAAATGAGTATTTTG ACAACAGGAC TCTACAGTTTTTTTTTGCAA ATAGCTTCAC CTATATAATAGGGTTTAGGG TTAATGGTTT TTATAGACTATTAGCCTCTA AATTAAGAAA ACTAAAACTCTATAAAATAG AATAAAATAA AGTGACTAAAAAAACTAAGG AAACATTTTT CTTGTTTCGAGACGAGTCTA ACGGACACCA ACCAGCGAACGACGGCACGG CATCTCTGTC GCTGCCTCTGGGACTTGCTC CGCTGTCGGC ATCCAGAAATACGGCAGGCG GCCTCCTCCT CCTCTCACGGCCGCTCCTTC GCTTTCCCTT CCTCGCCCGCCTTTCCCCAA CCTCGTGTTG TTCGGAGCGCCACCCGTCGG CACCTCCGCT TCAAGGTACGCTTCTCTAGA TCGGCGTTCC GGTCCATGCACATGTTTGTG TTAGATCCGT GTTTGTGTTAGCGACCTGTA CGTCAGACAC GTTCTGATTGCCTGGGATGG CTCTAGCCGT TCCGCAGACGTGCATAGGGT TTGGTTTGCC CTTTTCCTTTGGGTCATCTT TTCATGCTTT TTTTTGTCTTCGTTCTAGAT CGGAGTAGAA TTCTGTTTCACTGTATGTGT GTGCCATACA TATTCATAGTGATCTAGGAT AGGTATACAT GTTGATGCGGTTGTTCGCTT GGTTGTGATG ATGTGGTGTGGAGTAGAATA CTGTTTCAAA CTACCTGGTGGTCATACATC TTCATAGTTA CGAGTTTAAGTACATGTTGA TGTGGGTTTT ACTGATGCATTATGCTCTAA CCTTGAGTAC CTATCTATTAGATCTTGATA TACTTGGATG ATGGCATATGGCCTTCATAC GCTATTTATT TGCTTGGTACTTGGTGTTAC TTCTGCAGGT CGACTTTAACCCCGAGCGCC GCCCCGTCGA GATCCGCCCGGACATCGTGA ACCACTACAT CGAGACCTCCCCGCAGGAGT GGATCGACGA CCTGGAGCGCGAGGTGGAGG GCGTGGTGGC CGGCATCGCCTACGACTGGA CCGTGGAGTC CACCGTGTACGGCTCCACCC TCTACACCCA CCTCCTCAAGGTGGCCGTGA TCGGCCTCCC GAACGACCCGACCGCCCGCG GCACCCTCCG CGCCGCCGGCTTCTGGCAGC GCGACTTCGA GCTGCCGGCCATCTGAGTCG AAACCTAGAC TTGTCCATCTAATAAAAGGA TGCACACATA GTGACATGCTTGTTATGTGT AATTACTAGT TATCTGAATACCTAAATGAA TGTCACGTGT CTTTATAATTAAATCCATAT ACATATAAAT ATTAATCATAAAATCTAGTC TAGGTGTGTT TTGCGAATTGTTCCGATTAA TCGTGGCCTC TTGCTCTTCAGCTACTAGAC AATTCAGTAC ATTAAAAACGTCAATTTGTT TACACCACAA TATATCCTGCAGCTCGGCAC AAAATCACCA CTCGATACAGGGAGAGCCGT TGTAAGGCGG CAGACTTTGCCAACTAAGCT GCCGGGTTTG AAACACGGATACGATGACAG AGCGTTGCTG CCTGTGATCAATCAGCCTTC TTATTCATTT CTCGCTTAAC
TTAAACTTTA ATTCGGTCCG AAGCTTGCAT 60
CCTCTCTAGA GATAATGAGC ATTGCATGTC 120
TTGTCACACT TGTTTGAAGT GCAGTTTATC 180
TACGAATAAT ATAATCTATA GTACTACAAT 240
GAACAGTTAG ACATGGTCTA AAGGACAATT 300
TATCTTTTTA GTGTGCATGT GTTCTCCTTT 360
CTTCATCCAT TTTATTAGTA CATCCATTTA 4 20
ATTTTTTTAG TACATCTATT TTATTCTATT 4 80
TATTTTAGTT TTTTTATTTA ATAATTTAGA 540
AATTAAACAA ATACCCTTTA AGAAATTAAA 600
GTAGATAATG CCAGCCTGTT AAACGCCGTC 660
CAGCAGCGTC GCGTCGGGCC AAGCGAAGCA 720
GACCCCTCTC GAGAGTTCCG CTCCACCGTT 7 80
TGCGTGGCGG AGCGGCAGAC GTGAGCCGGC 840
CACCGGCAGC TACGGGGGAT TCCTTTCCCA 900
CGTAATAAAT AGACACCCCC TCCACACCCT 960
ACACACACAC AACCAGATCT CCCCCAAATC 1020
CCGCTCGTCC TCCCCCCCCC CCCTCTCTAC 1080
TGGTTAGGGC CCGGTAGTTC TACTTCTGTT 1140
GATCCGTGCT GCTAGCGTTC GTACACGGAT 1200
CTAACTTGCC AGTGTTTCTC TTTGGGGAAT 1260
GGATCGATTT CATGATTTTT TTTGTTTCGT 1320
ATTTCAATAT ATGCCGTGCA CTTGTTTGTC 1380
GGTTGTGATG ATGTGGTCTG GTTGGGCGGT 1440
AACTACCTGG TGGATTTATT AATTTTGGAT 1500
TACGAATTGA AGATGATGGA TGGAAATATC 15 60
GTTTTACTGA TGCATATACA GAGATGCTTT 1620
GTTGGGCGGT CGTTCATTCG TTCTAGATCG 1680
TATTTATTAA TTTTGGAACT GTATGTGTGT 17 4 0
ATGGATGGAA ATATCGATCT AGGATAGGTA 1800
ATACATGATG GCATATGCAG CATCTATTCA 18 60
TAATAAACAA GTATGTTTTA TAATTATTTT 1920
CAGCAGCTAT ATGTGGATTT TTTTAGCCCT 1980
TGTTTCTTTT GTCGATGCTC ACCCTGTTGT 204 0
TTAGCCTAGG ATCCACACGA CACCATGTCC 2100
GCCACCGCCG CCGACATGGC CGCCGTGTGC 2160
ACCGTGAACT TCCGCACCGA GCCGCAGACC 2220
CTCCAGGACC GCTACCCGTG GCTCGTGGCC 2280
TACGCCGGCC CGTGGAAGGC CCGCAACGCC 234 0
GTGTCCCACC GCCACCAGCG CCTCGGCCTC 2400
AGCATGGAGG CCCAGGGCTT CAAGTCCGTG 24 60
TCCGTGCGCC TCCACGAGGC CCTCGGCTAC 2520
TACAAGCACG GCGGCTGGCA CGACGTCGGC 2580
CCGCCGCGCC CGGTGCGCCC GGTGACGCAG 264 0
TCTGGATTGG CCAACTTAAT TAATGTATGA 2700
AATCACTATA ATGTGGGCAT CAAAGTTGTG 27 60
AAAGAGAAAG AGATCATCCA TATTTCTTAT 2820
CTTTGATGAA CCAGATGCAT TTCATTAACC 2880
TATAATTAAT ATCAATTGGG TTAGCAAAAC 2940
CGGCCGCCAC CGCGGTGGAG CTCGAATTCA 3000
GGATGAAGAG CTATGTTTAA ACGTGCAAGC 3060
TCCGCAATGT GTTATTAAGT TGTCTAAGCG 3120
CACCAGCCAG CCAACAGCTC CCCGACCGGC 3180
GCAGCCCATC AGTCCGGGAC GGCGTCAGCG 324 0
TCATGTTACC GATGCTATTC GGAAGAACGG 3300
GATCTCGCGG AGGGTAGCAT GTTGATTGTA 3360
AATATCATCT CCCTCGCAGA GATCCGAATT 34 20
CGTGACAGGC TGTCGATCTT GAGAACTATG 34 80CCGACATAAT AGGAAATCGC TGGATAAAGCTAGAAGTGAA CGTTGACGAT CGTCGACCGTTGAACACAGC TGGATACTTA CTTGGGCGATTTGTGTAACC GTCTCTTGGA GGTTCGTATGGATGTTGAGG CCTAACATTT TATTAGAGAGGGCCGTTATC TGTCAGGGCA AGCGAAAATTAGCTCCCATC TTTGCCGCCA TAGACGCCGCTGCCAGATGT GGAAAAGAAG TTCGTTGTCCAAGTGCGAGA CCCATTTGCG CTATATATAAAATTGGATGA ACTATTATCG TAGTTGCTCTCGTAATTGCT TATGGAGTTG TCGTAGTTGCAGTCATAGGG AAGACGAGCT TCATCCACTACCGATGCCAT CGCAAGTACG AGGCTTAGAACCAGCTCTCT AACGCTTGAG TTAAGCCGCGTTAGACATTA TTTGCCGACT ACCTTGGTGACCAACTGATC TGCGCGCGAG GCCAAGCGATCAAGTATGAC GGGCTGATAC TGGGCCGGCACCTTCGGCGC GATTTTGCCG GTTACTGCGCCATTTCGCTC ATCGCCAGCC CAGTCGGGCGGCGCCTCAAA TAGATCCTGT TCAGGAACCGCCAAGGCAAC GCTATGTTCT CTTGCTTTTGTGGCTGGCTC GAAGATACCT GCAAGAATGTCGCGCTTAGC TGGATAACGC CACGGAATGACAGCGCGGAG AATCTCGCTC TCTCCAGGGGAAGCTCGCCG CGTTGTTTCA TCAAGCCTTATGTGTGGCTT CAGGCCGCCA TCCACTGCGGGTTCGAGATG GCGCTCGATG ACGCCAACTATCACCGCTTC CCTCATGATG TTTAACTCCTCTTGAATGAA TTGTTAGGCG TCATCCTGTGTTTCGTTCGA GACTTGAGGT CTAGTTTTATAGCCACATTT TGCGTACAAA TTGCAGGCAGTGCCAAGGAG CTGTCTGCTT AGTGCCCACTCTCCTTTGCC TCGGTGCGTG TGCGACACAAATGTTGAGTT GAGTTCAATC TTCCCGACAACAGAGTCTTC ATCAGAGTCA TCATCCGAGATGGTAGATAG TTCAAAGCCT TGGTCGGATAAATGGTTCTC AGCATCCAAT GTTTCCGCCAGACGCCTAAC GCCTGGCACA GCGGATCGCATGACAGGTTT GCGAATCCGT TGCTGCCACTTAATTTATGT TAGAGGCGAA GTCTTGGGTAGGAAAGTAAA CATCACCTTC CGGCTCGATGTGATCGGGGG ATCTGCTGCC TCGCGCGTTTGCAGCTCCCG GAGACGGTCA CAGCTTGTCTTCAGGGCGCG TCAGCGGGTG TTGGCGGGTGCGATAGCGGA GTGTATACTG GCTTAACTATCACCATATGC GGTGTGAAAT ACCGCACAGATCTTCCGCTT CCTCGCTCAC TGACTCGCTGTCAGCTCACT CAAAGGCGGT AATACGGTTAAACATGTGAG CAAAAGGCCA GCAAAAGGCCTTTTTCCATA GGCTCCGCCC CCCTGACGAGTGGCGAAACC CGACAGGACT ATAAAGATACCGCTCTCCTG TTCCGACCCT GCCGCTTACCAGCGTGGCGC TTTCTCATAG CTCACGCTGTTCCAAGCTGG GCTGTGTGCA CGAACCCCCCAACTATCGTC TTGAGTCCAA CCCGGTAAGAGGTAACAGGA TTAGCAGAGC GAGGTATGTACCTAACTACG GCTACACTAG AAGGACAGTAACCTTCGGAA AAAGAGTTGG TAGCTCTTGAGGTTTTTTTG TTTGCAAGCA GCAGATTACG
CGCTGAGGAA GCTGAGTGGC GCTATTTCTT 3540
ACCCCGATGA ATTAATTCGG ACGTACGTTC 3600
TGTCATACAT GACATCAACA ATGTACCCGT 3660ACACTAGTGG TTCCCCTCAG CTTGCGACTA 3720CAGGCTAGTT GCTTAGATAC ATGATCTTCA 3780
GGCCATTTAT GACGACCAAT GCCCCGCAGA 3840
GCCCCCCTTT TGGGGTGTAG AACATCCTTT 3900
CATTGTTGGC AATGACGTAG TAGCCGGCGA 3960
GCCTACGATT TCCGTTGCGA CTATTGTCGT 4 020
CAGAGTTGTC GTAATTTGAT GGACTATTGT 4 080
TTGGAGAAAT GTCGTAGTTG GATGGGGAGT 4140
AAACAATTGG CAGGTCAGCA AGTGCCTGCC 4200
CCACCTTCAA CAGATCGCGC ATAGTCTTCC 4260
CCGCGAAGCG GCGTCGGCTT GAACGAATTG 4 320
TCTCGCCTTT CACGTAGTGA ACAAATTCTT 4 380
CTTCTTGTCC AAGATAAGCC TGCCTAGCTT 4 4 40
GGCGCTCCAT TGCCCAGTCG GCAGCGACAT 4 500
TGTACCAAAT GCGGGACAAC GTAAGCACTA 4560
GCGAGTTCCA TAGCGTTAAG GTTTCATTTA 4 620
GATCAAAGAG TTCCTCCGCC GCTGGACCTA 4 680
TCAGCAAGAT AGCCAGATCA ATGTCGATCG 4 740
CATTGCGCTG CCATTCTCCA AATTGCAGTT 4 800
TGTCGTCGTG CACAACAATG GTGACTTCTA 4 860
AAGCCGAAGT TTCCAAAAGG TCGTTGATCA 4 920
CAGTCACCGT AACCAGCAAA TCAATATCAC 4 980
AGCCGTACAA ATGTACGGCC AGCAACGTCG 504 0
CCTCTGATAG TTGAGTCGAT ACTTCGGCGA 5100
GAATTAAGCC GCGCCGCGAA GCGGTGTCGG 5160
CTCCCGAGAA CCAGTACCAG TACATCGCTG 5220
ACGTGAACAG GTCAATGCCG CCGAGAGTAA 5280
GTACATTGTT CGTTTGTGTC TCTAATCGTA 5340
TTTTCGCAAA TTCGATGAGA CTGTGCGCGA 54 00
CAATGTGTTC GATAGAGGCT AGATCGTTCC 54 60
GCTCTTGGTC GATGAATGCG CCATAGCAAG 5520
TGTAATCCTT CCGGTAGGGG CTCACACTTC 5580
GGTGCACATC GAACACTTCA CGAACAATGA 564 0
CCTGCTCAGG GATCACCGAA ATCTTCATAT 5700
AACCTGGCGC GGCTTTTGGC ACAAAAGGCG 5760
TGTTAACCCT TTTGCCAGAT TTGGTAACTA 5820
AAAACTGGCC TAAAATTGCT GGGGATTTCA 5880
TCTATTGTAG ATATATGTAG TGTATCTACT 594 0
CGGTGATGAC GGTGAAAACC TCTGACACAT 6000
GTAAGCGGAT GCCGGGAGCA GACAAGCCCG 6060
TCGGGGCGCA GCCATGACCC AGTCACGTAG 6120
GCGGCATCAG AGCAGATTGT ACTGAGAGTG 6180
TGCGTAAGGA GAAAATACCG CATCAGGCGC 624 0
CGCTCGGTCG TTCGGCTGCG GCGAGCGGTA 6300
TCCACAGAAT CAGGGGATAA CGCAGGAAAG 6360
AGGAACCGTA AAAAGGCCGC GTTGCTGGCG 64 20
CATCACAAAA ATCGACGCTC AAGTCAGAGG 64 80
CAGGCGTTTC CCCCTGGAAG CTCCCTCGTG 6540
GGATACCTGT CCGCCTTTCT CCCTTCGGGA 6600
AGGTATCTCA GTTCGGTGTA GGTCGTTCGC 6660
GTTCAGCCCG ACCGCTGCGC CTTATCCGGT 6720
CACGACTTAT CGCCACTGGC AGCAGCCACT 6780
GGCGGTGCTA CAGAGTTCTT GAAGTGGTGG 684 0
TTTGGTATCT GCGCTCTGCT GAAGCCAGTT 6900
TCCGGCAAAC AAACCACCGC TGGTAGCGGT 6960
CGCAGAAAAA AAGGATCTCA AGAAGATCCT 7020TTGATCTTTT CTACGGGGTC TGACGCTCAGGTCATGAGAT TATCAAAAAG GATCTTCACCAAATCAATCT AAAGTATATA TGAGTAAACTGAGGCACCTA TCTCAGCGAT CTGTCTATTTGTGTAGATAA CTACGATACG GGAGGGCTTACGAGACCCAC GCTCACCGGC TCCAGATTTAGAGCGCAGAA GTGGTCCTGC AACTTTATCCGAAGCTAGAG TAAGTAGTTC GCCAGTTAATGGGGGGGGGG GGGGGGGGGA CTTCCATTGTACGACAGAGG CCAAAAAGCC TCGCTTTCAGATTTTAAATA AAAACATTAA GTTATGACGATTTTCATAAA TAGCGAAAAC CCGCGAGGTCAGGACCCGTA AAGTGATAAT GATTATCATCAACCACGTCA AATAATCAAT TATGACGCAGACGTAAAAAC AACTTCAGAC AATACAAATCCCCCCCCCCC CCCCCCCCTG CAGGCATCGTATTCAGCTCC GGTTCCCAAC GATCAAGGCGAGCGGTTAGC TCCTTCGGTC CTCCGATCGTACTCATGGTT ATGGCAGCAC TGCATAATTCTTCTGTGACT GGTGAGTACT CAACCAAGTCTTGCTCTTGC CCGGCGTCAA CACGGGATAAGCTCATCATT GGAAAACGTT CTTCGGGGCGATCCAGTTCG ATGTAACCCA CTCGTGCACCCAGCGTTTCT GGGTGAGCAA AAACAGGAAGGACACGGAAA TGTTGAATAC TCATACTCTTGGGTTATTGT CTCATGAGCG GATACATATTGGTTCCGCGC ACATTTCCCC GAAAAGTGCCGACATTAACC TATAAAAATA GGCGTATCACCGATCTTGCT GCGTTCGGAT ATTTTCGTGGAGATCCAGCA ACTCGCGCCA GATCATCCTGAGGACGTCGG CCGAAAGAGC GACAAGCAGATCGAGGATTT TTCGGCGCTG CGCTACGTCCGCCCACTCGA CCTTCTAGCC GACCCAGACGGTCGTCAGGC TTTCCGACGT TTGGGTGGTTAGCACTCCCG AGGGGAACCC TGTGGTTGGCCTTTTCACGC CCTTTTAAAT ATCCGTTATTCCGCCAATAT ATCCTGTCAA ACACTGATAGATCATGAGCG GAGAATTAAG GGAGTCACGTCGTTTTACGT TTGGAACTGA CAGAACCGCACGATTGTAAT ACGACTCACT ATAGGGCGAAAAGAGCGGTT ACCAGAGCTG GTCACCTTTGAATTAAGTCA GGCGCGCCTC TAGTTGAAGATCAGTAGTCT TCGGCCAGAA TGGCCCGGACTCGATGTGTA GTCTACGAGA AGGGTTAACCAATAAGCCGA TGAGGATAAA TAAAATGTGGAAGAGGATGC TTTTCCGATG AGCTCTAGTAGTGAAATATT TTGTGCTCAT TTAGTGATGGGACATTTCAG TTTTGCCACT CTTAGGTTTTAAAACAATTT TATTTTACTT TTACCACTCTCTAGAAATTC TGTTTATGCC ACAGAATGTGGTGTTCATGG CATGGAAATG TGACATAAAGCCTCGTAACA AGAGACGGAA ACATCATGAGTTTGGATGAT GCGCATGAAT GGAGTCGTCTGTCCGGGCGG CAACTACCAT CGGCGAACGATGCGCTACCT TCGTCAGCGA CGATGGCCGCGCGGCACATG GCGAGCTCAG ACCGTGCGTGCCTAGCTAGA AACTTACACC TGCAACTGCGTCCCCCGGTC GCCACCATGG CCTCCTCCGAGGTGCGCATG GAGGGCACCG TGAACGGCCA
TGGAACGAAA ACTCACGTTA AGGGATTTTG 7080TAGATCCTTT TAAATTAAAA ATGAAGTTTT 7140TGGTCTGACA GTTACCAATG CTTAATCAGT 7200CGTTCATCCA TAGTTGCCTG ACTCCCCGTC 72 60CCATCTGGCC CCAGTGCTGC AATGATACCG 7 320TCAGCAATAA ACCAGCCAGC CGGAAGGGCC 7 380GCCTCCATCC AGTCTATTAA TTGTTGCCGG 74 40AGTTTGCGCA ACGTTGTTGC CATTGCTGCA 7500TCATTCCACG GACAAAAACA GAGAAAGGAA 7560CACCTGTCGT TTCCTTTCTT TTCAGAGGGT 7 620AGAAGAACGG AAACGCCTTA AACCGGAAAA 7 680GCCGCCCCGT AACCTGTCGG ATCACCGGAA 774 0TACATATCAC AACGTGCGTG GAGGCCATCA 7 800GTATCGTATT AATTGATCTG CATCAACTTA 78 60AGCGACACTG AATACGGGGC AACCTCATGT 7 920GGTGTCACGC TCGTCGTTTG GTATGGCTTC 7980AGTTACATGA TCCCCCATGT TGTGCAAAAA 8040TGTCAGAAGT AAGTTGGCCG CAGTGTTATC 8100TCTTACTGTC ATGCCATCCG TAAGATGCTT 8160ATTCTGAGAA TAGTGTATGC GGCGACCGAG 8220TACCGCGCCA CATAGCAGAA CTTTAAAAGT 8280AAAACTCTCA AGGATCTTAC CGCTGTTGAG 834 0CAACTGATCT TCAGCATCTT TTACTTTCAC 84 00GCAAAATGCC GCAAAAAAGG GAATAAGGGC 84 60CCTTTTTCAA TATTATTGAA GCATTTATCA 8520TGAATGTATT TAGAAAAATA AACAAATAGG 8580ACCTGACGTC TAAGAAACCA TTATTATCAT 8 64 0GAGGCCCTTT CGTCTTCAAG AATTGGTCGA 8700AGTTCCCGCC ACAGACCCGG ATTGAAGGCG 87 60TGACGGAACT TTGGCGCGTG ATGACTGGCC 8820TCACGCTTTT CGACAGCGTC GGATTTGCGA 8880GCGACCGCGT TGAGGGATCA AGCCACAGCA 894 0AGCCAAGGGA TCTTTTTGGA ATGCTGCTCC 9000GAACAGAAGT CATTATCGTA CGGAATGCCA 9060ATGCACATAC AAATGGACGA ACGGATAAAC 9120CTAATAAACG CTCTTTTCTC TTAGGTTTAC 9180TTTAAACTGA AGGCGGGAAA CGACAATCTG 924 0TATGACCCCC GCCGATGACG CGGGACAAGC 9300ACGTTGAAGG AGCCACTCAG CAAGCTGGTA 9360TTGAGCGCTG TTTAAACGCT CTTCAACTGG 9420TCCACCAAGA TGGAACTGCG GCCGCTCATT 94 80CACGTTCATG TCTTCATCGT AAGAAGACAC 954 0CGAAGCTGGC CGCTCTAGAA CTAGTGGATC 9600GTCTCTTCGT GAGAATAACC GTGGCCTAAA 9660TGGTACAGTA CTTCAAGAGG TTTACTCATC 9720GTACATCGGA CCTCACATAC CTCCATTGTG 97 80GTAAATTTTG TTTATGTCAC TCTAGGTTTT 984 0GACAAATAAT TTCCATTCCG CGGCAAAAGC 9900TAGCTTTCAC AATGTATCAC AAATGCCACT 9960AAAAAAAACA CTCACTTATT TGAAGCCAAG 10020TAACGTTCGT GTATAAGAAA AAATTGTACT 10080ACAATCGCGT TTGGAAGGCT TTGCATCACC 10140GCTTGCTAGC CTTCGCCTAC CGCCCACTGA 10200CCCAGCTGAC CTCTACCGAC CGGACTTGAA 10260GTACGCTGGC GACGTGCCCC CGCATGCATG 10320GCTGGCTACA AATACGTACC CCGTGAGTGC 10380AGAGCGAGCG TGTGAGTGTA GCCGAGTAGA 10440GAACGTCATC ACCGAGTTCA TGCGCTTCAA 10500CGAGTTCGAG ATCGAGGGCG AGGGCGAGGG 10560CCGCCCCTAC GAGGGCCACA ACACCGTGAA GCTGAAGGTG ACCAAGGGCG GCCCCCTGCC 10620CTTCGCCTGG GACATCCTGT CCCCCCAGTT CCAGTACGGC TCCAAGGTGT ACGTGAAGCA 10680CCCCGCCGAC ATCCCCGACT ACAAGAAGCT GTCCTTCCCC GAGGGCTTCA AGTGGGAGCG 10740CGTGATGAAC TTCGAGGACG GCGGCGTGGC GACCGTGACC CAGGACTCCT CCCTGCAGGA 10800CGGCTGCTTC ATCTACAAGG TGAAGTTCAT CGGCGTGAAC TTCCCCTCCG ACGGCCCCGT 108 60GATGCAGAAG AAGACCATGG GCTGGGAGGC CTCCACCGAG CGCCTGTACC CCCGCGACGG 10920CGTGCTGAAG GGCGAGACCC ACAAGGCCCT GAAGCTGAAG GACGGCGGCC ACTACCTGGT 10980GGAGTTCAAG TCCATCTACA TGGCCAAGAA GCCCGTGCAG CTGCCCGGCT ACTACTACGT 1104 0GGACGCCAAG CTGGACATCA CCTCCCACAA CGAGGACTAC ACCATCGTGG AGCAGTACGA 11100GCGCACCGAG GGCCGCCACC ACCTGTTCCT GTAGCGGCCC ATGGATATTC GAACGCGTAG 11160GTACCACATG GTTAACCTAG ACTTGTCCAT CTTCTGGATT GGCCAACTTA ATTAATGTAT 11220GAAATAAAAG GATGCACACA TAGTGACATG CTAATCACTA TAATGTGGGC ATCAAAGTTG 11280TGTGTTATGT GTAATTACTA GTTATCTGAA TAAAAGAGAA AGAGATCATC CATATTTCTT 1134 0ATCCTAAATG AATGTCACGT GTCTTTATAA TTCTTTGATG AACCAGATGC ATTTCATTAA 114 00CCAAATCCAT ATACATATAA ATATTAATCA TATATAATTA ATATCAATTG GGTTAGCAAA 114 60ACAAATCTAG TCTAGGTGTG TTTTGCGAAT GCGGCCGCCA CCGCGGTGGA GCTCGAATTC 11520CGGTCCGGGC CTAGAAGGCC ATTTAAATCC TGAGGATCTG GTCTTCCTAA GGACCCGGGA 11580TATCGCTATC AACTTTGTAT AGAAAAGTTG GGCCGAATTC GAGCTCGGTA CGGCCAGAAT 11640GGCCCGGACC GGGTTACCGA ATTCGAGCTC GGTACCCTGG GATCCGCAAG GGACGACCGT 117 00GGTCCTTGTT TGATTTACTT CCAGGATTAT ATAATCCAGC TTATGGATTA TATAAGTACC 117 60TATTGACGTC ACGTGCTTAT GTATTATAAT AATCTAGGTA TATAGATTAT ATAATCTATC 11820TAATAATAAT CTGTGTTGTT TGTTTATCTC TCAAAACAAA CAGGTCCTAA AATGGTCCCG 11880GGCGTCCAAT GTGTCGTCAA GTAGTGTTAA GCTAAATCGA CATTTCTTTG TGGGTTGTGT 11940GGAAGGTGTT CCTTTTCCTT AAGTTGTTAG TTGTGCAAGG TGTTCCTTAG AGCATCTCCA 12000ATAGGACCTA TAATGGATTC TATTTTGAAT TATAAGACTC TAACAACAAA AGCATACTTT 12060AATGGGGATT CTATTTTACA AAAAAATATC AAATGATTAT ATGGTCGATT CCTCGGGTCC 12120TAAATATAGT ATCTCATATA ATAGAGCTCT ATCCTCATTT TATATACTAT TTTTAAGTTT 12180TTATTTACTA AATAACATGA TTTATTTTCT AATACTATGA ACTCAACTAT TAGAGCTGTA 1224 0AACGTTTTTG TGGTACTAAA CACTTTAAAT CAGGTCCTAT TTTAATTTGA AGGACTTAAA 12300TATAAGACTT CTGGTTAGAG ATGCTCTTAG CGAGTGTTTG TGCATGATTG CTATTTAGTC 12360TTTGTGGATT GTGGAAGGTG TTACTTTTCC TCAAGTTGTT AGTTGTGCAA GGTGTTTCTT 12420AGAGCATCTC TAACAGGAGC CTTAACGGAA TCTATTTTGA AGTATAGTAC TTTAACACCA 124 80AAAACATACT TTAATAGGGG TCCTATTTTA CAAAAAAATT ATCAAATGAT TATAAGGTCC 12540ACTCCTCGGG TCCTAAATAT AATATCTCAT ATACTAGAGC TCTATCCTCA TTTTATATAC 12600TATCCCTAGG TTTTTATTCC CTAAATAACA TGATTTATTT CCTAATACTA AGATATAGGG 12 660CTCAACTATT GGAGTTGCAA ATGTTTTTTG GCACTAAACA CTTTATATCA GGTCCTATTT 12720TAATTTTAAT TTGAAGGACT CAAATATAGG ACTTCTCGTT AGAGATGCTC TTAGCGAGTG 12780TTTGTGCATG ATTGCTATTT ATGTCTGTAG TTTAGTTGGG GGCTTTAATA TGTTTAGTTG 1284 0AAGTTCTAGT ATTTTTTAGG TTCTCCACTC TTTGGATTAT GACAACGACC ACTATCCAAG 12 900CAGTCTTTGA GTGCAAACGC GCGAGCAAAC TATCTGATCT ATTAAATTAT GATCCAACCG 12960TTATGTCATA TTGAAGACTT AAACCCTTTC ACCACCAGCC CAAGTATCTT TATGAAAAAC 13020CCTAACAAAC CACAATTGCA TCTATGGTTG GATTATAATT TAACGTATCA GATGGTTCGC 13080TTGCATGCTT ACATATCTAG AAACTGTTTG CATAACAGTC GTTCTCTTTG GTTATATAAT 1314 0GCTTTAGTAA TCATCAGCCA AGTGTAAACA AATGGTACAA ACTAGTAGTG AACACATCCT 13200CCCTACCTAT CTCTAGGGGT GTAACTAGAT ATCCGAATTC TTAGAACAAA TTTCATATTT 13260TAAAATAGAT ATGCTTCAAA ATTTATGCTA ATCTTTTTTA TATTATCAAG CATATTATTA 13320CACATAAGAA TAAAATTTTG TATAGAATTT TATCCATTAT TTGTTCCCTA GAATTTAAAA 13380AGTGAAAAAA CATTCGAATC TGTATCAGTT TCGTATTCAA ATTTTTACAT CTATTATTTG 13440AGAATATATA TGATAAATTT GAGGTTTAGT TTTTATGAAT CTTTACAAGG TTAATGTTAA 13500ATACATGACT ATGGATTTAC ATAGTAAATT CTATGTCTTA TTTGTCCGCG ATTGAAGAAA 13560AATGACAAAA AGATCTGACA TTCGAATAAA CATCTGTTTC CACTCCTACC TATCTGACCT 13620CCTATTTCAA ACTCCACTTT GTAACACGGT ACAAAATCAC TCCCTACCTA TCTGACCTCC 13680TATTTCAAAC TCCACTCAGT AAACAATATT GTCTATGGTA CAAAACCAAG TGTTTTATAC 13740ATCTATTTGC ACGATCTGCT CGAGTCAGGC ATCCTTGACA CACAACATAC TCCTTGTGGC 13800TATAAATGTC CAAATAGAGC AGACCTAATG GGTGGACCGT TGCATGACAC GACTTATCCC 138 60AAGACGAGCA CAGTTCGCCC CATTGGTCAT GGGGGTCCGG GCTAGTCTAG CCTGATCATC 13920GGGTCACACT TAGGCCACAG GTGTGCCACA ACGGGATAGC CCAACATGTC CCTTTTTGTC 13980ATGCATATAT CTATATTATA GTTAGTATAA TGTAAAAAAA CAAAAGGTAT GTGTGTTATG 14 040TTGGTTAGAT GTGTTTAAAT AACTCTTTAA AGCTAGCAAC TATGGTTTAA ATCATACATA 14100TACACATTTT TATTTTATTT TTATTTAAAC GATATGGGCC TTCTAGGCAC GTCGAGTGTG 14160ACGGGCCAGT GAGATGACAC ATTATAATTA CTGGTCTAGC AGGCCGTACC TAGGTCTTTC 14220TCGTGGGCCA AGACTAAGGG TTGGCCCGTT GGCTAATCTG TACGGTACCG ATACTGTCCT 14280AATTCATTTG AACACCTGTA GAAGAGGGGA ATTTATAATT GAGGAGGAAT GTACTCATGC 14 340GGTACACCAG GGGAATTGTT TTGTTGTGCT CAGCGATAGA TTTCAACGCA ACGGTGAGCC 144 00AGTTTCACTA AAAAAAGGGG GGGGGGGGGG GGGGGGGGAA GGCCACATCA AAGGCGAGGT 14 4 60GCTGACGAGC AGAAGATGCT AGCAGTGACG CCAAGTCCAG CAGCTAGCAA TGAAAGGGTA 14 520CTCGGGATTT AACAATGCCT AGAGACGGCA TCATCCCCTC AATAATCCGG TGCTCTCTTT 14 580TTGTTTATTC ACCAGTTGGC GTAGCTATAT ACACATGTCT GGTCTGACGA ACAAATCAAG 14 640GGATCGCTAG CTCGGGCTAG CCTTCCTATC ACTGTCATGA CATGTGCTCT GCCTCTGCTG 14700GTTGATAAGC CGTGCGCCTT CTCGCTAATT CTTTCTTGTG CTAGAGGCGA GTCAAACAAA 14 760CGCTGCACCT CGTAGCCCTT AATCTGCGCT AAGGGTCACA TGACCCTGTT CCCTATCGCT 14820AGTTACCAAC GACCCATTCC CCCTGACAGA TACTTACGAC GCGTCCGTAC GCGGCAGGCC 14 880TCGGCAGTTC GGCATCACCA GCACCGGCGC CGGCATTCGC CCCCTGCCAG CCGGTTCGCA 14 940GATTCGCAGG GCGGAGTCGG CCGCAGTTGC CGCATCCCAA ACGCCCGGGA ACCTTTGGGG 15000CCCCTCTACG AGCAAATGAA GTTGCTGCCC CTGGCTTCGT AAAGCTCTGA CTTTTGATCA 15060CTTGATTGGC AGTCGTACTC CTCGCTCATA GGCCGACACG GCCGCAAAGT CAACTACCCG 15120CTCCGCCATC CTTCAACCCC CGCCACGCGC CTATATATGT TCGCGGCCAT GTCCGTACTA 15180GTCCTCCAAC CCACAAGCCA CAACCCCGAG CTCAGATCCC TCGCCTCGTG TCGTGTCTCC 15240GGTCGACGAC GACCAACAGC CAGTGTGGGC CAGACGGACA CCGCCGAGCT ATAGCGCTTG 15300GTGATAAAGC TTGGTCACCC GGTCCGGGCC TAGAAGGCCA GCTTCAAGTT TGTACAAAAA 15360AGCAGGCTCC AGCGCTCACC ATGGTCCGTC CTGTAGAAAC CCCAACCCGT GAAATCAAAA 15420AACTCGACGG CCTGTGGGCA TTCAGTCTGG ATCGCGAAAA CTGTGGAATT GATCAGCGTT 15480GGTGGGAAAG CGCGTTACAA GAAAGCCGGG CAATTGCTGT GCCAGGCAGT TTTAACGATC 1554 0AGTTCGCCGA TGCAGATATT CGTAATTATG CGGGCAACGT CTGGTATCAG CGCGAAGTCT 15600TTATACCGAA AGGTTGGGCA GGCCAGCGTA TCGTGCTGCG TTTCGATGCG GTCACTCATT 15660ACGGCAAAGT GTGGGTCAAT AATCAGGAAG TGATGGAGCA TCAGGGCGGC TATACGCCAT 157 20TTGAAGCCGA TGTCACGCCG TATGTTATTG CCGGGAAAAG TGTACGTAAG TTTCTGCTTC 157 80TACCTTTGAT ATATATATAA TAATTATCAT TAATTAGTAG TAATATAATA TTTCAAATAT 158 4 0TTTTTTCAAA ATAAAAGAAT GTAGTATATA GCAATTGCTT TTCTGTAGTT TATAAGTGTG 15900TATATTTTAA TTTATAACTT TTCTAATATA TGACCAAAAT TTGTTGATGT GCAGGTATCA 15960CCGTTTGTGT GAACAACGAA CTGAACTGGC AGACTATCCC GCCGGGAATG GTGATTACCG 16020ACGAAAACGG CAAGAAAAAG CAGTCTTACT TCCATGATTT CTTTAACTAT GCCGGAATCC 16080ATCGCAGCGT AATGCTCTAC ACCACGCCGA ACACCTGGGT GGACGATATC ACCGTGGTGA 1614 0CGCATGTCGC GCAAGACTGT AACCACGCGT CTGTTGACTG GCAGGTGGTG GCCAATGGTG 16200ATGTCAGCGT TGAACTGCGT GATGCGGATC AACAGGTGGT TGCAACTGGA CAAGGCACTA 16260GCGGGACTTT GCAAGTGGTG AATCCGCACC TCTGGCAACC GGGTGAAGGT TATCTCTATG 16320AACTGTGCGT CACAGCCAAA AGCCAGACAG AGTGTGATAT CTACCCGCTT CGCGTCGGCA 16380TCCGGTCAGT GGCAGTGAAG GGCGAACAGT TCCTGATTAA CCACAAACCG TTCTACTTTA 16440CTGGCTTTGG TCGTCATGAA GATGCGGACT TGCGTGGCAA AGGATTCGAT AACGTGCTGA 16500TGGTGCACGA CCACGCATTA ATGGACTGGA TTGGGGCCAA CTCCTACCGT ACCTCGCATT 16560ACCCTTACGC TGAAGAGATG CTCGACTGGG CAGATGAACA TGGCATCGTG GTGATTGATG 16620AAACTGCTGC TGTCGGCTTT AACCTCTCTT TAGGCATTGG TTTCGAAGCG GGCAACAAGC 16680CGAAAGAACT GTACAGCGAA GAGGCAGTCA ACGGGGAAAC TCAGCAAGCG CACTTACAGG 16740CGATTAAAGA GCTGATAGCG CGTGACAAAA ACCACCCAAG CGTGGTGATG TGGAGTATTG 16800CCAACGAACC GGATACCCGT CCGCAAGGTG CACGGGAATA TTTCGCGCCA CTGGCGGAAG 168 60CAACGCGTAA ACTCGACCCG ACGCGTCCGA TCACCTGCGT CAATGTAATG TTCTGCGACG 16920CTCACACCGA TACCATCAGC GATCTCTTTG ATGTGCTGTG CCTGAACCGT TATTACGGAT 16980GGTATGTCCA AAGCGGCGAT TTGGAAACGG CAGAGAAGGT ACTGGAAAAA GAACTTCTGG 17040CCTGGCAGGA GAAACTGCAT CAGCCGATTA TCATCACCGA ATACGGCGTG GATACGTTAG 17100CCGGGCTGCA CTCAATGTAC ACCGACATGT GGAGTGAAGA GTATCAGTGT GCATGGCTGG 17160ATATGTATCA CCGCGTCTTT GATCGCGTCA GCGCCGTCGT CGGTGAACAG GTATGGAATT 17220TCGCCGATTT TGCGACCTCG CAAGGCATAT TGCGCGTTGG CGGTAACAAG AAAGGGATCT 17280TCACTCGCGA CCGCAAACCG AAGTCGGCGG CTTTTCTGCT GCAAAAACGC TGGACTGGCA 1734 0TGAACTTCGG TGAAAAACCG CAGCAGGGAG GCAAACAATG AAGATCTCCC GGGCACCCAG 17 4 00CTTTCTTGTA CAAAGTGGCC GTTAACGGAT CCAGACTTGT CCATCTTCTG GATTGGCCAA 174 60CTTAATTAAT GTATGAAATA AAAGGATGCA CACATAGTGA CATGCTAATC ACTATAATGT 17520GGGCATCAAA GTTGTGTGTT ATGTGTAATT ACTAGTTATC TGAATAAAAG AGAAAGAGAT 17580CATCCATATT TCTTATCCTA AATGAATGTC ACGTGTCTTT ATAATTCTTT GATGAACCAG 17640ATGCATTTCA TTAACCAAAT CCATATACAT ATAAATATTA ATCATATATA ATTAATATCA 17700
ATTGGGTTAG CAAAACAAAT CTAGTCTAGG TGTGTTTTGC GAATTGCGGC AAGCTTGCGG 177 60
CCGCCCCGGG CAACTTT 177 77
<210> 88<211> 54686<212> DNA<213> VETOR
<400> 88
TCTAGAGCTC GTTCCTCGAG GCCTCGAGGC CTCGAGGAAC GGTACCTGCG GGGAAGCTTA 60
CAATAATGTG TGTTGTTAAG TCTTGTTGCC TGTCATCGTC TGACTGACTT TCGTCATAAA 120
TCCCGGCCTC CGTAACCCAG CTTTGGGCAA GCTCACGGAT TTGATCCGGC GGAACGGGAA 180
TATCGAGATG CCGGGCTGAA CGCTGCAGTT CCAGCTTTCC CTTTCGGGAC AGGTACTCCA 24 0
GCTGATTGAT TATCTGCTGA AGGGTCTTGG TTCCACCTCC TGGCACAATG CGAATGATTA 300
CTTGAGCGCG ATCGGGCATC CAATTTTCTC CCGTCAGGTG CGTGGTCAAG TGCTACAAGG 360
CACCTTTCAG TAACGAGCGA CCGTCGATCC GTCGCCGGGA TACGGACAAA ATGGAGCGCA 4 20
GTAGTCCATC GAGGGCGGCG AAAGCCTCGC CAAAAGCAAT ACGTTCATCT CGCACAGCCT 4 80
CCAGATCCGA TCGAGGGTCT TCGGCGTAGG CAGATAGAAG CATGGATACA TTGCTTGAGA 54 0
GTATTCCGAT GGACTGAAGT ATGGCTTCCA TCTTTTCTCG TGTGTCTGCA TCTATTTCGA 600
GAAAGCCCCC GATGCGGCGC ACCGCAACGC GAATTGCCAT ACTATCCGAA AGTCCCAGCA 660
GGCGCGCTTG ATAGGAAAAG GTTTCATACT CGGCCGATCG CAGACGGGCA CTCACGACCT 720
TGAACCCTTC AACTTTCAGG GATCGATGCT GGTTGATGGT AGTCTCACTC GACGTGGCTC 7 80
TGGTGTGTTT TGACATAGCT TCCTCCAAAG AAAGCGGAAG GTCTGGATAC TCCAGCACGA 840
AATGTGCCCG GGTAGACGGA TGGAAGTCTA GCCCTGCTCA ATATGAAATC AACAGTACAT 900
TTACAGTCAA TACTGAATAT ACTTGCTACA TTTGCAATTG TCTTATAACG AATGTGAAAT 960
AAAAATAGTG TAACAACGCT TTTACTCATC GATAATCACA AAAACATTTA TACGAACAAA 1020
AATACAAATG CACTCCGGTT TCACAGGATA GGCGGGATCA GAATATGCAA CTTTTGACGT 1080
TTTGTTCTTT CAAAGGGGGT GCTGGCAAAA CCACCGCACT CATGGGCCTT TGCGCTGCTT 114 0
TGGCAAATGA CGGTAAACGA GTGGCCCTCT TTGATGCCGA CGAAAACCGG CCTCTGACGC 1200
GATGGAGAGA AAACGCCTTA CAAAGCAGTA CTGGGATCCT CGCTGTGAAG TCTATTCCGC 1260
CGACGAAATG CCCCTTCTTG AAGCAGCCTA TGAAAATGCC GAGCTCGAAG GATTTGATTA 1320
TGCGTTGGCC GATACGCGTG GCGGCTCGAG CGAGCTCAAC AACACAATCA TCGCTAGCTC 1380
AAACCTGCTT CTGATCCCCA CCATGCTAAC GCCGCTCGAC ATCGATGAGG CACTATCTAC 14 40
CTACCGCTAC GTCATCGAGC TGCTGTTGAG TGAAAATTTG GCAATTCCTA CAGCTGTTTT 1500
GCGCCAACGC GTCCCGGTCG GCCGATTGAC AACATCGCAA CGCAGGATGT CAGAGACGCT 1560
AGAGAGCCTT CCAGTTGTAC CGTCTCCCAT GCATGAAAGA GATGCATTTG CCGCGATGAA 1620
AGAACGCGGC ATGTTGCATC TTACATTACT AAACACGGGA ACTGATCCGA CGATGCGCCT 1680
CATAGAGAGG AATCTTCGGA TTGCGATGGA GGAAGTCGTG GTCATTTCGA AACTGATCAG 1740
CAAAATCTTG GAGGCTTGAA GATGGCAATT CGCAAGCCCG CATTGTCGGT CGGCGAAGCA 1800
CGGCGGCTTG CTGGTGCTCG ACCCGAGATC CACCATCCCA ACCCGACACT TGTTCCCCAG 18 60
AAGCTGGACC TCCAGCACTT GCCTGAAAAA GCCGACGAGA AAGACCAGCA ACGTGAGCCT 1920
CTCGTCGCCG ATCACATTTA CAGTCCCGAT CGACAACTTA AGCTAACTGT GGATGCCCTT 1980
AGTCCACCTC CGTCCCCGAA AAAGCTCCAG GTTTTTCTTT CAGCGCGACC GCCCGCGCCT 2040
CAAGTGTCGA AAACATATGA CAACCTCGTT CGGCAATACA GTCCCTCGAA GTCGCTACAA 2100
ATGATTTTAA GGCGCGCGTT GGACGATTTC GAAAGCATGC TGGCAGATGG ATCATTTCGC 2160
GTGGCCCCGA AAAGTTATCC GATCCCTTCA ACTACAGAAA AATCCGTTCT CGTTCAGACC 2220
TCACGCATGT TCCCGGTTGC GTTGCTCGAG GTCGCTCGAA GTCATTTTGA TCCGTTGGGG 2280
TTGGAGACCG CTCGAGCTTT CGGCCACAAG CTGGCTACCG CCGCGCTCGC GTCATTCTTT 2340
GCTGGAGAGA AGCCATCGAG CAATTGGTGA AGAGGGACCT ATCGGAACCC CTCACCAAAT 2400
ATTGAGTGTA GGTTTGAGGC CGCTGGCCGC GTCCTCAGTC ACCTTTTGAG CCAGATAATT 24 60
AAGAGCCAAA TGCAATTGGC TCAGGCTGCC ATCGTCCCCC CGTGCGAAAC CTGCACGTCC 2520
GCGTCAAAGA AATAACCGGC ACCTCTTGCT GTTTTTATCA GTTGAGGGCT TGACGGATCC 2580
GCCTCAAGTT TGCGGCGCAG CCGCAAAATG AGAACATCTA TACTCCTGTC GTAAACCTCC 2 64 0
TCGTCGCGTA CTCGACTGGC AATGAGAAGT TGCTCGCGCG ATAGAACGTC GCGGGGTTTC 2700
TCTAAAAACG CGAGGAGAAG ATTGAACTCA CCTGCCGTAA GTTTCACCTC ACCGCCAGCT 27 60
TCGGACATCA AGCGACGTTG CCTGAGATTA AGTGTCCAGT CAGTAAAACA AAAAGACCGT 2820
CGGTCTTTGG AGCGGACAAC GTTGGGGCGC ACGCGCAAGG CAACCCGAAT GCGTGCAAGA 2880
AACTCTCTCG TACTAAACGG CTTAGCGATA AAATCACTTG CTCCTAGCTC GAGTGCAACA 294 0ACTTTATCCG TCTCCTCAAG GCGGTCGCCA CTGATAATTA TGATTGGAAT ATCAGACTTT 3000
GCCGCCAGAT TTCGAACGAT CTCAAGCCCA TCTTCACGAC CTAAATTTAG ATCAACAACC 3060
ACGACATCGA CCGTCGCGGA AGAGAGTACT CTAGTGAACT GGGTGCTGTC GGCTACCGCG 3120
GTCACTTTGA AGGCGTGGAT CGTAAGGTAT TCGATAATAA GATGCCGCAT AGCGACATCG 3180
TCATCGATAA GAAGAACGTG TTTCAACGGC TCACCTTTCA ATCTAAAATC TGAACCCTTG 3240
TTCACAGCGC TTGAGAAATT TTCACGTGAA GGATGTACAA TCATCTCCAG CTAAATGGGC 3300
AGTTCGTCAG AATTGCGGCT GACCGCGGAT GACGAAAATG CGAACCAAGT ATTTCAATTT 3360
TATGACAAAA GTTCTCAATC GTTGTTACAA GTGAAACGCT TCGAGGTTAC AGCTACTATT 34 20
GATTAAGGAG ATCGCCTATG GTCTCGCCCC GGCGTCGTGC GTCCGCCGCG AGCCAGATCT 3480
CGCCTACTTC ATAAACGTCC TCATAGGCAC GGAATGGAAT GATGACATCG ATCGCCGTAG 354 0
AGAGCATGTC AATCAGTGTG CGATCTTCCA AGCTAGCACC TTGGGCGCTA CTTTTGACAA 3600
GGGAAAACAG TTTCTTGAAT CCTTGGATTG GATTCGCGCC GTGTATTGTT GAAATCGATC 3660
CCGGATGTCC CGAGACGACT TCACTCAGAT AAGCCCATGC TGCATCGTCG CGCATCTCGC 3720
CAAGCAATAT CCGGTCCGGC CGCATACGCA GACTTGCTTG GAGCAAGTGC TCGGCGCTCA 3780
CAGCACCCAG CCCAGCACCG TTCTTGGAGT AGAGTAGTCT AACATGATTA TCGTGTGGAA 384 0
TGACGAGTTC GAGCGTATCT TCTATGGTGA TTAGCCTTTC CTGGGGGGGG ATGGCGCTGA 3900
TCAAGGTCTT GCTCATTGTT GTCTTGCCGC TTCCGGTAGG GCCACATAGC AACATCGTCA 3960
GTCGGCTGAC GACGCATGCG TGCAGAAACG CTTCCAAATC CCCGTTGTCA AAATGCTGAA 4 020
GGATAGCTTC ATCATCCTGA TTTTGGCGTT TCCTTCGTGT CTGCCACTGG TTCCACCTCG 4 080
AAGCATCATA ACGGGAGGAG ACTTCTTTAA GACCAGAAAC ACGCGAGCTT GGCCGTCGAA 414 0
TGGTCAAGCT GACGGTGCCC GAGGGAACGG TCGGCGGCAG ACAGATTTGT AGTCGTTCAC 4 200
CACCAGGAAG TTCAGTGGCG CAGAGGGGGT TACGTGGTCC GACATCCTGC TTTCTCAGCG 4 2 60
CGCCCGCTAA AATAGCGATA TCTTCAAGAT CATCATAAGA GACGGGCAAA GGCATCTTGG 4 320
TAAAAATGCC GGCTTGGCGC ACAAATGCCT CTCCAGGTCG ATTGATCGCA ATTTCTTCAG 4 380
TCTTCGGGTC ATCGAGCCAT TCCAAAATCG GCTTCAGAAG AAAGCGTAGT TGCGGATCCA 4 4 40
CTTCCATTTA CAATGTATCC TATCTCTAAG CGGAAATTTG AATTCATTAA GAGCGGCGGT 4 500
TCCTCCCCCG CGTGGCGCCG CCAGTCAGGC GGAGCTGGTA AACACCAAAG AAATCGAGGT 4 560
CCCGTGCTAC GAAAATGGAA ACGGTGTCAC CCTGATTCTT CTTCAGGGTT GGCGGTATGT 4 620
TGATGGTTGC CTTAAGGGCT GTCTCAGTTG TCTGCTCACC GTTATTTTGA AAGCTGTTGA 4 680
AGCTCATCCC GCCACCCGAG CTGCCGGCGT AGGTGCTAGC TGCCTGGAAG GCGCCTTGAA 4740
CAACACTCAA GAGCATAGCT CCGCTAAAAC GCTGCCAGAA GTGGCTGTCG ACCGAGCCCG 4 800
GCAATCCTGA GCGACCGAGT TCGTCCGCGC TTGGCGATGT TAACGAGATC ATCGCATGGT 4 8 60
CAGGTGTCTC GGCGCGATCC CACAACACAA AAACGCGCCC ATCTCCCTGT TGCAAGCCAC 4 920
GCTGTATTTC GCCAACAACG GTGGTGCCAC GATCAAGAAG CACGATATTG TTCGTTGTTC 4 980
CACGAATATC CTGAGGCAAG ACACACTTTA CATAGCCTGC CAAATTTGTG TCGATTGCGG 5040
TTTGCAAGAT GCACGGAATT ATTGTCCCTT GCGTTACCAT AAAATCGGGG TGCGGCAAGA 5100
GCGTGGCGCT GCTGGGCTGC AGCTCGGTGG GTTTCATACG TATCGACAAA TCGTTCTCGC 5160
CGGACACTTC GCCATTCGGC AAGGAGTTGT CGTCACGCTT GCCTTCTTGT CTTCGGCCCG 5220
TGTCGCCCTG AATGGCGCGT TTGCTGACCC CTTGATCGCC GCTGCTATAT GCAAAAATCG 5280
GTGTTTCTTC CGGCCGTGGC TCATGCCGCT CCGGTTCGCC CCTCGGCGGT AGAGGAGCAG 534 0
CAGGCTGAAC AGCCTCTTGA ACCGCTGGAG GATCCGGCGG CACCTCAATC GGAGCTGGAT 54 00
GAAATGGCTT GGTGTTTGTT GCGATCAAAG TTGACGGCGA TGCGTTCTCA TTCACCTTCT 54 60
TTTGGCGCCC ACCTAGCCAA ATGAGGCTTA ATGATAACGC GAGAACGACA CCTCCGACGA 5520
TCAATTTCTG AGACCCCGAA AGACGCCGGC GATGTTTGTC GGAGACCAGG GATCCAGATG 5580
CATCAACCTC ATGTGCCGCT TGCTGACTAT CGTTATTCAT CCCTTCGCCC CCTTCAGGAC 564 0
GCGTTTCACA TCGGGCCTCA CCGTGCCCGT TTGCGGCCTT TGGCCAACGG GATCGTAAGC 57 00
GGTGTTCCAG ATACATAGTA CTGTGTGGCC ATCCCTCAGA CGCCAACCTC GGGAAACCGA 57 60
AGAAATCTCG ACATCGCTCC CTTTAACTGA ATAGTTGGCA ACAGCTTCCT TGCCATCAGG 5820
ATTGATGGTG TAGATGGAGG GTATGCGTAC ATTGCCCGGA AAGTGGAATA CCGTCGTAAA 5880
TCCATTGTCG AAGACTTCGA GTGGCAACAG CGAACGATCG CCTTGGGCGA CGTAGTGCCA 5940
ATTACTGTCC GCCGCACCAA GGGCTGTGAC AGGCTGATCC AATAAATTCT CAGCTTTCCG 6000
TTGATATTGT GCTTCCGCGT GTAGTCTGTC CACAACAGCC TTCTGTTGTG CCTCCCTTCG 6060
CCGAGCCGCC GCATCGTCGG CGGGGTAGGC GAATTGGACG CTGTAATAGA GATCGGGCTG 6120
CTCTTTATCG AGGTGGGACA GAGTCTTGGA ACTTATACTG AAAACATAAC GGCGCATCCC 6180
GGAGTCGCTT GCGGTTAGCA CGATTACTGG CTGAGGCGTG AGGACCTGGC TTGCCTTGAA 624 0
AAATAGATAA TTTCCCCGCG GTAGGGCTGC TAGATCTTTG CTATTTGAAA CGGCAACCGC 6300
TGTCACCGTT TCGTTCGTGG CGAATGTTAC GACCAAAGTA GCTCCAACCG CCGTCGAGAG 6360
GCGCACCACT TGATCGGGAT TGTAAGCCAA ATAACGCATG CGCGGATCTA GCTTGCCCGC 6420
CATTGGAGTG TCTTCAGCCT CCGCACCAGT CGCAGCGGCA AATAAACATG CTAAAATGAA 64 80AAGTGCTTTT CTGATCATGG TTCGCTGTGG CCTACGTTTG AAACGGTATC TTCCGATGTC 6540
TGATAGGAGG TGACAACCAG ACCTGCCGGG TTGGTTAGTC TCAATCTGCC GGGCAAGCTG 6600
GTCACCTTTT CGTAGCGAAC TGTCGCGGTC CACGTACTCA CCACAGGCAT TTTGCCGTCA 6660
ACGACGAGGG TCCTTTTATA GCGAATTTGC TGCGTGCTTG GAGTTACATC ATTTGAAGCG 6720
ATGTGCTCGA CCTCCACCCT GCCGCGTTTG CCAAGAATGA CTTGAGGCGA ACTGGGATTG 6780
GGATAGTTGA AGAATTGCTG GTAATCCTGG CGCACTGTTG GGGCACTGAA GTTCGATACC 6840
AGGTCGTAGG CGTACTGAGC GGTGTCGGCA TCATAACTCT CGCGCAGGCG AACGTACTCC 6900
CACAATGAGG CGTTAACGAC GGCCTCCTCT TGAGTTGCAG GCAATCGCGA GACAGACACC 6960
TCGCTGTCAA CGGTGCCGTC CGGCCGTATC CATAGATATA CGGGCACAAG CCTGCTCAAC 7020
GGCACCATTG TGGCTATAGC GAACGCTTGA GCAACATTTC CCAAAATCGC GATAGCTGCG 7080
ACAGCTGCAA TGAGTTTGGA GAGACGTCGC GCCGATTTCG CTCGCGCGGT TTGAAAGGCT 7140
TCTACTTCCT TATAGTGCTC GGCAAGGCTT TCGCGCGCCA CTAGCATGGC ATATTCAGGC 7200
CCCGTCATAG CGTCCACCCG AATTGCCGAG CTGAAGATCT GACGGAGTAG GCTGCCATCG 7260
CCCCACATTC AGCGGGAAGA TCGGGCCTTT GCAGCTCGCT AATGTGTCGT TTGTCTGGCA 7320
GCCGCTCAAA GCGACAACTA GGCACAGCAG GCAATACTTC ATAGAATTCT CCATTGAGGC 7 380
GAATTTTTGC GCGACCTAGC CTCGCTCAAC CTGAGCGAAG CGACGGTACA AGCTGCTGGC 7440
AGATTGGGTT GCGCCGCTCC AGTAACTGCC TCCAATGTTG CCGGCGATCG CCGGCAAAGC 7500
GACAATGAGC GCATCCCCTG TCAGAAAAAA CATATCGAGT TCGTAAAGAC CAATGATCTT 7560
GGCCGCGGTC GTACCGGCGA AGGTGATTAC ACCAAGCATA AGGGTGAGCG CAGTCGCTTC 7 620
GGTTAGGATG ACGATCGTTG CCACGAGGTT TAAGAGGAGA AGCAAGAGAC CGTAGGTGAT 7 680
AAGTTGCCCG ATCCACTTAG CTGCGATGTC CCGCGTGCGA TCAAAAATAT ATCCGACGAG 77 4 0
GATCAGAGGC CCGATCGCGA GAAGCACTTT CGTGAGAATT CCAACGGCGT CGTAAACTCC 7 800
GAAGGCAGAC CAGAGCGTGC CGTAAAGGAC CCACTGTGCC CCTTGGAAAG CAAGGATGTC 78 60
CTGGTCGTTC ATCGGACCGA TTTCGGATGC GATTTTCTGA AAAACGGCCT GGGTCACGGC 7 920
GAACATTGTA TCCAACTGTG CCGGAACAGT CTGCAGAGGC AAGCCGGTTA CACTAAACTG 7 980
CTGAACAAAG TTTGGGACCG TCTTTTCGAA GATGGAAACC ACATAGTCTT GGTAGTTAGC 804 0
CTGCCCAACA ATTAGAGCAA CAACGATGGT GACCGTGATC ACCCGAGTGA TACCGCTACG 8100
GGTATCGACT TCGCCGCGTA TGACTAAAAT ACCCTGAACA ATAATCCAAA GAGTGACACA 8160
GGCGATCAAT GGCGCACTCA CCGCCTCCTG GATAGTCTCA AGCATCGAGT CCAAGCCTGT 8220
CGTGAAGGCT ACATCGAAGA TCGTATGAAT GGCCGTAAAC GGCGCCGGAA TCGTGAAATT 8280
CATCGATTGG ACCTGAACTT GACTGGTTTG TCGCATAATG TTGGATAAAA TGAGCTCGCA 834 0
TTCGGCGAGG ATGCGGGCGG ATGAACAAAT CGCCCAGCCT TAGGGGAGGG CACCAAAGAT 84 00
GACAGCGGTC TTTTGATGCT CCTTGCGTTG AGCGGCCGCC TCTTCCGCCT CGTGAAGGCC 84 60
GGCCTGCGCG GTAGTCATCG TTAATAGGCT TGTCGCCTGT ACATTTTGAA TCATTGCGTC 8520
ATGGATCTGC TTGAGAAGCA AACCATTGGT CACGGTTGCC TGCATGATAT TGCGAGATCG 8580
GGAAAGCTGA GCAGACGTAT CAGCATTCGC CGTCAAGCGT TTGTCCATCG TTTCCAGATT 8 64 0
GTCAGCCGCA ATGCCAGCGC TGTTTGCGGA ACCGGTGATC TGCGATCGCA ACAGGTCCGC 8700
TTCAGCATCA CTACCCACGA CTGCACGATC TGTATCGCTG GTGATCGCAC GTGCCGTGGT 87 60
CGACATTGGC ATTCGCGGCG AAAACATTTC ATTGTCTAGG TCCTTCGTCG AAGGATACTG 8820
ATTTTTCTGG TTGAGCGAAG TCAGTAGTCC AGTAACGCCG TAGGCCGACG TCAACATCGT 8880
AACCATCGCT ATAGTCTGAG TGAGATTCTC CGCAGTCGCG AGCGCAGTCG CGAGCGTCTC 8 94 0
AGCCTCCGTT GCCGGGTCGC TAACAACAAA CTGCGCCCGC GCGGGCTGAA TATATAGAAA 9000
GCTGCAGGTC AAAACTGTTG CAATAAGTTG CGTCGTCTTC ATCGTTTCCT ACCTTATCAA 9060
TCTTCTGCCT CGTGGTGACG GGCCATGAAT TCGCTGAGCC AGCCAGATGA GTTGCCTTCT 9120
TGTGCCTCGC GTAGTCGAGT TGCAAAGCGC ACCGTGTTGG CACGCCCCGA AAGCACGGCG 9180
ACATATTCAC GCATATCCCG CAGATCAAAT TCGCAGATGA CGCTTCCACT TTCTCGTTTA 924 0
AGAAGAAACT TACGGCTGCC GACCGTCATG TCTTCACGGA TCGCCTGAAA TTCCTTTTCG 9300
GTACATTTCA GTCCATCGAC ATAAGCCGAT CGATCTGCGG TTGGTGATGG ATAGAAAATC 9360
TTCGTCATAC ATTGCGCAAC CAAGCTGGCT CCTAGCGGCG ATTCCAGAAC ATGCTCTGGT 94 20
TGCTGCGTTG CCAGTATTAG CATCCCGTTG TTTTTTCGAA CGGTCAGGAG GAATTTGTCG 94 80
ACGACAGTCG AAAATTTAGG GTTTAACAAA TAGGCGCGAA ACTCATCGCA GCTCATCACA 9540
AAACGGCGGC CGTCGATCAT GGCTCCAATC CGATGCAGGA GATATGCTGC AGCGGGAGCG 9600
CATACTTCCT CGTATTCGAG AAGATGCGTC ATGTCGAAGC CGGTAATCGA CGGATCTAAC 9660
TTTACTTCGT CAACTTCGCC GTCAAATGCC CAGCCAAGCG CATGGCCCCG GCACCAGCGT 9720
TGGAGCCGCG CTCCTGCGCC TTCGGCGGGC CCATGCAACA AAAATTCACG TAACCCCGCG 9780
ATTGAACGCA TTTGTGGATC AAACGAGAGC TGACGATGGA TACCACGGAC CAGACGGCGG 984 0
TTCTCTTCCG GAGAAATCCC ACCCCGACCA TCACTCTCGA TGAGAGCCAC GATCCATTCG 9900
CGCAGAAAAT CGTGTGAGGC TGCTGTGTTT TCTAGGCCAC GCAACGGCGC CAACCCGCTG 9960
GGTGTGCCTC TGTGAAGTGC CAAATATGTT CCTCCTGTGG CGCGAACCAG CAATTCGCCA 10020CCCCGGTCCT TGTCAAAGAA CACGACCGTA CCTGCACGGT CGACCATGCT CTGTTCGAGC 10080
ATGGCTAGAA CAAACATCAT GAGCGTCGTC TTACCCCTCC CGATAGGCCC GAATATTGCC 10140GTCATGCCAA CATCGTGCTC ATGCGGGATA TAGTCGAAAG GCGTTCCGCC ATTGGTACGA 10200AATCGGGCAA TCGCGTTGCC CCAGTGGCCT GAGCTGGCGC CCTCTGGAAA GTTTTCGAAA 10260GAGACAAACC CTGCGAAATT GCGTGAAGTG ATTGCGCCAG GGCGTGTGCG CCACTTAAAA 10320
TTCCCCGGCA ATTGGGACCA ATAGGCCGCT TCCATACCAA TACCTTCTTG GACAACCACG 10380
GCACCTGCAT CCGCCATTCG TGTCCGAGCC CGCGCGCCCC TGTCCCCAAG ACTATTGAGA 10440
TCGTCTGCAT AGACGCAAAG GCTCAAATGA TGTGAGCCCA TAACGAATTC GTTGCTCGCA 10500
AGTGCGTCCT CAGCCTCGGA TAATTTGCCG ATTTGAGTCA CGGCTTTATC GCCGGAACTC 10560
AGCATCTGGC TCGATTTGAG GCTAAGTTTC GCGTGCGCTT GCGGGCGAGT CAGGAACGAA 10620
AAACTCTGCG TGAGAACAAG TGGAAAATCG AGGGATAGCA GCGCGTTGAG CATGCCCGGC 10680
CGTGTTTTTG CAGGGTATTC GCGAAACGAA TAGATGGATC CAACGTAACT GTCTTTTGGC 10740
GTTCTGATCT CGAGTCCTCG CTTGCCGCAA ATGACTCTGT CGGTATAAAT CGAAGCGCCG 10800
AGTGAGCCGC TGACGACCGG AACCGGTGTG AACCGACCAG TCATGATCAA CCGTAGCGCT 10860
TCGCCAATTT CGGTGAAGAG CACACCCTGC TTCTCGCGGA TGCCAAGACG ATGCAGGCCA 10920
TACGCTTTAA GAGAGCCAGC GACAACATGC CAAAGATCTT CCATGTTCCT GATCTGGCCC 10980
GTGAGATCGT TTTCCCTTTT TCCGCTTAGC TTGGTGAACC TCCTCTTTAC CTTCCCTAAA 11040
GCCGCCTGTG GGTAGACAAT CAACGTAAGG AAGTGTTCAT TGCGGAGGAG TTGGCCGGAG 11100
AGCACGCGCT GTTCAAAAGC TTCGTTCAGG CTAGCGGCGA AAACACTACG GAAGTGTCGC 11160
GGCGCCGATG ATGGCACGTC GGCATGACGT ACGAGGTGAG CATATATTGA CACATGATCA 11220
TCAGCGATAT TGCGCAACAG CGTGTTGAAC GCACGACAAC GCGCATTGCG CATTTCAGTT 11280
TCCTCAAGCT CGAATGCAAC GCCATCAATT CTCGCAATGG TCATGATCGA TCCGTCTTCA 11340
AGAAGGACGA TATGGTCGCT GAGGTGGCCA ATATAAGGGA GATAGATCTC ACCGGATCTT 11400
TCGGTCGTTC CACTCGCGCC GAGCATCACA CCATTCCTCT CCCTCGTGGG GGAACCCTAA 11460
TTGGATTTGG GCTAACAGTA GCGCCCCCCC AAACTGCACT ATCAATGCTT CTTCCCGCGG 11520
TCCGCAAAAA TAGCAGGACG ACGCTCGCCG CATTGTAGTC TCGCTCCACG ATGAGCCGGG 11580
CTGCAAACCA TAACGGCACG AGAACGACTT CGTAGAGCGG GTTCTGAACG ATAACGATGA 11640
CAAAGCCGGC GAACATCATG AATAACCCTG CCAATGTCAG TGGCACCCCA AGAAACAATG 11700
CGGGCCGTGT GGCTGCGAGG TAAAGGGTCG ATTCTTCCAA ACGATCAGCC ATCAACTACC 11760
GCCAGTGAGC GTTTGGCCGA GGAAGCTCGC CCCAAACATG ATAACAATGC CGCCGACGAC 11820
GCCGGCAACC AGCCCAAGCG AAGCCCGCCC GAACATCCAG GAGATCCCGA TAGCGACAAT 11880
GCCGAGAACA GCGAGTGACT GGCCGAACGG ACCAAGGATA AACGTGCATA TATTGTTAAC 11940
CATTGTGGCG GGGTCAGTGC CGCCACCCGC AGATTGCGCT GCGGCGGGTC CGGATGAGGA 12000
AATGCTCCAT GCAATTGCAC CGCACAAGCT TGGGGCGCAG CTCGATATCA CGCGCATCAT 12060
CGCATTCGAG AGCGAGAGGC GATTTAGATG TAAACGGTAT CTCTCAAAGC ATCGCATCAA 12120
TGCGCACCTC CTTAGTATAA GTCGAATAAG ACTTGATTGT CGTCTGCGGA TTTGCCGTTG 12180
TCCTGGTGTG GCGGTGGCGG AGCGATTAAA CCGCCAGCGC CATCCTCCTG CGAGCGGCGC 12240
TGATATGACC CCCAAACATC CCACGTCTCT TCGGATTTTA GCGCCTCGTG ATCGTCTTTT 12300
GGAGGCTCGA TTAACGCGGG CACCAGCGAT TGAGCAGCTG TTTCAACTTT TCGCACGTAG 12360
CCGTTTGCAA AACCGCCGAT GAAATTACCG GTGTTGTAAG CGGAGATCGC CCGACGAAGC 12420
GCAAATTGCT TCTCGTCAAT CGTTTCGCCG CCTGCATAAC GACTTTTCAG CATGTTTGCA 12480
GCGGCAGATA ATGATGTGCA CGCCTGGAGC GCACCGTCAG GTGTCAGACC GAGCATAGAA 12540
AAATTTCGAG AGTTTATTTG CATGAGGCCA ACATCCAGCG AATGCCGTGC ATCGAGACGG 12600
TGCCTGACGA CTTGGGTTGC TTGGCTGTGA TCTTGCCAGT GAAGCGTTTC GCCGGTCGTG 12660
TTGTCATGAA TCGCTAAAGG ATCAAAGCGA CTCTCCACCT TAGCTATCGC CGCAAGCGTA 12720
GATGTCGCAA CTGATGGGGC ACACTTGCGA GCAACATGGT CAAACTCAGC AGATGAGAGT 12780
GGCGTGGCAA GGCTCGACGA ACAGAAGGAG ACCATCAAGG CAAGAGAAAG CGACCCCGAT 12840
CTCTTAAGCA TACCTTATCT CCTTAGCTCG CAACTAACAC CGCCTCTCCC GTTGGAAGAA 12900
GTGCGTTGTT TTATGTTGAA GATTATCGGG AGGGTCGGTT ACTCGAAAAT TTTCAATTGC 12960
TTCTTTATGA TTTCAATTGA AGCGAGAAAC CTCGCCCGGC GTCTTGGAAC GCAACATGGA 13020
CCGAGAACCG CGCATCCATG ACTAAGCAAC CGGATCGACC TATTCAGGCC GCAGTTGGTC 13080
AGGTCAGGCT CAGAACGAAA ATGCTCGGCG AGGTTACGCT GTCTGTAAAC CCATTCGATG 13140
AACGGGAAGC TTCCTTCCGA TTGCTCTTGG CAGGAATATT GGCCCATGCC TGCTTGCGCT 13200
TTGCAAATGC TCTTATCGCG TTGGTATCAT ATGCCTTGTC CGCCAGCAGA AACGCACTCT 13260
AAGCGATTAT TTGTAAAAAT GTTTCGGTCA TGCGGCGGTC ATGGGCTTGA CCCGCTGTCA 13320
GCGCAAGACG GATCGGTCAA CCGTCGGCAT CGACAACAGC GTGAATCTTG GTGGTCAAAC 13380
CGCCACGGGA ACGTCCCATA CAGCCATCGT CTTGATCCCG CTGTTTCCCG TCGCCGCATG 13440
TTGGTGGACG CGGACACAGG AACTGTCAAT CATGACGACA TTCTATCGAA AGCCTTGGAA 13500
ATCACACTCA GAATATGATC CCAGACGTCT GCCTCACGCC ATCGTACAAA GCGATTGTAG 13560CAGGTTGTAC AGGAACCGTA TCGATCAGGACGCCACAAGA TGACATTGAT CACCCGCGTCGAACAAAGGA CTGAACAACA GTCCATTCGATCAGTGGCCT CCAAGTCAAG CCTCAATGAATATGAGTGTG CGGCCTAAAT GATGAAATCGCACCTCGCAG TATCGCCGTG CTGACCTTGGCATGACCGCT CTTTTGGCCG CGATAGATGAGAGAAGTCAT ATCGGAGAAA TTCCTCCTGGCCACTGTCGG GAACAGACCG GATCATTCACGGCATCTTCC CTTGAAGGAT GATCTTGTTGCAGATGCGAT CTCAGCGCAA CTTGCGGCAAAGTCTCGCGA TCAGACGAAG GCCTTTTACTAGGCGTCGCT ATCCCAGTCA ATACTAAAGCAGGCGTGCCA CGAGGCCTGA GACGACGCGCTGATGGCCTC CGCTGAAGCC TATCACCTCTTTATTACGGT CTTCGCGCCC GTACATGCATTCATCCAGAG GATTGCCGCC CTTACCTTCCACGACATAGT CGACTTGATG TGACAATGCCTGCTCAAGCG TAAGCCTATT GAAGCTTGCCACAAGTAAAA CATTCTGCAC ACCGAAATGCTCCTTAGCAG TTTCGCTTGG GGACCGCTCCATGACAGGAA TCCCTTCCGT CTGCAGATAGTTTCGGTGAT GACGGTGAAA ACCTCTGACATCTGTAAGCG GATGCCGGGA GCAGACAAGCGTGTCGGGGC GCAGCCATGA CCCAGTCACGTATGCGGCAT CAGAGCAGAT TGTACTGAGAAGATGCGTAA GGAGAAAATA CCGCATCAGGCTGCGCTCGG TCGTTCGGCT GCGGCGAGCGTTATCCACAG AATCAGGGGA TAACGCAGGAGCCAGGAACC GTAAAAAGGC CGCGTTGCTGGAGCAT CACA AAAATCGACG C T CAAGT CAGTACCAGGCGT TTCCCCCTGG AAGCTCCCTCACCGGATACC TGTCCGCCTT TCTCCCTTCGTGTAGGTATC TCAGTTCGGT GTAGGTCGTTCCCGTTCAGC CCGACCGCTG CGCCTTATCCAGACACGACT TATCGCCACT GGCAGCAGCCGTAGGCGGTG CTACAGAGTT CTTGAAGTGGGTATTTGGTA TCTGCGCTCT GCTGAAGCCATGATCCGGCA AACAAACCAC CGCTGGTAGCACGCGCAGAA AAAAAGGATC TCAAGAAGATCAGTGGAACG AAAACTCACG TTAAGGGATTACCTAGATCC TTTTAAATTA AAAATGAAGTACTTGGTCTG ACAGTTACCA ATGCTTAATCTTTCGTTCAT CCATAGTTGC CTGACTCCCCTTACCATCTG GCCCCAGTGC TGCAATGATATTATCAGCAA TAAACCAGCC AGCCGGAAGGTCCGCCTCCA TCCAGTCTAT TAATTGTTGCAATAGTTTGC GCAACGTTGT TGCCATTGCTTCATTCCACG GACAAAAACA GAGAAAGGAAACCTGTCGTT TCCTTTCTTT TCAGAGGGTAGAAGAACGGA AACGCCTTAA ACCGGAAAATCCGCCCCGTA ACCTGTCGGA TCACCGGAAAACATATCACA ACGTGCGTGG AGGCCATCAATATCGTATTA ATTGATCTGC ATCAACTTAAGCGACACTGA ATACGGGGCA ACCTCATGTCGTGTCACGCT CGTCGTTTGG TATGGCTTCAGTTACATGAT CCCCCATGTT GTGCAAAAAAGTCAGAAGTA AGTTGGCCGC AGTGTTATCACTTACTGTCA TGCCATCCGT AAGATGCTTT
ACGTCTGCCC AGGGCGGGCC CGTCCGGAAG 13620
AACGCGCGGC ACGCGACGCG GCTTATTTGG 13680
AATCGGTGAC ATCAAAGCGG GGACGGGTTA 13740
TCAAAATCAG ACCGATTTGC AAACCTGATT 13800
TCCTTCTAGA TCGCCTCCGT GGTGTAGCAA 13860
CCAGGGAATT GACTGGCAAG GGTGCTTTCA 13920
TTTCGTTGCT GCTTTGGGCA CGTAGAAGGA 13980
CGCGAGAGCC TGCTCTATCG CGACGGCATC 14 040
GAGGCGAAAG TCGTCAACAC ATGCGTTATA 14100
CTGCCAATCT GGAGGTGCGG CAGCCGCAGG 14160
AACATCTCAC TCACCTGAAA ACCACTAGCG 14 220
TAACGACACA ATATCCGATG TCTGCATCAC 14 280
GGTGCAGGAA CTAAAGATTA CTGATGACTT 14 340
GTAGACAGTT TTTTGAAATC ATTATCAAAG 14 400
GCGCCGGTCT GTCGGAGAGA TGGGCAAGCA 14 4 60
TGGACGATTG CAGGGTCAAT GGATCTGAGA 14520
GTTTCGAGTT GGAGCCAGCC CCTAAATGAG 14 580
AAGAGAGAGA TTTGCTTAAC CCGATTTTTT 14 640
GGCATGACGT CCGCGCCGAA AGAATATCCT 14 7 00
TTGGTGTAGA CATCGATTAT GTGACCAAGA 14 7 60
GACCAGAAAT ACCGAAGTGA ACTGACGCCA 14 820
GTACCATCGA TAGATCTGCT GCCTCGCGCG 14880
CATGCAGCTC CCGGAGACGG TCACAGCTTG 14 940
CCGTCAGGGC GCGTCAGCGG GTGTTGGCGG 15000
TAGCGATAGC GGAGTGTATA CTGGCTTAAC 15060
GTGCACCATA TGCGGTGTGA AATACCGCAC 15120
CGCTCTTCCG CTTCCTCGCT CACTGACTCG 15180
GTATCAGCTC ACTCAAAGGC GGTAATACGG 1524 0
AAGAACATGT GAGCAAAAGG CCAGCAAAAG 15300
GCGTTTTTCC ATAGGCTCCG CCCCCCTGAC 15360
AGGTGGCGAA ACCCGACAGG ACTATAAAGA 154 20
GTGCGCTCTC CTGTTCCGAC CCTGCCGCTT 15480
GGAAGCGTGG CGCTTTCTCA TAGCTCACGC 1554 0
CGCTCCAAGC TGGGCTGTGT GCACGAACCC 15600
GGTAACTATC GTCTTGAGTC CAACCCGGTA 15660
ACTGGTAACA GGATTAGCAG AGCGAGGTAT 15720
TGGCCTAACT ACGGCTACAC TAGAAGGACA 15780
GTTACCTTCG GAAAAAGAGT TGGTAGCTCT 1584 0
GGTGGTTTTT TTGTTTGCAA GCAGCAGATT 15900
CCTTTGATCT TTTCTACGGG GTCTGACGCT 15960
TTGGTCATGA GATTATCAAA AAGGATCTTC 16020
TTTAAATCAA TCTAAAGTAT ATATGAGTAA 16080
AGTGAGGCAC CTATCTCAGC GATCTGTCTA 1614 0
GTCGTGTAGA TAACTACGAT ACGGGAGGGC 16200
CCGCGAGACC CACGCTCACC GGCTCCAGAT 16260
GCCGAGCGCA GAAGTGGTCC TGCAACTTTA 16320
CGGGAAGCTA GAGTAAGTAG TTCGCCAGTT 16380
GCAGGGGGGG GGGGGGGGGG GTTCCATTGT 16440
ACGACAGAGG CCAAAAAGCT CGCTTTCAGC 16500
TTTTAAATAA AAACATTAAG TTATGACGAA 16560
TTTCATAAAT AGCGAAAACC CGCGAGGTCG 16620
GGACCCGTAA AGTGATAATG ATTATCATCT 16680
ACCACGTCAA ATAATCAATT ATGACGCAGG 16740
CGTAAAAACA ACTTCAGACA ATACAAATCA 16800
CCCCCCCCCC CCCCCCCTGC AGGCATCGTG 16860
TTCAGCTCCG GTTCCCAACG ATCAAGGCGA 16920
GCGGTTAGCT CCTTCGGTCC TCCGATCGTT 16980
CTCATGGTTA TGGCAGCACT GCATAATTCT 1704 0
TCTGTGACTG GTGAGTACTC AACCAAGTCA 17100TTCTGAGAAT AGTGTATGCG GCGACCGAGT TGCTCTTGCC CGGCGTCAAC ACGGGATAAT 17160
ACCGCGCCAC ATAGCAGAAC TTTAAAAGTG CTCATCATTG GAAAACGTTC TTCGGGGCGA 17220
AAACTCTCAA GGATCTTACC GCTGTTGAGA TCCAGTTCGA TGTAACCCAC TCGTGCACCC 17280
AACTGATCTT CAGCATCTTT TACTTTCACC AGCGTTTCTG GGTGAGCAAA AACAGGAAGG 17340
CAAAATGCCG CAAAAAAGGG AATAAGGGCG ACACGGAAAT GTTGAATACT CATACTCTTC 17 400
CTTTTTCAAT ATTATTGAAG CATTTATCAG GGTTATTGTC TCATGAGCGG ATACATATTT 17 4 60
GAATGTATTT AGAAAAATAA ACAAATAGGG GTTCCGCGCA CATTTCCCCG AAAAGTGCCA 17520
CCTGACGTCT AAGAAACCAT TATTATCATG ACATTAACCT ATAAAAATAG GCGTATCACG 17 580
AGGCCCTTTC GTCTTCAAGA ATTGGTCGAC GATCTTGCTG CGTTCGGATA TTTTCGTGGA 17640
GTTCCCGCCA CAGACCCGGA TTGAAGGCGA GATCCAGCAA CTCGCGCCAG ATCATCCTGT 17700
GACGGAACTT TGGCGCGTGA TGACTGGCCA GGACGTCGGC CGAAAGAGCG ACAAGCAGAT 17 760
CACGCTTTTC GACAGCGTCG GATTTGCGAT CGAGGATTTT TCGGCGCTGC GCTACGTCCG 17820
CGACCGCGTT GAGGGATCAA GCCACAGCAG CCCACTCGAC CTTCTAGCCG ACCCAGACGA 17 880
GCCAAGGGAT CTTTTTGGAA TGCTGCTCCG TCGTCAGGCT TTCCGACGTT TGGGTGGTTG 17940
AACAGAAGTC ATTATCGTAC GGAATGCCAA GCACTCCCGA GGGGAACCCT GTGGTTGGCA 18000
TGCACATACA AATGGACGAA CGGATAAACC TTTTCACGCC CTTTTAAATA TCCGTTATTC 18060
TAATAAACGC TCTTTTCTCT TAGGTTTACC CGCCAATATA TCCTGTCAAA CACTGATAGT 18120
TTAAACTGAA GGCGGGAAAC GACAATCTGA TCATGAGCGG AGAATTAAGG GAGTCACGTT 18180
ATGACCCCCG CCGATGACGC GGGACAAGCC GTTTTACGTT TGGAACTGAC AGAACCGCAA 18240
CGTTGAAGGA GCCACTCAGC AAGCTGGTAC GATTGTAATA CGACTCACTA TAGGGCGAAT 18300
TGAGCGCTGT TTAAACGCTC TTCAACTGGA AGAGCGGTTA CCAGAGCTGG TCACCTTTGT 18360
CCACCAAGAT GGAACTGCGG CCGCTCATTA ATTAAGTCAG GCGCGCCTCT AGTTGAAGAC 18420
ACGTTCATGT CTTCATCGTA AGAAGACACT CAGTAGTCTT CGGCCAGAAT GGCCCGGACC 18480
GAAGCTGGCC GCTCTAGAAC TAGTGGATCT CGATGTGTAG TCTACGAGAA GGGTTAACCG 1854 0
TCTCTTCGTG AGAATAACCG TGGCCTAAAA ATAAGCCGAT GAGGATAAAT AAAATGTGGT 18600
GGTACAGTAC TTCAAGAGGT TTACTCATCA AGAGGATGCT TTTCCGATGA GCTCTAGTAG 18 660
TACATCGGAC CTCACATACC TCCATTGTGG TGAAATATTT TGTGCTCATT TAGTGATGGG 18720
TAAATTTTGT TTATGTCACT CTAGGTTTTG ACATTTCAGT TTTGCCACTC TTAGGTTTTG 18780
ACAAATAATT TCCATTCCGC GGCAAAAGCA AAACAATTTT ATTTTACTTT TACCACTCTT 18840
AGCTTTCACA ATGTATCACA AATGCCACTC TAGAAATTCT GTTTATGCCA CAGAATGTGA 18 900
AAAAAAACAC TCACTTATTT GAAGCCAAGG TGTTCATGGC ATGGAAATGT GACATAAAGT 18 960
AACGTTCGTG TATAAGAAAA AATTGTACTC CTCGTAACAA GAGACGGAAA CATCATGAGA 19020
CAATCGCGTT TGGAAGGCTT TGCATCACCT TTGGATGATG CGCATGAATG GAGTCGTCTG 19080
CTTGCTAGCC TTCGCCTACC GCCCACTGAG TCCGGGCGGC AACTACCATC GGCGAACGAC 1914 0
CCAGCTGACC TCTACCGACC GGACTTGAAT GCGCTACCTT CGTCAGCGAC GATGGCCGCG 19200
TACGCTGGCG ACGTGCCCCC GCATGCATGG CGGCACATGG CGAGCTCAGA CCGTGCGTGG 19260
CTGGCTACAA ATACGTACCC CGTGAGTGCC CTAGCTAGAA ACTTACACCT GCAACTGCGA 19320
GAGCGAGCGT GTGAGTGTAG CCGAGTAGAT CCCCCGGTCG CCACCATGGC CTCCTCCGAG 19380
AACGTCATCA CCGAGTTCAT GCGCTTCAAG GTGCGCATGG AGGGCACCGT GAACGGCCAC 19440
GAGTTCGAGA TCGAGGGCGA GGGCGAGGGC CGCCCCTACG AGGGCCACAA CACCGTGAAG 19500
CTGAAGGTGA CCAAGGGCGG CCCCCTGCCC TTCGCCTGGG ACATCCTGTC CCCCCAGTTC 19560
CAGTACGGCT CCAAGGTGTA CGTGAAGCAC CCCGCCGACA TCCCCGACTA CAAGAAGCTG 19620
TCCTTCCCCG AGGGCTTCAA GTGGGAGCGC GTGATGAACT TCGAGGACGG CGGCGTGGCG 19680
ACCGTGACCC AGGACTCCTC CCTGCAGGAC GGCTGCTTCA TCTACAAGGT GAAGTTCATC 19740
GGCGTGAACT TCCCCTCCGA CGGCCCCGTG ATGCAGAAGA AGACCATGGG CTGGGAGGCC 19800
TCCACCGAGC GCCTGTACCC CCGCGACGGC GTGCTGAAGG GCGAGACCCA CAAGGCCCTG 198 60
AAGCTGAAGG ACGGCGGCCA CTACCTGGTG GAGTTCAAGT CCATCTACAT GGCCAAGAAG 19920
CCCGTGCAGC TGCCCGGCTA CTACTACGTG GACGCCAAGC TGGACATCAC CTCCCACAAC 19980
GAGGACTACA CCATCGTGGA GCAGTACGAG CGCACCGAGG GCCGCCACCA CCTGTTCCTG 20040
TAGCGGCCCA TGGATATTCG AACGCGTAGG TACCACATGG TTAACCTAGA CTTGTCCATC 20100
TTCTGGATTG GCCAACTTAA TTAATGTATG AAATAAAAGG ATGCACACAT AGTGACATGC 20160
TAATCACTAT AATGTGGGCA TCAAAGTTGT GTGTTATGTG TAATTACTAG TTATCTGAAT 20220
AAAAGAGAAA GAGATCATCC ATATTTCTTA TCCTAAATGA ATGTCACGTG TCTTTATAAT 20280
TCTTTGATGA ACCAGATGCA TTTCATTAAC CAAATCCATA TACATATAAA TATTAATCAT 20340
ATATAATTAA TATCAATTGG GTTAGCAAAA CAAATCTAGT CTAGGTGTGT TTTGCGAATG 20400
CGGCCGCCAC CGCGGTGGAG CTCGAATTCC GGTCCGGGCC TAGAAGGCCA TTTAAATCCT 204 60
GAGGATCTGG TCTTCCTAAG GACCCGGGAT ATCGCTATCA ACTTTGTATA GAAAAGTTGG 20520
GCCGAATTCG AGCTCGGTAC GGCCAGAATG GCCCGGACCG GGTTACCGAA TTCGAGCTCG 20580
GTACCCTGGG ATCCGCAAGG GACGACCGTG GTCCTTGTTT GATTTACTTC CAGGATTATA 20640TAATCCAGCT TATGGATTAT ATAAGTACCT ATTGACGTCA CGTGCTTATG TATTATAATA 20700
ATCTAGGTAT ATAGATTATA TAATCTATCT AATAATAATC TGTGTTGTTT GTTTATCTCT 207 60
CAAAACAAAC AGGTCCTAAA ATGGTCCCGG GCGTCCAATG TGTCGTCAAG TAGTGTTAAG 20820
CTAAATCGAC ATTTCTTTGT GGGTTGTGTG GAAGGTGTTC CTTTTCCTTA AGTTGTTAGT 20880
TGTGCAAGGT GTTCCTTAGA GCATCTCCAA TAGGACCTAT AATGGATTCT ATTTTGAATT 20940
ATAAGACTCT AACAACAAAA GCATACTTTA ATGGGGATTC TATTTTACAA AAAAATATCA 21000
AATGATTATA TGGTCGATTC CTCGGGTCCT AAATATAGTA TCTCATATAA TAGAGCTCTA 21060
TCCTCATTTT ATATACTATT TTTAAGTTTT TATTTACTAA ATAACATGAT TTATTTTCTA 21120
ATACTATGAA CTCAACTATT AGAGCTGTAA ACGTTTTTGT GGTACTAAAC ACTTTAAATC 21180
AGGTCCTATT TTAATTTGAA GGACTTAAAT ATAAGACTTC TGGTTAGAGA TGCTCTTAGC 2124 0
GAGTGTTTGT GCATGATTGC TATTTAGTCT TTGTGGATTG TGGAAGGTGT TACTTTTCCT 21300
CAAGTTGTTA GTTGTGCAAG GTGTTTCTTA GAGCATCTCT AACAGGAGCC TTAACGGAAT 21360
CTATTTTGAA GTATAGTACT TTAACACCAA AAACATACTT TAATAGGGGT CCTATTTTAC 214 20
AAAAAAATTA TCAAATGATT ATAAGGTCCA CTCCTCGGGT CCTAAATATA ATATCTCATA 214 80
TACTAGAGCT CTATCCTCAT TTTATATACT ATCCCTAGGT TTTTATTCCC TAAATAACAT 21540
GATTTATTTC CTAATACTAA GATATAGGGC TCAACTATTG GAGTTGCAAA TGTTTTTTGG 21600
CACTAAACAC TTTATATCAG GTCCTATTTT AATTTTAATT TGAAGGACTC AAATATAGGA 21660
CTTCTCGTTA GAGATGCTCT TAGCGAGTGT TTGTGCATGA TTGCTATTTA TGTCTGTAGT 21720
TTAGTTGGGG GCTTTAATAT GTTTAGTTGA AGTTCTAGTA TTTTTTAGGT TCTCCACTCT 21780
TTGGATTATG ACAACGACCA CTATCCAAGC AGTCTTTGAG TGCAAACGCG CGAGCAAACT 21840
ATCTGATCTA TTAAATTATG ATCCAACCGT TATGTCATAT TGAAGACTTA AACCCTTTCA 21900
CCACCAGCCC AAGTATCTTT ATGAAAAACC CTAACAAACC ACAATTGCAT CTATGGTTGG 21960
ATTATAATTT AACGTATCAG ATGGTTCGCT TGCATGCTTA CATATCTAGA AACTGTTTGC 22020
ATAACAGTCG TTCTCTTTGG TTATATAATG CTTTAGTAAT CATCAGCCAA GTGTAAACAA 22080
ATGGTACAAA CTAGTAGTGA ACACATCCTC CCTACCTATC TCTAGGGGTG TAACTAGATA 2214 0
TCCGAATTCT TAGAACAAAT TTCATATTTT AAAATAGATA TGCTTCAAAA TTTATGCTAA 22200
TCTTTTTTAT ATTATCAAGC ATATTATTAC ACATAAGAAT AAAATTTTGT ATAGAATTTT 22260
ATCCATTATT TGTTCCCTAG AATTTAAAAA GTGAAAAAAC ATTCGAATCT GTATCAGTTT 22320
CGTATTCAAA TTTTTACATC TATTATTTGA GAATATATAT GATAAATTTG AGGTTTAGTT 22380
TTTATGAATC TTTACAAGGT TAATGTTAAA TACATGACTA TGGATTTACA TAGTAAATTC 22440
TATGTCTTAT TTGTCCGCGA TTGAAGAAAA ATGACAAAAA GATCTGACAT TCGAATAAAC 22500
ATCTGTTTCC ACTCCTACCT ATCTGACCTC CTATTTCAAA CTCCACTTTG TAACACGGTA 22560
CAAAATCACT CCCTACCTAT CTGACCTCCT ATTTCAAACT CCACTCAGTA AACAATATTG 22 620
TCTATGGTAC AAAACCAAGT GTTTTATACA TCTATTTGCA CGATCTGCTC GAGTCAGGCA 22 680
TCCTTGACAC ACAACATACT CCTTGTGGCT ATAAATGTCC AAATAGAGCA GACCTAATGG 2274 0
GTGGACCGTT GCATGACACG ACTTATCCCA AGACGAGCAC AGTTCGCCCC ATTGGTCATG 22800
GGGGTCCGGG CTAGTCTAGC CTGATCATCG GGTCACACTT AGGCCACAGG TGTGCCACAA 228 60
CGGGATAGCC CAACATGTCC CTTTTTGTCA TGCATATATC TATATTATAG TTAGTATAAT 22 920
GTAAAAAAAC AAAAGGTATG TGTGTTATGT TGGTTAGATG TGTTTAAATA ACTCTTTAAA 22980
GCTAGCAACT ATGGTTTAAA TCATACATAT ACACATTTTT ATTTTATTTT TATTTAAACG 23040
ATATGGGCCT TCTAGGCACG TCGAGTGTGA CGGGCCAGTG AGATGACACA TTATAATTAC 23100
TGGTCTAGCA GGCCGTACCT AGGTCTTTCT CGTGGGCCAA GACTAAGGGT TGGCCCGTTG 23160
GCTAATCTGT ACGGTACCGA TACTGTCCTA ATTCATTTGA ACACCTGTAG AAGAGGGGAA 23220
TTTATAATTG AGGAGGAATG TACTCATGCG GTACACCAGG GGAATTGTTT TGTTGTGCTC 23280
AGCGATAGAT TTCAACGCAA CGGTGAGCCA GTTTCACTAA AAAAAGGGGG GGGGGGGGGG 2334 0
GGGGGGGAAG GCCACATCAA AGGCGAGGTG CTGACGAGCA GAAGATGCTA GCAGTGACGC 23400
CAAGTCCAGC AGCTAGCAAT GAAAGGGTAC TCGGGATTTA ACAATGCCTA GAGACGGCAT 23460
CATCCCCTCA ATAATCCGGT GCTCTCTTTT TGTTTATTCA CCAGTTGGCG TAGCTATATA 23520
CACATGTCTG GTCTGACGAA CAAATCAAGG GATCGCTAGC TCGGGCTAGC CTTCCTATCA 23580
CTGTCATGAC ATGTGCTCTG CCTCTGCTGG TTGATAAGCC GTGCGCCTTC TCGCTAATTC 23640
TTTCTTGTGC TAGAGGCGAG TCAAACAAAC GCTGCACCTC GTAGCCCTTA ATCTGCGCTA 23700
AGGGTCACAT GACCCTGTTC CCTATCGCTA GTTACCAACG ACCCATTCCC CCTGACAGAT 237 60
ACTTACGACG CGTCCGTACG CGGCAGGCCT CGGCAGTTCG GCATCACCAG CACCGGCGCC 23820
GGCATTCGCC CCCTGCCAGC CGGTTCGCAG ATTCGCAGGG CGGAGTCGGC CGCAGTTGCC 23880
GCATCCCAAA CGCCCGGGAA CCTTTGGGGC CCCTCTACGA GCAAATGAAG TTGCTGCCCC 23940
TGGCTTCGTA AAGCTCTGAC TTTTGATCAC TTGATTGGCA GTCGTACTCC TCGCTCATAG 24 000
GCCGACACGG CCGCAAAGTC AACTACCCGC TCCGCCATCC TTCAACCCCC GCCACGCGCC 24 060
TATATATGTT CGCGGCCATG TCCGTACTAG TCCTCCAACC CACAAGCCAC AACCCCGAGC 24120
TCAGATCCCT CGCCTCGTGT CGTGTCTCCG GTCGACGACG ACCAACAGCC AGTGTGGGCC 24180AGACGGACAC CGCCGAGCTA TAGCGCTTGG TGATAAAGCT TGGTCACCCG GTCCGGGCCT 24240
AGAAGGCCAG CTTCAAGTTT GTACAAAAAA GCAGGCTCCA GCGCTCACCA TGGTCCGTCC 24 300
TGTAGAAACC CCAACCCGTG AAATCAAAAA ACTCGACGGC CTGTGGGCAT TCAGTCTGGA 24 360
TCGCGAAAAC TGTGGAATTG ATCAGCGTTG GTGGGAAAGC GCGTTACAAG AAAGCCGGGC 24 420
AATTGCTGTG CCAGGCAGTT TTAACGATCA GTTCGCCGAT GCAGATATTC GTAATTATGC 24 4 80
GGGCAACGTC TGGTATCAGC GCGAAGTCTT TATACCGAAA GGTTGGGCAG GCCAGCGTAT 24 540
CGTGCTGCGT TTCGATGCGG TCACTCATTA CGGCAAAGTG TGGGTCAATA ATCAGGAAGT 24 600
GATGGAGCAT CAGGGCGGCT ATACGCCATT TGAAGCCGAT GTCACGCCGT ATGTTATTGC 24 660
CGGGAAAAGT GTACGTAAGT TTCTGCTTCT ACCTTTGATA TATATATAAT AATTATCATT 24 720
AATTAGTAGT AATATAATAT TTCAAATATT TTTTTCAAAA TAAAAGAATG TAGTATATAG 247 80
CAATTGCTTT TCTGTAGTTT ATAAGTGTGT ATATTTTAAT TTATAACTTT TCTAATATAT 24 840
GACCAAAATT TGTTGATGTG CAGGTATCAC CGTTTGTGTG AACAACGAAC TGAACTGGCA 24 900
GACTATCCCG CCGGGAATGG TGATTACCGA CGAAAACGGC AAGAAAAAGC AGTCTTACTT 24 960
CCATGATTTC TTTAACTATG CCGGAATCCA TCGCAGCGTA ATGCTCTACA CCACGCCGAA 25020
CACCTGGGTG GACGATATCA CCGTGGTGAC GCATGTCGCG CAAGACTGTA ACCACGCGTC 25080
TGTTGACTGG CAGGTGGTGG CCAATGGTGA TGTCAGCGTT GAACTGCGTG ATGCGGATCA 25140
ACAGGTGGTT GCAACTGGAC AAGGCACTAG CGGGACTTTG CAAGTGGTGA ATCCGCACCT 25200
CTGGCAACCG GGTGAAGGTT ATCTCTATGA ACTGTGCGTC ACAGCCAAAA GCCAGACAGA 25260
GTGTGATATC TACCCGCTTC GCGTCGGCAT CCGGTCAGTG GCAGTGAAGG GCGAACAGTT 25320
CCTGATTAAC CACAAACCGT TCTACTTTAC TGGCTTTGGT CGTCATGAAG ATGCGGACTT 25380
GCGTGGCAAA GGATTCGATA ACGTGCTGAT GGTGCACGAC CACGCATTAA TGGACTGGAT 25440
TGGGGCCAAC TCCTACCGTA CCTCGCATTA CCCTTACGCT GAAGAGATGC TCGACTGGGC 25500
AGATGAACAT GGCATCGTGG TGATTGATGA AACTGCTGCT GTCGGCTTTA ACCTCTCTTT 25560
AGGCATTGGT TTCGAAGCGG GCAACAAGCC GAAAGAACTG TACAGCGAAG AGGCAGTCAA 25620
CGGGGAAACT CAGCAAGCGC ACTTACAGGC GATTAAAGAG CTGATAGCGC GTGACAAAAA 25680
CCACCCAAGC GTGGTGATGT GGAGTATTGC CAACGAACCG GATACCCGTC CGCAAGGTGC 257 4 0
ACGGGAATAT TTCGCGCCAC TGGCGGAAGC AACGCGTAAA CTCGACCCGA CGCGTCCGAT 25800
CACCTGCGTC AATGTAATGT TCTGCGACGC TCACACCGAT ACCATCAGCG ATCTCTTTGA 25860
TGTGCTGTGC CTGAACCGTT ATTACGGATG GTATGTCCAA AGCGGCGATT TGGAAACGGC 25920
AGAGAAGGTA CTGGAAAAAG AACTTCTGGC CTGGCAGGAG AAACTGCATC AGCCGATTAT 25980
CATCACCGAA TACGGCGTGG ATACGTTAGC CGGGCTGCAC TCAATGTACA CCGACATGTG 2 6040
GAGTGAAGAG TATCAGTGTG CATGGCTGGA TATGTATCAC CGCGTCTTTG ATCGCGTCAG 2 6100
CGCCGTCGTC GGTGAACAGG TATGGAATTT CGCCGATTTT GCGACCTCGC AAGGCATATT 26160
GCGCGTTGGC GGTAACAAGA AAGGGATCTT CACTCGCGAC CGCAAACCGA AGTCGGCGGC 2 6220
TTTTCTGCTG CAAAAACGCT GGACTGGCAT GAACTTCGGT GAAAAACCGC AGCAGGGAGG 26280
CAAACAATGA AGATCTCCCG GGCACCCAGC TTTCTTGTAC AAAGTGGCCG TTAACGGATC 2 6340
CAGACTTGTC CATCTTCTGG ATTGGCCAAC TTAATTAATG TATGAAATAA AAGGATGCAC 26400
ACATAGTGAC ATGCTAATCA CTATAATGTG GGCATCAAAG TTGTGTGTTA TGTGTAATTA 264 60
CTAGTTATCT GAATAAAAGA GAAAGAGATC ATCCATATTT CTTATCCTAA ATGAATGTCA 26520
CGTGTCTTTA TAATTCTTTG ATGAACCAGA TGCATTTCAT TAACCAAATC CATATACATA 26580
TAAATATTAA TCATATATAA TTAATATCAA TTGGGTTAGC AAAACAAATC TAGTCTAGGT 26640
GTGTTTTGCG AATTGCGGCA AGCTTGCGGC CGCCCCGGGC AACTTTATTA TACAAAGTTG 2 6700
ATAGATATCG GACCGATTAA ACTTTAATTC GGTCCGAAGC TTGCATGCCT GCAGTGCAGC 267 60
GTGACCCGGT CGTGCCCCTC TCTAGAGATA ATGAGCATTG CATGTCTAAG TTATAAAAAA 2 6820
TTACCACATA TTTTTTTTGT CACACTTGTT TGAAGTGCAG TTTATCTATC TTTATACATA 2 6880
TATTTAAACT TTACTCTACG AATAATATAA TCTATAGTAC TACAATAATA TCAGTGTTTT 2694 0
AGAGAATCAT ATAAATGAAC AGTTAGACAT GGTCTAAAGG ACAATTGAGT ATTTTGACAA 27000
CAGGACTCTA CAGTTTTATC TTTTTAGTGT GCATGTGTTC TCCTTTTTTT TTGCAAATAG 27060
CTTCACCTAT ATAATACTTC ATCCATTTTA TTAGTACATC CATTTAGGGT TTAGGGTTAA 27120
TGGTTTTTAT AGACTAATTT TTTTAGTACA TCTATTTTAT TCTATTTTAG CCTCTAAATT 27180
AAGAAAACTA AAACTCTATT TTAGTTTTTT TATTTAATAA TTTAGATATA AAATAGAATA 2724 0
AAATAAAGTG ACTAAAAATT AAACAAATAC CCTTTAAGAA ATTAAAAAAA CTAAGGAAAC 27300
ATTTTTCTTG TTTCGAGTAG ATAATGCCAG CCTGTTAAAC GCCGTCGACG AGTCTAACGG 27360
ACACCAACCA GCGAACCAGC AGCGTCGCGT CGGGCCAAGC GAAGCAGACG GCACGGCATC 27 4 20
I TCTGTCGCTG CCTCTGGACC CCTCTCGAGA GTTCCGCTCC ACCGTTGGAC TTGCTCCGCT 27 4 80
j GTCGGCATCC AGAAATTGCG TGGCGGAGCG GCAGACGTGA GCCGGCACGG CAGGCGGCCT 2754 0
1 CCTCCTCCTC TCACGGCACC GGCAGCTACG GGGGATTCCT TTCCCACCGC TCCTTCGCTT 27600
1 TCCCTTCCTC GCCCGCCGTA ATAAATAGAC ACCCCCTCCA CACCCTCTTT CCCCAACCTC 27 660
GTGTTGTTCG GAGCGCACAC ACACACAACC AGATCTCCCC CAAATCCACC CGTCGGCACC 27720TCCGCTTCAA GGTACGCCGC TCGTCCTCCC CCCCCCCCCT CTCTACCTTC TCTAGATCGG 27780
CGTTCCGGTC CATGCATGGT TAGGGCCCGG TAGTTCTACT TCTGTTCATG TTTGTGTTAG 27840
ATCCGTGTTT GTGTTAGATC CGTGCTGCTA GCGTTCGTAC ACGGATGCGA CCTGTACGTC 27900
AGACACGTTC TGATTGCTAA CTTGCCAGTG TTTCTCTTTG GGGAATCCTG GGATGGCTCT 27960
AGCCGTTCCG CAGACGGGAT CGATTTCATG ATTTTTTTTG TTTCGTTGCA TAGGGTTTGG 28020
TTTGCCCTTT TCCTTTATTT CAATATATGC CGTGCACTTG TTTGTCGGGT CATCTTTTCA 28080
TGCTTTTTTT TGTCTTGGTT GTGATGATGT GGTCTGGTTG GGCGGTCGTT CTAGATCGGA 2814 0
GTAGAATTCT GTTTCAAACT ACCTGGTGGA TTTATTAATT TTGGATCTGT ATGTGTGTGC 28200
CATACATATT CATAGTTACG AATTGAAGAT GATGGATGGA AATATCGATC TAGGATAGGT 28260
ATACATGTTG ATGCGGGTTT TACTGATGCA TATACAGAGA TGCTTTTTGT TCGCTTGGTT 28320
GTGATGATGT GGTGTGGTTG GGCGGTCGTT CATTCGTTCT AGATCGGAGT AGAATACTGT 28380
TTCAAACTAC CTGGTGTATT TATTAATTTT GGAACTGTAT GTGTGTGTCA TACATCTTCA 28440
TAGTTACGAG TTTAAGATGG ATGGAAATAT CGATCTAGGA TAGGTATACA TGTTGATGTG 28500
GGTTTTACTG ATGCATATAC ATGATGGCAT ATGCAGCATC TATTCATATG CTCTAACCTT 28560
GAGTACCTAT CTATTATAAT AAACAAGTAT GTTTTATAAT TATTTTGATC TTGATATACT 28620
TGGATGATGG CATATGCAGC AGCTATATGT GGATTTTTTT AGCCCTGCCT TCATACGCTA 28680
TTTATTTGCT TGGTACTGTT TCTTTTGTCG ATGCTCACCC TGTTGTTTGG TGTTACTTCT 28740
GCAGGTCGAC TTTAACTTAG CCTAGGATCC ACACGACACC ATGTCCCCCG AGCGCCGCCC 28800
CGTCGAGATC CGCCCGGCCA CCGCCGCCGA CATGGCCGCC GTGTGCGACA TCGTGAACCA 28860
CTACATCGAG ACCTCCACCG TGAACTTCCG CACCGAGCCG CAGACCCCGC AGGAGTGGAT 28920
CGACGACCTG GAGCGCCTCC AGGACCGCTA CCCGTGGCTC GTGGCCGAGG TGGAGGGCGT 28980
GGTGGCCGGC ATCGCCTACG CCGGCCCGTG GAAGGCCCGC AACGCCTACG ACTGGACCGT 2904 0
GGAGTCCACC GTGTACGTGT CCCACCGCCA CCAGCGCCTC GGCCTCGGCT CCACCCTCTA 2 9100
CACCCACCTC CTCAAGAGCA TGGAGGCCCA GGGCTTCAAG TCCGTGGTGG CCGTGATCGG 2 9160
CCTCCCGAAC GACCCGTCCG TGCGCCTCCA CGAGGCCCTC GGCTACACCG CCCGCGGCAC 29220
CCTCCGCGCC GCCGGCTACA AGCACGGCGG CTGGCACGAC GTCGGCTTCT GGCAGCGCGA 29280
CTTCGAGCTG CCGGCCCCGC CGCGCCCGGT GCGCCCGGTG ACGCAGATCT GAGTCGAAAC 2 934 0
CTAGACTTGT CCATCTTCTG GATTGGCCAA CTTAATTAAT GTATGAAATA AAAGGATGCA 2 94 00
CACATAGTGA CATGCTAATC ACTATAATGT GGGCATCAAA GTTGTGTGTT ATGTGTAATT 294 60
ACTAGTTATC TGAATAAAAG AGAAAGAGAT CATCCATATT TCTTATCCTA AATGAATGTC 29520
ACGTGTCTTT ATAATTCTTT GATGAACCAG ATGCATTTCA TTAACCAAAT CCATATACAT 29580
ATAAATATTA ATCATATATA ATTAATATCA ATTGGGTTAG CAAAACAAAT CTAGTCTAGG 29640
TGTGTTTTGC GAATTGCGGC CGCCACCGCG GTGGAGCTCG AATTCATTCC GATTAATCGT 29700
GGCCTCTTGC TCTTCAGGAT GAAGAGCTAT GTTTAAACGT GCAAGCGCTA CTAGACAATT 297 60
CAGTACATTA AAAACGTCCG CAATGTGTTA TTAAGTTGTC TAAGCGTCAA TTTGTTTACA 29820
CCACAATATA TCCTGCCACC AGCCAGCCAA CAGCTCCCCG ACCGGCAGCT CGGCACAAAA 2 9880
TCACCACTCG ATACAGGCAG CCCATCAGTC CGGGACGGCG TCAGCGGGAG AGCCGTTGTA 2994 0
AGGCGGCAGA CTTTGCTCAT GTTACCGATG CTATTCGGAA GAACGGCAAC TAAGCTGCCG 30000
GGTTTGAAAC ACGGATGATC TCGCGGAGGG TAGCATGTTG ATTGTAACGA TGACAGAGCG 30060
TTGCTGCCTG TGATCAAATA TCATCTCCCT CGCAGAGATC CGAATTATCA GCCTTCTTAT 30120
TCATTTCTCG CTTAACCGTG ACAGGCTGTC GATCTTGAGA ACTATGCCGA CATAATAGGA 30180
AATCGCTGGA TAAAGCCGCT GAGGAAGCTG AGTGGCGCTA TTTCTTTAGA AGTGAACGTT 3024 0
GACGATCGTC GACCGTACCC CGATGAATTA ATTCGGACGT ACGTTCTGAA CACAGCTGGA 30300
TACTTACTTG GGCGATTGTC ATACATGACA TCAACAATGT ACCCGTTTGT GTAACCGTCT 30360
CTTGGAGGTT CGTATGACAC TAGTGGTTCC CCTCAGCTTG CGACTAGATG TTGAGGCCTA 30420
ACATTTTATT AGAGAGCAGG CTAGTTGCTT AGATACATGA TCTTCAGGCC GTTATCTGTC 304 80
AGGGCAAGCG AAAATTGGCC ATTTATGACG ACCAATGCCC CGCAGAAGCT CCCATCTTTG 3054 0
CCGCCATAGA CGCCGCGCCC CCCTTTTGGG GTGTAGAACA TCCTTTTGCC AGATGTGGAA 30600
AAGAAGTTCG TTGTCCCATT GTTGGCAATG ACGTAGTAGC CGGCGAAAGT GCGAGACCCA 30660
TTTGCGCTAT ATATAAGCCT ACGATTTCCG TTGCGACTAT TGTCGTAATT GGATGAACTA 30720
TTATCGTAGT TGCTCTCAGA GTTGTCGTAA TTTGATGGAC TATTGTCGTA ATTGCTTATG 30780
GAGTTGTCGT AGTTGCTTGG AGAAATGTCG TAGTTGGATG GGGAGTAGTC ATAGGGAAGA 30840
CGAGCTTCAT CCACTAAAAC AATTGGCAGG TCAGCAAGTG CCTGCCCCGA TGCCATCGCA 30900
AGTACGAGGC TTAGAACCAC CTTCAACAGA TCGCGCATAG TCTTCCCCAG CTCTCTAACG 30960
CTTGAGTTAA GCCGCGCCGC GAAGCGGCGT CGGCTTGAAC GAATTGTTAG ACATTATTTG 31020
CCGACTACCT TGGTGATCTC GCCTTTCACG TAGTGAACAA ATTCTTCCAA CTGATCTGCG 31080
CGCGAGGCCA AGCGATCTTC TTGTCCAAGA TAAGCCTGCC TAGCTTCAAG TATGACGGGC 31140
TGATACTGGG CCGGCAGGCG CTCCATTGCC CAGTCGGCAG CGACATCCTT CGGCGCGATT 31200
TTGCCGGTTA CTGCGCTGTA CCAAATGCGG GACAACGTAA GCACTACATT TCGCTCATCG 31260CCAGCCCAGT CGGGCGGCGA GTTCCATAGC GTTAAGGTTT CATTTAGCGC CTCAAATAGA 31320
TCCTGTTCAG-GAACCGGATC AAAGAGTTCC TCCGCCGCTG GACCTACCAA GGCAACGCTA 31380
TGTTCTCTTG CTTTTGTCAG CAAGATAGCC AGATCAATGT CGATCGTGGC TGGCTCGAAG 31440
ATACCTGCAA GAATGTCATT GCGCTGCCAT TCTCCAAATT GCAGTTCGCG CTTAGCTGGA 31500
TAACGCCACG GAATGATGTC GTCGTGCACA ACAATGGTGA CTTCTACAGC GCGGAGAATC 31560
TCGCTCTCTC CAGGGGAAGC CGAAGTTTCC AAAAGGTCGT TGATCAAAGC TCGCCGCGTT 31620
GTTTCATCAA GCCTTACAGT CACCGTAACC AGCAAATCAA TATCACTGTG TGGCTTCAGG 31680
CCGCCATCCA CTGCGGAGCC GTACAAATGT ACGGCCAGCA ACGTCGGTTC GAGATGGCGC 3174 0
TCGATGACGC CAACTACCTC TGATAGTTGA GTCGATACTT CGGCGATCAC CGCTTCCCTC 31800
ATGATGTTTA ACTCCTGAAT TAAGCCGCGC CGCGAAGCGG TGTCGGCTTG AATGAATTGT 31860
TAGGCGTCAT CCTGTGCTCC CGAGAACCAG TACCAGTACA TCGCTGTTTC GTTCGAGACT 31920
TGAGGTCTAG TTTTATACGT GAACAGGTCA ATGCCGCCGA GAGTAAAGCC ACATTTTGCG 31980
TACAAATTGC AGGCAGGTAC ATTGTTCGTT TGTGTCTCTA ATCGTATGCC AAGGAGCTGT 32040
CTGCTTAGTG CCCACTTTTT CGCAAATTCG ATGAGACTGT GCGCGACTCC TTTGCCTCGG 32100
TGCGTGTGCG ACACAACAAT GTGTTCGATA GAGGCTAGAT CGTTCCATGT TGAGTTGAGT 32160
TCAATCTTCC CGACAAGCTC TTGGTCGATG AATGCGCCAT AGCAAGCAGA GTCTTCATCA 32220
GAGTCATCAT CCGAGATGTA ATCCTTCCGG TAGGGGCTCA CACTTCTGGT AGATAGTTCA 32280
AAGCCTTGGT CGGATAGGTG CACATCGAAC ACTTCACGAA CAATGAAATG GTTCTCAGCA 3234 0
TCCAATGTTT CCGCCACCTG CTCAGGGATC ACCGAAATCT TCATATGACG CCTAACGCCT 324 00
GGCACAGCGG ATCGCAAACC TGGCGCGGCT TTTGGCACAA AAGGCGTGAC AGGTTTGCGA 324 60
ATCCGTTGCT GCCACTTGTT AACCCTTTTG CCAGATTTGG TAACTATAAT TTATGTTAGA 32520
GGCGAAGTCT TGGGTAAAAA CTGGCCTAAA ATTGCTGGGG ATTTCAGGAA AGTAAACATC 32580
ACCTTCCGGC TCGATGTCTA TTGTAGATAT ATGTAGTGTA TCTACTTGAT CGGGGGATCT 32 64 0
GCTGCCTCGC GCGTTTCGGT GATGACGGTG AAAACCTCTG ACACATGCAG CTCCCGGAGA 32700
CGGTCACAGC TTGTCTGTAA GCGGATGCCG GGAGCAGACA AGCCCGTCAG GGCGCGTCAG 327 60
CGGGTGTTGG CGGGTGTCGG GGCGCAGCCA TGACCCAGTC ACGTAGCGAT AGCGGAGTGT 32820
ATACTGGCTT AACTATGCGG CATCAGAGCA GATTGTACTG AGAGTGCACC ATATGCGGTG 32880
TGAAATACCG CACAGATGCG TAAGGAGAAA ATACCGCATC AGGCGCTCTT CCGCTTCCTC 32 94 0
GCTCACTGAC TCGCTGCGCT CGGTCGTTCG GCTGCGGCGA GCGGTATCAG CTCACTCAAA 33000
GGCGGTAATA CGGTTATCCA CAGAATCAGG GGATAACGCA GGAAAGAACA TGTGAGCAAA 33060
AGGCCAGCAA AAGGCCAGGA ACCGTAAAAA GGCCGCGTTG CTGGCGTTTT TCCATAGGCT 33120
CCGCCCCCCT GACGAGCATC ACAAAAATCG ACGCTCAAGT CAGAGGTGGC GAAACCCGAC 33180
AGGACTATAA AGATACCAGG CGTTTCCCCC TGGAAGCTCC CTCGTGCGCT CTCCTGTTCC 33240
GACCCTGCCG CTTACCGGAT ACCTGTCCGC CTTTCTCCCT TCGGGAAGCG TGGCGCTTTC 33300
TCATAGCTCA CGCTGTAGGT ATCTCAGTTC GGTGTAGGTC GTTCGCTCCA AGCTGGGCTG 33360
TGTGCACGAA CCCCCCGTTC AGCCCGACCG CTGCGCCTTA TCCGGTAACT ATCGTCTTGA 33420
GTCCAACCCG GTAAGACACG ACTTATCGCC ACTGGCAGCA GCCACTGGTA ACAGGATTAG 33480
CAGAGCGAGG TATGTAGGCG GTGCTACAGA GTTCTTGAAG TGGTGGCCTA ACTACGGCTA 33540
CACTAGAAGG ACAGTATTTG GTATCTGCGC TCTGCTGAAG CCAGTTACCT TCGGAAAAAG 33600
AGTTGGTAGC TCTTGATCCG GCAAACAAAC CACCGCTGGT AGCGGTGGTT TTTTTGTTTG 33660
CAAGCAGCAG ATTACGCGCA GAAAAAAAGG ATCTCAAGAA GATCCTTTGA TCTTTTCTAC 33720
GGGGTCTGAC GCTCAGTGGA ACGAAAACTC ACGTTAAGGG ATTTTGGTCA TGAGATTATC 33780
AAAAAGGATC TTCACCTAGA TCCTTTTAAA TTAAAAATGA AGTTTTAAAT CAATCTAAAG 3384 0
TATATATGAG TAAACTTGGT CTGACAGTTA CCAATGCTTA ATCAGTGAGG CACCTATCTC 33900
AGCGATCTGT CTATTTCGTT CATCCATAGT TGCCTGACTC CCCGTCGTGT AGATAACTAC 33960
GATACGGGAG GGCTTACCAT CTGGCCCCAG TGCTGCAATG ATACCGCGAG ACCCACGCTC 34 020
ACCGGCTCCA GATTTATCAG CAATAAACCA GCCAGCCGGA AGGGCCGAGC GCAGAAGTGG 34 080
TCCTGCAACT TTATCCGCCT CCATCCAGTC TATTAATTGT TGCCGGGAAG CTAGAGTAAG 3414 0
TAGTTCGCCA GTTAATAGTT TGCGCAACGT TGTTGCCATT GCTGCAGGGG GGGGGGGGGG 34200
GGGGGACTTC CATTGTTCAT TCCACGGACA AAAACAGAGA AAGGAAACGA CAGAGGCCAA 34 260
AAAGCCTCGC TTTCAGCACC TGTCGTTTCC TTTCTTTTCA GAGGGTATTT TAAATAAAAA 34 320
CATTAAGTTA TGACGAAGAA GAACGGAAAC GCCTTAAACC GGAAAATTTT CATAAATAGC 34 380
GAAAACCCGC GAGGTCGCCG CCCCGTAACC TGTCGGATCA CCGGAAAGGA CCCGTAAAGT 34 440
GATAATGATT ATCATCTACA TATCACAACG TGCGTGGAGG CCATCAAACC ACGTCAAATA 34 500
ATCAATTATG ACGCAGGTAT CGTATTAATT GATCTGCATC AACTTAACGT AAAAACAACT 34 560
TCAGACAATA CAAATCAGCG ACACTGAATA CGGGGCAACC TCATGTCCCC CCCCCCCCCC 34620
CCCCTGCAGG CATCGTGGTG TCACGCTCGT CGTTTGGTAT GGCTTCATTC AGCTCCGGTT 34 680
CCCAACGATC AAGGCGAGTT ACATGATCCC CCATGTTGTG CAAAAAAGCG GTTAGCTCCT 34 74 0
TCGGTCCTCC GATCGTTGTC AGAAGTAAGT TGGCCGCAGT GTTATCACTC ATGGTTATGG 34 800CAGCACTGCA TAATTCTCTT ACTGTCATGC CATCCGTAAG ATGCTTTTCT GTGACTGGTG 34 860
AGTACTCAAC CAAGTCATTC TGAGAATAGT GTATGCGGCG ACCGAGTTGC TCTTGCCCGG 34 920
CGTCAACACG GGATAATACC GCGCCACATA GCAGAACTTT AAAAGTGCTC ATCATTGGAA 34 980
AACGTTCTTC GGGGCGAAAA CTCTCAAGGA TCTTACCGCT GTTGAGATCC AGTTCGATGT 3504 0
AACCCACTCG TGCACCCAAC TGATCTTCAG CATCTTTTAC TTTCACCAGC GTTTCTGGGT 35100
GAGCAAAAAC AGGAAGGCAA AATGCCGCAA AAAAGGGAAT AAGGGCGACA CGGAAATGTT 35160
GAATACTCAT ACTCTTCCTT TTTCAATATT ATTGAAGCAT TTATCAGGGT TATTGTCTCA 35220
TGAGCGGATA CATATTTGAA TGTATTTAGA AAAATAAACA AATAGGGGTT CCGCGCACAT 35280
TTCCCCGAAA AGTGCCACCT GACGTCTAAG AAACCATTAT TATCATGACA TTAACCTATA 35340
AAAATAGGCG TATCACGAGG CCCTTTCGTC TTCAAGAATT CGGAGCTTTT GCCATTCTCA 35400
CCGGATTCAG TCGTCACTCA TGGTGATTTC TCACTTGATA ACCTTATTTT TGACGAGGGG 354 60
AAATTAATAG GTTGTATTGA TGTTGGACGA GTCGGAATCG CAGACCGATA CCAGGATCTT 35520
GCCATCCTAT GGAACTGCCT CGGTGAGTTT TCTCCTTCAT TACAGAAACG GCTTTTTCAA 35580
AAATATGGTA TTGATAATCC TGATATGAAT AAATTGCAGT TTCATTTGAT GCTCGATGAG 35640
TTTTTCTAAT CAGAATTGGT TAATTGGTTG TAACACTGGC AGAGCATTAC GCTGACTTGA 35700
CGGGACGGCG GCTTTGTTGA ATAAATCGAA CTTTTGCTGA GTTGAAGGAT CAGATCACGC 357 60
ATCTTCCCGA CAACGCAGAC CGTTCCGTGG CAAAGCAAAA GTTCAAAATC ACCAACTGGT 35820
CCACCTACAA CAAAGCTCTC ATCAACCGTG GCTCCCTCAC TTTCTGGCTG GATGATGGGG 35880
CGATTCAGGC CTGGTATGAG TCAGCAACAC CTTCTTCACG AGGCAGACCT CAGCGCCAGA 35940
AGGCCGCCAG AGAGGCCGAG CGCGGCCGTG AGGCTTGGAC GCTAGGGCAG GGCATGAAAA 36000
AGCCCGTAGC GGGCTGCTAC GGGCGTCTGA CGCGGTGGAA AGGGGGAGGG GATGTTGTCT 36060
ACATGGCTCT GCTGTAGTGA GTGGGTTGCG CTCCGGCAGC GGTCCTGATC AATCGTCACC 36120
CTTTCTCGGT CCTTCAACGT TCCTGACAAC GAGCCTCCTT TTCGCCAATC CATCGACAAT 36180
CACCGCGAGT CCCTGCTCGA ACGCTGCGTC CGGACCGGCT TCGTCGAAGG CGTCTATCGC 36240
GGCCCGCAAC AGCGGCGAGA GCGGAGCCTG TTCAACGGTG CCGCCGCGCT CGCCGGCATC 36300
GCTGTCGCCG GCCTGCTCCT CAAGCACGGC CCCAACAGTG AAGTAGCTGA TTGTCATCAG 36360
CGCATTGACG GCGTCCCCGG CCGAAAAACC CGCCTCGCAG AGGAAGCGAA GCTGCGCGTC 36420
GGCCGTTTCC ATCTGCGGTG CGCCCGGTCG CGTGCCGGCA TGGATGCGCG CGCCATCGCG 36480
GTAGGCGAGC AGCGCCTGCC TGAAGCTGCG GGCATTCCCG ATCAGAAATG AGCGCCAGTC 36540
GTCGTCGGCT CTCGGCACCG AATGCGTATG ATTCTCCGCC AGCATGGCTT CGGCCAGTGC 36600
GTCGAGCAGC GCCCGCTTGT TCCTGAAGTG CCAGTAAAGC GCCGGCTGCT GAACCCCCAA 36660
CCGTTCCGCC AGTTTGCGTG TCGTCAGACC GTCTACGCCG ACCTCGTTCA ACAGGTCCAG 36720
GGCGGCACGG ATCACTGTAT TCGGCTGCAA CTTTGTCATG CTTGACACTT TATCACTGAT 36780
AAACATAATA TGTCCACCAA CTTATCAGTG ATAAAGAATC CGCGCGTTCA ATCGGACCAG 36840
CGGAGGCTGG TCCGGAGGCC AGACGTGAAA CCCAACATAC CCCTGATCGT AATTCTGAGC 36900
ACTGTCGCGC TCGACGCTGT CGGCATCGGC CTGATTATGC CGGTGCTGCC GGGCCTCCTG 36960
CGCGATCTGG TTCACTCGAA CGACGTCACC GCCCACTATG GCATTCTGCT GGCGCTGTAT 37020
GCGTTGGTGC AATTTGCCTG CGCACCTGTG CTGGGCGCGC TGTCGGATCG TTTCGGGCGG 37080
CGGCCAATCT TGCTCGTCTC GCTGGCCGGC GCCACTGTCG ACTACGCCAT CATGGCGACA 3714 0
GCGCCTTTCC TTTGGGTTCT CTATATCGGG CGGATCGTGG CCGGCATCAC CGGGGCGACT 37200
GGGGCGGTAG CCGGCGCTTA TATTGCCGAT ATCACTGATG GCGATGAGCG CGCGCGGCAC 37260
TTCGGCTTCA TGAGCGCCTG TTTCGGGTTC GGGATGGTCG CGGGACCTGT GCTCGGTGGG 37320
CTGATGGGCG GTTTCTCCCC CCACGCTCCG TTCTTCGCCG CGGCAGCCTT GAACGGCCTC 37380
AATTTCCTGA CGGGCTGTTT CCTTTTGCCG GAGTCGCACA AAGGCGAACG CCGGCCGTTA 374 4 0
CGCCGGGAGG CTCTCAACCC GCTCGCTTCG TTCCGGTGGG CCCGGGGCAT GACCGTCGTC 37 500
GCCGCCCTGA TGGCGGTCTT CTTCATCATG CAACTTGTCG GACAGGTGCC GGCCGCGCTT 37560
TGGGTCATTT TCGGCGAGGA TCGCTTTCAC TGGGACGCGA CCACGATCGG CATTTCGCTT 37 620
GCCGCATTTG GCATTCTGCA TTCACTCGCC CAGGCAATGA TCACCGGCCC TGTAGCCGCC 37 680
CGGCTCGGCG AAAGGCGGGC ACTCATGCTC GGAATGATTG CCGACGGCAC AGGCTACATC 377 40
CTGCTTGCCT TCGCGACACG GGGATGGATG GCGTTCCCGA TCATGGTCCT GCTTGCTTCG 37800
GGTGGCATCG GAATGCCGGC GCTGCAAGCA ATGTTGTCCA GGCAGGTGGA TGAGGAACGT 37 8 60
CAGGGGCAGC TGCAAGGCTC ACTGGCGGCG CTCACCAGCC TGACCTCGAT CGTCGGACCC 37 920
CTCCTCTTCA CGGCGATCTA TGCGGCTTCT ATAACAACGT GGAACGGGTG GGCATGGATT 37 980
GCAGGCGCTG CCCTCTACTT GCTCTGCCTG CCGGCGCTGC GTCGCGGGCT TTGGAGCGGC 38040
GCAGGGCAAC GAGCCGATCG CTGATCGTGG AAACGATAGG CCTATGCCAT GCGGGTCAAG 38100
GCGACTTCCG GCAAGCTATA CGCGCCCTAG GAGTGCGGTT GGAACGTTGG CCCAGCCAGA 38160
TACTCCCGAT CACGAGCAGG ACGCCGATGA TTTGAAGCGC ACTCAGCGTC TGATCCAAGA 38220
ACAACCATCC TAGCAACACG GCGGTCCCCG GGCTGAGAAA GCCCAGTAAG GAAACAACTG 38280
TAGGTTCGAG TCGCGAGATC CCCCGGAACC AAAGGAAGTA GGTTAAACCC GCTCCGATCA 3834 0GGCCGAGCCA CGCCAGGCCG AGAACATTGG TTCCTGTAGG CATCGGGATT GGCGGATCAA 384 00
ACACTAAAGC TACTGGAACG AGCAGAAGTC CTCCGGCCGC CAGTTGCCAG GCGGTAAAGG 384 60
TGAGCAGAGG CACGGGAGGT TGCCACTTGC GGGTCAGCAC GGTTCCGAAC GCCATGGAAA 38520
CCGCCCCCGC CAGGCCCGCT GCGACGCCGA CAGGATCTAG CGCTGCGTTT GGTGTCAACA 38580
CCAACAGCGC CACGCCCGCA GTTCCGCAAA TAGCCCCCAG GACCGCCATC AATCGTATCG 3864 0
GGCTACCTAG CAGAGCGGCA GAGATGAACA CGACCATCAG CGGCTGCACA GCGCCTACCG 387 00
TCGCCGCGAC CCCGCCCGGC AGGCGGTAGA CCGAAATAAA CAACAAGCTC CAGAATAGCG 387 60
AAATATTAAG TGCGCCGAGG ATGAAGATGC GCATCCACCA GATTCCCGTT GGAATCTGTC 38820
GGACGATCAT CACGAGCAAT AAACCCGCCG GCAACGCCCG CAGCAGCATA CCGGCGACCC 38880
CTCGGCCTCG CTGTTCGGGC TCCACGAAAA CGCCGGACAG ATGCGCCTTG TGAGCGTCCT 3894 0
TGGGGCCGTC CTCCTGTTTG AAGACCGACA GCCCAATGAT CTCGCCGTCG ATGTAGGCGC 39000
CGAATGCCAC GGCATCTCGC AACCGTTCAG CGAACGCCTC CATGGGCTTT TTCTCCTCGT 39060
GCTCGTAAAC GGACCCGAAC ATCTCTGGAG CTTTCTTCAG GGCCGACAAT CGGATCTCGC 39120
GGAAATCCTG CACGTCGGCC GCTCCAAGCC GTCGAATCTG AGCCTTAATC ACAATTGTCA 39180
ATTTTAATCC TCTGTTTATC GGCAGTTCGT AGAGCGCGCC GTGCGTCCCG AGCGATACTG 39240
AGCGAAGCAA GTGCGTCGAG CAGTGCCCGC TTGTTCCTGA AATGCCAGTA AAGCGCTGGC 39300
TGCTGAACCC CCAGCCGGAA CTGACCCCAC AAGGCCCTAG CGTTTGCAAT GCACCAGGTC 39360
ATCATTGACC CAGGCGTGTT CCACCAGGCC GCTGCCTCGC AACTCTTCGC AGGCTTCGCC 39420
GACCTGCTCG CGCCACTTCT TCACGCGGGT GGAATCCGAT CCGCACATGA GGCGGAAGGT 39480
TTCCAGCTTG AGCGGGTACG GCTCCCGGTG CGAGCTGAAA TAGTCGAACA TCCGTCGGGC 39540
CGTCGGCGAC AGCTTGCGGT ACTTCTCCCA TATGAATTTC GTGTAGTGGT CGCCAGCAAA 39600
CAGCACGACG ATTTCCTCGT CGATCAGGAC CTGGCAACGG GACGTTTTCT TGCCACGGTC 39660
CAGGACGCGG AAGCGGTGCA GCAGCGACAC CGATTCCAGG TGCCCAACGC GGTCGGACGT 39720
GAAGCCCATC GCCGTCGCCT GTAGGCGCGA CAGGCATTCC TCGGCCTTCG TGTAATACCG 3 9780
GCCATTGATC GACCAGCCCA GGTCCTGGCA AAGCTCGTAG AACGTGAAGG TGATCGGCTC 39840
GCCGATAGGG GTGCGCTTCG CGTACTCCAA CACCTGCTGC CACACCAGTT CGTCATCGTC 39900
GGCCCGCAGC TCGACGCCGG TGTAGGTGAT CTTCACGTCC TTGTTGACGT GGAAAATGAC 39960
CTTGTTTTGC AGCGCCTCGC GCGGGATTTT CTTGTTGCGC GTGGTGAACA GGGCAGAGCG 4 0020
GGCCGTGTCG TTTGGCATCG CTCGCATCGT GTCCGGCCAC GGCGCAATAT CGAACAAGGA 4 0080
AAGCTGCATT TCCTTGATCT GCTGCTTCGT GTGTTTCAGC AACGCGGCCT GCTTGGCCTC 40140
GCTGACCTGT TTTGCCAGGT CCTCGCCGGC GGTTTTTCGC TTCTTGGTCG TCATAGTTCC 4 0200
TCGCGTGTCG ATGGTCATCG ACTTCGCCAA ACCTGCCGCC TCCTGTTCGA GACGACGCGA 4 0260
ACGCTCCACG GCGGCCGATG GCGCGGGCAG GGCAGGGGGA GCCAGTTGCA CGCTGTCGCG 4 0320
CTCGATCTTG GCCGTAGCTT GCTGGACCAT CGAGCCGACG GACTGGAAGG TTTCGCGGGG 40380
CGCACGCATG ACGGTGCGGC TTGCGATGGT TTCGGCATCC TCGGCGGAAA ACCCCGCGTC 4 0440
GATCAGTTCT TGCCTGTATG CCTTCCGGTC AAACGTCCGA TTCATTCACC CTCCTTGCGG 4 0500
GATTGCCCCG ACTCACGCCG GGGCAATGTG CCCTTATTCC TGATTTGACC CGCCTGGTGC 40560
CTTGGTGTCC AGATAATCCA CCTTATCGGC AATGAAGTCG GTCCCGTAGA CCGTCTGGCC 4 0620
GTCCTTCTCG TACTTGGTAT TCCGAATCTT GCCCTGCACG AATACCAGCG ACCCCTTGCC 4 0680
CAAATACTTG CCGTGGGCCT CGGCCTGAGA GCCAAAACAC TTGATGCGGA AGAAGTCGGT 4 0740
GCGCTCCTGC TTGTCGCCGG CATCGTTGCG CCACTCTTCA TTAACCGCTA TATCGAAAAT 40800
TGCTTGCGGC TTGTTAGAAT TGCCATGACG TACCTCGGTG TCACGGGTAA GATTACCGAT 4 0860
AAACTGGAAC TGATTATGGC TCATATCGAA AGTCTCCTTG AGAAAGGAGA CTCTAGTTTA 40920
GCTAAACATT GGTTCCGCTG TCAAGAACTT TAGCGGCTAA AATTTTGCGG GCCGCGACCA 4 0980
AAGGTGCGAG GGGCGGCTTC CGCTGTGTAC AACCAGATAT TTTTCACCAA CATCCTTCGT 4104 0
CTGCTCGATG AGCGGGGCAT GACGAAACAT GAGCTGTCGG AGAGGGCAGG GGTTTCAATT 41100
TCGTTTTTAT CAGACTTAAC CAACGGTAAG GCCAACCCCT CGTTGAAGGT GATGGAGGCC 41160
ATTGCCGACG CCCTGGAAAC TCCCCTACCT CTTCTCCTGG AGTCCACCGA CCTTGACCGC 41220
GAGGCACTCG CGGAGATTGC GGGTCATCCT TTCAAGAGCA GCGTGCCGCC CGGATACGAA 41280
CGCATCAGTG TGGTTTTGCC GTCACATAAG GCGTTTATCG TAAAGAAATG GGGCGACGAC 41340
ACCCGAAAAA AGCTGCGTGG AAGGCTCTGA CGCCAAGGGT TAGGGCTTGC ACTTCCTTCT 41400
TTAGCCGCTA AAACGGCCCC TTCTCTGCGG GCCGTCGGCT CGCGCATCAT ATCGACATCC 414 60
TCAACGGAAG CCGTGCCGCG AATGGCATCG GGCGGGTGCG CTTTGACAGT TGTTTTCTAT 41520
CAGAACCCCT ACGTCGTGCG GTTCGATTAG CTGTTTGTCT TGCAGGCTAA ACACTTTCGG 41580
TATATCGTTT GCCTGTGCGA TAATGTTGCT AATGATTTGT TGCGTAGGGG TTACTGAAAA 41640
GTGAGCGGGA AAGAAGAGTT TCAGACCATC AAGGAGCGGG CCAAGCGCAA GCTGGAACGC 41700
GACATGGGTG CGGACCTGTT GGCCGCGCTC AACGACCCGA AAACCGTTGA AGTCATGCTC 417 60
AACGCGGACG GCAAGGTGTG GCACGAACGC CTTGGCGAGC CGATGCGGTA CATCTGCGAC 41820
ATGCGGCCCA GCCAGTCGCA GGCGATTATA GAAACGGTGG CCGGATTCCA CGGCAAAGAG 41880GTCACGCGGC ATTCGCCCAT CCTGGAAGGC GAGTTCCCCT TGGATGGCAG CCGCTTTGCC 41940
GGCCAATTGC CGCCGGTCGT GGCCGCGCCA ACCTTTGCGA TCCGCAAGCG CGCGGTCGCC 4 2000
ATCTTCACGC TGGAACAGTA CGTCGAGGCG GGCATCATGA CCCGCGAGCA ATACGAGGTC 4 2060
ATTAAAAGCG CCGTCGCGGC GCATCGAAAC ATCCTCGTCA TTGGCGGTAC TGGCTCGGGC 42120
AAGACCACGC TCGTCAACGC GATCATCAAT GAAATGGTCG CCTTCAACCC GTCTGAGCGC 42180
GTCGTCATCA TCGAGGACAC CGGCGAAATC CAGTGCGCCG CAGAGAACGC CGTCCAATAC 4 2240
CACACCAGCA TCGACGTCTC GATGACGCTG CTGCTCAAGA CAACGCTGCG TATGCGCCCC 42300
GACCGCATCC TGGTCGGTGA GGTACGTGGC CCCGAAGCCC TTGATCTGTT GATGGCCTGG 42360
AACACCGGGC ATGAAGGAGG TGCCGCCACC CTGCACGCAA ACAACCCCAA AGCGGGCCTG 4 24 20
AGCCGGCTCG CCATGCTTAT CAGCATGCAC CCGGATTCAC CGAAACCCAT TGAGCCGCTG 4 2480
ATTGGCGAGG CGGTTCATGT GGTCGTCCAT ATCGCCAGGA CCCCTAGCGG CCGTCGAGTG 4 2540
CAAGAAATTC TCGAAGTTCT TGGTTACGAG AACGGCCAGT ACATCACCAA AACCCTGTAA 4 2 600
GGAGTATTTC CAATGACAAC GGCTGTTCCG TTCCGTCTGA CCATGAATCG CGGCATTTTG 42660
TTCTACCTTG CCGTGTTCTT CGTTCTCGCT CTCGCGTTAT CCGCGCATCC GGCGATGGCC 42720
TCGGAAGGCA CCGGCGGCAG CTTGCCATAT GAGAGCTGGC TGACGAACCT GCGCAACTCC 4 2780
GTAACCGGCC CGGTGGCCTT CGCGCTGTCC ATCATCGGCA TCGTCGTCGC CGGCGGCGTG 4284 0
CTGATCTTCG GCGGCGAACT CAACGCCTTC TTCCGAACCC TGATCTTCCT GGTTCTGGTG 4 2900
ATGGCGCTGC TGGTCGGCGC GCAGAACGTG ATGAGCACCT TCTTCGGTCG TGGTGCCGAA 4 2 960
ATCGCGGCCC TCGGCAACGG GGCGCTGCAC CAGGTGCAAG TCGCGGCGGC GGATGCCGTG 4 3020
CGTGCGGTAG CGGCTGGACG GCTCGCCTAA TCATGGCTCT GCGCACGATC CCCATCCGTC 4 3080
GCGCAGGCAA CCGAGAAAAC CTGTTCATGG GTGGTGATCG TGAACTGGTG ATGTTCTCGG 4 314 0
GCCTGATGGC GTTTGCGCTG ATTTTCAGCG CCCAAGAGCT GCGGGCCACC GTGGTCGGTC 4 3200
TGATCCTGTG GTTCGGGGCG CTCTATGCGT TCCGAATCAT GGCGAAGGCC GATCCGAAGA 4 3260
TGCGGTTCGT GTACCTGCGT CACCGCCGGT ACAAGCCGTA TTACCCGGCC CGCTCGACCC 4 3320
CGTTCCGCGA GAACACCAAT AGCCAAGGGA AGCAATACCG ATGATCCAAG CAATTGCGAT 4 3380
TGCAATCGCG GGCCTCGGCG CGCTTCTGTT GTTCATCCTC TTTGCCCGCA TCCGCGCGGT 4 3440
CGATGCCGAA CTGAAACTGA AAAAGCATCG TTCCAAGGAC GCCGGCCTGG CCGATCTGCT 43500
CAACTACGCC GCTGTCGTCG ATGACGGCGT AATCGTGGGC AAGAACGGCA GCTTTATGGC 4 3560
TGCCTGGCTG TACAAGGGCG ATGACAACGC AAGCAGCACC GACCAGCAGC GCGAAGTAGT 4 3620
GTCCGCCCGC ATCAACCAGG CCCTCGCGGG CCTGGGAAGT GGGTGGATGA TCCATGTGGA 4 3680
CGCCGTGCGG CGTCCTGCTC CGAACTACGC GGAGCGGGGC CTGTCGGCGT TCCCTGACCG 4 3740
TCTGACGGCA GCGATTGAAG AAGAGCGCTC GGTCTTGCCT TGCTCGTCGG TGATGTACTT 43800
CACCAGCTCC GCGAAGTCGC TCTTCTTGAT GGAGCGCATG GGGACGTGCT TGGCAATCAC 4 3860
GCGCACCCCC CGGCCGTTTT AGCGGCTAAA AAAGTCATGG CTCTGCCCTC GGGCGGACCA 4 3920
CGCCCATCAT GACCTTGCCA AGCTCGTCCT GCTTCTCTTC GATCTTCGCC AGCAGGGCGA 4 3980
GGATCGTGGC ATCACCGAAC CGCGCCGTGC GCGGGTCGTC GGTGAGCCAG AGTTTCAGCA 4 4 040
GGCCGCCCAG GCGGCCCAGG TCGCCATTGA TGCGGGCCAG CTCGCGGACG TGCTCATAGT 4 4100
CCACGACGCC CGTGATTTTG TAGCCCTGGC CGACGGCCAG CAGGTAGGCC GACAGGCTCA 4 4160
TGCCGGCCGC CGCCGCCTTT TCCTCAATCG CTCTTCGTTC GTCTGGAAGG CAGTACACCT 4 4220
TGATAGGTGG GCTGCCCTTC CTGGTTGGCT TGGTTTCATC AGCCATCCGC TTGCCCTCAT 4 4280
CTGTTACGCC GGCGGTAGCC GGCCAGCCTC GCAGAGCAGG ATTCCCGTTG AGCACCGCCA 4 4 340
GGTGCGAATA AGGGACAGTG AAGAAGGAAC ACCCGCTCGC GGGTGGGCCT ACTTCACCTA 44400
TCCTGCCCGG CTGACGCCGT TGGATACACC AAGGAAAGTC TACACGAACC CTTTGGCAAA 44 4 60
ATCCTGTATA TCGTGCGAAA AAGGATGGAT ATACCGAAAA AATCGCTATA ATGACCCCGA 4 4520
AGCAGGGTTA TGCAGCGGAA AAGCGCTGCT TCCCTGCTGT TTTGTGGAAT ATCTACCGAC 44580
TGGAAACAGG CAAATGCAGG AAATTACTGA ACTGAGGGGA CAGGCGAGAG ACGATGCCAA 4 4 640
AGAGCTACAC CGACGAGCTG GCCGAGTGGG TTGAATCCCG CGCGGCCAAG AAGCGCCGGC 4 4700
GTGATGAGGC TGCGGTTGCG TTCCTGGCGG TGAGGGCGGA TGTCGAGGCG GCGTTAGCGT 4 47 60
CCGGCTATGC GCTCGTCACC ATTTGGGAGC ACATGCGGGA AACGGGGAAG GTCAAGTTCT 4 4 820
CCTACGAGAC GTTCCGCTCG CACGCCAGGC GGCACATCAA GGCCAAGCCC GCCGATGTGC 4 4 880
CCGCACCGCA GGCCAAGGCT GCGGAACCCG CGCCGGCACC CAAGACGCCG GAGCCACGGC 4 4 940
GGCCGAAGCA GGGGGGCAAG GCTGAAAAGC CGGCCCCCGC TGCGGCCCCG ACCGGCTTCA 45000
CCTTCAACCC AACACCGGAC AAAAAGGATC TACTGTAATG GCGAAAATTC ACATGGTTTT 4 5060
GCAGGGCAAG GGCGGGGTCG GCAAGTCGGC CATCGCCGCG ATCATTGCGC AGTACAAGAT 4 5120
GGACAAGGGG CAGACACCCT TGTGCATCGA CACCGACCCG GTGAACGCGA CGTTCGAGGG 4 5180
CTACAAGGCC CTGAACGTCC GCCGGCTGAA CATCATGGCC GGCGACGAAA TTAACTCGCG 4 5240
CAACTTCGAC ACCCTGGTCG AGCTGATTGC GCCGACCAAG GATGACGTGG TGATCGACAA 4 5300
CGGTGCCAGC TCGTTCGTGC CTCTGTCGCA TTACCTCATC AGCAACCAGG TGCCGGCTCT 4 5360
GCTGCAAGAA ATGGGGCATG AGCTGGTCAT CCATACCGTC GTCACCGGCG GCCAGGCTCT 4 5420CCTGGACACG GTGAGCGGCT TCGCCCAGCT CGCCAGCCAG TTCCCGGCCG AAGCGCTTTT 45480
CGTGGTCTGG CTGAACCCGT ATTGGGGGCC TATCGAGCAT GAGGGCAAGA GCTTTGAGCA 45540
GATGAAGGCG TACACGGCCA ACAAGGCCCG CGTGTCGTCC ATCATCCAGA TTCCGGCCCT 45600
CAAGGAAGAA ACCTACGGCC GCGATTTCAG CGACATGCTG CAAGAGCGGC TGACGTTCGA 45660
CCAGGCGCTG GCCGATGAAT CGCTCACGAT CATGACGCGG CAACGCCTCA AGATCGTGCG 45720
GCGCGGCCTG TTTGAACAGC TCGACGCGGC GGCCGTGCTA TGAGCGACCA GATTGAAGAG 45780
CTGATCCGGG AGATTGCGGC CAAGCACGGC ATCGCCGTCG GCCGCGACGA CCCGGTGCTG 45840
ATCCTGCATA CCATCAACGC CCGGCTCATG GCCGACAGTG CGGCCAAGCA AGAGGAAATC 45900
CTTGCCGCGT TCAAGGAAGA GCTGGAAGGG ATCGCCCATC GTTGGGGCGA GGACGCCAAG 45960
GCCAAAGCGG AGCGGATGCT GAACGCGGCC CTGGCGGCCA GCAAGGACGC AATGGCGAAG 46020
GTAATGAAGG ACAGCGCCGC GCAGGCGGCC GAAGCGATCC GCAGGGAAAT CGACGACGGC 46080
CTTGGCCGCC AGCTCGCGGC CAAGGTCGCG GACGCGCGGC GCGTGGCGAT GATGAACATG 46140
ATCGCCGGCG GCATGGTGTT GTTCGCGGCC GCCCTGGTGG TGTGGGCCTC GTTATGAATC 46200
GCAGAGGCGC AGATGAAAAA GCCCGGCGTT GCCGGGCTTT GTTTTTGCGT TAGCTGGGCT 46260
TGTTTGACAG GCCCAAGCTC TGACTGCGCC CGCGCTCGCG CTCCTGGGCC TGTTTCTTCT 46320
CCTGCTCCTG CTTGCGCATC AGGGCCTGGT GCCGTCGGGC TGCTTCACGC ATCGAATCCC 46380
AGTCGCCGGC CAGCTCGGGA TGCTCCGCGC GCATCTTGCG CGTCGCCAGT TCCTCGATCT 46440
TGGGCGCGTG AATGCCCATG CCTTCCTTGA TTTCGCGCAC CATGTCCAGC CGCGTGTGCA 46500
GGGTCTGCAA GCGGGCTTGC TGTTGGGCCT GCTGCTGCTG CCAGGCGGCC TTTGTACGCG 46560
GCAGGGACAG CAAGCCGGGG GCATTGGACT GTAGCTGCTG CAAACGCGCC TGCTGACGGT 46620
CTACGAGCTG TTCTAGGCGG TCCTCGATGC GCTCCACCTG GTCATGCTTT GCCTGCACGT 46680
AGAGCGCAAG GGTCTGCTGG TAGGTCTGCT CGATGGGCGC GGATTCTAAG AGGGCCTGCT 46740
GTTCCGTCTC GGCCTCCTGG GCCGCCTGTA GCAAATCCTC GCCGCTGTTG CCGCTGGACT 46800
GCTTTACTGC CGGGGACTGC TGTTGCCCTG CTCGCGCCGT CGTCGCAGTT CGGCTTGCCC 46860
CCACTCGATT GACTGCTTCA TTTCGAGCCG CAGCGATGCG ATCTCGGATT GCGTCAACGG 46920
ACGGGGCAGC GCGGAGGTGT CCGGCTTCTC CTTGGGTGAG TCGGTCGATG CCATAGCCAA 46980
AGGTTTCCTT CCAAAATGCG TCCATTGCTG GACCGTGTTT CTCATTGATG CCCGCAAGCA 47040
TCTTCGGCTT GACCGCCAGG TCAAGCGCGC CTTCATGGGC GGTCATGACG GACGCCGCCA 47100
TGACCTTGCC GCCGTTGTTC TCGATGTAGC CGCGTAATGA GGCAATGGTG CCGCCCATCG 47160
TCAGCGTGTC ATCGACAACG ATGTACTTCT GGCCGGGGAT CACCTCCCCC TCGAAAGTCG 47220
GGTTGAACGC CAGGCGATGA TCTGAACCGG CTCCGGTTCG GGCGACCTTC TCCCGCTGCA 47280
CAATGTCCGT TTCGACCTCA AGGCCAAGGC GGTCGGCCAG AACGACCGCC ATCATGGCCG 47340
GAATCTTGTT GTTCCCCGCC GCCTCGACGG CGAGGACTGG AACGATGCGG GGCTTGTCGT 47400
CGCCGATCAG CGTCTTGAGC TGGGCAACAG TGTCGTCCGA AATCAGGCGC TCGACCAAAT 47460
TAAGCGCCGC TTCCGCGTCG CCCTGCTTCG CAGCCTGGTA TTCAGGCTCG TTGGTCAAAG 47520
AACCAAGGTC GCCGTTGCGA ACCACCTTCG GGAAGTCTCC CCACGGTGCG CGCTCGGCTC 47580
TGCTGTAGCT GCTCAAGACG CCTCCCTTTT TAGCCGCTAA AACTCTAACG AGTGCGCCCG 47640
CGACTCAACT TGACGCTTTC GGCACTTACC TGTGCCTTGC CACTTGCGTC ATAGGTGATG 47700
CTTTTCGCAC TCCCGATTTC AGGTACTTTA TCGAAATCTG ACCGGGCGTG CATTACAAAG 47760
TTCTTCCCCA CCTGTTGGTA AATGCTGCCG CTATCTGCGT GGACGATGCT GCCGTCGTGG 47820
CGCTGCGACT TATCGGCCTT TTGGGCCATA TAGATGTTGT AAATGCCAGG TTTCAGGGCC 47880
CCGGCTTTAT CTACCTTCTG GTTCGTCCAT GCGCCTTGGT TCTCGGTCTG GACAATTCTT 47940
TGCCCATTCA TGACCAGGAG GCGGTGTTTC ATTGGGTGAC TCCTGACGGT TGCCTCTGGT 48000
GTTAAACGTG TCCTGGTCGC TTGCCGGCTA AAAAAAAGCC GACCTCGGCA GTTCGAGGCC 48060
GGCTTTCCCT AGAGCCGGGC GCGTCAAGGT TGTTCCATCT ATTTTAGTGA ACTGCGTTCG 48120
ATTTATCAGT TACTTTCCTC CCGCTTTGTG TTTCCTCCCA CTCGTTTCCG CGTCTAGCCG 48180
ACCCCTCAAC ATAGCGGCCT CTTCTTGGGC TGCCTTTGCC TCTTGCCGCG CTTCGTCACG 48240
CTCGGCTTGC ACCGTCGTAA AGCGCTCGGC CTGCCTGGCC GCCTCTTGCG CCGCCAACTT 48300
CCTTTGCTCC TGGTGGGCCT CGGCGTCGGC CTGCGCCTTC GCTTTCACCG CTGCCAACTC 48360
CGTGCGCAAA CTCTCCGCTT CGCGCCTGGT GGCGTCGCGC TCGCCGCGAA GCGCCTGCAT 48420
TTCCTGGTTG GCCGCGTCCA GGGTCTTGCG GCTCTCTTCT TTGAATGCGC GGGCGTCCTG 48480
GTGAGCGTAG TCCAGCTCGG CGCGCAGCTC CTGCGCTCGA CGCTCCACCT CGTCGGCCCG 48540
CTGCGTCGCC AGCGCGGCCC GCTGCTCGGC TCCTGCCAGG GCGGTGCGTG CTTCGGCCAG 48600
GGCTTGCCGC TGGCGTGCGG CCAGCTCGGC CGCCTCGGCG GCCTGCTGCT CTAGCAATGT 48660
AACGCGCGCC TGGGCTTCTT CCAGCTCGCG GGCCTGCGCC TCGAAGGCGT CGGCCAGCTC 48720
CCCGCGCACG GCTTCCAACT CGTTGCGCTC ACGATCCCAG CCGGCTTGCG CTGCCTGCAA 48780
CGATTCATTG GCAAGGGCCT GGGCGGCTTG CCAGAGGGCG GCCACGGCCT GGTTGCCGGC 48840
CTGCTGCACC GCGTCCGGCA CCTGGACTGC CAGCGGGGCG GCCTGCGCCG TGCGCTGGCG 48900
TCGCCATTCG CGCATGCCGG CGCTGGCGTC GTTCATGTTG ACGCGGGCGG CCTTACGCAC 48960TGCATCCACG GTCGGGAAGT TCTCCCGGTC GCCTTGCTCG AACAGCTCGT CCGCAGCCGC 4 9020
AAAAATGCGG TCGCGCGTCT CTTTGTTCAG TTCCATGTTG GCTCCGGTAA TTGGTAAGAA 4 9080
TAATAATACT CTTACCTACC TTATCAGCGC AAGAGTTTAG CTGAACAGTT CTCGACTTAA 4 9140
CGGCAGGTTT TTTAGCGGCT GAAGGGCAGG CAAAAAAAGC CCCGCACGGT CGGCGGGGGC 4 9200
AAAGGGTCAG CGGGAAGGGG ATTAGCGGGC GTCGGGCTTC TTCATGCGTC GGGGCCGCGC 4 9260
TTCTTGGGAT GGAGCACGAC GAAGCGCGCA CGCGCATCGT CCTCGGCCCT ATCGGCCCGC 4 9320
GTCGCGGTCA GGAACTTGTC GCGCGCTAGG TCCTCCCTGG TGGGCACCAG GGGCATGAAC 4 9380
TCGGCCTGCT CGATGTAGGT CCACTCCATG ACCGCATCGC AGTCGAGGCC GCGTTCCTTC 4 9440
ACCGTCTCTT GCAGGTCGCG GTACGCCCGC TCGTTGAGCG GCTGGTAACG GGCCAATTGG 4 9500
TCGTAAATGG CTGTCGGCCA TGAGCGGCCT TTCCTGTTGA GCCAGCAGCC GACGACGAAG 4 9560
CCGGCAATGC AGGCCCCTGG CACAACCAGG CCGACGCCGG GGGCAGGGGA TGGCAGCAGC 4 9620
TCGCCAACCA GGAACCCCGC CGCGATGATG CCGATGCCGG TCAACCAGCC CTTGAAACTA 4 9680
TCCGGCCCCG AAACACCCCT GCGCATTGCC TGGATGCTGC GCCGGATAGC TTGCAACATC 4 9740
AGGAGCCGTT TCTTTTGTTC GTCAGTCATG GTCCGCCCTC ACCAGTTGTT CGTATCGGTG 4 9800
TCGGACGAAC TGAAATCGCA AGAGCTGCCG GTATCGGTCC AGCCGCTGTC CGTGTCGCTG 4 98 60
CTGCCGAAGC ACGGCGAGGG GTCCGCGAAC GCCGCAGACG GCGTATCCGG CCGCAGCGCA 4 9920
TCGCCCAGCA TGGCCCCGGT CAGCGAGCCG CCGGCCAGGT AGCCCAGCAT GGTGCTGTTG 4 9980
GTCGCCCCGG CCACCAGGGC CGACGTGACG AAATCGCCGT CATTCCCTCT GGATTGTTCG 5004 0
CTGCTCGGCG GGGCAGTGCG CCGCGCCGGC GGCGTCGTGG ATGGCTCGGG TTGGCTGGCC 50100
TGCGACGGCC GGCGAAAGGT GCGCAGCAGC TCGTTATCGA CCGGCTGCGG CGTCGGGGCC 50160
GCCGCCTTGC GCTGCGGTCG GTGTTCCTTC TTCGGCTCGC GCAGCTTGAA CAGCATGATC 50220
GCGGAAACCA GCAGCAACGC CGCGCCTACG CCTCCCGCGA TGTAGAACAG CATCGGATTC 50280
ATTCTTCGGT CCTCCTTGTA GCGGAACCGT TGTCTGTGCG GCGCGGGTGG CCCGCGCCGC 5034 0
TGTCTTTGGG GATCAGCCCT CGATGAGCGC GACCAGTTTC ACGTCGGCAA GGTTCGCCTC 50400
GAACTCCTGG CCGTCGTCCT CGTACTTCAA CCAGGCATAG CCTTCCGCCG GCGGCCGACG 504 60
GTTGAGGATA AGGCGGGCAG GGCGCTCGTC GTGCTCGACC TGGACGATGG CCTTTTTCAG 50520
CTTGTCCGGG TCCGGCTCCT TCGCGCCCTT TTCCTTGGCG TCCTTACCGT CCTGGTCGCC 50580
GTCCTCGCCG TCCTGGCCGT CGCCGGCCTC CGCGTCACGC TCGGCATCAG TCTGGCCGTT 50640
GAAGGCATCG ACGGTGTTGG GATCGCGGCC CTTCTCGTCC AGGAACTCGC GCAGCAGCTT 50700
GACCGTGCCG CGCGTGATTT CCTGGGTGTC GTCGTCAAGC CACGCCTCGA CTTCCTCCGG 507 60
GCGCTTCTTG AAGGCCGTCA CCAGCTCGTT CACCACGGTC ACGTCGCGCA CGCGGCCGGT 50820
GTTGAACGCA TCGGCGATCT TCTCCGGCAG GTCCAGCAGC GTGACGTGCT GGGTGATGAA 50880
CGCCGGCGAC TTGCCGATTT CCTTGGCGAT ATCGCCTTTC TTCTTGCCCT TCGCCAGCTC 5094 0
GCGGCCAATG AAGTCGGCAA TTTCGCGCGG GGTCAGCTCG TTGCGTTGCA GGTTCTCGAT 51000
AACCTGGTCG GCTTCGTTGT AGTCGTTGTC GATGAACGCC GGGATGGACT TCTTGCCGGC 51060
CCACTTCGAG CCACGGTAGC GGCGGGCGCC GTGATTGATG ATATAGCGGC CCGGCTGCTC 51120
CTGGTTCTCG CGCACCGAAA TGGGTGACTT CACCCCGCGC TCTTTGATCG TGGCACCGAT 51180
TTCCGCGATG CTCTCCGGGG AAAAGCCGGG GTTGTCGGCC GTCCGCGGCT GATGCGGATC 5124 0
TTCGTCGATC AGGTCCAGGT CCAGCTCGAT AGGGCCGGAA CCGCCCTGAG ACGCCGCAGG 51300
AGCGTCCAGG AGGCTCGACA GGTCGCCGAT GCTATCCAAC CCCAGGCCGG ACGGCTGCGC 51360
CGCGCCTGCG GCTTCCTGAG CGGCCGCAGC GGTGTTTTTC TTGGTGGTCT TGGCTTGAGC 51420
CGCAGTCATT GGGAAATCTC CATCTTCGTG AACACGTAAT CAGCCAGGGC GCGAACCTCT 51480
TTCGATGCCT TGCGCGCGGC CGTTTTCTTG ATCTTCCAGA CCGGCACACC GGATGCGAGG 5154 0
GCATCGGCGA TGCTGCTGCG CAGGCCAACG GTGGCCGGAA TCATCATCTT GGGGTACGCG 51600
GCCAGCAGCT CGGCTTGGTG GCGCGCGTGG CGCGGATTCC GCGCATCGAC CTTGCTGGGC 51660
ACCATGCCAA GGAATTGCAG CTTGGCGTTC TTCTGGCGCA CGTTCGCAAT GGTCGTGACC 51720
ATCTTCTTGA TGCCCTGGAT GCTGTACGCC TCAAGCTCGA TGGGGGACAG CACATAGTCG 517 80
GCCGCGAAGA GGGCGGCCGC CAGGCCGACG CCAAGGGTCG GGGCCGTGTC GATCAGGCAC 5184 0
ACGTCGAAGC CTTGGTTCGC CAGGGCCTTG ATGTTCGCCC CGAACAGCTC GCGGGCGTCG 51900
TCCAGCGACA GCCGTTCGGC GTTCGCCAGT ACCGGGTTGG ACTCGATGAG GGCGAGGCGC 51960
GCGGCCTGGC CGTCGCCGGC TGCGGGTGCG GTTTCGGTCC AGCCGCCGGC AGGGACAGCG 52020
CCGAACAGCT TGCTTGCATG CAGGCCGGTA GCAAAGTCCT TGAGCGTGTA GGACGCATTG 52080
CCCTGGGGGT CCAGGTCGAT CACGGCAACC CGCAAGCCGC GCTCGAAAAA GTCGAAGGCA 52140
AGATGCACAA GGGTCGAAGT CTTGCCGACG CCGCCTTTCT GGTTGGCCGT GACCAAAGTT 52200
TTCATCGTTT GGTTTCCTGT TTTTTCTTGG CGTCCGCTTC CCACTTCCGG ACGATGTACG 52260
CCTGATGTTC CGGCAGAACC GCCGTTACCC GCGCGTACCC CTCGGGCAAG TTCTTGTCCT 52320
CGAACGCGGC CCACACGCGA TGCACCGCTT GCGACACTGC GCCCCTGGTC AGTCCCAGCG 52380
ACGTTGCGAA CGTCGCCTGT GGCTTCCCAT CGACTAAGAC GCCCCGCGCT ATCTCGATGG 52440
TCTGCTGCCC CACTTCCAGC CCCTGGATCG CCTCCTGGAA CTGGCTTTCG GTAAGCCGTT 52500TCTTCATGGA TAACACCCAT AATTTGCTCC GCGCCTTGGT TGAACATAGC GGTGACAGCC 52560
GCCAGCACAT GAGAGAAGTT TAGCTAAACA TTTCTCGCAC GTCAACACCT TTAGCCGCTA 52620
AAACTCGTCC TTGGCGTAAC AAAACAAAAG CCCGGAAACC GGGCTTTCGT CTCTTGCCGC 52 680
TTATGGCTCT GCACCCGGCT CCATCACCAA CAGGTCGCGC ACGCGCTTCA CTCGGTTGCG 52740
GATCGACACT GCCAGCCCAA CAAAGCCGGT TGCCGCCGCC GCCAGGATCG CGCCGATGAT 52800
GCCGGCCACA CCGGCCATCG CCCACCAGGT CGCCGCCTTC CGGTTCCATT CCTGCTGGTA 52860
CTGCTTCGCA ATGCTGGACC TCGGCTCACC ATAGGCTGAC CGCTCGATGG CGTATGCCGC 52 920
TTCTCCCCTT GGCGTAAAAC CCAGCGCCGC AGGCGGCATT GCCATGCTGC CCGCCGCTTT 52 980
CCCGACCACG ACGCGCGCAC CAGGCTTGCG GTCCAGACCT TCGGCCACGG CGAGCTGCGC 5304 0
AAGGACATAA TCAGCCGCCG ACTTGGCTCC ACGCGCCTCG ATCAGCTCTT GCACTCGCGC 53100
GAAATCCTTG GCCTCCACGG CCGCCATGAA TCGCGCACGC GGCGAAGGCT CCGCAGGGCC 53160
GGCGTCGTGA TCGCCGCCGA GAATGCCCTT CACCAAGTTC GACGACACGA AAATCATGCT 53220
GACGGCTATC ACCATCATGC AGACGGATCG CACGAACCCG CTGAATTGAA CACGAGCACG 53280
GCACCCGCGA CCACTATGCC AAGAATGCCC AAGGTAAAAA TTGCCGGCCC CGCCATGAAG 53340
TCCGTGAATG CCCCGACGGC CGAAGTGAAG GGCAGGCCGC CACCCAGGCC GCCGCCCTCA 534 00
CTGCCCGGCA CCTGGTCGCT GAATGTCGAT GCCAGCACCT GCGGCACGTC AATGCTTCCG 534 60
GGCGTCGCGC TCGGGCTGAT CGCCCATCCC GTTACTGCCC CGATCCCGGC AATGGCAAGG 53520
ACTGCCAGCG CTGCCATTTT TGGGGTGAGG CCGTTCGCGG CCGAGGGGCG CAGCCCCTGG 53580
GGGGATGGGA GGCCCGCGTT AGCGGGCCGG GAGGGTTCGA GAAGGGGGGG CACCCCCCTT 53 640
CGGCGTGCGC GGTCACGCGC ACAGGGCGCA GCCCTGGTTA AAAACAAGGT TTATAAATAT 53700
TGGTTTAAAA GCAGGTTAAA AGACAGGTTA GCGGTGGCCG AAAAACGGGC GGAAACCCTT 537 60
GCAAATGCTG GATTTTCTGC CTGTGGACAG CCCCTCAAAT GTCAATAGGT GCGCCCCTCA 53820
TCTGTCAGCA CTCTGCCCCT CAAGTGTCAA GGATCGCGCC CCTCATCTGT CAGTAGTCGC 53880
GCCCCTCAAG TGTCAATACC GCAGGGCACT TATCCCCAGG CTTGTCCACA TCATCTGTGG 53940
GAAACTCGCG TAAAATCAGG CGTTTTCGCC GATTTGCGAG GCTGGCCAGC TCCACGTCGC 54 000
CGGCCGAAAT CGAGCCTGCC CCTCATCTGT CAACGCCGCG CCGGGTGAGT CGGCCCCTCA 54 060
AGTGTCAACG TCCGCCCCTC ATCTGTCAGT GAGGGCCAAG TTTTCCGCGA GGTATCCACA 54120
ACGCCGGCGG CCGCGGTGTC TCGCACACGG CTTCGACGGC GTTTCTGGCG CGTTTGCAGG 54180
GCCATAGACG GCCGCCAGCC CAGCGGCGAG GGCAACCAGC CCGGTGAGCG TCGGAAAGGC 54 24 0
GCTGGAAGCC CCGTAGCGAC GCGGAGAGGG GCGAGACAAG CCAAGGGCGC AGGCTCGATG 54300
CGCAGCACGA CATAGCCGGT TCTCGCAAGG ACGAGAATTT CCCTGCGGTG CCCCTCAAGT 54360
GTCAATGAAA GTTTCCAACG CGAGCCATTC GCGAGAGCCT TGAGTCCACG CTAGATGAGA 54 4 20
GCTTTGTTGT AGGTGGACCA GTTGGTGATT TTGAACTTTT GCTTTGCCAC GGAACGGTCT 54 4 80
GCGTTGTCGG GAAGATGCGT GATCTGATCC TTCAACTCAG CAAAAGTTCG ATTTATTCAA 54 54 0
CAAAGCCACG TTGTGTCTCA AAATCTCTGA TGTTACATTG CACAAGATAA AAATATATCA 54600
TCATGAACAA TAAAACTGTC TGCTTACATA AACAGTAATA CAAGGGGTGT TATGAGCCAT 54 660
ATTCAACGGG AAACGTCTTG CTCGAC 54 686
<210> 89<211> 3324<212> DNA<213> Zea mays
<4 00> 89
TGGTCCTTGT TTGATTTACT TCCAGGATTA TATAATCCAG CTTATGGATT ATATAAGTAC 60
CTATTGACGT CACGTGCTTA TGTATTATAA TAATCTAGGT ATATAGATTA TATAATCTAT 120
CTAATAATAA TCTGTGTTGT TTGTTTATCT CTCAAAACAA ACAGGTCCTA AAATGGTCCC 180
GGGCGTCCAA TGTGTCGTCA AGTAGTGTTA AGCTAAATCG ACATTTCTTT GTGGGTTGTG 24 0
TGGAAGGTGT TCCTTTTCCT TAAGTTGTTA GTTGTGCAAG GTGTTCCTTA GAGCATCTCC 300
AATAGGACCT ATAATGGATT CTATTTTGAA TTATAAGACT CTAACAACAA AAGCATACTT 360
TAATGGGGAT TCTATTTTAC ΑΑΑΑΑΑΑΤΑΤ CAAATGATTA TATGGTCGAT TCCTCGGGTC 4 20
CTAAATATAG TATCTCATAT AATAGAGCTC TATCCTCATT TTATATACTA TTTTTAAGTT 4 80
TTTATTTACT AAATAACATG ATTTATTTTC TAATACTATG AACTCAACTA TTAGAGCTGT 540
AAACGTTTTT GTGGTACTAA ACACTTTAAA TCAGGTCCTA TTTTAATTTG AAGGACTTAA 600
ATATAAGACT TCTGGTTAGA GATGCTCTTA GCGAGTGTTT GTGCATGATT GCTATTTAGT 660
CTTTGTGGAT TGTGGAAGGT GTTACTTTTC CTCAAGTTGT TAGTTGTGCA AGGTGTTTCT 720
TAGAGCATCT CTAACAGGAG CCTTAACGGA ATCTATTTTG AAGTATAGTA CTTTAACACC 780
AAAAACATAC TTTAATAGGG GTCCTATTTT ACAAAAAAAT TATCAAATGA TTATAAGGTC 84 0
CACTCCTCGG GTCCTAAATA TAATATCTCA TATACTAGAG CTCTATCCTC ΑΤΤΤΤΑΤΑΤΑ 900CTATCCCTAG GTTTTTATTC CCTAAATAAC ATGATTTATT TCCTAATACT AAGATATAGG 960
GCTCAACTAT TGGAGTTGCA AATGTTTTTT GGCACTAAAC ACTTTATATC AGGTCCTATT 1020
TTAATTTTAA TTTGAAGGAC TCAAATATAG GACTTCTCGT TAGAGATGCT CTTAGCGAGT 1080
GTTTGTGCAT GATTGCTATT TATGTCTGTA GTTTAGTTGG GGGCTTTAAT ATGTTTAGTT 1140
GAAGTTCTAG TATTTTTTAG GTTCTCCACT CTTTGGATTA TGACAACGAC CACTATCCAA 1200
GCAGTCTTTG AGTGCAAACG CGCGAGCAAA CTATCTGATC TATTAAATTA TGATCCAACC 1260
GTTATGTCAT ATTGAAGACT TAAACCCTTT CACCACCAGC CCAAGTATCT TTATGAAAAA 1320
CCCTAACAAA CCACAATTGC ATCTATGGTT GGATTATAAT TTAACGTATC AGATGGTTCG 1380
CTTGCATGCT TACATATCTA GAAACTGTTT GCATAACAGT CGTTCTCTTT GGTTATATAA 14 40
TGCTTTAGTA ATCATCAGCC AAGTGTAAAC AAATGGTACA AACTAGTAGT GAACACATCC 1500
TCCCTACCTA TCTCTAGGGG TGTCATAGTA AATTCTATGT CTTATTTGTC CGCGATTGAA 1560
GAAAAATGAC AAAAAGATCT GACATTCGAA TAAACATCTG TTTCCACTCC TACCTATCTG 1620
ACCTCCTATT TCAAACTCCA CTTTGTAACA CGGTACAAAA TCACTCCCTA CCTATCTGAC 1680
CTCCTATTTC AAACTCCACT CAGTAAACAA TATTGTCTAT GGTACAAAAC CAAGTGTTTT 17 4 0
ATACATCTAT TTGCACGATC TGCTCGAGTC AGGCATCCTT GACACACAAC ATACTCCTTG 1800
TGGCTATAAA TGTCCAAATA GAGCAGACCT AATGGGTGGA CCGTTGCATG ACACGACTTA 18 60
TCCCAAGACG AGCACAGTTC GCCCCATTGG TCATGGGGGT CCGGGCTAGT CTAGCCTGAT 1920
CATCGGGTCA CACTTAGGCC ACAGGTGTGC CACAACGGGA TAGCCCAACA TGTCCCTTTT 1980
TGTCATGCAT ATATCTATAT TATAGTTAGT ATAATGTAAA AAAACAAAAG GTATGTGTGT 204 0
TATGTTGGTT AGATGTGTTT AAATAACTCT TTAAAGCTAG CAACTATGGT TTAAATCATA 2100
CATATACACA TTTTTATTTT ATTTTTATTT AAACGATATG GGCCTTCTAG GCACGTCGAG 2160
TGTGACGGGC CAGTGAGATG ACACATTATA ATTACTGGTC TAGCAGGCCG TACCTAGGTC 2220
TTTCTCGTGG GCCAAGACTA AGGGTTGGCC CGTTGGCTAA TCTGTACGGT ACCGATACTG 2280
TCCTAATTCA TTTGAACACC TGTAGAAGAG GGGAATTTAT AATTGAGGAG GAATGTACTC 234 0
ATGCGGTACA CCAGGGGAAT TGTTTTGTTG TGCTCAGCGA TAGATTTCAA CGCAACGGTG 24 00
AGCCAGTTTC ACTAAAAAAA GGGGGGGGGG GGGGGGGGGG GGAAGGCCAC ATCAAAGGCG 24 60
AGGTGCTGAC GAGCAGAAGA TGCTAGCAGT GACGCCAAGT CCAGCAGCTA GCAATGAAAG 2520
GGTACTCGGG ATTTAACAAT GCCTAGAGAC GGCATCATCC CCTCAATAAT CCGGTGCTCT 2580
CTTTTTGTTT ATTCACCAGT TGGCGTAGCT ATATACACAT GTCTGGTCTG ACGAACAAAT 2 64 0
CAAGGGATCG CTAGCTCGGG CTAGCCTTCC TATCACTGTC ATGACATGTG CTCTGCCTCT 2700
GCTGGTTGAT AAGCCGTGCG CCTTCTCGCT AATTCTTTCT TGTGCTAGAG GCGAGTCAAA 27 60
CAAACGCTGC ACCTCGTAGC CCTTAATCTG CGCTAAGGGT CACATGACCC TGTTCCCTAT 2820
CGCTAGTTAC CAACGACCCA TTCCCCCTGA CAGATACTTA CGACGCGTCC GTACGCGGCA 2880
GGCCTCGGCA GTTCGGCATC ACCAGCACCG GCGCCGGCAT TCGCCCCCTG CCAGCCGGTT 2 94 0
CGCAGATTCG CAGGGCGGAG TCGGCCGCAG TTGCCGCATC CCAAACGCCC GGGAACCTTT 3000
GGGGCCCCTC TACGAGCAAA TGAAGTTGCT GCCCCTGGCT TCGTAAAGCT CTGACTTTTG 3060
ATCACTTGAT TGGCAGTCGT ACTCCTCGCT CATAGGCCGA CACGGCCGCA AAGTCAACTA 3120
CCCGCTCCGC CATCCTTCAA CCCCCGCCAC GCGCCTATAT ATGTTCGCGG CCATGTCCGT 3180
ACTAGTCCTC CAACCCACAA GCCACAACCC CGAGCTCAGA TCCCTCGCCT CGTGTCGTGT 3240
CTCCGGTCGA CGACGACCAA CAGCCAGTGT GGGCCAGACG GACACCGCCG AGCTATAGCG 3300
CTTGGTGATA GCAAGGGACG ACCG 3324
<210> 90<211> 500<212> DNA<213> Zea mays
<4 00> 90
AGTTACCAAC GACCCATTCC CCCTGACAGA TACTTACGAC GCGTCCGTAC GCGGCAGGCC 60
TCGGCAGTTC GGCATCACCA GCACCGGCGC CGGCATTCGC CCCCTGCCAG CCGGTTCGCA 120
GATTCGCAGG GCGGAGTCGG CCGCAGTTGC CGCATCCCAA ACGCCCGGGA ACCTTTGGGG 180
CCCCTCTACG AGCAAATGAA GTTGCTGCCC CTGGCTTCGT AAAGCTCTGA CTTTTGATCA 240
CTTGATTGGC AGTCGTACTC CTCGCTCATA GGCCGACACG GCCGCAAAGT CAACTACCCG 300
CTCCGCCATC CTTCAACCCC CGCCACGCGC CTATATATGT TCGCGGCCAT GTCCGTACTA 360
GTCCTCCAAC CCACAAGCCA CAACCCCGAG CTCAGATCCC TCGCCTCGTG TCGTGTCTCC 420
GGTCGACGAC GACCAACAGC CAGTGTGGGC CAGACGGACA CCGCCGAGCT ATAGCGCTTG 4 80
GTGATAGCAA GGGACGACCG 500<210> 91<211> 2025<212> DNA<213> Zea mays
<400> 91
GAGCGCTCCG CTGCCGTGCG CGCCCCCGCG CCGGCCTCCC ACTGGATCGC TCCACCTCAT 60
GCTCCAAATC TTTATTGGTT TCCACGTTGC CCCCTCGCCG TCCCCAACCA TCGACCGCGC 120
CGCGCCCGCT GCCGCCTCCC AGCTCGCTCT ATATAAACAC CACGTACGCG CCGAAGCATC 180
AGCACAGCCA CGTACGTACG ACCGGCTTCC GGCAGGTGAG AGAACAGTGA GAAGCAGGCG 240
AGCGGTGACA TGGCGGAGGG GGAGTTCAAG CCCGCGGCGA TGCAGGTGGA GGCTCCTGCC 300
GAGGCGGCGG CGGCGCCGTC CAAGCCGCGG TTCAGGATGC CCGTCGACTC CGACAACAAG 360
GCCACCGAGT TCTGGCTCTT CTCCTTCGCG AGGCCGCACA TGAGCGCCTT CCACATGTCG 420
TGGTTCTCCT TCTTCTGCTG CTTCCTCTCC ACCTTCGCGG CGCCGCCGCT GCTCCCGCTC 480
ATCCGGGACA CGCTGGGGCT CACGGCCACG GACATCGGCA ACGCCGGGAT CGCCTCCGTG 540
TCCGGCGCGG TCTTCGCGCG CGTGGCCATG GGCACGGCGT GCGACCTGGT GGGCCCGCGC 600
CTGGCGTCCG CGGCCATCAT ACTCCTCACC ACGCCCGCCG TCTACTACTC CGCCGTCATC 660
GACTCCGCCT CGTCCTACCT GCTCGTGCGC TTCTTCACGG GCTTCTCGCT CGCGTCCTTC 720
GTGTCCACGC AGTTCTGGAT GAGCTCCATG TTCTCGCCGC CCAAGGTGGG GCTGGCCAAC 7 80
GGCGTCGCCG GGGGGTGGGG CAACCTCGGC GGCGGCGCCG TGCAGCTCAT CATGCCGCTC 84 0
GTGTTCGAGG CCATCCGCAA GGCCGGGGCC ACGCCGTTCA CGGCGTGGCG CGTCGCCTTC 900
TTCGTCCCGG GCCTGCTGCA GACGCTGTCG GCCGTCGCCG TGCTGGCGTT CGGCCAGGAC 960
ATGCCCGACG GCAACTACCG CAAGCTGCAC AGGTCCGGCG ACATGCACAA GGACAGCTTC 1020
GGCAACGTGC TCCGCCACGC CGTCACCAAC TACCGCGCCT GGATCCTGGC GCTCACCTAC 1080
GGATACTGCT TCGGCGTGGA GCTCGCCGTG GACAACATCG TCGCGCAGTA CTTCTACGAC 114 0
CGCTTCGGCG TCAAGCTCAG CACCGCCGGC TTCATCGCCG CCAGCTTCGG GATGGCCAAC 1200
ATCGTCTCCC GCCCCGGCGG CGGCCTCCTG TCGGACTGGC TCTCCAGCCG CTTCGGCATG 1260
CGCGGCAGGC TGTGGGGCCT GTGGGTGGTG CAGACCATCG GGGGCGTCCT CTGCGTCGTG 1320
CTCGGCGCCG TCGACTACTC CTTCGCCGCG TCCGTGGCCG TCATGATACT CTTCTCCATG 1380
TTCGTGCAGG CGGCCTGCGG GCTCACCTTT GGCATCGTCC CGTTCGTCTC CCGAAGGTCG 1440
CTGGGGCTCA TCTCCGGCAT GACCGGCGGC GGCGGCAACG TGGGCGCCGT GCTCACGCAG 1500
CTCATCTTCT TCCACGGATC CAAGTACAAG ACGGAGACGG GGATCAAGTA CATGGGGTTC 1560
ATGATCATCG CCTGCACGTT GCCCATCACG CTCATCTACT TCCCGCAGTG GGGCGGCATG 1620
TTCCTGGGGC CGCGGCCCGG GGCGACGGCG GAGGACTACT ACAACCGGGA GTGGACAGCG 1680
CACGAGTGCG ACAAGGGTTT CAACACCGCG AGCGTACGCT TTGCGGAGAA CAGCGTGCGG 1740
GAAGGGGGAC GCTCGGGCAG CCAGTCCAAG CACACTACTG TGCCCGTCGA GTCCTCGCCG 1800
GCCGACGTGT GAAACACACA CAAGCATACG GTACTGCCCG TATAATCAGC GGTCCCTCCC 1860
GTGTCAGCAA ATCATATGTA GTGTTCCTAA GTCGTGATGA CTCCGTACGT GTGGTAATTT 1920
CTGTGTGAAG GAAAAACCGG GGGTGAATTT CAGCGAGGAG TGACATTATA AGCAGGGCTC 1980
GTTTGCATAA ΑΑΑΑΑΑΑΑΑΑ ΑΑΑΑΑΑΑΑΑΑ ΑΑΑΑΑΑΑΑΑΑ AAAAA 2025
<210> 92<211> 520<212> PRT<213> Zea mays
<4 00> 92
MET ALA GLU GLY GLU PHE LYS PRO ALA ALA MET GLN VAL GLU ALA PRO15 10 15
ALA GLU ALA ALA ALA ALA PRO SER LYS PRO ARG PHE ARG MET PRO VAL
20
25
30
ASP SER ASP ASN LYS ALA THR GLU PHE TRP
35
40
LEU PHE SER PHE ALA ARG45
PRO HIS MET50
SER ALA PHE HIS MET SER TRP55
PHE SER PHE PHE CYS CYS60PHE LEU SER THR PHE ALA ALA PRO PRO LEU LEU PRO LEU ILE ARG ASP65 70 75 80
THR LEU GLY LEU THR ALA THR ASP ILE GLY ASN ALA GLY ILE ALA SER85 90 95
VAL SER GLY ALA VAL PHE ALA ARG VAL ALA MET GLY THR ALA CYS ASP100 105 110
LEU VAL GLY PRO ARG LEU ALA SER ALA ALA ILE ILE LEU LEU THR THR115 120 125
PRO ALA VAL TYR TYR SER ALA VAL ILE ASP SER ALA SER SER TYR LEU130 135 140
LEU VAL ARG PHE PHE THR GLY PHE SER LEU ALA SER PHE VAL SER THR145 150 155 160
GLN PHE TRP MET SER SER MET PHE SER PRO PRO LYS VAL GLY LEU ALA165 170 175
ASN GLY VAL ALA GLY GLY TRP GLY ASN LEU GLY GLY GLY ALA VAL GLN180 185 190
LEU ILE MET PRO LEU VAL PHE GLU ALA ILE ARG LYS ALA GLY ALA THR195 200 205
PRO PHE THR ALA TRP ARG VAL ALA PHE PHE VAL PRO GLY LEU LEU GLN210 215 220
THR LEU SER ALA VAL ALA VAL LEU ALA PHE GLY GLN ASP MET PRO ASP225 230 235 240
GLY ASN TYR ARG LYS LEU HIS ARG SER GLY ASP MET HIS LYS ASP SER245 250 255
PHE GLY ASN VAL LEU ARG HIS ALA VAL THR ASN TYR ARG ALA TRP ILE260 265 270
LEU ALA LEU THR TYR GLY TYR CYS PHE GLY VAL GLU LEU ALA VAL ASP275 280 285
ASN ILE VAL ALA GLN TYR PHE TYR ASP ARG PHE GLY VAL LYS LEU SER290 295 300
THR ALA GLY PHE ILE ALA ALA SER PHE GLY MET ALA ASN ILE VAL SER305 310 315 320
ARG PRO GLY GLY GLY LEU LEU SER ASP TRP LEU SER SER ARG PHE GLY325 330 335
MET ARG GLY ARG LEU TRP GLY LEU TRP VAL VAL GLN THR ILE GLY GLY340 345 350
VAL LEU CYS VAL VAL LEU GLY ALA VAL ASP TYR SER PHE ALA ALA SER355 360 365
VAL ALA VAL MET ILE LEU PHE SER MET PHE VAL GLN ALA ALA CYS GLY370 375 380LEU THR PHE GLY ILE VAL PRO PHE VAL SER ARG ARG SER LEU GLY LEU385 390 395 400
ILE SER GLY MET THR GLY GLY GLY GLY ASN VAL GLY ALA VAL LEU THR405 410 415
GLN LEU ILE PHE PHE HIS GLY SER LYS TYR LYS THR GLU THR GLY ILE420 425 430
LYS TYR MET GLY PHE MET ILE ILE ALA CYS THR LEU PRO ILE THR LEU435 440 445
ILE TYR PHE PRO GLN TRP GLY GLY MET PHE LEU GLY PRO ARG PRO GLY450 455 460
ALA THR ALA GLU ASP TYR TYR ASN ARG GLU TRP THR ALA HIS GLU CYS465 470 475 480
ASP LYS GLY PHE ASN THR ALA SER VAL ARG PHE ALA GLU ASN SER VAL485 490 495
ARG GLU GLY GLY ARG SER GLY SER GLN SER LYS HIS THR THR VAL PRO500 505 510
VAL GLU SER SER PRO ALA ASP VAL515 520
<210> 93
<211> 49597
<212> DNA
<213> VETOR
<400> 93
GTCTTGCTCG ACTCTAGAGC TCGTTCCTCG AGGCCTCGAG GCCTCGAGGA ACGGTACCTG 60
CGGGGAAGCT TACAATAATG TGTGTTGTTA AGTCTTGTTG CCTGTCATCG TCTGACTGAC 120
TTTCGTCATA AATCCCGGCC TCCGTAACCC AGCTTTGGGC AAGCTCACGG ATTTGATCCG 180
GCGGAACGGG AATATCGAGA TGCCGGGCTG AACGCTGCAG TTCCAGCTTT CCCTTTCGGG 240
ACAGGTACTC CAGCTGATTG ATTATCTGCT GAAGGGTCTT GGTTCCACCT CCTGGCACAA 300
TGCGAATGAT TACTTGAGCG CGATCGGGCA TCCAATTTTC TCCCGTCAGG TGCGTGGTCA 360
AGTGCTACAA GGCACCTTTC AGTAACGAGC GACCGTCGAT CCGTCGCCGG GATACGGACA 420
AAATGGAGCG CAGTAGTCCA TCGAGGGCGG CGAAAGCCTC GCCAAAAGCA ATACGTTCAT 480
CTCGCACAGC CTCCAGATCC GATCGAGGGT CTTCGGCGTA GGCAGATAGA AGCATGGATA 540
CATTGCTTGA GAGTATTCCG ATGGACTGAA GTATGGCTTC CATCTTTTCT CGTGTGTCTG 600
CATCTATTTC GAGAAAGCCC CCGATGCGGC GCACCGCAAC GCGAATTGCC ATACTATCCG 660
AAAGTCCCAG CAGGCGCGCT TGATAGGAAA AGGTTTCATA CTCGGCCGAT CGCAGACGGG 720
CACTCACGAC CTTGAACCCT TCAACTTTCA GGGATCGATG CTGGTTGATG GTAGTCTCAC 780
TCGACGTGGC TCTGGTGTGT TTTGACATAG CTTCCTCCAA AGAAAGCGGA AGGTCTGGAT 84 0
ACTCCAGCAC GAAATGTGCC CGGGTAGACG GATGGAAGTC TAGCCCTGCT CAATATGAAA 900
TCAACAGTAC ATTTACAGTC AATACTGAAT ATACTTGCTA CATTTGCAAT TGTCTTATAA 960
CGAATGTGAA ATAAAAATAG TGTAACAACG CTTTTACTCA TCGATAATCA CAAAAACATT 1020
TATACGAACA AAAATACAAA TGCACTCCGG TTTCACAGGA TAGGCGGGAT CAGAATATGC 1080
AACTTTTGAC GTTTTGTTCT TTCAAAGGGG GTGCTGGCAA AACCACCGCA CTCATGGGCC 1140
TTTGCGCTGC TTTGGCAAAT GACGGTAAAC GAGTGGCCCT CTTTGATGCC GACGAAAACC 1200
GGCCTCTGAC GCGATGGAGA GAAAACGCCT TACAAAGCAG TACTGGGATC CTCGCTGTGA 1260
AGTCTATTCC GCCGACGAAA TGCCCCTTCT TGAAGCAGCC TATGAAAATG CCGAGCTCGA 1320
AGGATTTGAT TATGCGTTGG CCGATACGCG TGGCGGCTCG AGCGAGCTCA ACAACACAAT 1380
CATCGCTAGC TCAAACCTGC TTCTGATCCC CACCATGCTA ACGCCGCTCG ACATCGATGA 1440
GGCACTATCT ACCTACCGCT ACGTCATCGA GCTGCTGTTG AGTGAAAATT TGGCAATTCC 1500TACAGCTGTT TTGCGCCAAC GCGTCCCGGT CGGCCGATTG ACAACATCGC AACGCAGGAT 1560
GTCAGAGACG CTAGAGAGCC TTCCAGTTGT ACCGTCTCCC ATGCATGAAA GAGATGCATT 1620
TGCCGCGATG AAAGAACGCG GCATGTTGCA TCTTACATTA CTAAACACGG GAACTGATCC 1680
GACGATGCGC CTCATAGAGA GGAATCTTCG GATTGCGATG GAGGAAGTCG TGGTCATTTC 1740
GAAACTGATC AGCAAAATCT TGGAGGCTTG AAGATGGCAA TTCGCAAGCC CGCATTGTCG 1800
GTCGGCGAAG CACGGCGGCT TGCTGGTGCT CGACCCGAGA TCCACCATCC CAACCCGACA 1860
CTTGTTCCCC AGAAGCTGGA CCTCCAGCAC TTGCCTGAAA AAGCCGACGA GAAAGACCAG 1920
CAACGTGAGC CTCTCGTCGC CGATCACATT TACAGTCCCG ATCGACAACT TAAGCTAACT 1980
GTGGATGCCC TTAGTCCACC TCCGTCCCCG AAAAAGCTCC AGGTTTTTCT TTCAGCGCGA 204 0
CCGCCCGCGC CTCAAGTGTC GAAAACATAT GACAACCTCG TTCGGCAATA CAGTCCCTCG 2100
AAGTCGCTAC AAATGATTTT AAGGCGCGCG TTGGACGATT TCGAAAGCAT GCTGGCAGAT 2160
GGATCATTTC GCGTGGCCCC GAAAAGTTAT CCGATCCCTT CAACTACAGA AAAATCCGTT 2220
CTCGTTCAGA CCTCACGCAT GTTCCCGGTT GCGTTGCTCG AGGTCGCTCG AAGTCATTTT 2280
GATCCGTTGG GGTTGGAGAC CGCTCGAGCT TTCGGCCACA AGCTGGCTAC CGCCGCGCTC 234 0
GCGTCATTCT TTGCTGGAGA GAAGCCATCG AGCAATTGGT GAAGAGGGAC CTATCGGAAC 24 00
CCCTCACCAA ATATTGAGTG TAGGTTTGAG GCCGCTGGCC GCGTCCTCAG TCACCTTTTG 24 60
AGCCAGATAA TTAAGAGCCA AATGCAATTG GCTCAGGCTG CCATCGTCCC CCCGTGCGAA 2520
ACCTGCACGT CCGCGTCAAA GAAATAACCG GCACCTCTTG CTGTTTTTAT CAGTTGAGGG 2580
CTTGACGGAT CCGCCTCAAG TTTGCGGCGC AGCCGCAAAA TGAGAACATC TATACTCCTG 264 0
TCGTAAACCT CCTCGTCGCG TACTCGACTG GCAATGAGAft GTTGCTCGCG CGATAGAACG 2700
TCGCGGGGTT TCTCTAAAAA CGCGAGGAGA AGATTGAACT CACCTGCCGT AAGTTTCACC 27 60
TCACCGCCAG CTTCGGACAT CAAGCGACGT TGCCTGAGAT TAAGTGTCCA GTCAGTAAAA 2820
CAAAAAGACC GTCGGTCTTT GGAGCGGACA ACGTTGGGGC GCACGCGCAA GGCAACCCGA 2880
ATGCGTGCAA GAAACTCTCT CGTACTAAAC GGCTTAGCGA TAAAATCACT TGCTCCTAGC 2 94 0
TCGAGTGCAA CAACTTTATC CGTCTCCTCA AGGCGGTCGC CACTGATAAT TATGATTGGA 3000
ATATCAGACT TTGCCGCCAG ATTTCGAACG ATCTCAAGCC CATCTTCACG ACCTAAATTT 3060
AGATCAACAA CCACGACATC GACCGTCGCG GAAGAGAGTA CTCTAGTGAA CTGGGTGCTG 3120
TCGGCTACCG CGGTCACTTT GAAGGCGTGG ATCGTAAGGT ATTCGATAAT AAGATGCCGC 3180
ATAGCGACAT CGTCATCGAT AAGAAGAACG TGTTTCAACG GCTCACCTTT CAATCTAAAA 324 0
TCTGAACCCT TGTTCACAGC GCTTGAGAAA TTTTCACGTG AAGGATGTAC AATCATCTCC 3300
AGCTAAATGG GCAGTTCGTC AGAATTGCGG CTGACCGCGG ATGACGAAAA TGCGAACCAA 3360
GTATTTCAAT TTTATGACAA AAGTTCTCAA TCGTTGTTAC AAGTGAAACG CTTCGAGGTT 3420
ACAGCTACTA TTGATTAAGG AGATCGCCTA TGGTCTCGCC CCGGCGTCGT GCGTCCGCCG 34 80
CGAGCCAGAT CTCGCCTACT TCATAAACGT CCTCATAGGC ACGGAATGGA ATGATGACAT 354 0
CGATCGCCGT AGAGAGCATG TCAATCAGTG TGCGATCTTC CAAGCTAGCA CCTTGGGCGC 3600
TACTTTTGAC AAGGGAAAAC AGTTTCTTGA ATCCTTGGAT TGGATTCGCG CCGTGTATTG 3660
TTGAAATCGA TCCCGGATGT CCCGAGACGA CTTCACTCAG ATAAGCCCAT GCTGCATCGT 3720
CGCGCATCTC GCCAAGCAAT ATCCGGTCCG GCCGCATACG CAGACTTGCT TGGAGCAAGT 37 80
GCTCGGCGCT CACAGCACCC AGCCCAGCAC CGTTCTTGGA GTAGAGTAGT CTAACATGAT 384 0
TATCGTGTGG AATGACGAGT TCGAGCGTAT CTTCTATGGT GATTAGCCTT TCCTGGGGGG 3900
GGATGGCGCT GATCAAGGTC TTGCTCATTG TTGTCTTGCC GCTTCCGGTA GGGCCACATA 3960
GCAACATCGT CAGTCGGCTG ACGACGCATG CGTGCAGAAA CGCTTCCAAA TCCCCGTTGT 4020
CAAAATGCTG AAGGATAGCT TCATCATCCT GATTTTGGCG TTTCCTTCGT GTCTGCCACT 4 080
GGTTCCACCT CGAAGCATCA TAACGGGAGG AGACTTCTTT AAGACCAGAA ACACGCGAGC 4140
TTGGCCGTCG AATGGTCAAG CTGACGGTGC CCGAGGGAAC GGTCGGCGGC AGACAGATTT 4 200
GTAGTCGTTC ACCACCAGGA AGTTCAGTGG CGCAGAGGGG GTTACGTGGT CCGACATCCT 4260
GCTTTCTCAG CGCGCCCGCT AAAATAGCGA TATCTTCAAG ATCATCATAA GAGACGGGCA 4 320
AAGGCATCTT GGTAAAAATG CCGGCTTGGC GCACAAATGC CTCTCCAGGT CGATTGATCG 4 380
CAATTTCTTC AGTCTTCGGG TCATCGAGCC ATTCCAAAAT CGGCTTCAGA AGAAAGCGTA 4 4 40
GTTGCGGATC CACTTCCATT TACAATGTAT CCTATCTCTA AGCGGAAATT TGAATTCATT 4 500
AAGAGCGGCG GTTCCTCCCC CGCGTGGCGC CGCCAGTCAG GCGGAGCTGG TAAACACCAA 4 560
AGAAATCGAG GTCCCGTGCT ACGAAAATGG AAACGGTGTC ACCCTGATTC TTCTTCAGGG 4 620
TTGGCGGTAT GTTGATGGTT GCCTTAAGGG CTGTCTCAGT TGTCTGCTCA CCGTTATTTT 4 680
GAAAGCTGTT GAAGCTCATC CCGCCACCCG AGCTGCCGGC GTAGGTGCTA GCTGCCTGGA 474 0
AGGCGCCTTG AACAACACTC AAGAGCATAG CTCCGCTAAA ACGCTGCCAG AAGTGGCTGT 4 800
CGACCGAGCC CGGCAATCCT GAGCGACCGA GTTCGTCCGC GCTTGGCGAT GTTAACGAGA 4 8 60
TCATCGCATG GTCAGGTGTC TCGGCGCGAT CCCACAACAC AAAAACGCGC CCATCTCCCT 4 920
GTTGCAAGCC ACGCTGTATT TCGCCAACAA CGGTGGTGCC ACGATCAAGA AGCACGATAT 4 980
TGTTCGTTGT TCCACGAATA TCCTGAGGCA AGACACACTT TACATAGCCT GCCAAATTTG 504 0TGTCGATTGC GGTTTGCAAG ATGCACGGAA TTATTGTCCC TTGCGTTACC ATAAAATCGG 5100
GGTGCGGCAA GAGCGTGGCG CTGCTGGGCT GCAGCTCGGT GGGTTTCATA CGTATCGACA 5160
AATCGTTCTC GCCGGACACT TCGCCATTCG GCAAGGAGTT GTCGTCACGC TTGCCTTCTT 5220
GTCTTCGGCC CGTGTCGCCC TGAATGGCGC GTTTGCTGAC CCCTTGATCG CCGCTGCTAT 5280
ATGCAAAAAT CGGTGTTTCT TCCGGCCGTG GCTCATGCCG CTCCGGTTCG CCCCTCGGCG 534 0
GTAGAGGAGC AGCAGGCTGA ACAGCCTCTT GAACCGCTGG AGGATCCGGC GGCACCTCAA 5400
TCGGAGCTGG ATGAAATGGC TTGGTGTTTG TTGCGATCAA AGTTGACGGC GATGCGTTCT 54 60
CATTCACCTT CTTTTGGCGC CCACCTAGCC AAATGAGGCT TAATGATAAC GCGAGAACGA 5520
CACCTCCGAC GATCAATTTC TGAGACCCCG AAAGACGCCG GCGATGTTTG TCGGAGACCA 5580
GGGATCCAGA TGCATCAACC TCATGTGCCG CTTGCTGACT ATCGTTATTC ATCCCTTCGC 564 0
CCCCTTCAGG ACGCGTTTCA CATCGGGCCT CACCGTGCCC GTTTGCGGCC TTTGGCCAAC 5700
GGGATCGTAA GCGGTGTTCC AGATACATAG TACTGTGTGG CCATCCCTCA GACGCCAACC 57 60
TCGGGAAACC GAAGAAATCT CGACATCGCT CCCTTTAACT GAATAGTTGG CAACAGCTTC 5820
CTTGCCATCA GGATTGATGG TGTAGATGGA GGGTATGCGT ACATTGCCCG GAAAGTGGAA 5880
TACCGTCGTA AATCCATTGT CGAAGACTTC GAGTGGCAAC AGCGAACGAT CGCCTTGGGC 594 0
GACGTAGTGC CAATTACTGT CCGCCGCACC AAGGGCTGTG ACAGGCTGAT CCAATAAATT 6000
CTCAGCTTTC CGTTGATATT GTGCTTCCGC GTGTAGTCTG TCCACAACAG CCTTCTGTTG 6060
TGCCTCCCTT CGCCGAGCCG CCGCATCGTC GGCGGGGTAG GCGAATTGGA CGCTGTAATA 6120
GAGATCGGGC TGCTCTTTAT CGAGGTGGGA CAGAGTCTTG GAACTTATAC TGAAAACATA 6180
ACGGCGCATC CCGGAGTCGC TTGCGGTTAG CACGATTACT GGCTGAGGCG TGAGGACCTG 624 0
GCTTGCCTTG AAAAATAGAT AATTTCCCCG CGGTAGGGCT GCTAGATCTT TGCTATTTGA 6300
AACGGCAACC GCTGTCACCG TTTCGTTCGT GGCGAATGTT ACGACCAAAG TAGCTCCAAC 6360
CGCCGTCGAG AGGCGCACCA CTTGATCGGG ATTGTAAGCC AAATAACGCA TGCGCGGATC 6420
TAGCTTGCCC GCCATTGGAG TGTCTTCAGC CTCCGCACCA GTCGCAGCGG CAAATAAACA 6480
TGCTAAAATG AAAAGTGCTT TTCTGATCAT GGTTCGCTGT GGCCTACGTT TGAAACGGTA 654 0
TCTTCCGATG TCTGATAGGA GGTGACAACC AGACCTGCCG GGTTGGTTAG TCTCAATCTG 6600
CCGGGCAAGC TGGTCACCTT TTCGTAGCGA ACTGTCGCGG TCCACGTACT CACCACAGGC 6660
ATTTTGCCGT CAACGACGAG GGTCCTTTTA TAGCGAATTT GCTGCGTGCT TGGAGTTACA 6720
TCATTTGAAG CGATGTGCTC GACCTCCACC CTGCCGCGTT TGCCAAGAAT GACTTGAGGC 6780
GAACTGGGAT TGGGATAGTT GAAGAATTGC TGGTAATCCT GGCGCACTGT TGGGGCACTG 6840
AAGTTCGATA CCAGGTCGTA GGCGTACTGA GCGGTGTCGG CATCATAACT CTCGCGCAGG 6900
CGAACGTACT CCCACAATGA GGCGTTAACG ACGGCCTCCT CTTGAGTTGC AGGCAATCGC 6960
GAGACAGACA CCTCGCTGTC AACGGTGCCG TCCGGCCGTA TCCATAGATA TACGGGCACA 7020
AGCCTGCTCA ACGGCACCAT TGTGGCTATA GCGAACGCTT GAGCAACATT TCCCAAAATC 7 080
GCGATAGCTG CGACAGCTGC AATGAGTTTG GAGAGACGTC GCGCCGATTT CGCTCGCGCG 714 0
GTTTGAAAGG CTTCTACTTC CTTATAGTGC TCGGCAAGGC TTTCGCGCGC CACTAGCATG 7200
GCATATTCAG GCCCCGTCAT AGCGTCCACC CGAATTGCCG AGCTGAAGAT CTGACGGAGT 7 260
AGGCTGCCAT CGCCCCACAT TCAGCGGGAA GATCGGGCCT TTGCAGCTCG CTAATGTGTC 7 320
GTTTGTCTGG CAGCCGCTCA AAGCGACAAC TAGGCACAGC AGGCAATACT TCATAGAATT 7 380
CTCCATTGAG GCGAATTTTT GCGCGACCTA GCCTCGCTCA ACCTGAGCGA AGCGACGGTA 74 40
CAAGCTGCTG GCAGATTGGG TTGCGCCGCT CCAGTAACTG CCTCCAATGT TGCCGGCGAT 7 500
CGCCGGCAAA GCGACAATGA GCGCATCCCC TGTCAGAAAA AACATATCGA GTTCGTAAAG 7560
ACCTVATGATC TTGGCCGCGG TCGTACCGGC GAAGGTGATT ACACCAAGCA TAAGGGTGAG 7 620
CGCAGTCGCT TCGGTTAGGA TGACGATCGT TGCCACGAGG TTTAAGAGGA GAAGCAAGAG 7 680
ACCGTAGGTG ATAAGTTGCC CGATCCACTT AGCTGCGATG TCCCGCGTGC GATCAAAAAT 7740
ATATCCGACG AGGATCAGAG GCCCGATCGC GAGAAGCACT TTCGTGAGAA TTCCAACGGC 7800
GTCGTAAACT CCGAAGGCAG ACCAGAGCGT GCCGTAAAGG ACCCACTGTG CCCCTTGGAA 7860
AGCAAGGATG TCCTGGTCGT TCATCGGACC GATTTCGGAT GCGATTTTCT GAAAAACGGC 7 920
CTGGGTCACG GCGAACATTG TATCCAACTG TGCCGGAACA GTCTGCAGAG GCAAGCCGGT 7 980
TACACTAAAC TGCTGAACAA AGTTTGGGAC CGTCTTTTCG AAGATGGAAA CCACATAGTC 8040
TTGGTAGTTA GCCTGCCCAA CAATTAGAGC AACAACGATG GTGACCGTGA TCACCCGAGT 8100
GATACCGCTA CGGGTATCGA CTTCGCCGCG TATGACTAAA ATACCCTGAA CAATAATCCA 8160
AAGAGTGACA CAGGCGATCA ATGGCGCACT CACCGCCTCC TGGATAGTCT CAAGCATCGA 8220
GTCCAAGCCT GTCGTGAAGG CTACATCGAA GATCGTATGA ATGGCCGTAA ACGGCGCCGG 8280
AATCGTGAAA TTCATCGATT GGACCTGAAC TTGACTGGTT TGTCGCATAA TGTTGGATAA 834 0
AATGAGCTCG CATTCGGCGA GGATGCGGGC GGATGAACAA ATCGCCCAGC CTTAGGGGAG 8400
GGCACCAAAG ATGACAGCGG TCTTTTGATG CTCCTTGCGT TGAGCGGCCG CCTCTTCCGC 84 60
CTCGTGAAGG CCGGCCTGCG CGGTAGTCAT CGTTAATAGG CTTGTCGCCT GTACATTTTG 8520
AATCATTGCG TCATGGATCT GCTTGAGAAG CAAACCATTG GTCACGGTTG CCTGCATGAT 8580ATTGCGAGAT CGGGAAAGCT GAGCAGACGT ATCAGCATTC GCCGTCAAGC GTTTGTCCAT 8 64 0
CGTTTCCAGA TTGTCAGCCG CAATGCCAGC GCTGTTTGCG GAACCGGTGA TCTGCGATCG 8700
CAACAGGTCC GCTTCAGCAT CACTACCCAC GACTGCACGA TCTGTATCGC TGGTGATCGC 87 60
ACGTGCCGTG GTCGACATTG GCATTCGCGG CGAAAACATT TCATTGTCTA GGTCCTTCGT 8820
CGAAGGATAC TGATTTTTCT GGTTGAGCGA AGTCAGTAGT CCAGTAACGC CGTAGGCCGA 8880
CGTCAACATC GTAACCATCG CTATAGTCTG AGTGAGATTC TCCGCAGTCG CGAGCGCAGT 8940
CGCGAGCGTC TCAGCCTCCG TTGCCGGGTC GCTAACAACA AACTGCGCCC GCGCGGGCTG 9000
AATATATAGA AAGCTGCAGG TCAAAACTGT TGCAATAAGT TGCGTCGTCT TCATCGTTTC 9060
CTACCTTATC AATCTTCTGC CTCGTGGTGA CGGGCCATGA ATTCGCTGAG CCAGCCAGAT 9120
GAGTTGCCTT CTTGTGCCTC GCGTAGTCGA GTTGCAAAGC GCACCGTGTT GGCACGCCCC 9180
GAAAGCACGG CGACATATTC ACGCATATCC CGCAGATCAA ATTCGCAGAT GACGCTTCCA 924 0
CTTTCTCGTT TAAGAAGAAA CTTACGGCTG CCGACCGTCA TGTCTTCACG GATCGCCTGA 9300
AATTCCTTTT CGGTACATTT CAGTCCATCG ACATAAGCCG ATCGATCTGC GGTTGGTGAT 9360
GGATAGAAAA TCTTCGTCAT ACATTGCGCA ACCAAGCTGG CTCCTAGCGG CGATTCCAGA 94 20
ACATGCTCTG GTTGCTGCGT TGCCAGTATT AGCATCCCGT TGTTTTTTCG AACGGTCAGG 94 80
AGGAATTTGT CGACGACAGT CGAAAATTTA GGGTTTAACA AATAGGCGCG AAACTCATCG 9540
CAGCTCATCA CAAAACGGCG GCCGTCGATC ATGGCTCCAA TCCGATGCAG GAGATATGCT 9600
GCAGCGGGAG CGCATACTTC CTCGTATTCG AGAAGATGCG TCATGTCGAA GCCGGTAATC 9660
GACGGATCTA ACTTTACTTC GTCAACTTCG CCGTCAAATG CCCAGCCAAG CGCATGGCCC 9720
CGGCACCAGC GTTGGAGCCG CGCTCCTGCG CCTTCGGCGG GCCCATGCAA CAAAAATTCA 97 80
CGTAACCCCG CGATTGAACG CATTTGTGGA TCAAACGAGA GCTGACGATG GATACCACGG 984 0
ACCAGACGGC GGTTCTCTTC CGGAGAAATC CCACCCCGAC CATCACTCTC GATGAGAGCC 9900
ACGATCCATT CGCGCAGAAA ATCGTGTGAG GCTGCTGTGT TTTCTAGGCC ACGCAACGGC 9960
GCCAACCCGC TGGGTGTGCC TCTGTGAAGT GCCAAATATG TTCCTCCTGT GGCGCGAACC 10020
AGCAATTCGC CACCCCGGTC CTTGTCAAAG AACACGACCG TACCTGCACG GTCGACCATG 10080
CTCTGTTCGA GCATGGCTAG AACAAACATC ATGAGCGTCG TCTTACCCCT CCCGATAGGC 10140
CCGAATATTG CCGTCATGCC AACATCGTGC TCATGCGGGA TATAGTCGAA AGGCGTTCCG 10200
CCATTGGTAC GAAATCGGGC AATCGCGTTG CCCCAGTGGC CTGAGCTGGC GCCCTCTGGA 10260
AAGTTTTCGA AAGAGACAAA CCCTGCGAAA TTGCGTGAAG TGATTGCGCC AGGGCGTGTG 10320
CGCCACTTAA AATTCCCCGG CAATTGGGAC CAATAGGCCG CTTCCATACC AATACCTTCT 10380
TGGACAACCA CGGCACCTGC ATCCGCCATT CGTGTCCGAG CCCGCGCGCC CCTGTCCCCA 10440
AGACTATTGA GATCGTCTGC ATAGACGCAA AGGCTCAAAT GATGTGAGCC CATAACGAAT 10500
TCGTTGCTCG CAAGTGCGTC CTCAGCCTCG GATAATTTGC CGATTTGAGT CACGGCTTTA 10560
TCGCCGGAAC TCAGCATCTG GCTCGATTTG AGGCTAAGTT TCGCGTGCGC TTGCGGGCGA 10620
GTCAGGAACG AAAAACTCTG CGTGAGAACA AGTGGAAAAT CGAGGGATAG CAGCGCGTTG 10680
AGCATGCCCG GCCGTGTTTT TGCAGGGTAT TCGCGAAACG AATAGATGGA TCCAACGTAA 10740
CTGTCTTTTG GCGTTCTGAT CTCGAGTCCT CGCTTGCCGC AAATGACTCT GTCGGTATAA 10800
ATCGAAGCGC CGAGTGAGCC GCTGACGACC GGAACCGGTG TGAACCGACC AGTCATGATC 108 60
AACCGTAGCG CTTCGCCAAT TTCGGTGAAG AGCACACCCT GCTTCTCGCG GATGCCAAGA 10920
CGATGCAGGC CATACGCTTT AAGAGAGCCA GCGACAACAT GCCAAAGATC TTCCATGTTC 10980
CTGATCTGGC CCGTGAGATC GTTTTCCCTT TTTCCGCTTA GCTTGGTGAA CCTCCTCTTT 1104 0
ACCTTCCCTA AAGCCGCCTG TGGGTAGACA ATCAACGTAA GGAAGTGTTC ATTGCGGAGG 11100
AGTTGGCCGG AGAGCACGCG CTGTTCAAAA GCTTCGTTCA GGCTAGCGGC GAAAACACTA 11160
CGGAAGTGTC GCGGCGCCGA TGATGGCACG TCGGCATGAC GTACGAGGTG AGCATATATT 11220
GACACATGAT CATCAGCGAT ATTGCGCAAC AGCGTGTTGA ACGCACGACA ACGCGCATTG 11280
CGCATTTCAG TTTCCTCAAG CTCGAATGCA ACGCCATCAA TTCTCGCAAT GGTCATGATC 11340
GATCCGTCTT CAAGAAGGAC GATATGGTCG CTGAGGTGGC CAATATAAGG GAGATAGATC 114 00
TCACCGGATC TTTCGGTCGT TCCACTCGCG CCGAGCATCA CACCATTCCT CTCCCTCGTG 114 60
GGGGAACCCT AATTGGATTT GGGCTAACAG TAGCGCCCCC CCAAACTGCA CTATCAATGC 11520
TTCTTCCCGC GGTCCGCAAA AATAGCAGGA CGACGCTCGC CGCATTGTAG TCTCGCTCCA 11580
CGATGAGCCG GGCTGCAAAC CATAACGGCA CGAGAACGAC TTCGTAGAGC GGGTTCTGAA 11640
CGATAACGAT GACAAAGCCG GCGAACATCA TGAATAACCC TGCCAATGTC AGTGGCACCC 11700
CAAGAAACAA TGCGGGCCGT GTGGCTGCGA GGTAAAGGGT CGATTCTTCC AAACGATCAG 117 60
CCATCAACTA CCGCCAGTGA GCGTTTGGCC GAGGAAGCTC GCCCCAAACA TGATAACAAT 11820
GCCGCCGACG ACGCCGGCAA CCAGCCCAAG CGAAGCCCGC CCGAACATCC AGGAGATCCC 11880
GATAGCGACA ATGCCGAGAA CAGCGAGTGA CTGGCCGAAC GGACCAAGGA TAAACGTGCA 11940
TATATTGTTA ACCATTGTGG CGGGGTCAGT GCCGCCACCC GCAGATTGCG CTGCGGCGGG 12000
TCCGGATGAG GAAATGCTCC ATGCAATTGC ACCGCACAAG CTTGGGGCGC AGCTCGATAT 12060
CACGCGCATC ATCGCATTCG AGAGCGAGAG GCGATTTAGA TGTAAACGGT ATCTCTCAAA 12120GCATCGCATC AATGCGCACC TCCTTAGTAT AAGTCGAATA AGACTTGATT GTCGTCTGCG 12180
GATTTGCCGT TGTCCTGGTG TGGCGGTGGC GGAGCGATTA AACCGCCAGC GCCATCCTCC 12240
TGCGAGCGGC GCTGATATGA CCCCCAAACA TCCCACGTCT CTTCGGATTT TAGCGCCTCG 12300
TGATCGTCTT TTGGAGGCTC GATTAACGCG GGCACCAGCG ATTGAGCAGC TGTTTCAACT 12360
TTTCGCACGT AGCCGTTTGC AAAACCGCCG ATGAAATTAC CGGTGTTGTA AGCGGAGATC 12420
GCCCGACGAA GCGCAAATTG CTTCTCGTCA ATCGTTTCGC CGCCTGCATA ACGACTTTTC 124 80
AGCATGTTTG CAGCGGCAGA TAATGATGTG CACGCCTGGA GCGCACCGTC AGGTGTCAGA 1254 0
CCGAGCATAG AAAAATTTCG AGAGTTTATT TGCATGAGGC CAACATCCAG CGAATGCCGT 12600
GCATCGAGAC GGTGCCTGAC GACTTGGGTT GCTTGGCTGT GATCTTGCCA GTGAAGCGTT 12660
TCGCCGGTCG TGTTGTCATG AATCGCTAAA GGATCAAAGC GACTCTCCAC CTTAGCTATC 12720
GCCGCAAGCG TAGATGTCGC AACTGATGGG GCACACTTGC GAGCAACATG GTCAAACTCA 12780
GCAGATGAGA GTGGCGTGGC AAGGCTCGAC GAACAGAAGG AGACCATCAA GGCAAGAGAA 12840
AGCGACCCCG ATCTCTTAAG CATACCTTAT CTCCTTAGCT CGCAACTAAC ACCGCCTCTC 12900
CCGTTGGAAG AAGTGCGTTG TTTTATGTTG AAGATTATCG GGAGGGTCGG TTACTCGAAA 12960
ATTTTCAATT GCTTCTTTAT GATTTCAATT GAAGCGAGAA ACCTCGCCCG GCGTCTTGGA 13020
ACGCAACATG GACCGAGAAC CGCGCATCCA TGACTAAGCA ACCGGATCGA CCTATTCAGG 13080
CCGCAGTTGG TCAGGTCAGG CTCAGAACGA AAATGCTCGG CGAGGTTACG CTGTCTGTAA 1314 0
ACCCATTCGA TGAACGGGAA GCTTCCTTCC GATTGCTCTT GGCAGGAATA TTGGCCCATG 13200
CCTGCTTGCG CTTTGCAAAT GCTCTTATCG CGTTGGTATC ATATGCCTTG TCCGCCAGCA 132 60
GAAACGCACT CTAAGCGATT ATTTGTAAAA ATGTTTCGGT CATGCGGCGG TCATGGGCTT 13320
GACCCGCTGT CAGCGCAAGA CGGATCGGTC AACCGTCGGC ATCGACAACA GCGTGAATCT 13380
TGGTGGTCAA ACCGCCACGG GAACGTCCCA TACAGCCATC GTCTTGATCC CGCTGTTTCC 13440
CGTCGCCGCA TGTTGGTGGA CGCGGACACA GGAACTGTCA ATCATGACGA CATTCTATCG 13500
AAAGCCTTGG AAATCACACT CAGAATATGA TCCCAGACGT CTGCCTCACG CCATCGTACA 13560
AAGCGATTGT AGCAGGTTGT ACAGGAACCG TATCGATCAG GAACGTCTGC CCAGGGCGGG 13620
CCCGTCCGGA AGCGCCACAA GATGACATTG ATCACCCGCG TCAACGCGCG GCACGCGACG 13680
CGGCTTATTT GGGAACAAAG GACTGAACAA CAGTCCATTC GAAATCGGTG ACATCAAAGC 1374 0
GGGGACGGGT TATCAGTGGC CTCCAAGTCA AGCCTCAATG AATCAAAATC AGACCGATTT 13800
GCAAACCTGA TTTATGAGTG TGCGGCCTAA ATGATGAAAT CGTCCTTCTA GATCGCCTCC 138 60
GTGGTGTAGC AACACCTCGC AGTATCGCCG TGCTGACCTT GGCCAGGGAA TTGACTGGCA 13920
AGGGTGCTTT CACATGACCG CTCTTTTGGC CGCGATAGAT GATTTCGTTG CTGCTTTGGG 13980
CACGTAGAAG GAGAGAAGTC ATATCGGAGA AATTCCTCCT GGCGCGAGAG CCTGCTCTAT 14 040
CGCGACGGCA TCCCACTGTC GGGAACAGAC CGGATCATTC ACGAGGCGAA AGTCGTCAAC 14100
ACATGCGTTA TAGGCATCTT CCCTTGAAGG ATGATCTTGT TGCTGCCAAT CTGGAGGTGC 14160
GGCAGCCGCA GGCAGATGCG ATCTCAGCGC AACTTGCGGC AAAACATCTC ACTCACCTGA 14 220
AAACCACTAG CGAGTCTCGC GATCAGACGA AGGCCTTTTA CTTAACGACA CAATATCCGA 14 280
TGTCTGCATC ACAGGCGTCG CTATCCCAGT CAATACTAAA GCGGTGCAGG AACTAAAGAT 14 340
TACTGATGAC TTAGGCGTGC CACGAGGCCT GAGACGACGC GCGTAGACAG TTTTTTGAAA 14 4 00
TCATTATCAA AGTGATGGCC TCCGCTGAAG CCTATCACCT CTGCGCCGGT CTGTCGGAGA 14 4 60
GATGGGCAAG CATTATTACG GTCTTCGCGC CCGTACATGC ATTGGACGAT TGCAGGGTCA 14 520
ATGGATCTGA GATCATCCAG AGGATTGCCG CCCTTACCTT CCGTTTCGAG TTGGAGCCAG 14580
CCCCTAAATG AGACGACATA GTCGACTTGA TGTGACAATG CCAAGAGAGA GATTTGCTTA 14 640
ACCCGATTTT TTTGCTCAAG CGTAAGCCTA TTGAAGCTTG CCGGCATGAC GTCCGCGCCG 14700
AAAGAATATC CTACAAGTAA AACATTCTGC ACACCGAAAT GCTTGGTGTA GACATCGATT 14 7 60
ATGTGACCAA GATCCTTAGC AGTTTCGCTT GGGGACCGCT CCGACCAGAA ATACCGAAGT 14820
GAACTGACGC CAATGACAGG AATCCCTTCC GTCTGCAGAT AGGTACCATC GATAGATCTG 14 880
CTGCCTCGCG CGTTTCGGTG ATGACGGTGA AAACCTCTGA CACATGCAGC TCCCGGAGAC 14 940
GGTCACAGCT TGTCTGTAAG CGGATGCCGG GAGCAGACAA GCCCGTCAGG GCGCGTCAGC 15000
GGGTGTTGGC GGGTGTCGGG GCGCAGCCAT GACCCAGTCA CGTAGCGATA GCGGAGTGTA 15060
TACTGGCTTA ACTATGCGGC ATCAGAGCAG ATTGTACTGA GAGTGCACCA TATGCGGTGT 15120
GAAATACCGC ACAGATGCGT AAGGAGAAAA TACCGCATCA GGCGCTCTTC CGCTTCCTCG 15180
CTCACTGACT CGCTGCGCTC GGTCGTTCGG CTGCGGCGAG CGGTATCAGC TCACTCAAAG 15240
GCGGTAATAC GGTTATCCAC AGAATCAGGG GATAACGCAG GAAAGAACAT GTGAGCAAAA 15300
GGCCAGCAAA AGGCCAGGAA CCGTAAAAAG GCCGCGTTGC TGGCGTTTTT CCATAGGCTC 15360
CGCCCCCCTG ACGAGCATCA CAAAAATCGA CGCTCAAGTC AGAGGTGGCG AAACCCGACA 15420
GGACTATAAA GATACCAGGC GTTTCCCCCT GGAAGCTCCC TCGTGCGCTC TCCTGTTCCG 154 80
ACCCTGCCGC TTACCGGATA CCTGTCCGCC TTTCTCCCTT CGGGAAGCGT GGCGCTTTCT 15540
CATAGCTCAC GCTGTAGGTA TCTCAGTTCG GTGTAGGTCG TTCGCTCCAA GCTGGGCTGT 15600
GTGCACGAAC CCCCCGTTCA GCCCGACCGC TGCGCCTTAT CCGGTAACTA TCGTCTTGAG 15 660TCCAACCCGG TAAGACACGA CTTATCGCCA CTGGCAGCAG CCACTGGTAA CAGGATTAGC 15720
AGAGCGAGGT ATGTAGGCGG TGCTACAGAG TTCTTGAAGT GGTGGCCTAA CTACGGCTAC 15780
ACTAGAAGGA CAGTATTTGG TATCTGCGCT CTGCTGAAGC CAGTTACCTT CGGAAAAAGA 15840
GTTGGTAGCT CTTGATCCGG CAAACAAACC ACCGCTGGTA GCGGTGGTTT TTTTGTTTGC 15900
AAGCAGCAGA TTACGCGCAG AAAAAAAGGA TCTCAAGAAG ATCCTTTGAT CTTTTCTACG 15960
GGGTCTGACG CTCAGTGGAA CGAAAACTCA CGTTAAGGGA TTTTGGTCAT GAGATTATCA 16020
AAAAGGATCT TCACCTAGAT CCTTTTAAAT TAAAAATGAA GTTTTAAATC AATCTAAAGT 16080
ATATATGAGT AAACTTGGTC TGACAGTTAC CAATGCTTAA TCAGTGAGGC ACCTATCTCA 1614 0
GCGATCTGTC TATTTCGTTC ATCCATAGTT GCCTGACTCC CCGTCGTGTA GATAACTACG 16200
ATACGGGAGG GCTTACCATC TGGCCCCAGT GCTGCAATGA TACCGCGAGA CCCACGCTCA 16260
CCGGCTCCAG ATTTATCAGC AATAAACCAG CCAGCCGGAA GGGCCGAGCG CAGAAGTGGT 16320
CCTGCAACTT TATCCGCCTC CATCCAGTCT ATTAATTGTT GCCGGGAAGC TAGAGTAAGT 16380
AGTTCGCCAG TTAATAGTTT GCGCAACGTT GTTGCCATTG CTGCAGGGGG GGGGGGGGGG 16440
GGGTTCCATT GTTCATTCCA CGGACAAAAA CAGAGAAAGG AAACGACAGA GGCCAAAAAG 16500
CTCGCTTTCA GCACCTGTCG TTTCCTTTCT TTTCAGAGGG TATTTTAAAT AAAAACATTA 16560
AGTTATGACG AAGAAGAACG GAAACGCCTT AAACCGGAAA ATTTTCATAA ATAGCGAAAA 16620
CCCGCGAGGT CCCTGTCGGA TCACCGGAAA GGACCCGTAA AGTGATAATG ATTATCATCT 16680
ACATATCACA ACGTGCGTGG AGGCCATCAA ACCACGTCAA ATAATCAATT ATGACGCAGG 16740
TATCGTATTA ATTGATCTGC ATCAACTTAA CGTAAAAACA ACTTCAGACA ATACAAATCA 16800
GCGACACTGA ATACGGGGCA ACCTCATGTC CCCCCCCCCC CCCCCCCTGC AGGCATCGTG 168 60
GTGTCACGCT CGTCGTTTGG TATGGCTTCA TTCAGCTCCG GTTCCCAACG ATCAAGGCGA 16920
GTTACATGAT CCCCCATGTT GTGCAAAAAA GCGGTTAGCT CCTTCGGTCC TCCGATCGTT 16980
GTCAGAAGTA AGTTGGCCGC AGTGTTATCA CTCATGGTTA TGGCAGCACT GCATAATTCT 17040
CTTACTGTCA TGCCATCCGT AAGATGCTTT TCTGTGACTG GTGAGTACTC AACCAAGTCA 17100
TTCTGAGAAT AGTGTATGCG GCGACCGAGT TGCTCTTGCC CGGCGTCAAC ACGGGATAAT 17160
ACCGCGCCAC ATAGCAGAAC TTTAAAAGTG CTCATCATTG GAAAACGTTC TTCGGGGCGA 17220
AAACTCTCAA GGATCTTACC GCTGTTGAGA TCCAGTTCGA TGTAACCCAC TCGTGCACCC 17280
AACTGATCTT CAGCATCTTT TACTTTCACC AGCGTTTCTG GGTGAGCAAA AACAGGAAGG 17340
CAAAATGCCG CAAAAAAGGG AATAAGGGCG ACACGGAAAT GTTGAATACT CATACTCTTC 17 4 00
CTTTTTCAAT ATTATTGAAG CATTTATCAG GGTTATTGTC TCATGAGCGG ATACATATTT 17 4 60
GAATGTATTT AGAAAAATAA ACAAATAGGG GTTCCGCGCA CATTTCCCCG AAAAGTGCCA 17 520
CCTGACGTCT AAGAAACCAT TATTATCATG ACATTAACCT ATAAAAATAG GCGTATCACG 17 580
AGGCCCTTTC GTCTTCAAGA ATTGGTCGAC GATCTTGCTG CGTTCGGATA TTTTCGTGGA 17 64 0
GTTCCCGCCA CAGACCCGGA TTGAAGGCGA GATCCAGCAA CTCGCGCCAG ATCATCCTGT 17 700
GACGGAACTT TGGCGCGTGA TGACTGGCCA GGACGTCGGC CGAAAGAGCG ACAAGCAGAT 17760
CACGCTTTTC GACAGCGTCG GATTTGCGAT CGAGGATTTT TCGGCGCTGC GCTACGTCCG 17 820
CGACCGCGTT GAGGGATCAA GCCACAGCAG CCCACTCGAC CTTCTAGCCG ACCCAGACGA 17 880
GCCAAGGGAT CTTTTTGGAA TGCTGCTCCG TCGTCAGGCT TTCCGACGTT TGGGTGGTTG 17940
AACAGAAGTC ATTATCGTAC GGAATGCCAA GCACTCCCGA GGGGAACCCT GTGGTTGGCA 18000
TGCACATACA AATGGACGAA CGGATAAACC TTTTCACGCC CTTTTAAATA TCCGTTATTC 18060
TAATAAACGC TCTTTTCTCT TAGGTTTACC CGCCAATATA TCCTGTCAAA CACTGATAGT 18120
TTAAACTGAA GGCGGGAAAC GACAATCTGA TCATGAGCGG AGAATTAAGG GAGTCACGTT 18180
ATGACCCCCG CCGATGACGC GGGACAAGCC GTTTTACGTT TGGAACTGAC AGAACCGCAA 1824 0
CGTTGAAGGA GCCACTCAGC AAGCTGGTAC GATTGTAATA CGACTCACTA TAGGGCGAAT 18300
TGAGCGCTGT TTAAACGCTC TTCAACTGGA AGAGCGGTTA CCCGGACCGA AGCTTGCATG 18360
CCTGCAGTGC AGCGTGACCC GGTCGTGCCC CTCTCTAGAG ATAATGAGCA TTGCATGTCT 18420
AAGTTATAAA AAATTACCAC ATATTTTTTT TGTCACACTT GTTTGAAGTG CAGTTTATCT 184 80
ATCTTTATAC ATATATTTAA ACTTTACTCT ACGAATAATA TAATCTATAG TACTACAATA 1854 0
ATATCAGTGT TTTAGAGAAT CATATAAATG AACAGTTAGA CATGGTCTAA AGGACAATTG 18600
AGTATTTTGA CAACAGGACT CTACAGTTTT ATCTTTTTAG TGTGCATGTG TTCTCCTTTT 18 660
TTTTTGCAAA TAGCTTCACC TATATAATAC TTCATCCATT TTATTAGTAC ATCCATTTAG 18720
GGTTTAGGGT TAATGGTTTT TATAGACTAA TTTTTTTAGT ACATCTATTT TATTCTATTT 18780
TAGCCTCTAA ATTAAGAAAA CTAAAACTCT ATTTTAGTTT TTTTATTTAA TAATTTAGAT 1884 0
ATAAAATAGA ATAAAATAAA GTGACTAAAA ATTAAACAAA TACCCTTTAA GAAATTAAAA 18 900
AAACTAAGGA AACATTTTTC TTGTTTCGAG TAGATAATGC CAGCCTGTTA AACGCCGTCG 18 960
ACGAGTCTAA CGGACACCAA CCAGCGAACC AGCAGCGTCG CGTCGGGCCA AGCGAAGCAG 19020
ACGGCACGGC ATCTCTGTCG CTGCCTCTGG ACCCCTCTCG AGAGTTCCGC TCCACCGTTG 19080
GACTTGCTCC GCTGTCGGCA TCCAGAAATT GCGTGGCGGA GCGGCAGACG TGAGCCGGCA 1914 0
CGGCAGGCGG CCTCCTCCTC CTCTCACGGC ACGGCAGCTA CGGGGGATTC CTTTCCCACC 19200GCTCCTTCGC TTTCCCTTCC TCGCCCGCCG TAATAAATAG ACACCCCCTC CACACCCTCT 19260
TTCCCCAACC TCGTGTTGTT CGGAGCGCAC ACACACACAA CCAGATCTCC CCCAAATCCA 19320
CCCGTCGGCA CCTCCGCTTC AAGGTACGCC GCTCGTCCTC CCCCCCCCCC CCTCTCTACC 19380
TTCTCTAGAT CGGCGTTCCG GTCCATGGTT AGGGCCCGGT AGTTCTACTT CTGTTCATGT 19440
TTGTGTTAGA TCCGTGTTTG TGTTAGATCC GTGCTGCTAG CGTTCGTACA CGGATGCGAC 19500
CTGTACGTCA GACACGTTCT GATTGCTAAC TTGCCAGTGT TTCTCTTTGG GGAATCCTGG 19560
GATGGCTCTA GCCGTTCCGC AGACGGGATC GATTTCATGA TTTTTTTTGT TTCGTTGCAT 19620
AGGGTTTGGT TTGCCCTTTT CCTTTATTTC AATATATGCC GTGCACTTGT TTGTCGGGTC 19680
ATCTTTTCAT GCTTTTTTTT GTCTTGGTTG TGATGATGTG GTCTGGTTGG GCGGTCGTTC 19740
TAGATCGGAG TAGAATTCTG TTTCAAACTA CCTGGTGGAT TTATTAATTT TGGATCTGTA 19800
TGTGTGTGCC ATACATATTC ATAGTTACGA ATTGAAGATG ATGGATGGAA ATATCGATCT 198 60
AGGATAGGTA TACATGTTGA TGCGGGTTTT ACTGATGCAT ATACAGAGAT GCTTTTTGTT 19920
CGCTTGGTTG TGATGATGTG GTGTGGTTGG GCGGTCGTTC ATTCGTTCTA GATCGGAGTA 19980
GAATACTGTT TCAAACTACC TGGTGTATTT ATTAATTTTG GAACTGTATG TGTGTGTCAT 2004 0
ACATCTTCAT AGTTACGAGT TTAAGATGGA TGGAAATATC GATCTAGGAT AGGTATACAT 20100
GTTGATGTGG GTTTTACTGA TGCATATACA TGATGGCATA TGCAGCATCT ATTCATATGC 20160
TCTAACCTTG AGTACCTATC TATTATAATA AACAAGTATG TTTTATAATT ATTTTGATCT 20220
TGATATACTT GGATGATGGC ATATGCAGCA GCTATATGTG GATTTTTTTA GCCCTGCCTT 20280
CATACGCTAT TTATTTGCTT GGTACTGTTT CTTTTGTCGA TGCTCACCCT GTTGTTTGGT 2034 0
GTTACTTCTG CAGGTCGACT CTAGAGGATC TACAAGTTTG TACAAAAAAG CAGGCTCCGC 204 00
GGCCGCCCCC TTCACCATGG CTCGGCAGCA AAGCGTGCAG GCCTTGTGTG TGCTGGCGGC 204 60
GCTTCTCTTC GCCGCCTCCC TGCCGTCGCC GGCCGCCGCG GGGGTGCACC TCTCCTCGCT 20520
GCCCAAAGCG CTCGACGTCA CCACCTCCGC CAAACCCGGC CAAGTCCTGC ACGCCGGCGT 20580
GGACTCGCTG ACGGTGACGT GGAGCCTGAA CGCCACGGAG CCGGCCGGCG CCGACGCCGG 2064 0
GTACAAGGGC GTGAAGGTGA AGCTGTGCTA CGCGCCGGCG AGCCAGAAGG ACCGCGGGTG 20700
GCGCAAGTCC GAGGACGACA TCAGCAAGGA CAAGGCGTGC CAGTTCAAGG TCACCGAGCA 207 60
GGCGTACGCG GCGGCGGCGC CCGGCAGCTT CCAGTACGCC GTCGCCCGCG ACGTCCCCTC 20820
GGGCTCCTAC TACCTGCGCG CCTTCGCCAC GGACGCGTCG GGCGCCGAGG TGGCCTACGG 20880
CCAGACGGCG CCCACCGCCG CCTTCGACGT CGCCGGCATC ACCGGCATCC ACGCCTCTCT 20940
CAAGATCGCC GCCGGCGTCT TCTCGGCCTT CTCCGTCGTC GCGCTCGCCT TCTTCTTCGT 21000
CATCGAGACC CGCAAGAAGA ACAAGTAGAA GGGTGGGCGC GCCGACCCAG CTTTCTTGTA 21060
CAAAGTGGTG TTAACCTAGA CTTGTCCATC TTCTGGATTG GCCAACTTAA TTAATGTATG 21120
AAATAAAAGG ATGCACACAT AGTGACATGC TAATCACTAT AATGTGGGCA TCAAAGTTGT 21180
GTGTTATGTG TAATTACTAG TTATCTGAAT AAAAGAGAAA GAGATCATCC ATATTTCTTA 21240
TCCTAAATGA ATGTCACGTG TCTTTATAAT TCTTTGATGA ACCAGATGCA TTTCATTAAC 21300
CAAATCCATA TACATATAAA TATTAATCAT ATATAATTAA TATCAATTGG GTTAGCAAAA 21360
CAAATCTAGT CTAGGTGTGT TTTGCGAATT GCGGCCGCCA CCGCGGTGGA GCTCGAATTC 21420
CGGTCCGGGT CACCTTTGTC CACCAAGATG GAACTGCGGC CGCTCATTAA TTAAGTCAGG 214 80
CGCGCCTCTA GTTGAAGACA CGTTCATGTC TTCATCGTAA GAAGACACTC AGTAGTCTTC 2154 0
GGCCAGAATG GCCATCTGGA TTCAGCAGGC CTAGAAGGCC ATTTAAATCC TGAGGATCTG 21600
GTCTTCCTAA GGACCCGGGC GGTCCGATTA AACTTTAATT CGGACCGAAG CTTGCATGCC 21660
TGCAGTGCAG CGTGACCCGG TCGTGCCCCT CTCTAGAGAT AATGAGCATT GCATGTCTAA 21720
GTTATAAAAA ATTACCACAT ATTTTTTTTG TCACACTTGT TTGAAGTGCA GTTTATCTAT 21780
CTTTATACAT ATATTTAAAC TTTACTCTAC GAATAATATA ATCTATAGTA CTACAATAAT 21840
ATCAGTGTTT TAGAGAATCA TATAAATGAA CAGTTAGACA TGGTCTAAAG GACAATTGAG 21900
TATTTTGACA ACAGGACTCT ACAGTTTTAT CTTTTTAGTG TGCATGTGTT CTCCTTTTTT 21960
TTTGCAAATA GCTTCACCTA TATAATACTT CATCCATTTT ATTAGTACAT CCATTTAGGG 22020
TTTAGGGTTA ATGGTTTTTA TAGACTAATT TTTTTAGTAC ATCTATTTTA TTCTATTTTA 22080
GCCTCTAAAT TAAGAAAACT AAAACTCTAT TTTAGTTTTT TTATTTAATA ATTTAGATAT 22140AAAATAGAAT AAAATAAAGT GACTAAAAAT TAAACAAATA CCCTTTAAGA AATTAAAAAA 22200
ACTAAGGAAA CATTTTTCTT GTTTCGAGTA GATAATGCCA GCCTGTTAAA CGCCGTCGAC 222 60
GAGTCTAACG GACACCAACC AGCGAACCAG CAGCGTCGCG TCGGGCCAAG CGAAGCAGAC 22320GGCACGGCAT CTCTGTCGCT GCCTCTGGAC CCCTCTCGAG AGTTCCGCTC CACCGTTGGA 22380
CTTGCTCCGC TGTCGGCATC CAGAAATTGC GTGGCGGAGC GGCAGACGTG AGCCGGCACG 224 4 0
GCAGGCGGCC TCCTCCTCCT CTCACGGCAC CGGCAGCTAC GGGGGATTCC TTTCCCACCG 22500
CTCCTTCGCT TTCCCTTCCT CGCCCGCCGT AATAAATAGA CACCCCCTCC ACACCCTCTT 22560
TCCCCAACCT CGTGTTGTTC GGAGCGCACA CACACACAAC CAGATCTCCC CCAAATCCAC 22620
CCGTCGGCAC CTCCGCTTCA AGGTACGCCG CTCGTCCTCC CCCCCCCCCC TCTCTACCTT 22680
CTCTAGATCG GCGTTCCGGT CCATGCATGG TTAGGGCCCG GTAGTTCTAC TTCTGTTCAT 227 4 0GTTTGTGTTA GATCCGTGTT TGTGTTAGAT CCGTGCTGCT AGCGTTCGTA CACGGATGCG 22800
ACCTGTACGT CAGACACGTT CTGATTGCTA ACTTGCCAGT GTTTCTCTTT GGGGAATCCT 22860
GGGATGGCTC TAGCCGTTCC GCAGACGGGA TCGATTTCAT GATTTTTTTT GTTTCGTTGC 22920
ATAGGGTTTG GTTTGCCCTT TTCCTTTATT TCAATATATG CCGTGCACTT GTTTGTCGGG 22980
TCATCTTTTC ATGCTTTTTT TTGTCTTGGT TGTGATGATG TGGTCTGGTT GGGCGGTCGT 23040
TCTAGATCGG AGTAGAATTC TGTTTCAAAC TACCTGGTGG ATTTATTAAT TTTGGATCTG 23100
TATGTGTGTG CCATACATAT TCATAGTTAC GAATTGAAGA TGATGGATGG AAATATCGAT 23160
CTAGGATAGG TATACATGTT GATGCGGGTT TTACTGATGC ATATACAGAG ATGCTTTTTG 23220
TTCGCTTGGT TGTGATGATG TGGTGTGGTT GGGCGGTCGT TCATTCGTTC TAGATCGGAG 23280
TAGAATACTG TTTCAAACTA CCTGGTGTAT TTATTAATTT TGGAACTGTA TGTGTGTGTC 23340
ATACATCTTC ATAGTTACGA GTTTAAGATG GATGGAAATA TCGATCTAGG ATAGGTATAC 23400
ATGTTGATGT GGGTTTTACT GATGCATATA CATGATGGCA TATGCAGCAT CTATTCATAT 23460
GCTCTAACCT TGAGTACCTA TCTATTATAA TAAACAAGTA TGTTTTATAA TTATTTTGAT 23520
CTTGATATAC TTGGATGATG GCATATGCAG CAGCTATATG TGGATTTTTT TAGCCCTGCC 23580
TTCATACGCT ATTTATTTGC TTGGTACTGT TTCTTTTGTC GATGCTCACC CTGTTGTTTG 23640
GTGTTACTTC TGCAGGTCGA CTTTAACTTA GCCTAGGATC CACACGACAC CATGTCCCCC 23700
GAGCGCCGCC CCGTCGAGAT CCGCCCGGCC ACCGCCGCCG ACATGGCCGC CGTGTGCGAC 23760
ATCGTGAACC ACTACATCGA GACCTCCACC GTGAACTTCC GCACCGAGCC GCAGACCCCG 23820
CAGGAGTGGA TCGACGACCT GGAGCGCCTC CAGGACCGCT ACCCGTGGCT CGTGGCCGAG 23880
GTGGAGGGCG TGGTGGCCGG CATCGCCTAC GCCGGCCCGT GGAAGGCCCG CAACGCCTAC 23940
GACTGGACCG TGGAGTCCAC CGTGTACGTG TCCCACCGCC ACCAGCGCCT CGGCCTCGGC 24000
TCCACCCTCT ACACCCACCT CCTCAAGAGC ATGGAGGCCC AGGGCTTCAA GTCCGTGGTG 24060
GCCGTGATCG GCCTCCCGAA CGACCCGTCC GTGCGCCTCC ACGAGGCCCT CGGCTACACC 24120
GCCCGCGGCA CCCTCCGCGC CGCCGGCTAC AAGCACGGCG GCTGGCACGA CGTCGGCTTC 24180
TGGCAGCGCG ACTTCGAGCT GCCGGCCCCG CCGCGCCCGG TGCGCCCGGT GACGCAGATC 24240
TGAGTCGAAA CCTAGACTTG TCCATCTTCT GGATTGGCCA ACTTAATTAA TGTATGAAAT 24300
AAAAGGATGC ACACATAGTG ACATGCTAAT CACTATAATG TGGGCATCAA AGTTGTGTGT 24360
TATGTGTAAT TACTAGTTAT CTGAATAAAA GAGAAAGAGA TCATCCATAT TTCTTATCCT 24420
AAATGAATGT CACGTGTCTT TATAATTCTT TGATGAACCA GATGCATTTC ATTAACCAAA 24480
TCCATATACA TATAAATATT AATCATATAT AATTAATATC AATTGGGTTA GCAAAACAAA 24540
TCTAGTCTAG GTGTGTTTTG CGAATTGCGG CCGCCACCGC GGTGGAGCTC GAATTCATTC 24600
CGATTAATCG TGGCCTCTTG CTCTTCAGGA TGAAGAGCTA TGTTTAAACG TGCAAGCGCT 24660
ACTAGACAAT TCAGTACATT AAAAACGTCC GCAATGTGTT ATTAAGTTGT CTAAGCGTCA 24720
ATTTGTTTAC ACCACAATAT ATCCTGCCAC CAGCCAGCCA ACAGCTCCCC GACCGGCAGC 24780
TCGGCACAAA ATCACCACTC GATACAGGCA GCCCATCAGT CCGGGACGGC GTCAGCGGGA 24840
GAGCCGTTGT AAGGCGGCAG ACTTTGCTCA TGTTACCGAT GCTATTCGGA AGAACGGCAA 24900
CTAAGCTGCC GGGTTTGAAA CACGGATGAT CTCGCGGAGG GTAGCATGTT GATTGTAACG 24960
ATGACAGAGC GTTGCTGCCT GTGATCAAAT ATCATCTCCC TCGCAGAGAT CCGAATTATC 25020
AGCCTTCTTA TTCATTTCTC GCTTAACCGT GACAGGCTGT CGATCTTGAG AACTATGCCG 25080
ACATAATAGG AAATCGCTGG ATAAAGCCGC TGAGGAAGCT GAGTGGCGCT ATTTCTTTAG 25140
AAGTGAACGT TGACGATCGT CGACCGTACC CCGATGAATT AATTCGGACG TACGTTCTGA 25200
ACACAGCTGG ATACTTACTT GGGCGATTGT CATACATGAC ATCAACAATG TACCCGTTTG 25260
TGTAACCGTC TCTTGGAGGT TCGTATGACA CTAGTGGTTC CCCTCAGCTT GCGACTAGAT 25320
GTTGAGGCCT AACATTTTAT TAGAGAGCAG GCTAGTTGCT TAGATACATG ATCTTCAGGC 25380
CGTTATCTGT CAGGGCAAGC GAAAATTGGC CATTTATGAC GACCAATGCC CCGCAGAAGC 25440
TCCCATCTTT GCCGCCATAG ACGCCGCGCC CCCCTTTTGG GGTGTAGAAC ATCCTTTTGC 25500
CAGATGTGGA AAAGAAGTTC GTTGTCCCAT TGTTGGCAAT GACGTAGTAG CCGGCGAAAG 25560
TGCGAGACCC ATTTGCGCTA TATATAAGCC TACGATTTCC GTTGCGACTA TTGTCGTAAT 25620
TGGATGAACT ATTATCGTAG TTGCTCTCAG AGTTGTCGTA ATTTGATGGA CTATTGTCGT 25680
AATTGCTTAT GGAGTTGTCG TAGTTGCTTG GAGAAATGTC GTAGTTGGAT GGGGAGTAGT 25740
CATAGGGAAG ACGAGCTTCA TCCACTAAAA CAATTGGCAG GTCAGCAAGT GCCTGCCCCG 25800
ATGCCATCGC AAGTACGAGG CTTAGAACCA CCTTCAACAG ATCGCGCATA GTCTTCCCCA 25860
GCTCTCTAAC GCTTGAGTTA AGCCGCGCCG CGAAGCGGCG TCGGCTTGAA CGAATTGTTA 25920
GACATTATTT GCCGACTACC TTGGTGATCT CGCCTTTCAC GTAGTGAACA AATTCTTCCA 25980
ACTGATCTGC GCGCGAGGCC AAGCGATCTT CTTGTCCAAG ATAAGCCTGC CTAGCTTCAA 26040
GTATGACGGG CTGATACTGG GCCGGCAGGC GCTCCATTGC CCAGTCGGCA GCGACATCCT 26100
TCGGCGCGAT TTTGCCGGTT ACTGCGCTGT ACCAAATGCG GGACAACGTA AGCACTACAT 26160
TTCGCTCATC GCCAGCCCAG TCGGGCGGCG AGTTCCATAG CGTTAAGGTT TCATTTAGCG 26220
CCTCAAATAG ATCCTGTTCA GGAACCGGAT CAAAGAGTTC CTCCGCCGCT GGACCTACCA 26280AGGCAACGCT ATGTTCTCTT GCTTTTGTCA GCAAGATAGC CAGATCAATG TCGATCGTGG 26340
CTGGCTCGAA GATACCTGCA AGAATGTCAT TGCGCTGCCA TTCTCCAAAT TGCAGTTCGC 26400
GCTTAGCTGG ATAACGCCAC GGAATGATGT CGTCGTGCAC AACAATGGTG ACTTCTACAG 264 60
CGCGGAGAAT CTCGCTCTCT CCAGGGGAAG CCGAAGTTTC CAAAAGGTCG TTGATCAAAG 26520
CTCGCCGCGT TGTTTCATCA AGCCTTACAG TCACCGTAAC CAGCAAATCA ATATCACTGT 26580
GTGGCTTCAG GCCGCCATCC ACTGCGGAGC CGTACAAATG TACGGCCAGC AACGTCGGTT 26640
CGAGATGGCG CTCGATGACG CCAACTACCT CTGATAGTTG AGTCGATACT TCGGCGATCA 26700
CCGCTTCCCT CATGATGTTT AACTCCTGAA TTAAGCCGCG CCGCGAAGCG GTGTCGGCTT 267 60
GAATGAATTG TTAGGCGTCA TCCTGTGCTC CCGAGAACCA GTACCAGTAC ATCGCTGTTT 26820
CGTTCGAGAC TTGAGGTCTA GTTTTATACG TGAACAGGTC AATGCCGCCG AGAGTAAAGC 26880
CACATTTTGC GTACAAATTG CAGGCAGGTA CATTGTTCGT TTGTGTCTCT AATCGTATGC 2694 0
CAAGGAGCTG TCTGCTTAGT GCCCACTTTT TCGCAAATTC GATGAGACTG TGCGCGACTC 27000
CTTTGCCTCG GTGCGTGTGC GACACAACAA TGTGTTCGAT AGAGGCTAGA TCGTTCCATG 27060
TTGAGTTGAG TTCAATCTTC CCGACAAGCT CTTGGTCGAT GAATGCGCCA TAGCAAGCAG 27120
AGTCTTCATC AGAGTCATCA TCCGAGATGT AATCCTTCCG GTAGGGGCTC ACACTTCTGG 27180
TAGATAGTTC AAAGCCTTGG TCGGATAGGT GCACATCGAA CACTTCACGA ACAATGAAAT 2724 0
GGTTCTCAGC ATCCAATGTT TCCGCCACCT GCTCAGGGAT CACCGAAATC TTCATATGAC 27 300
GCCTAACGCC TGGCACAGCG GATCGCAAAC CTGGCGCGGC TTTTGGCACA AAAGGCGTGA 27360
CAGGTTTGCG AATCCGTTGC TGCCACTTGT TAACCCTTTT GCCAGATTTG GTAACTATAA 27 4 20
TTTATGTTAG AGGCGAAGTC TTGGGTAAAA ACTGGCCTAA AATTGCTGGG GATTTCAGGA 274 80
AAGTAAACAT CACCTTCCGG CTCGATGTCT ATTGTAGATA TATGTAGTGT ATCTACTTGA 27 540
TCGGGGGATC TGCTGCCTCG CGCGTTTCGG TGATGACGGT GAAAACCTCT GACACATGCA 27 600
GCTCCCGGAG ACGGTCACAG CTTGTCTGTA AGCGGATGCC GGGAGCAGAC AAGCCCGTCA 27660
GGGCGCGTCA GCGGGTGTTG GCGGGTGTCG GGGCGCAGCC ATGACCCAGT CACGTAGCGA 27 720
TAGCGGAGTG TATACTGGCT TAACTATGCG GCATCAGAGC AGATTGTACT GAGAGTGCAC 277 80
CATATGCGGT GTGAAATACC GCACAGATGC GTAAGGAGAA AATACCGCAT CAGGCGCTCT 2784 0
TCCGCTTCCT CGCTCACTGA CTCGCTGCGC TCGGTCGTTC GGCTGCGGCG AGCGGTATCA 27 900
GCTCACTCAA AGGCGGTAAT ACGGTTATCC ACAGAATCAG GGGATAACGC AGGAAAGAAC 27 960
ATGTGAGCAA AAGGCCAGCA AAAGGCCAGG AACCGTAAAA AGGCCGCGTT GCTGGCGTTT 28020
TTCCATAGGC TCCGCCCCCC TGACGAGCAT CACAAAAATC GACGCTCAAG TCAGAGGTGG 28080
CGAAACCCGA CAGGACTATA AAGATACCAG GCGTTTCCCC CTGGAAGCTC CCTCGTGCGC 28140
TCTCCTGTTC CGACCCTGCC GCTTACCGGA TACCTGTCCG CCTTTCTCCC TTCGGGAAGC 28200
GTGGCGCTTT CTCATAGCTC ACGCTGTAGG TATCTCAGTT CGGTGTAGGT CGTTCGCTCC 28260
AAGCTGGGCT GTGTGCACGA ACCCCCCGTT CAGCCCGACC GCTGCGCCTT ATCCGGTAAC 28320
TATCGTCTTG AGTCCAACCC GGTAAGACAC GACTTATCGC CACTGGCAGC AGCCACTGGT 28380
AACAGGATTA GCAGAGCGAG GTATGTAGGC GGTGCTACAG AGTTCTTGAA GTGGTGGCCT 28440
AACTACGGCT ACACTAGAAG GACAGTATTT GGTATCTGCG CTCTGCTGAA GCCAGTTACC 28500
TTCGGAAAAA GAGTTGGTAG CTCTTGATCC GGCAAACAAA CCACCGCTGG TAGCGGTGGT 28560
TTTTTTGTTT GCAAGCAGCA GATTACGCGC AGAAAAAAAG GATCTCAAGA AGATCCTTTG 28 620
ATCTTTTCTA CGGGGTCTGA CGCTCAGTGG AACGAAAACT CACGTTAAGG GATTTTGGTC 28 680
ATGAGATTAT CAAAAAGGAT CTTCACCTAG ATCCTTTTAA ATTAAAAATG AAGTTTTAAA 2874 0
TCAATCTAAA GTATATATGA GTAAACTTGG TCTGACAGTT ACCAATGCTT AATCAGTGAG 28800
GCACCTATCT CAGCGATCTG TCTATTTCGT TCATCCATAG TTGCCTGACT CCCCGTCGTG 28860
TAGATAACTA CGATACGGGA GGGCTTACCA TCTGGCCCCA GTGCTGCAAT GATACCGCGA 28 920
GACCCACGCT CACCGGCTCC AGATTTATCA GCAATAAACC AGCCAGCCGG AAGGGCCGAG 28 980
CGCAGAAGTG GTCCTGCAAC TTTATCCGCC TCCATCCAGT CTATTAATTG TTGCCGGGAA 29040
GCTAGAGTAA GTAGTTCGCC AGTTAATAGT TTGCGCAACG TTGTTGCCAT TGCTGCAGGG 29100
GGGGGGGGGG GGGGGGACTT CCATTGTTCA TTCCACGGAC AAAAACAGAG AAAGGAAACG 29160
ACAGAGGCCA AAAAGCCTCG CTTTCAGCAC CTGTCGTTTC CTTTCTTTTC AGAGGGTATT 29220
TTAAATAAAA ACATTAAGTT ATGACGAAGA AGAACGGAAA CGCCTTAAAC CGGAAAATTT 29280
TCATAAATAG CGAAAACCCG CGAGGTCGCC GCCCCGTAAG CCGCCCCGTA ACCTGTCGGA 2934 0
TCACCGGAAA GGACCCGTAA AGTGATAATG ATTATCATCT ACATATCACA ACGTGCGTGG 29400
AGGCCATCAA ACCACGTCAA ATAATCAATT ATGACGCAGG TATCGTATTA ATTGATCTGC 294 60
ATCAACTTAA CGTAAAAACA ACTTCAGACA ATACAAATCA GCGACACTGA ATACGGGGCA 29520
ACCTCATGTC CCCCCCCCCC CCCCCCCTGC AGGCATCGTG GTGTCACGCT CGTCGTTTGG 29580
TATGGCTTCA TTCAGCTCCG GTTCCCAACG ATCAAGGCGA GTTACATGAT CCCCCATGTT 29640
GTGCAAAAAA GCGGTTAGCT CCTTCGGTCC TCCGATCGTT GTCAGAAGTA AGTTGGCCGC 29700
AGTGTTATCA CTCATGGTTA TGGCAGCACT GCATAATTCT CTTACTGTCA TGCCATCCGT 29760
AAGATGCTTT TCTGTGACTG GTGAGTACTC AACCAAGTCA TTCTGAGAAT AGTGTATGCG 29820GCGACCGAGT TGCTCTTGCC CGGCGTCAAC ACGGGATAAT ACCGCGCCAC ATAGCAGAAC 29880
TTTAAAAGTG CTCATCATTG GAAAACGTTC TTCGGGGCGA AAACTCTCAA GGATCTTACC 29940
GCTGTTGAGA TCCAGTTCGA TGTAACCCAC TCGTGCACCC AACTGATCTT CAGCATCTTT 30000
TACTTTCACC AGCGTTTCTG GGTGAGCAAA AACAGGAAGG CAAAATGCCG CAAAAAAGGG 30060
AATAAGGGCG ACACGGAAAT GTTGAATACT CATACTCTTC CTTTTTCAAT ATTATTGAAG 30120
CATTTATCAG GGTTATTGTC TCATGAGCGG ATACATATTT GAATGTATTT AGAAAAATAA 30180
ACAAATAGGG GTTCCGCGCA CATTTCCCCG AAAAGTGCCA CCTGACGTCT AAGAAACCAT 3024 0
TATTATCATG ACATTAACCT ATAAAAATAG GCGTATCACG AGGCCCTTTC GTCTTCAAGA 30300
ATTCGGAGCT TTTGCCATTC TCACCGGATT CAGTCGTCAC TCATGGTGAT TTCTCACTTG 30360
ATAACCTTAT TTTTGACGAG GGGAAATTAA TAGGTTGTAT TGATGTTGGA CGAGTCGGAA 30420
TCGCAGACCG ATACCAGGAT CTTGCCATCC TATGGAACTG CCTCGGTGAG TTTTCTCCTT 30480
CATTACAGAA ACGGCTTTTT CAAAAATATG GTATTGATAA TCCTGATATG AATAAATTGC 30540
AGTTTCATTT GATGCTCGAT GAGTTTTTCT AATCAGAATT GGTTAATTGG TTGTAACACT 30600
GGCAGAGCAT TACGCTGACT TGACGGGACG GCGGCTTTGT TGAATAAATC GAACTTTTGC 30 660
TGAGTTGAAG GATCAGATCA CGCATCTTCC CGACAACGCA GACCGTTCCG TGGCAAAGCA 30720
AAAGTTCAAA ATCACCAACT GGTCCACCTA CAACAAAGCT CTCATCAACC GTGGCTCCCT 307 80
CACTTTCTGG CTGGATGATG GGGCGATTCA GGCCTGGTAT GAGTCAGCAA CACCTTCTTC 3084 0
ACGAGGCAGA CCTCAGCGCC AGAAGGCCGC CAGAGAGGCC GAGCGCGGCC GTGAGGCTTG 30900
GACGCTAGGG CAGGGCATGA AAAAGCCCGT AGCGGGCTGC TACGGGCGTC TGACGCGGTG 30960
GAAAGGGGGA GGGGATGTTG TCTACATGGC TCTGCTGTAG TGAGTGGGTT GCGCTCCGGC 31020
AGCGGTCCTG ATCAATCGTC ACCCTTTCTC GGTCCTTCAA CGTTCCTGAC AACGAGCCTC 31080
CTTTTCGCCA ATCCATCGAC AATCACCGCG AGTCCCTGCT CGAACGCTGC GTCCGGACCG 3114 0
GCTTCGTCGA AGGCGTCTAT CGCGGCCCGC AACAGCGGCG AGAGCGGAGC CTGTTCAACG 31200
GTGCCGCCGC GCTCGCCGGC ATCGCTGTCG CCGGCCTGCT CCTCAAGCAC GGCCCCAACA 31260
GTGAAGTAGC TGATTGTCAT CAGCGCATTG ACGGCGTCCC CGGCCGAAAA ACCCGCCTCG 31320
CAGAGGAAGC GAAGCTGCGC GTCGGCCGTT TCCATCTGCG GTGCGCCCGG TCGCGTGCCG 31380
GCATGGATGC GCGCGCCATC GCGGTAGGCG AGCAGCGCCT GCCTGAAGCT GCGGGCATTC 314 4 0
CCGATCAGAA ATGAGCGCCA GTCGTCGTCG GCTCTCGGCA CCGAATGCGT ATGATTCTCC 31500
GCCAGCATGG CTTCGGCCAG TGCGTCGAGC AGCGCCCGCT TGTTCCTGAA GTGCCAGTAA 31560
AGCGCCGGCT GCTGAACCCC CAACCGTTCC GCCAGTTTGC GTGTCGTCAG ACCGTCTACG 31620
CCGACCTCGT TCAACAGGTC CAGGGCGGCA CGGATCACTG TATTCGGCTG CAACTTTGTC 31680
ATGCTTGACA CTTTATCACT GATAAACATA ATATGTCCAC CAACTTATCA GTGATAAAGA 3174 0
ATCCGCGCGT TCAATCGGAC CAGCGGAGGC TGGTCCGGAG GCCAGACGTG AAACCCAACA 31800
TACCCCTGAT CGTAATTCTG AGCACTGTCG CGCTCGACGC TGTCGGCATC GGCCTGATTA 31860
TGCCGGTGCT GCCGGGCCTC CTGCGCGATC TGGTTCACTC GAACGACGTC ACCGCCCACT 31920
ATGGCATTCT GCTGGCGCTG TATGCGTTGG TGCAATTTGC CTGCGCACCT GTGCTGGGCG 31980
CGCTGTCGGA TCGTTTCGGG CGGCGGCCAA TCTTGCTCGT CTCGCTGGCC GGCGCCACTG 32040
TCGACTACGC CATCATGGCG ACAGCGCCTT TCCTTTGGGT TCTCTATATC GGGCGGATCG 32100
TGGCCGGCAT CACCGGGGCG ACTGGGGCGG TAGCCGGCGC TTATATTGCC GATATCACTG 32160
ATGGCGATGA GCGCGCGCGG CACTTCGGCT TCATGAGCGC CTGTTTCGGG TTCGGGATGG 32220
TCGCGGGACC TGTGCTCGGT GGGCTGATGG GCGGTTTCTC CCCCCACGCT CCGTTCTTCG 32280
CCGCGGCAGC CTTGAACGGC CTCAATTTCC TGACGGGCTG TTTCCTTTTG CCGGAGTCGC 3234 0
ACAAAGGCGA ACGCCGGCCG TTACGCCGGG AGGCTCTCAA CCCGCTCGCT TCGTTCCGGT 32400
GGGCCCGGGG CATGACCGTC GTCGCCGCCC TGATGGCGGT CTTCTTCATC ATGCAACTTG 324 60
TCGGACAGGT GCCGGCCGCG CTTTGGGTCA TTTTCGGCGA GGATCGCTTT CACTGGGACG 32520
CGACCACGAT CGGCATTTCG CTTGCCGCAT TTGGCATTCT GCATTCACTC GCCCAGGCAA 32580
TGATCACCGG CCCTGTAGCC GCCCGGCTCG GCGAAAGGCG GGCACTCATG CTCGGAATGA 32 640
TTGCCGACGG CACAGGCTAC ATCCTGCTTG CCTTCGCGAC ACGGGGATGG ATGGCGTTCC 32700
CGATCATGGT CCTGCTTGCT TCGGGTGGCA TCGGAATGCC GGCGCTGCAA GCAATGTTGT 32760
CCAGGCAGGT GGATGAGGAA CGTCAGGGGC AGCTGCAAGG CTCACTGGCG GCGCTCACCA 32820
GCCTGACCTC GATCGTCGGA CCCCTCCTCT TCACGGCGAT CTATGCGGCT TCTATAACAA 32880
CGTGGAACGG GTGGGCATGG ATTGCAGGCG CTGCCCTCTA CTTGCTCTGC CTGCCGGCGC 32 94 0
TGCGTCGCGG GCTTTGGAGC GGCGCAGGGC AACGAGCCGA TCGCTGATCG TGGAAACGAT 33000
AGGCCTATGC CATGCGGGTC AAGGCGACTT CCGGCAAGCT ATACGCGCCC TAGGAGTGCG 33060
GTTGGAACGT TGGCCCAGCC AGATACTCCC GATCACGAGC AGGACGCCGA TGATTTGAAG 33120
CGCACTCAGC GTCTGATCCA AGAACAACCA TCCTAGCAAC ACGGCGGTCC CCGGGCTGAG 33180
AAAGCCCAGT AAGGAAACAA CTGTAGGTTC GAGTCGCGAG ATCCCCCGGA ACCAAAGGAA 33240
GTAGGTTAAA CCCGCTCCGA TCAGGCCGAG CCACGCCAGG CCGAGAACAT TGGTTCCTGT 33300
AGGCATCGGG ATTGGCGGAT CAAACACTAA AGCTACTGGA ACGAGCAGAA GTCCTCCGGC 33360CGCCAGTTGC CAGGCGGTAA AGGTGAGCAG AGGCACGGGA GGTTGCCACT TGCGGGTCAG 33420
CACGGTTCCG AACGCCATGG AAACCGCCCC CGCCAGGCCC GCTGCGACGC CGACAGGATC 334 80
TAGCGCTGCG TTTGGTGTCA ACACCAACAG CGCCACGCCC GCAGTTCCGC AAATAGCCCC 33540
CAGGACCGCC ATCAATCGTA TCGGGCTACC TAGCAGAGCG GCAGAGATGA ACACGACCAT 33600
CAGCGGCTGC ACAGCGCCTA CCGTCGCCGC GACCCCGCCC GGCAGGCGGT AGACCGAAAT 33660
AAACAACAAG CTCCAGAATA GCGAAATATT AAGTGCGCCG AGGATGAAGA TGCGCATCCA 33720
CCAGATTCCC GTTGGAATCT GTCGGACGAT CATCACGAGC AATAAACCCG CCGGCAACGC 33780
CCGCAGCAGC ATACCGGCGA CCCCTCGGCC TCGCTGTTCG GGCTCCACGA AAACGCCGGA 3384 0
CAGATGCGCC TTGTGAGCGT CCTTGGGGCC GTCCTCCTGT TTGAAGACCG ACAGCCCAAT 33900
GATCTCGCCG TCGATGTAGG CGCCGAATGC CACGGCATCT CGCAACCGTT CAGCGAACGC 33960
CTCCATGGGC TTTTTCTCCT CGTGCTCGTA AACGGACCCG AACATCTCTG GAGCTTTCTT 34020
CAGGGCCGAC AATCGGATCT CGCGGAAATC CTGCACGTCG GCCGCTCCAA GCCGTCGAAT 34 080
CTGAGCCTTA ATCACAATTG TCAATTTTAA TCCTCTGTTT ATCGGCAGTT CGTAGAGCGC 3414 0
GCCGTGCGTC CCGAGCGATA CTGAGCGAAG CAAGTGCGTC GAGCAGTGCC CGCTTGTTCC 34200
TGAAATGCCA GTAAAGCGCT GGCTGCTGAA CCCCCAGCCG GAACTGACCC CACAAGGCCC 34260
TAGCGTTTGC AATGCACCAG GTCATCATTG ACCCAGGCGT GTTCCACCAG GCCGCTGCCT 34 320
CGCAACTCTT CGCAGGCTTC GCCGACCTGC TCGCGCCACT TCTTCACGCG GGTGGAATCC 34380
GATCCGCACA TGAGGCGGAA GGTTTCCAGC TTGAGCGGGT ACGGCTCCCG GTGCGAGCTG 34 4 40
AAATAGTCGA ACATCCGTCG GGCCGTCGGC GACAGCTTGC GGTACTTCTC CCATATGAAT 34 500
TTCGTGTAGT GGTCGCCAGC AAACAGCACG ACGATTTCCT CGTCGATCAG GACCTGGCAA 34 560
CGGGACGTTT TCTTGCCACG GTCCAGGACG CGGAAGCGGT GCAGCAGCGA CACCGATTCC 34 620
AGGTGCCCAA CGCGGTCGGA CGTGAAGCCC ATCGCCGTCG CCTGTAGGCG CGACAGGCAT 34 680
TCCTCGGCCT TCGTGTAATA CCGGCCATTG ATCGACCAGC CCAGGTCCTG GCAAAGCTCG 34740
TAGAACGTGA AGGTGATCGG CTCGCCGATA GGGGTGCGCT TCGCGTACTC CAACACCTGC 34800
TGCCACACCA GTTCGTCATC GTCGGCCCGC AGCTCGACGC CGGTGTAGGT GATCTTCACG 34860
TCCTTGTTGA CGTGGAAAAT GACCTTGTTT TGCAGCGCCT CGCGCGGGAT TTTCTTGTTG 34 920
CGCGTGGTGA ACAGGGCAGA GCGGGCCGTG TCGTTTGGCA TCGCTCGCAT CGTGTCCGGC 34 980
CACGGCGCAA TATCGAACAA GGAAAGCTGC ATTTCCTTGA TCTGCTGCTT CGTGTGTTTC 35040
AGCAACGCGG CCTGCTTGGC CTCGCTGACC TGTTTTGCCA GGTCCTCGCC GGCGGTTTTT 35100
CGCTTCTTGG TCGTCATAGT TCCTCGCGTG TCGATGGTCA TCGACTTCGC CAAACCTGCC 35160
GCCTCCTGTT CGAGACGACG CGAACGCTCC ACGGCGGCCG ATGGCGCGGG CAGGGCAGGG 35220
GGAGCCAGTT GCACGCTGTC GCGCTCGATC TTGGCCGTAG CTTGCTGGAC CATCGAGCCG 35280
ACGGACTGGA AGGTTTCGCG GGGCGCACGC ATGACGGTGC GGCTTGCGAT GGTTTCGGCA 3534 0
TCCTCGGCGG AAAACCCCGC GTCGATCAGT TCTTGCCTGT ATGCCTTCCG GTCAAACGTC 354 00
CGATTCATTC ACCCTCCTTG CGGGATTGCC CCGACTCACG CCGGGGCAAT GTGCCCTTAT 354 60
TCCTGATTTG ACCCGCCTGG TGCCTTGGTG TCCAGATAAT CCACCTTATC GGCAATGAAG 35520
TCGGTCCCGT AGACCGTCTG GCCGTCCTTC TCGTACTTGG TATTCCGAAT CTTGCCCTGC 35580
ACGAATACCA GCGACCCCTT GCCCAAATAC TTGCCGTGGG CCTCGGCCTG AGAGCCAAAA 3564 0
CACTTGATGC GGAAGAAGTC GGTGCGCTCC TGCTTGTCGC CGGCATCGTT GCGCCACTCT 35700
TCATTAACCG CTATATCGAA AATTGCTTGC GGCTTGTTAG AATTGCCATG ACGTACCTCG 357 60
GTGTCACGGG TAAGATTACC GATAAACTGG AACTGATTAT GGCTCATATC GAAAGTCTCC 35820
TTGAGAAAGG AGACTCTAGT TTAGCTAAAC ATTGGTTCCG CTGTCAAGAA CTTTAGCGGC 35880
TAAAATTTTG CGGGCCGCGA CCAAAGGTGC GAGGGGCGGC TTCCGCTGTG TACAACCAGA 35940
TATTTTTCAC CAACATCCTT CGTCTGCTCG ATGAGCGGGG CATGACGAAA CATGAGCTGT 36000
CGGAGAGGGC AGGGGTTTCA ATTTCGTTTT TATCAGACTT AACCAACGGT AAGGCCAACC 36060
CCTCGTTGAA GGTGATGGAG GCCATTGCCG ACGCCCTGGA AACTCCCCTA CCTCTTCTCC 36120
TGGAGTCCAC CGACCTTGAC CGCGAGGCAC TCGCGGAGAT TGCGGGTCAT CCTTTCAAGA 36180
GCAGCGTGCC GCCCGGATAC GAACGCATCA GTGTGGTTTT GCCGTCACAT AAGGCGTTTA 36240
TCGTAAAGAA ATGGGGCGAC GACACCCGAA AAAAGCTGCG TGGAAGGCTC TGACGCCAAG 36300
GGTTAGGGCT TGCACTTCCT TCTTTAGCCG CTAAAACGGC CCCTTCTCTG CGGGCCGTCG 36360
GCTCGCGCAT CATATCGACA TCCTCAACGG AAGCCGTGCC GCGAATGGCA TCGGGCGGGT 36420
GCGCTTTGAC AGTTGTTTTC TATCAGAACC CCTACGTCGT GCGGTTCGAT TAGCTGTTTG 36480
TCTTGCAGGC TAAACACTTT CGGTATATCG TTTGCCTGTG CGATAATGTT GCTAATGATT 36540
TGTTGCGTAG GGGTTACTGA AAAGTGAGCG GGAAAGAAGA GTTTCAGACC ATCAAGGAGC 36600
GGGCCAAGCG CAAGCTGGAA CGCGACATGG GTGCGGACCT GTTGGCCGCG CTCAACGACC 36660
CGAAAACCGT TGAAGTCATG CTCAACGCGG ACGGCAAGGT GTGGCACGAA CGCCTTGGCG 36720
AGCCGATGCG GTACATCTGC GACATGCGGC CCAGCCAGTC GCAGGCGATT ATAGAAACGG 36780
TGGCCGGATT CCACGGCAAA GAGGTCACGC GGCATTCGCC CATCCTGGAA GGCGAGTTCC 36840
CCTTGGATGG CAGCCGCTTT GCCGGCCAAT TGCCGCCGGT CGTGGCCGCG CCAACCTTTG 36900CGATCCGCAA GCGCGCGGTC GCCATCTTCA CGCTGGAACA GTACGTCGAG GCGGGCATCA 36960
TGACCCGCGA GCAATACGAG GTCATTAAAA GCGCCGTCGC GGCGCATCGA AACATCCTCG 37020
TCATTGGCGG TACTGGCTCG GGCAAGACCA CGCTCGTCAA CGCGATCATC AATGAAATGG 37080
TCGCCTTCAA CCCGTCTGAG CGCGTCGTCA TCATCGAGGA CACCGGCGAA ATCCAGTGCG 37140
CCGCAGAGAA CGCCGTCCAA TACCACACCA GCATCGACGT CTCGATGACG CTGCTGCTCA 37200
AGACAACGCT GCGTATGCGC CCCGACCGCA TCCTGGTCGG TGAGGTACGT GGCCCCGAAG 372 60
CCCTTGATCT GTTGATGGCC TGGAACACCG GGCATGAAGG AGGTGCCGCC ACCCTGCACG 37320
CAAACAACCC CAAAGCGGGC CTGAGCCGGC TCGCCATGCT TATCAGCATG CACCCGGATT 37380
CACCGAAACC CATTGAGCCG CTGATTGGCG AGGCGGTTCA TGTGGTCGTC CATATCGCCA 374 40
GGACCCCTAG CGGCCGTCGA GTGCAAGAAA TTCTCGAAGT TCTTGGTTAC GAGAACGGCC 37 500
AGTACATCAC CAAAACCCTG TAAGGAGTAT TTCCAATGAC AACGGCTGTT CCGTTCCGTC 37560
TGACCATGAA TCGCGGCATT TTGTTCTACC TTGCCGTGTT CTTCGTTCTC GCTCTCGCGT 37 620
TATCCGCGCA TCCGGCGATG GCCTCGGAAG GCACCGGCGG CAGCTTGCCA TATGAGAGCT 37 680
GGCTGACGAA CCTGCGCAAC TCCGTAACCG GCCCGGTGGC CTTCGCGCTG TCCATCATCG 3774 0
GCATCGTCGT CGCCGGCGGC GTGCTGATCT TCGGCGGCGA ACTCAACGCC TTCTTCCGAA 37800
CCCTGATCTT CCTGGTTCTG GTGATGGCGC TGCTGGTCGG CGCGCAGAAC GTGATGAGCA 37 860
CCTTCTTCGG TCGTGGTGCC GAAATCGCGG CCCTCGGCAA CGGGGCGCTG CACCAGGTGC 37 920
AAGTCGCGGC GGCGGATGCC GTGCGTGCGG TAGCGGCTGG ACGGCTCGCC TAATCATGGC 37 980
TCTGCGCACG ATCCCCATCC GTCGCGCAGG CAACCGAGAA AACCTGTTCA TGGGTGGTGA 3804 0
TCGTGAACTG GTGATGTTCT CGGGCCTGAT GGCGTTTGCG CTGATTTTCA GCGCCCAAGA 38100
GCTGCGGGCC ACCGTGGTCG GTCTGATCCT GTGGTTCGGG GCGCTCTATG CGTTCCGAAT 38160
CATGGCGAAG GCCGATCCGA AGATGCGGTT CGTGTACCTG CGTCACCGCC GGTACAAGCC 38220
GTATTACCCG GCCCGCTCGA CCCCGTTCCG CGAGAACACC AATAGCCAAG GGAAGCAATA 38280
CCGATGATCC AAGCAATTGC GATTGCAATC GCGGGCCTCG GCGCGCTTCT GTTGTTCATC 38340
CTCTTTGCCC GCATCCGCGC GGTCGATGCC GAACTGAAAC TGAAAAAGCA TCGTTCCAAG 38400
GACGCCGGCC TGGCCGATCT GCTCAACTAC GCCGCTGTCG TCGATGACGG CGTAATCGTG 384 60
GGCAAGAACG GCAGCTTTAT GGCTGCCTGG CTGTACAAGG GCGATGACAA CGCAAGCAGC 38520
ACCGACCAGC AGCGCGAAGT AGTGTCCGCC CGCATCAACC AGGCCCTCGC GGGCCTGGGA 38580
AGTGGGTGGA TGATCCATGT GGACGCCGTG CGGCGTCCTG CTCCGAACTA CGCGGAGCGG 38 64 0
GGCCTGTCGG CGTTCCCTGA CCGTCTGACG GCAGCGATTG AAGAAGAGCG CTCGGTCTTG 38700
CCTTGCTCGT CGGTGATGTA CTTCACCAGC TCCGCGAAGT CGCTCTTCTT GATGGAGCGC 387 60
ATGGGGACGT GCTTGGCAAT CACGCGCACC CCCCGGCCGT TTTAGCGGCT AAAAAAGTCA 38820
TGGCTCTGCC CTCGGGCGGA CCACGCCCAT CATGACCTTG CCAAGCTCGT CCTGCTTCTC 38880
TTCGATCTTC GCCAGCAGGG CGAGGATCGT GGCATCACCG AACCGCGCCG TGCGCGGGTC 38 94 0
GTCGGTGAGC CAGAGTTTCA GCAGGCCGCC CAGGCGGCCC AGGTCGCCAT TGATGCGGGC 39000
CAGCTCGCGG ACGTGCTCAT AGTCCACGAC GCCCGTGATT TTGTAGCCCT GGCCGACGGC 39060
CAGCAGGTAG GCCGACAGGC TCATGCCGGC CGCCGCCGCC TTTTCCTCAA TCGCTCTTCG 39120
TTCGTCTGGA AGGCAGTACA CCTTGATAGG TGGGCTGCCC TTCCTGGTTG GCTTGGTTTC 39180
ATCAGCCATC CGCTTGCCCT CATCTGTTAC GCCGGCGGTA GCCGGCCAGC CTCGCAGAGC 39240
AGGATTCCCG TTGAGCACCG CCAGGTGCGA ATAAGGGACA GTGAAGAAGG AACACCCGCT 39300
CGCGGGTGGG CCTACTTCAC CTATCCTGCC CGGCTGACGC CGTTGGATAC ACCAAGGAAA 39360
GTCTACACGA ACCCTTTGGC AAAATCCTGT ATATCGTGCG AAAAAGGATG GATATACCGA 39420
AAAAATCGCT ATAATGACCC CGAAGCAGGG TTATGCAGCG GAAAAGCGCT GCTTCCCTGC 39480
TGTTTTGTGG AATATCTACC GACTGGAAAC AGGCAAATGC AGGAAATTAC TGAACTGAGG 3954 0
GGACAGGCGA GAGACGATGC CAAAGAGCTA CACCGACGAG CTGGCCGAGT GGGTTGAATC 39600
CCGCGCGGCC AAGAAGCGCC GGCGTGATGA GGCTGCGGTT GCGTTCCTGG CGGTGAGGGC 39660
GGATGTCGAG GCGGCGTTAG CGTCCGGCTA TGCGCTCGTC ACCATTTGGG AGCACATGCG 39720
GGAAACGGGG AAGGTCAAGT TCTCCTACGA GACGTTCCGC TCGCACGCCA GGCGGCACAT 39780
CAAGGCCAAG CCCGCCGATG TGCCCGCACC GCAGGCCAAG GCTGCGGAAC CCGCGCCGGC 39840
ACCCAAGACG CCGGAGCCAC GGCGGCCGAA GCAGGGGGGC AAGGCTGAAA AGCCGGCCCC 39900
CGCTGCGGCC CCGACCGGCT TCACCTTCAA CCCAACACCG GACAAAAAGG ATCTACTGTA 39960
ATGGCGAAAA TTCACATGGT TTTGCAGGGC AAGGGCGGGG TCGGCAAGTC GGCCATCGCC 40020
GCGATCATTG CGCAGTACAA GATGGACAAG GGGCAGACAC CCTTGTGCAT CGACACCGAC 40080
CCGGTGAACG CGACGTTCGA GGGCTACAAG GCCCTGAACG TCCGCCGGCT GAACATCATG 4 014 0
GCCGGCGACG AAATTAACTC GCGCAACTTC GACACCCTGG TCGAGCTGAT TGCGCCGACC 4 0200
AAGGATGACG TGGTGATCGA CAACGGTGCC AGCTCGTTCG TGCCTCTGTC GCATTACCTC 4 0260
ATCAGCAACC AGGTGCCGGC TCTGCTGCAA GAAATGGGGC ATGAGCTGGT CATCCATACC 4 0320
GTCGTCACCG GCGGCCAGGC TCTCCTGGAC ACGGTGAGCG GCTTCGCCCA GCTCGCCAGC 40380
CAGTTCCCGG CCGAAGCGCT TTTCGTGGTC TGGCTGAACC CGTATTGGGG GCCTATCGAG 4 0440CATGAGGGCA AGAGCTTTGA GCAGATGAAG GCGTACACGG CCAACAAGGC CCGCGTGTCG 4 0500
TCCATCATCC AGATTCCGGC CCTCAAGGAA GAAACCTACG GCCGCGATTT CAGCGACATG 4 0560
CTGCAAGAGC GGCTGACGTT CGACCAGGCG CTGGCCGATG AATCGCTCAC GATCATGACG 4 0620
CGGCAACGCC TCAAGATCGT GCGGCGCGGC CTGTTTGAAC AGCTCGACGC GGCGGCCGTG 40680
CTATGAGCGA CCAGATTGAA GAGCTGATCC GGGAGATTGC GGCCAAGCAC GGCATCGCCG 4 0740
TCGGCCGCGA CGACCCGGTG CTGATCCTGC ATACCATCAA CGCCCGGCTC ATGGCCGACA 4 0800
GTGCGGCCAA GCAAGAGGAA ATCCTTGCCG CGTTCAAGGA AGAGCTGGAA GGGATCGCCC 4 0860
ATCGTTGGGG CGAGGACGCC AAGGCCAAAG CGGAGCGGAT GCTGAACGCG GCCCTGGCGG 4 0920
CCAGCAAGGA CGCAATGGCG AAGGTAATGA AGGACAGCGC CGCGCAGGCG GCCGAAGCGA 40980
TCCGCAGGGA AATCGACGAC GGCCTTGGCC GCCAGCTCGC GGCCAAGGTC GCGGACGCGC 41040
GGCGCGTGGC GATGATGAAC ATGATCGCCG GCGGCATGGT GTTGTTCGCG GCCGCCCTGG 41100
TGGTGTGGGC CTCGTTATGA ATCGCAGAGG CGCAGATGAA AAAGCCCGGC GTTGCCGGGC 41160
TTTGTTTTTG CGTTAGCTGG GCTTGTTTGA CAGGCCCAAG CTCTGACTGC GCCCGCGCTC 41220
GCGCTCCTGG GCCTGTTTCT TCTCCTGCTC CTGCTTGCGC ATCAGGGCCT GGTGCCGTCG 41280
GGCTGCTTCA CGCATCGAAT CCCAGTCGCC GGCCAGCTCG GGATGCTCCG CGCGCATCTT 41340
GCGCGTCGCC AGTTCCTCGA TCTTGGGCGC GTGAATGCCC ATGCCTTCCT TGATTTCGCG 41400
CACCATGTCC AGCCGCGTGT GCAGGGTCTG CAAGCGGGCT TGCTGTTGGG CCTGCTGCTG 414 60
CTGCCAGGCG GCCTTTGTAC GCGGCAGGGA CAGCAAGCCG GGGGCATTGG ACTGTAGCTG 41520
CTGCAAACGC GCCTGCTGAC GGTCTACGAG CTGTTCTAGG CGGTCCTCGA TGCGCTCCAC 41580
CTGGTCATGC TTTGCCTGCA CGTAGAGCGC AAGGGTCTGC TGGTAGGTCT GCTCGATGGG 41640
CGCGGATTCT AAGAGGGCCT GCTGTTCCGT CTCGGCCTCC TGGGCCGCCT GTAGCAAATC 41700
CTCGCCGCTG TTGCCGCTGG ACTGCTTTAC TGCCGGGGAC TGCTGTTGCC CTGCTCGCGC 41760
CGTCGTCGCA GTTCGGCTTG CCCCCACTCG ATTGACTGCT TCATTTCGAG CCGCAGCGAT 41820
GCGATCTCGG ATTGCGTCAA CGGACGGGGC AGCGCGGAGG TGTCCGGCTT CTCCTTGGGT 41880
GAGTCGGTCG ATGCCATAGC CAAAGGTTTC CTTCCAAAAT GCGTCCATTG CTGGACCGTG 41940
TTTCTCATTG ATGCCCGCAA GCATCTTCGG CTTGACCGCC AGGTCAAGCG CGCCTTCATG 4 2000
GGCGGTCATG ACGGACGCCG CCATGACCTT GCCGCCGTTG TTCTCGATGT AGCCGCGTAA 4 2060
TGAGGCAATG GTGCCGCCCA TCGTCAGCGT GTCATCGACA ACGATGTACT TCTGGCCGGG 4 2120
GATCACCTCC CCCTCGAAAG TCGGGTTGAA CGCCAGGCGA TGATCTGAAC CGGCTCCGGT 4 2180
TCGGGCGACC TTCTCCCGCT GCACAATGTC CGTTTCGACC TCAAGGCCAA GGCGGTCGGC 42240
CAGAACGACC GCCATCATGG CCGGAATCTT GTTGTTCCCC GCCGCCTCGA CGGCGAGGAC 4 2300
TGGAACGATG CGGGGCTTGT CGTCGCCGAT CAGCGTCTTG AGCTGGGCAA CAGTGTCGTC 4 2360
CGAAATCAGG CGCTCGACCA AATTAAGCGC CGCTTCCGCG TCGCCCTGCT TCGCAGCCTG 42420
GTATTCAGGC TCGTTGGTCA AAGAACCAAG GTCGCCGTTG CGAACCACCT TCGGGAAGTC 4 24 80
TCCCCACGGT GCGCGCTCGG CTCTGCTGTA GCTGCTCAAG ACGCCTCCCT TTTTAGCCGC 42540
TAAAACTCTA ACGAGTGCGC CCGCGACTCA ACTTGACGCT TTCGGCACTT ACCTGTGCCT 4 2 600
TGCCACTTGC GTCATAGGTG ATGCTTTTCG CACTCCCGAT TTCAGGTACT TTATCGAAAT 4 2 660
CTGACCGGGC GTGCATTACA AAGTTCTTCC CCACCTGTTG GTAAATGCTG CCGCTATCTG 42720
CGTGGACGAT GCTGCCGTCG TGGCGCTGCG ACTTATCGGC CTTTTGGGCC ATATAGATGT 4 2780
TGTAAATGCC AGGTTTCAGG GCCCCGGCTT TATCTACCTT CTGGTTCGTC CATGCGCCTT 42840
GGTTCTCGGT CTGGACAATT CTTTGCCCAT TCATGACCAG GAGGCGGTGT TTCATTGGGT 42900
GACTCCTGAC GGTTGCCTCT GGTGTTAAAC GTGTCCTGGT CGCTTGCCGG CTAAAAAAAA 42960GCCGACCTCG GCAGTTCGAG GCCGGCTTTC CCTAGAGCCG GGCGCGTCAA GGTTGTTCCA 4 3020
TCTATTTTAG TGAACTGCGT TCGATTTATC AGTTACTTTC CTCCCGCTTT GTGTTTCCTC 4 3080
CCACTCGTTT CCGCGTCTAG CCGACCCCTC AACATAGCGG CCTCTTCTTG GGCTGCCTTT 43140
GCCTCTTGCC GCGCTTCGTC ACGCTCGGCT TGCACCGTCG TAAAGCGCTC GGCCTGCCTG 4 3200
GCCGCCTCTT GCGCCGCCAA CTTCCTTTGC TCCTGGTGGG CCTCGGCGTC GGCCTGCGCC 4 3260
TTCGCTTTCA CCGCTGCCAA CTCCGTGCGC AAACTCTCCG CTTCGCGCCT GGTGGCGTCG 43320
CGCTCGCCGC GAAGCGCCTG CATTTCCTGG TTGGCCGCGT CCAGGGTCTT GCGGCTCTCT 4 3380
TCTTTGAATG CGCGGGCGTC CTGGTGAGCG TAGTCCAGCT CGGCGCGCAG CTCCTGCGCT 4 3440
CGACGCTCCA CCTCGTCGGC CCGCTGCGTC GCCAGCGCGG CCCGCTGCTC GGCTCCTGCC 4 3500
AGGGCGGTGC GTGCTTCGGC CAGGGCTTGC CGCTGGCGTG CGGCCAGCTC GGCCGCCTCG 4 3560
GCGGCCTGCT GCTCTAGCAA TGTAACGCGC GCCTGGGCTT CTTCCAGCTC GCGGGCCTGC 4 3620
GCCTCGAAGG CGTCGGCCAG CTCCCCGCGC ACGGCTTCCA ACTCGTTGCG CTCACGATCC 43680
CAGCCGGCTT GCGCTGCCTG CAACGATTCA TTGGCAAGGG CCTGGGCGGC TTGCCAGAGG 43740
GCGGCCACGG CCTGGTTGCC GGCCTGCTGC ACCGCGTCCG GCACCTGGAC TGCCAGCGGG 4 3800
GCGGCCTGCG CCGTGCGCTG GCGTCGCCAT TCGCGCATGC CGGCGCTGGC GTCGTTCATG 43860
TTGACGCGGG CGGCCTTACG CACTGCATCC ACGGTCGGGA AGTTCTCCCG GTCGCCTTGC 4 3920
TCGAACAGCT CGTCCGCAGC CGCAAAAATG CGGTCGCGCG TCTCTTTGTT CAGTTCCATG 4 3980TTGGCTCCGG TAATTGGTAA GAATAATAAT ACTCTTACCT ACCTTATCAG CGCAAGAGTT 44 040
TAGCTGAACA GTTCTCGACT TAACGGCAGG TTTTTTAGCG GCTGAAGGGC AGGCAAAAAA 44100
AGCCCCGCAC GGTCGGCGGG GGCAAAGGGT CAGCGGGAAG GGGATTAGCG GGCGTCGGGC 4 4160
TTCTTCATGC GTCGGGGCCG CGCTTCTTGG GATGGAGCAC GACGAAGCGC GCACGCGCAT 4 4 220
CGTCCTCGGC CCTATCGGCC CGCGTCGCGG TCAGGAACTT GTCGCGCGCT AGGTCCTCCC 4 4280
TGGTGGGCAC CAGGGGCATG AACTCGGCCT GCTCGATGTA GGTCCACTCC ATGACCGCAT 4 4 340
CGCAGTCGAG GCCGCGTTCC TTCACCGTCT CTTGCAGGTC GCGGTACGCC CGCTCGTTGA 44400
GCGGCTGGTA ACGGGCCAAT TGGTCGTAAA TGGCTGTCGG CCATGAGCGG CCTTTCCTGT 444 60
TGAGCCAGCA GCCGACGACG AAGCCGGCAA TGCAGGCCCC TGGCACAACC AGGCCGACGC 44520
CGGGGGCAGG GGATGGCAGC AGCTCGCCAA CCAGGAACCC CGCCGCGATG ATGCCGATGC 4 4 580
CGGTCAACCA GCCCTTGAAA CTATCCGGCC CCGAAACACC CCTGCGCATT GCCTGGATGC 4 4 640
TGCGCCGGAT AGCTTGCAAC ATCAGGAGCC GTTTCTTTTG TTCGTCAGTC ATGGTCCGCC 44700
CTCACCAGTT GTTCGTATCG GTGTCGGACG AACTGAAATC GCAAGAGCTG CCGGTATCGG 4 4 760
TCCAGCCGCT GTCCGTGTCG CTGCTGCCGA AGCACGGCGA GGGGTCCGCG AACGCCGCAG 4 4 820
ACGGCGTATC CGGCCGCAGC GCATCGCCCA GCATGGCCCC GGTCAGCGAG CCGCCGGCCA 4 4 880
GGTAGCCCAG CATGGTGCTG TTGGTCGCCC CGGCCACCAG GGCCGACGTG ACGAAATCGC 4 4 940
CGTCATTCCC TCTGGATTGT TCGCTGCTCG GCGGGGCAGT GCGCCGCGCC GGCGGCGTCG 4 5000
TGGATGGCTC GGGTTGGCTG GCCTGCGACG GCCGGCGAAA GGTGCGCAGC AGCTCGTTAT 4 5060
CGACCGGCTG CGGCGTCGGG GCCGCCGCCT TGCGCTGCGG TCGGTGTTCC TTCTTCGGCT 4 5120
CGCGCAGCTT GAACAGCATG ATCGCGGAAA CCAGCAGCAA CGCCGCGCCT ACGCCTCCCG 4 5180
CGATGTAGAA CAGCATCGGA TTCATTCTTC GGTCCTCCTT GTAGCGGAAC CGTTGTCTGT 4 524 0
GCGGCGCGGG TGGCCCGCGC CGCTGTCTTT GGGGATCAGC CCTCGATGAG CGCGACCAGT 4 5300
TTCACGTCGG CAAGGTTCGC CTCGAACTCC TGGCCGTCGT CCTCGTACTT CAACCAGGCA 4 5360
TAGCCTTCCG CCGGCGGCCG ACGGTTGAGG ATAAGGCGGG CAGGGCGCTC GTCGTGCTCG 4 5420
ACCTGGACGA TGGCCTTTTT CAGCTTGTCC GGGTCCGGCT CCTTCGCGCC CTTTTCCTTG 45480
GCGTCCTTAC CGTCCTGGTC GCCGTCCTCG CCGTCCTGGC CGTCGCCGGC CTCCGCGTCA 4 554 0
CGCTCGGCAT CAGTCTGGCC GTTGAAGGCA TCGACGGTGT TGGGATCGCG GCCCTTCTCG 4 5600
TCCAGGAACT CGCGCAGCAG CTTGACCGTG CCGCGCGTGA TTTCCTGGGT GTCGTCGTCA 4 5660
AGCCACGCCT CGACTTCCTC CGGGCGCTTC TTGAAGGCCG TCACCAGCTC GTTCACCACG 4 5720
GTCACGTCGC GCACGCGGCC GGTGTTGAAC GCATCGGCGA TCTTCTCCGG CAGGTCCAGC 4 5780
AGCGTGACGT GCTGGGTGAT GAACGCCGGC GACTTGCCGA TTTCCTTGGC GATATCGCCT 4 584 0
TTCTTCTTGC CCTTCGCCAG CTCGCGGCCA ATGAAGTCGG CAATTTCGCG CGGGGTCAGC 4 5900
TCGTTGCGTT GCAGGTTCTC GATAACCTGG TCGGCTTCGT TGTAGTCGTT GTCGATGAAC 4 5960
GCCGGGATGG ACTTCTTGCC GGCCCACTTC GAGCCACGGT AGCGGCGGGC GCCGTGATTG 4 6020
ATGATATAGC GGCCCGGCTG CTCCTGGTTC TCGCGCACCG AAATGGGTGA CTTCACCCCG 4 6080
CGCTCTTTGA TCGTGGCACC GATTTCCGCG ATGCTCTCCG GGGAAAAGCC GGGGTTGTCG 4 614 0
GCCGTCCGCG GCTGATGCGG ATCTTCGTCG ATCAGGTCCA GGTCCAGCTC GATAGGGCCG 4 6200
GAACCGCCCT GAGACGCCGC AGGAGCGTCC AGGAGGCTCG ACAGGTCGCC GATGCTATCC 4 6260
AACCCCAGGC CGGACGGCTG CGCCGCGCCT GCGGCTTCCT GAGCGGCCGC AGCGGTGTTT 4 6320
TTCTTGGTGG TCTTGGCTTG AGCCGCAGTC ATTGGGAAAT CTCCATCTTC GTGAACACGT 4 6380
AATCAGCCAG GGCGCGAACC TCTTTCGATG CCTTGCGCGC GGCCGTTTTC TTGATCTTCC 4 6440
AGACCGGCAC ACCGGATGCG AGGGCATCGG CGATGCTGCT GCGCAGGCCA ACGGTGGCCG 4 6500
GAATCATCAT CTTGGGGTAC GCGGCCAGCA GCTCGGCTTG GTGGCGCGCG TGGCGCGGAT 4 6560
TCCGCGCATC GACCTTGCTG GGCACCATGC CAAGGAATTG CAGCTTGGCG TTCTTCTGGC 4 6620
GCACGTTCGC AATGGTCGTG ACCATCTTCT TGATGCCCTG GATGCTGTAC GCCTCAAGCT 4 6680
CGATGGGGGA CAGCACATAG TCGGCCGCGA AGAGGGCGGC CGCCAGGCCG ACGCCAAGGG 4 6740
TCGGGGCCGT GTCGATCAGG CACACGTCGA AGCCTTGGTT CGCCAGGGCC TTGATGTTCG 4 6800
CCCCGAACAG CTCGCGGGCG TCGTCCAGCG ACAGCCGTTC GGCGTTCGCC AGTACCGGGT 4 68 60
TGGACTCGAT GAGGGCGAGG CGCGCGGCCT GGCCGTCGCC GGCTGCGGGT GCGGTTTCGG 4 6920
TCCAGCCGCC GGCAGGGACA GCGCCGAACA GCTTGCTTGC ATGCAGGCCG GTAGCAAAGT 4 6980
CCTTGAGCGT GTAGGACGCA TTGCCCTGGG GGTCCAGGTC GATCACGGCA ACCCGCAAGC 47 040
CGCGCTCGAA AAAGTCGAAG GCAAGATGCA CAAGGGTCGA AGTCTTGCCG ACGCCGCCTT 47100
TCTGGTTGGC CGTGACCAAA GTTTTCATCG TTTGGTTTCC TGTTTTTTCT TGGCGTCCGC 47160
TTCCCACTTC CGGACGATGT ACGCCTGATG TTCCGGCAGA ACCGCCGTTA CCCGCGCGTA 47220
CCCCTCGGGC AAGTTCTTGT CCTCGAACGC GGCCCACACG CGATGCACCG CTTGCGACAC 47280
TGCGCCCCTG GTCAGTCCCA GCGACGTTGC GAACGTCGCC TGTGGCTTCC CATCGACTAA 4 7340
GACGCCCCGC GCTATCTCGA TGGTCTGCTG CCCCACTTCC AGCCCCTGGA TCGCCTCCTG 47 400
GAACTGGCTT TCGGTAAGCC GTTTCTTCAT GGATAACACC CATAATTTGC TCCGCGCCTT 47 4 60
GGTTGAACAT AGCGGTGACA GCCGCCAGCA CATGAGAGAA GTTTAGCTAA ACATTTCTCG 4 7520CACGTCAACA CCTTTAGCCG CTAAAACTCG TCCTTGGCGT AACAAAACAA AAGCCCGGAA 47580
ACCGGGCTTT CGTCTCTTGC CGCTTATGGC TCTGCACCCG GCTCCATCAC CAACAGGTCG 4 7 640
CGCACGCGCT TCACTCGGTT GCGGATCGAC ACTGCCAGCC CAACAAAGCC GGTTGCCGCC 4 7 700
GCCGCCAGGA TCGCGCCGAT GATGCCGGCC ACACCGGCCA TCGCCCACCA GGTCGCCGCC 4 7760
TTCCGGTTCC ATTCCTGCTG GTACTGCTTC GCAATGCTGG ACCTCGGCTC ACCATAGGCT 47820
GACCGCTCGA TGGCGTATGC CGCTTCTCCC CTTGGCGTAA AACCCAGCGC CGCAGGCGGC 47880
ATTGCCATGC TGCCCGCCGC TTTCCCGACC ACGACGCGCG CACCAGGCTT GCGGTCCAGA 4 7 940
CCTTCGGCCA CGGCGAGCTG CGCAAGGACA TAATCAGCCG CCGACTTGGC TCCACGCGCC 4 8000
TCGATCAGCT CTTGCACTCG CGCGAAATCC TTGGCCTCCA CGGCCGCCAT GAATCGCGCA 48060
CGCGGCGAAG GCTCCGCAGG GCCGGCGTCG TGATCGCCGC CGAGAATGCC CTTCACCAAG 4 8120
TTCGACGACA CGAAAATCAT GCTGACGGCT ATCACCATCA TGCAGACGGA TCGCACGAAC 4 8180
CCGCTGAATT GAACACGAGC ACGGCACCCG CGACCACTAT GCCAAGAATG CCCAAGGTAA 4 8240
AAATTGCCGG CCCCGCCATG AAGTCCGTGA ATGCCCCGAC GGCCGAAGTG AAGGGCAGGC 4 8300
CGCCACCCAG GCCGCCGCCC TCACTGCCCG GCACCTGGTC GCTGAATGTC GATGCCAGCA 4 8360
CCTGCGGCAC GTCAATGCTT CCGGGCGTCG CGCTCGGGCT GATCGCCCAT CCCGTTACTG 4 8420
CCCCGATCCC GGCAATGGCA AGGACTGCCA GCGCTGCCAT TTTTGGGGTG AGGCCGTTCG 48480
CGGCCGAGGG GCGCAGCCCC TGGGGGGATG GGAGGCCCGC GTTAGCGGGC CGGGAGGGTT 48540
CGAGAAGGGG GGGCACCCCC CTTCGGCGTG CGCGGTCACG CGCACAGGGC GCAGCCCTGG 4 8600
TTAAAAACAA GGTTTATAAA TATTGGTTTA AAAGCAGGTT AAAAGACAGG TTAGCGGTGG 48660
CCGAAAAACG GGCGGAAACC CTTGCAAATG CTGGATTTTC TGCCTGTGGA CAGCCCCTCA 4 8720
AATGTCAATA GGTGCGCCCC TCATCTGTCA GCACTCTGCC CCTCAAGTGT CAAGGATCGC 48780
GCCCCTCATC TGTCAGTAGT CGCGCCCCTC AAGTGTCAAT ACCGCAGGGC ACTTATCCCC 4 8840
AGGCTTGTCC ACATCATCTG TGGGAAACTC GCGTAAAATC AGGCGTTTTC GCCGATTTGC 4 8 900
GAGGCTGGCC AGCTCCACGT CGCCGGCCGA AATCGAGCCT GCCCCTCATC TGTCAACGCC 4 8 960
GCGCCGGGTG AGTCGGCCCC TCAAGTGTCA ACGTCCGCCC CTCATCTGTC AGTGAGGGCC 4 9020
AAGTTTTCCG CGAGGTATCC ACAACGCCGG CGGCCGCGGT GTCTCGCACA CGGCTTCGAC 4 9080
GGCGTTTCTG GCGCGTTTGC AGGGCCATAG ACGGCCGCCA GCCCAGCGGC GAGGGCAACC 4 9140
AGCCCGGTGA GCGTCGGAAA GGCGCTGGAA GCCCCGTAGC GACGCGGAGA GGGGCGAGAC 4 9200
AAGCCAAGGG CGCAGGCTCG ATGCGCAGCA CGACATAGCC GGTTCTCGCA AGGACGAGAA 4 9260
TTTCCCTGCG GTGCCCCTCA AGTGTCAATG AAAGTTTCCA ACGCGAGCCA TTCGCGAGAG 4 9320
CCTTGAGTCC ACGCTAGATG AGAGCTTTGT TGTAGGTGGA CCAGTTGGTG ATTTTGAACT 4 9380
TTTGCTTTGC CACGGAACGG TCTGCGTTGT CGGGAAGATG CGTGATCTGA TCCTTCAACT 4 9440
CAGCAAAAGT TCGATTTATT CAACAAAGCC ACGTTGTGTC TCAAAATCTC TGATGTTACA 4 9500
TTGCACAAGA TAAAAATATA TCATCATGAA CAATAAAACT GTCTGCTTAC ATAAACAGTA 4 9560
ATACAAGGGG TGTTATGAGC CATATTCAAC GGGAAAC 4 9597
<210> 94<211> 49579<212> DNA<213> VETOR
<4 00> 94
GTCTTGCTCG ACTCTAGAGC TCGTTCCTCG AGGCCTCGAG GCCTCGAGGA ACGGTACCTG 60
CGGGGAAGCT TACAATAATG TGTGTTGTTA AGTCTTGTTG CCTGTCATCG TCTGACTGAC 120
TTTCGTCATA AATCCCGGCC TCCGTAACCC AGCTTTGGGC AAGCTCACGG ATTTGATCCG 180
GCGGAACGGG AATATCGAGA TGCCGGGCTG AACGCTGCAG TTCCAGCTTT CCCTTTCGGG 24 0
ACAGGTACTC CAGCTGATTG ATTATCTGCT GAAGGGTCTT GGTTCCACCT CCTGGCACAA 300
TGCGAATGAT TACTTGAGCG CGATCGGGCA TCCAATTTTC TCCCGTCAGG TGCGTGGTCA 360
AGTGCTACAA GGCACCTTTC AGTAACGAGC GACCGTCGAT CCGTCGCCGG GATACGGACA 420
AAATGGAGCG CAGTAGTCCA TCGAGGGCGG CGAAAGCCTC GCCAAAAGCA ATACGTTCAT 480
CTCGCACAGC CTCCAGATCC GATCGAGGGT CTTCGGCGTA GGCAGATAGA AGCATGGATA 54 0
CATTGCTTGA GAGTATTCCG ATGGACTGAA GTATGGCTTC CATCTTTTCT CGTGTGTCTG 600
CATCTATTTC GAGAAAGCCC CCGATGCGGC GCACCGCAAC GCGAATTGCC ATACTATCCG 660
AAAGTCCCAG CAGGCGCGCT TGATAGGAAA AGGTTTCATA CTCGGCCGAT CGCAGACGGG 720
CACTCACGAC CTTGAACCCT TCAACTTTCA GGGATCGATG CTGGTTGATG GTAGTCTCAC 780
TCGACGTGGC TCTGGTGTGT TTTGACATAG CTTCCTCCAA AGAAAGCGGA AGGTCTGGAT 84 0
ACTCCAGCAC GAAATGTGCC CGGGTAGACG GATGGAAGTC TAGCCCTGCT CAATATGAAA 900
TCAACAGTAC ATTTACAGTC AATACTGAAT ATACTTGCTA CATTTGCAAT TGTCTTATAA 960
CGAATGTGAA ATAAAAATAG TGTAACAACG CTTTTACTCA TCGATAATCA CAAAAACATT 1020TATACGAACA AAAATACAAA TGCACTCCGG TTTCACAGGA TAGGCGGGAT CAGAATATGC 1080
AACTTTTGAC GTTTTGTTCT TTCAAAGGGG GTGCTGGCAA AACCACCGCA CTCATGGGCC 1140
TTTGCGCTGC TTTGGCAAAT GACGGTAAAC GAGTGGCCCT CTTTGATGCC GACGAAAACC 1200
GGCCTCTGAC GCGATGGAGA GAAAACGCCT TACAAAGCAG TACTGGGATC CTCGCTGTGA 1260
AGTCTATTCC GCCGACGAAA TGCCCCTTCT TGAAGCAGCC TATGAAAATG CCGAGCTCGA 1320
AGGATTTGAT TATGCGTTGG CCGATACGCG TGGCGGCTCG AGCGAGCTCA ACAACACAAT 1380
CATCGCTAGC TCAAACCTGC TTCTGATCCC CACCATGCTA ACGCCGCTCG ACATCGATGA 14 4 0
GGCACTATCT ACCTACCGCT ACGTCATCGA GCTGCTGTTG AGTGAAAATT TGGCAATTCC 1500
TACAGCTGTT TTGCGCCAAC GCGTCCCGGT CGGCCGATTG ACAACATCGC AACGCAGGAT 1560
GTCAGAGACG CTAGAGAGCC TTCCAGTTGT ACCGTCTCCC ATGCATGAAA GAGATGCATT 1620
TGCCGCGATG AAAGAACGCG GCATGTTGCA TCTTACATTA CTAAACACGG GAACTGATCC 1680
GACGATGCGC CTCATAGAGA GGAATCTTCG GATTGCGATG GAGGAAGTCG TGGTCATTTC 17 4 0
GAAACTGATC AGCAAAATCT TGGAGGCTTG AAGATGGCAA TTCGCAAGCC CGCATTGTCG 1800
GTCGGCGAAG CACGGCGGCT TGCTGGTGCT CGACCCGAGA TCCACCATCC CAACCCGACA 18 60
CTTGTTCCCC AGAAGCTGGA CCTCCAGCAC TTGCCTGAAA AAGCCGACGA GAAAGACCAG 1920
CAACGTGAGC CTCTCGTCGC CGATCACATT TACAGTCCCG ATCGACAACT TAAGCTAACT 1980
GTGGATGCCC TTAGTCCACC TCCGTCCCCG AAAAAGCTCC AGGTTTTTCT TTCAGCGCGA 204 0
CCGCCCGCGC CTCAAGTGTC GAAAACATAT GACAACCTCG TTCGGCAATA CAGTCCCTCG 2100
AAGTCGCTAC AAATGATTTT AAGGCGCGCG TTGGACGATT TCGAAAGCAT GCTGGCAGAT 2160
GGATCATTTC GCGTGGCCCC GAAAAGTTAT CCGATCCCTT CAACTACAGA AAAATCCGTT 2220
CTCGTTCAGA CCTCACGCAT GTTCCCGGTT GCGTTGCTCG AGGTCGCTCG AAGTCATTTT 2280
GATCCGTTGG GGTTGGAGAC CGCTCGAGCT TTCGGCCACA AGCTGGCTAC CGCCGCGCTC 234 0
GCGTCATTCT TTGCTGGAGA GAAGCCATCG AGCAATTGGT GAAGAGGGAC CTATCGGAAC 24 00
CCCTCACCAA ATATTGAGTG TAGGTTTGAG GCCGCTGGCC GCGTCCTCAG TCACCTTTTG 24 60
AGCCAGATAA TTAAGAGCCA AATGCAATTG GCTCAGGCTG CCATCGTCCC CCCGTGCGAA 2 520
ACCTGCACGT CCGCGTCAAA GAAATAACCG GCACCTCTTG CTGTTTTTAT CAGTTGAGGG 2 580
CTTGACGGAT CCGCCTCAAG TTTGCGGCGC AGCCGCAAAA TGAGAACATC TATACTCCTG 2 64 0
TCGTAAACCT CCTCGTCGCG TACTCGACTG GCAATGAGAA GTTGCTCGCG CGATAGAACG 2700
TCGCGGGGTT TCTCTAAAAA CGCGAGGAGA AGATTGAACT CACCTGCCGT AAGTTTCACC 2760
TCACCGCCAG CTTCGGACAT CAAGCGACGT TGCCTGAGAT TAAGTGTCCA GTCAGTAAAA 2820
CAAAAAGACC GTCGGTCTTT GGAGCGGACA ACGTTGGGGC GCACGCGCAA GGCAACCCGA 2880
ATGCGTGCAA GAAACTCTCT CGTACTAAAC GGCTTAGCGA TAAAATCACT TGCTCCTAGC 2 94 0
TCGAGTGCAA CAACTTTATC CGTCTCCTCA AGGCGGTCGC CACTGATAAT TATGATTGGA 3000
ATATCAGACT TTGCCGCCAG ATTTCGAACG ATCTCAAGCC CATCTTCACG ACCTAAATTT 3060
AGATCAACAA CCACGACATC GACCGTCGCG GAAGAGAGTA CTCTAGTGAA CTGGGTGCTG 3120
TCGGCTACCG CGGTCACTTT GAAGGCGTGG ATCGTAAGGT ATTCGATAAT AAGATGCCGC 3180
ATAGCGACAT CGTCATCGAT AAGAAGAACG TGTTTCAACG GCTCACCTTT CAATCTAAAA 324 0
TCTGAACCCT TGTTCACAGC GCTTGAGAAA TTTTCACGTG AAGGATGTAC AATCATCTCC 3300
AGCTAAATGG GCAGTTCGTC AGAATTGCGG CTGACCGCGG ATGACGAAAA TGCGAACCAA 3360
GTATTTCAAT TTTATGACAA AAGTTCTCAA TCGTTGTTAC AAGTGAAACG CTTCGAGGTT 34 20
ACAGCTACTA TTGATTAAGG AGATCGCCTA TGGTCTCGCC CCGGCGTCGT GCGTCCGCCG 34 80
CGAGCCAGAT CTCGCCTACT TCATAAACGT CCTCATAGGC ACGGAATGGA ATGATGACAT 354 0
CGATCGCCGT AGAGAGCATG TCAATCAGTG TGCGATCTTC CAAGCTAGCA CCTTGGGCGC 3600
TACTTTTGAC AAGGGAAAAC AGTTTCTTGA ATCCTTGGAT TGGATTCGCG CCGTGTATTG 3660
TTGAAATCGA TCCCGGATGT CCCGAGACGA CTTCACTCAG ATAAGCCCAT GCTGCATCGT 3720
CGCGCATCTC GCCAAGCAAT ATCCGGTCCG GCCGCATACG CAGACTTGCT TGGAGCAAGT 3780
GCTCGGCGCT CACAGCACCC AGCCCAGCAC CGTTCTTGGA GTAGAGTAGT CTAACATGAT 3840
TATCGTGTGG AATGACGAGT TCGAGCGTAT CTTCTATGGT GATTAGCCTT TCCTGGGGGG 3900
GGATGGCGCT GATCAAGGTC TTGCTCATTG TTGTCTTGCC GCTTCCGGTA GGGCCACATA 3960
GCAACATCGT CAGTCGGCTG ACGACGCATG CGTGCAGAAA CGCTTCCAAA TCCCCGTTGT 4 020
CAAAATGCTG AAGGATAGCT TCATCATCCT GATTTTGGCG TTTCCTTCGT GTCTGCCACT 4080
GGTTCCACCT CGAAGCATCA TAACGGGAGG AGACTTCTTT AAGACCAGAA ACACGCGAGC 4140
TTGGCCGTCG AATGGTCAAG CTGACGGTGC CCGAGGGAAC GGTCGGCGGC AGACAGATTT 4 200
GTAGTCGTTC ACCACCAGGA AGTTCAGTGG CGCAGAGGGG GTTACGTGGT CCGACATCCT 4260
GCTTTCTCAG CGCGCCCGCT AAAATAGCGA TATCTTCAAG ATCATCATAA GAGACGGGCA 4320
AAGGCATCTT GGTAAAAATG CCGGCTTGGC GCACAAATGC CTCTCCAGGT CGATTGATCG 4 380
CAATTTCTTC AGTCTTCGGG TCATCGAGCC ATTCCAAAAT CGGCTTCAGA AGAAAGCGTA 4 44 0
GTTGCGGATC CACTTCCATT TACAATGTAT CCTATCTCTA AGCGGAAATT TGAATTCATT 4 500
AAGAGCGGCG GTTCCTCCCC CGCGTGGCGC CGCCAGTCAG GCGGAGCTGG TAAACACCAA 4 560AGAAATCGAG GTCCCGTGCT ACGAAAATGG AAACGGTGTC ACCCTGATTC TTCTTCAGGG 4 620
TTGGCGGTAT GTTGATGGTT GCCTTAAGGG CTGTCTCAGT TGTCTGCTCA CCGTTATTTT 4 680
GAAAGCTGTT GAAGCTCATC CCGCCACCCG AGCTGCCGGC GTAGGTGCTA GCTGCCTGGA 4740
AGGCGCCTTG AACAACACTC AAGAGCATAG CTCCGCTAAA ACGCTGCCAG AAGTGGCTGT 4 800
CGACCGAGCC CGGCAATCCT GAGCGACCGA GTTCGTCCGC GCTTGGCGAT GTTAACGAGA 4 860
TCATCGCATG GTCAGGTGTC TCGGCGCGAT CCCACAACAC AAAAACGCGC CCATCTCCCT 4 920
GTTGCAAGCC ACGCTGTATT TCGCCAACAA CGGTGGTGCC ACGATCAAGA AGCACGATAT 4 980
TGTTCGTTGT TCCACGAATA TCCTGAGGCA AGACACACTT TACATAGCCT GCCAAATTTG 5040
TGTCGATTGC GGTTTGCAAG ATGCACGGAA TTATTGTCCC TTGCGTTACC ATAAAATCGG 5100
GGTGCGGCAA GAGCGTGGCG CTGCTGGGCT GCAGCTCGGT GGGTTTCATA CGTATCGACA 5160
AATCGTTCTC GCCGGACACT TCGCCATTCG GCAAGGAGTT GTCGTCACGC TTGCCTTCTT 5220
GTCTTCGGCC CGTGTCGCCC TGAATGGCGC GTTTGCTGAC CCCTTGATCG CCGCTGCTAT 5280
ATGCAAAAAT CGGTGTTTCT TCCGGCCGTG GCTCATGCCG CTCCGGTTCG CCCCTCGGCG 5340
GTAGAGGAGC AGCAGGCTGA ACAGCCTCTT GAACCGCTGG AGGATCCGGC GGCACCTCAA 5400
TCGGAGCTGG ATGAAATGGC TTGGTGTTTG TTGCGATCAA AGTTGACGGC GATGCGTTCT 54 60
CATTCACCTT CTTTTGGCGC CCACCTAGCC AAATGAGGCT TAATGATAAC GCGAGAACGA 5520
CACCTCCGAC GATCAATTTC TGAGACCCCG AAAGACGCCG GCGATGTTTG TCGGAGACCA 5580
GGGATCCAGA TGCATCAACC TCATGTGCCG CTTGCTGACT ATCGTTATTC ATCCCTTCGC 564 0
CCCCTTCAGG ACGCGTTTCA CATCGGGCCT CACCGTGCCC GTTTGCGGCC TTTGGCCAAC 5700
GGGATCGTAA GCGGTGTTCC AGATACATAG TACTGTGTGG CCATCCCTCA GACGCCAACC 57 60
TCGGGAAACC GAAGAAATCT CGACATCGCT CCCTTTAACT GAATAGTTGG CAACAGCTTC 5820
CTTGCCATCA GGATTGATGG TGTAGATGGA GGGTATGCGT ACATTGCCCG GAAAGTGGAA 5880
TACCGTCGTA AATCCATTGT CGAAGACTTC GAGTGGCAAC AGCGAACGAT CGCCTTGGGC 594 0
GACGTAGTGC CAATTACTGT CCGCCGCACC AAGGGCTGTG ACAGGCTGAT CCAATAAATT 6000
CTCAGCTTTC CGTTGATATT GTGCTTCCGC GTGTAGTCTG TCCACAACAG CCTTCTGTTG 6060
TGCCTCCCTT CGCCGAGCCG CCGCATCGTC GGCGGGGTAG GCGAATTGGA CGCTGTAATA 6120
GAGATCGGGC TGCTCTTTAT CGAGGTGGGA CAGAGTCTTG GAACTTATAC TGAAAACATA 6180
ACGGCGCATC CCGGAGTCGC TTGCGGTTAG CACGATTACT GGCTGAGGCG TGAGGACCTG 624 0
GCTTGCCTTG AAAAATAGAT AATTTCCCCG CGGTAGGGCT GCTAGATCTT TGCTATTTGA 6300
AACGGCAACC GCTGTCACCG TTTCGTTCGT GGCGAATGTT ACGACCAAAG TAGCTCCAAC 6360
CGCCGTCGAG AGGCGCACCA CTTGATCGGG ATTGTAAGCC AAATAACGCA TGCGCGGATC 6420
TAGCTTGCCC GCCATTGGAG TGTCTTCAGC CTCCGCACCA GTCGCAGCGG CAAATAAACA 6480
TGCTAAAATG AAAAGTGCTT TTCTGATCAT GGTTCGCTGT GGCCTACGTT TGAAACGGTA 654 0
TCTTCCGATG TCTGATAGGA GGTGACAACC AGACCTGCCG GGTTGGTTAG TCTCAATCTG 6600
CCGGGCAAGC TGGTCACCTT TTCGTAGCGA ACTGTCGCGG TCCACGTACT CACCACAGGC 6660
ATTTTGCCGT CAACGACGAG GGTCCTTTTA TAGCGAATTT GCTGCGTGCT TGGAGTTACA 6720
TCATTTGAAG CGATGTGCTC GACCTCCACC CTGCCGCGTT TGCCAAGAAT GACTTGAGGC 6780
GAACTGGGAT TGGGATAGTT GAAGAATTGC TGGTAATCCT GGCGCACTGT TGGGGCACTG 6840
AAGTTCGATA CCAGGTCGTA GGCGTACTGA GCGGTGTCGG CATCATAACT CTCGCGCAGG 6900
CGAACGTACT CCCACAATGA GGCGTTAACG ACGGCCTCCT CTTGAGTTGC AGGCAATCGC 6960
GAGACAGACA CCTCGCTGTC AACGGTGCCG TCCGGCCGTA TCCATAGATA TACGGGCACA 7020
AGCCTGCTCA ACGGCACCAT TGTGGCTATA GCGAACGCTT GAGCAACATT TCCCAAAATC 7 080
GCGATAGCTG CGACAGCTGC AATGAGTTTG GAGAGACGTC GCGCCGATTT CGCTCGCGCG 7140
GTTTGAAAGG CTTCTACTTC CTTATAGTGC TCGGCAAGGC TTTCGCGCGC CACTAGCATG 7200
GCATATTCAG GCCCCGTCAT AGCGTCCACC CGAATTGCCG AGCTGAAGAT CTGACGGAGT 7260
AGGCTGCCAT CGCCCCACAT TCAGCGGGAA GATCGGGCCT TTGCAGCTCG CTAATGTGTC 7320
GTTTGTCTGG CAGCCGCTCA AAGCGACAAC TAGGCACAGC AGGCAATACT TCATAGAATT 7380
CTCCATTGAG GCGAATTTTT GCGCGACCTA GCCTCGCTCA ACCTGAGCGA AGCGACGGTA 7440
CAAGCTGCTG GCAGATTGGG TTGCGCCGCT CCAGTAACTG CCTCCAATGT TGCCGGCGAT 7 500
CGCCGGCAAA GCGACAATGA GCGCATCCCC TGTCAGAAAA AACATATCGA GTTCGTAAAG 7560
ACCAATGATC TTGGCCGCGG TCGTACCGGC GAAGGTGATT ACACCAAGCA TAAGGGTGAG 7 620
CGCAGTCGCT TCGGTTAGGA TGACGATCGT TGCCACGAGG TTTAAGAGGA GAAGCAAGAG 7680
ACCGTAGGTG ATAAGTTGCC CGATCCACTT AGCTGCGATG TCCCGCGTGC GATCAAAAAT 7740
ATATCCGACG AGGATCAGAG GCCCGATCGC GAGAAGCACT TTCGTGAGAA TTCCAACGGC 7800
GTCGTAAACT CCGAAGGCAG ACCAGAGCGT GCCGTAAAGG ACCCACTGTG CCCCTTGGAA 7860
AGCAAGGATG TCCTGGTCGT TCATCGGACC GATTTCGGAT GCGATTTTCT GAAAAACGGC 7 920
CTGGGTCACG GCGAACATTG TATCCAACTG TGCCGGAACA GTCTGCAGAG GCAAGCCGGT 7 980
TACACTAAAC TGCTGAACAA AGTTTGGGAC CGTCTTTTCG AAGATGGAAA CCACATAGTC 8040
TTGGTAGTTA GCCTGCCCAA CAATTAGAGC AACAACGATG GTGACCGTGA TCACCCGAGT 8100
ίGATACCGCTA CGGGTATCGA CTTCGCCGCG TATGACTAAA ATACCCTGAA CAATAATCCA 8160
AAGAGTGACA CAGGCGATCA ATGGCGCACT CACCGCCTCC TGGATAGTCT CAAGCATCGA 8220
GTCCAAGCCT GTCGTGAAGG CTACATCGAA GATCGTATGA ATGGCCGTAA ACGGCGCCGG 8280
AATCGTGAAA TTCATCGATT GGACCTGAAC TTGACTGGTT TGTCGCATAA TGTTGGATAA 834 0
AATGAGCTCG CATTCGGCGA GGATGCGGGC GGATGAACAA ATCGCCCAGC CTTAGGGGAG 84 00
GGCACCAAAG ATGACAGCGG TCTTTTGATG CTCCTTGCGT TGAGCGGCCG CCTCTTCCGC 84 60
CTCGTGAAGG CCGGCCTGCG CGGTAGTCAT CGTTAATAGG CTTGTCGCCT GTACATTTTG 8520
AATCATTGCG TCATGGATCT GCTTGAGAAG CAAACCATTG GTCACGGTTG CCTGCATGAT 8580
ATTGCGAGAT CGGGAAAGCT GAGCAGACGT ATCAGCATTC GCCGTCAAGC GTTTGTCCAT 864 0
CGTTTCCAGA TTGTCAGCCG CAATGCCAGC GCTGTTTGCG GAACCGGTGA TCTGCGATCG 87 00
CAACAGGTCC GCTTCAGCAT CACTACCCAC GACTGCACGA TCTGTATCGC TGGTGATCGC 87 60
ACGTGCCGTG GTCGACATTG GCATTCGCGG CGAAAACATT TCATTGTCTA GGTCCTTCGT 8820
CGAAGGATAC TGATTTTTCT GGTTGAGCGA AGTCAGTAGT CCAGTAACGC CGTAGGCCGA 8880
CGTCAACATC GTAACCATCG CTATAGTCTG AGTGAGATTC TCCGCAGTCG CGAGCGCAGT 894 0
CGCGAGCGTC TCAGCCTCCG TTGCCGGGTC GCTAACAACA AACTGCGCCC GCGCGGGCTG 9000
AATATATAGA AAGCTGCAGG TCAAAACTGT TGCAATAAGT TGCGTCGTCT TCATCGTTTC 9060
CTACCTTATC AATCTTCTGC CTCGTGGTGA CGGGCCATGA ATTCGCTGAG CCAGCCAGAT 9120
GAGTTGCCTT CTTGTGCCTC GCGTAGTCGA GTTGCAAAGC GCACCGTGTT GGCACGCCCC 9180
GAAAGCACGG CGACATATTC ACGCATATCC CGCAGATCAA ATTCGCAGAT GACGCTTCCA 924 0
CTTTCTCGTT TAAGAAGAAA CTTACGGCTG CCGACCGTCA TGTCTTCACG GATCGCCTGA 9300
AATTCCTTTT CGGTACATTT CAGTCCATCG ACATAAGCCG ATCGATCTGC GGTTGGTGAT 9360
GGATAGAAAA TCTTCGTCAT ACATTGCGCA ACCAAGCTGG CTCCTAGCGG CGATTCCAGA 9420
ACATGCTCTG GTTGCTGCGT TGCCAGTATT AGCATCCCGT TGTTTTTTCG AACGGTCAGG 9480
AGGAATTTGT CGACGACAGT CGAAAATTTA GGGTTTAACA AATAGGCGCG AAACTCATCG 9540
CAGCTCATCA CAAAACGGCG GCCGTCGATC ATGGCTCCAA TCCGATGCAG GAGATATGCT 9600
GCAGCGGGAG CGCATACTTC CTCGTATTCG AGAAGATGCG TCATGTCGAA GCCGGTAATC 9660
GACGGATCTA ACTTTACTTC GTCAACTTCG CCGTCAAATG CCCAGCCAAG CGCATGGCCC 9720
CGGCACCAGC GTTGGAGCCG CGCTCCTGCG CCTTCGGCGG GCCCATGCAA CAAAAATTCA 9780
CGTAACCCCG CGATTGAACG CATTTGTGGA TCAAACGAGA GCTGACGATG GATACCACGG 9840
ACCAGACGGC GGTTCTCTTC CGGAGAAATC CCACCCCGAC CATCACTCTC GATGAGAGCC 9900
ACGATCCATT CGCGCAGAAA ATCGTGTGAG GCTGCTGTGT TTTCTAGGCC ACGCAACGGC 9960
GCCAACCCGC TGGGTGTGCC TCTGTGAAGT GCCTVAATATG TTCCTCCTGT GGCGCGAACC 10020
AGCAATTCGC CACCCCGGTC CTTGTCAAAG AACACGACCG TACCTGCACG GTCGACCATG 10080
CTCTGTTCGA GCATGGCTAG AACAAACATC ATGAGCGTCG TCTTACCCCT CCCGATAGGC 1014 0
CCGAATATTG CCGTCATGCC AACATCGTGC TCATGCGGGA TATAGTCGAA AGGCGTTCCG 10200
CCATTGGTAC GAAATCGGGC AATCGCGTTG CCCCAGTGGC CTGAGCTGGC GCCCTCTGGA 10260
AAGTTTTCGA AAGAGACAAA CCCTGCGAAA TTGCGTGAAG TGATTGCGCC AGGGCGTGTG 10320
CGCCACTTAA AATTCCCCGG CAATTGGGAC CAATAGGCCG CTTCCATACC AATACCTTCT 10380
TGGACAACCA CGGCACCTGC ATCCGCCATT CGTGTCCGAG CCCGCGCGCC CCTGTCCCCA 104 40
AGACTATTGA GATCGTCTGC ATAGACGCAA AGGCTCAAAT GATGTGAGCC CATAACGAAT 10500
TCGTTGCTCG CAAGTGCGTC CTCAGCCTCG GATAATTTGC CGATTTGAGT CACGGCTTTA 10560
TCGCCGGAAC TCAGCATCTG GCTCGATTTG AGGCTAAGTT TCGCGTGCGC TTGCGGGCGA 10620
GTCAGGAACG AAAAACTCTG CGTGAGAACA AGTGGAAAAT CGAGGGATAG CAGCGCGTTG 10680
AGCATGCCCG GCCGTGTTTT TGCAGGGTAT TCGCGAAACG AATAGATGGA TCCAACGTAA 10740
CTGTCTTTTG GCGTTCTGAT CTCGAGTCCT CGCTTGCCGC AAATGACTCT GTCGGTATAA 10800
ATCGAAGCGC CGAGTGAGCC GCTGACGACC GGAACCGGTG TGAACCGACC AGTCATGATC 10860
AACCGTAGCG CTTCGCCAAT TTCGGTGAAG AGCACACCCT GCTTCTCGCG GATGCCAAGA 10920
CGATGCAGGC CATACGCTTT AAGAGAGCCA GCGACAACAT GCCAAAGATC TTCCATGTTC 10980
CTGATCTGGC CCGTGAGATC GTTTTCCCTT TTTCCGCTTA GCTTGGTGAA CCTCCTCTTT 11040
ACCTTCCCTA AAGCCGCCTG TGGGTAGACA ATCAACGTAA GGAAGTGTTC ATTGCGGAGG 11100
AGTTGGCCGG AGAGCACGCG CTGTTCAAAA GCTTCGTTCA GGCTAGCGGC GAAAACACTA 11160
CGGAAGTGTC GCGGCGCCGA TGATGGCACG TCGGCATGAC GTACGAGGTG AGCATATATT 11220
GACACATGAT CATCAGCGAT ATTGCGCAAC AGCGTGTTGA ACGCACGACA ACGCGCATTG 11280
CGCATTTCAG TTTCCTCAAG CTCGAATGCA ACGCCATCAA TTCTCGCAAT GGTCATGATC 11340
GATCCGTCTT CAAGAAGGAC GATATGGTCG CTGAGGTGGC CAATATAAGG GAGATAGATC 11400
TCACCGGATC TTTCGGTCGT TCCACTCGCG CCGAGCATCA CACCATTCCT CTCCCTCGTG 114 60
GGGGAACCCT AATTGGATTT GGGCTAACAG TAGCGCCCCC CCAAACTGCA CTATCAATGC 11520
TTCTTCCCGC GGTCCGCAAA AATAGCAGGA CGACGCTCGC CGCATTGTAG TCTCGCTCCA 11580
CGATGAGCCG GGCTGCAAAC CATAACGGCA CGAGAACGAC TTCGTAGAGC GGGTTCTGAA 11640CGATAACGAT GACAAAGCCG GCGAACATCA TGAATAACCC TGCCAATGTC AGTGGCACCC 11700
CAAGAAACAA TGCGGGCCGT GTGGCTGCGA GGTAAAGGGT CGATTCTTCC AAACGATCAG 11760
CCATCAACTA CCGCCAGTGA GCGTTTGGCC GAGGAAGCTC GCCCCAAACA TGATAACAAT 11820
GCCGCCGACG ACGCCGGCAA CCAGCCCAAG CGAAGCCCGC CCGAACATCC AGGAGATCCC 11880
GATAGCGACA ATGCCGAGAA CAGCGAGTGA CTGGCCGAAC GGACCAAGGA TAAACGTGCA 11940
TATATTGTTA ACCATTGTGG CGGGGTCAGT GCCGCCACCC GCAGATTGCG CTGCGGCGGG 12000
TCCGGATGAG GAAATGCTCC ATGCAATTGC ACCGCACAAG CTTGGGGCGC AGCTCGATAT 12060
CACGCGCATC ATCGCATTCG AGAGCGAGAG GCGATTTAGA TGTAAACGGT ATCTCTCAAA 12120
GCATCGCATC AATGCGCACC TCCTTAGTAT AAGTCGAATA AGACTTGATT GTCGTCTGCG 12180
GATTTGCCGT TGTCCTGGTG TGGCGGTGGC GGAGCGATTA AACCGCCAGC GCCATCCTCC 12240
TGCGAGCGGC GCTGATATGA CCCCCAAACA TCCCACGTCT CTTCGGATTT TAGCGCCTCG 12300
TGATCGTCTT TTGGAGGCTC GATTAACGCG GGCACCAGCG ATTGAGCAGC TGTTTCAACT 12360
TTTCGCACGT AGCCGTTTGC AAAACCGCCG ATGAAATTAC CGGTGTTGTA AGCGGAGATC 12420
GCCCGACGAA GCGCAAATTG CTTCTCGTCA ATCGTTTCGC CGCCTGCATA ACGACTTTTC 12480
AGCATGTTTG CAGCGGCAGA TAATGATGTG CACGCCTGGA GCGCACCGTC AGGTGTCAGA 12540
CCGAGCATAG AAAAATTTCG AGAGTTTATT TGCATGAGGC CAACATCCAG CGAATGCCGT 12600
GCATCGAGAC GGTGCCTGAC GACTTGGGTT GCTTGGCTGT GATCTTGCCA GTGAAGCGTT 12660
TCGCCGGTCG TGTTGTCATG AATCGCTAAA GGATCAAAGC GACTCTCCAC CTTAGCTATC 12720
GCCGCAAGCG TAGATGTCGC AACTGATGGG GCACACTTGC GAGCAACATG GTCAAACTCA 12780
GCAGATGAGA GTGGCGTGGC AAGGCTCGAC GAACAGAAGG AGACCATCAA GGCAAGAGAA 1284 0
AGCGACCCCG ATCTCTTAAG CATACCTTAT CTCCTTAGCT CGCAACTAAC ACCGCCTCTC 12900
CCGTTGGAAG AAGTGCGTTG TTTTATGTTG AAGATTATCG GGAGGGTCGG TTACTCGAAA 12960
ATTTTCAATT GCTTCTTTAT GATTTCAATT GAAGCGAGAA ACCTCGCCCG GCGTCTTGGA 13020
ACGCAACATG GACCGAGAAC CGCGCATCCA TGACTAAGCA ACCGGATCGA CCTATTCAGG 13080
CCGCAGTTGG TCAGGTCAGG CTCAGAACGA AAATGCTCGG CGAGGTTACG CTGTCTGTAA 1314 0
ACCCATTCGA TGAACGGGAA GCTTCCTTCC GATTGCTCTT GGCAGGAATA TTGGCCCATG 13200
CCTGCTTGCG CTTTGCAAAT GCTCTTATCG CGTTGGTATC ATATGCCTTG TCCGCCAGCA 13260
GAAACGCACT CTAAGCGATT ATTTGTAAAA ATGTTTCGGT CATGCGGCGG TCATGGGCTT 13320
GACCCGCTGT CAGCGCAAGA CGGATCGGTC AACCGTCGGC ATCGACAACA GCGTGAATCT 13380
TGGTGGTCAA ACCGCCACGG GAACGTCCCA TACAGCCATC GTCTTGATCC CGCTGTTTCC 13440
CGTCGCCGCA TGTTGGTGGA CGCGGACACA GGAACTGTCA ATCATGACGA CATTCTATCG 13500
AAAGCCTTGG AAATCACACT CAGAATATGA TCCCAGACGT CTGCCTCACG CCATCGTACA 13560
AAGCGATTGT AGCAGGTTGT ACAGGAACCG TATCGATCAG GAACGTCTGC CCAGGGCGGG 13620
CCCGTCCGGA AGCGCCACAA GATGACATTG ATCACCCGCG TCAACGCGCG GCACGCGACG 13680
CGGCTTATTT GGGAACAAAG GACTGAACAA CAGTCCATTC GAAATCGGTG ACATCAAAGC 13740
GGGGACGGGT TATCAGTGGC CTCCAAGTCA AGCCTCAATG AATCAAAATC AGACCGATTT 13800
GCAAACCTGA TTTATGAGTG TGCGGCCTAA ATGATGAAAT CGTCCTTCTA GATCGCCTCC 13860
GTGGTGTAGC AACACCTCGC AGTATCGCCG TGCTGACCTT GGCCAGGGAA TTGACTGGCA 13920
AGGGTGCTTT CACATGACCG CTCTTTTGGC CGCGATAGAT GATTTCGTTG CTGCTTTGGG 13980
CACGTAGAAG GAGAGAAGTC ATATCGGAGA AATTCCTCCT GGCGCGAGAG CCTGCTCTAT 14 04 0
CGCGACGGCA TCCCACTGTC GGGAACAGAC CGGATCATTC ACGAGGCGAA AGTCGTCAAC 14100
ACATGCGTTA TAGGCATCTT CCCTTGAAGG ATGATCTTGT TGCTGCCAAT CTGGAGGTGC 14160
GGCAGCCGCA GGCAGATGCG ATCTCAGCGC AACTTGCGGC AAAACATCTC ACTCACCTGA 14220
AAACCACTAG CGAGTCTCGC GATCAGACGA AGGCCTTTTA CTTAACGACA CAATATCCGA 14280
TGTCTGCATC ACAGGCGTCG CTATCCCAGT CAATACTAAA GCGGTGCAGG AACTAAAGAT 14 34 0
TACTGATGAC TTAGGCGTGC CACGAGGCCT GAGACGACGC GCGTAGACAG TTTTTTGAAA 14 4 00
TCATTATCAA AGTGATGGCC TCCGCTGAAG CCTATCACCT CTGCGCCGGT CTGTCGGAGA 14 4 60
GATGGGCAAG CATTATTACG GTCTTCGCGC CCGTACATGC ATTGGACGAT TGCAGGGTCA 14 520
ATGGATCTGA GATCATCCAG AGGATTGCCG CCCTTACCTT CCGTTTCGAG TTGGAGCCAG 14 580
CCCCTAAATG AGACGACATA GTCGACTTGA TGTGACAATG CCAAGAGAGA GATTTGCTTA 14 640
ACCCGATTTT TTTGCTCAAG CGTAAGCCTA TTGAAGCTTG CCGGCATGAC GTCCGCGCCG 14700
AAAGAATATC CTACAAGTAA AACATTCTGC ACACCGAAAT GCTTGGTGTA GACATCGATT 14 7 60
ATGTGACCAA GATCCTTAGC AGTTTCGCTT GGGGACCGCT CCGACCAGAA ATACCGAAGT 14820
GAACTGACGC CAATGACAGG AATCCCTTCC GTCTGCAGAT AGGTACCATC GATAGATCTG 14 880
CTGCCTCGCG CGTTTCGGTG ATGACGGTGA AAACCTCTGA CACATGCAGC TCCCGGAGAC 14 940
GGTCACAGCT TGTCTGTAAG CGGATGCCGG GAGCAGACAA GCCCGTCAGG GCGCGTCAGC 15000
GGGTGTTGGC GGGTGTCGGG GCGCAGCCAT GACCCAGTCA CGTAGCGATA GCGGAGTGTA 15060
TACTGGCTTA ACTATGCGGC ATCAGAGCAG ATTGTACTGA GAGTGCACCA TATGCGGTGT 15120
GAAATACCGC ACAGATGCGT AAGGAGAAAA TACCGCATCA GGCGCTCTTC CGCTTCCTCG 15180CTCACTGACT CGCTGCGCTC GGTCGTTCGG CTGCGGCGAG CGGTATCAGC TCACTCAAAG 15240
GCGGTAATAC GGTTATCCAC AGAATCAGGG GATAACGCAG GAAAGAACAT GTGAGCAAAA 15300
GGCCAGCAAA AGGCCAGGAA CCGTAAAAAG GCCGCGTTGC TGGCGTTTTT CCATAGGCTC 15360
CGCCCCCCTG ACGAGCATCA CAAAAATCGA CGCTCAAGTC AGAGGTGGCG AAACCCGACA 15420
GGACTATAAA GATACCAGGC GTTTCCCCCT GGAAGCTCCC TCGTGCGCTC TCCTGTTCCG 154 80
ACCCTGCCGC TTACCGGATA CCTGTCCGCC TTTCTCCCTT CGGGAAGCGT GGCGCTTTCT 1554 0
CATAGCTCAC GCTGTAGGTA TCTCAGTTCG GTGTAGGTCG TTCGCTCCAA GCTGGGCTGT 15600
GTGCACGAAC CCCCCGTTCA GCCCGACCGC TGCGCCTTAT CCGGTAACTA TCGTCTTGAG 15660
TCCAACCCGG TAAGACACGA CTTATCGCCA CTGGCAGCAG CCACTGGTAA CAGGATTAGC 15720
AGAGCGAGGT ATGTAGGCGG TGCTACAGAG TTCTTGAAGT GGTGGCCTAA CTACGGCTAC 15780
ACTAGAAGGA CAGTATTTGG TATCTGCGCT CTGCTGAAGC CAGTTACCTT CGGAAAAAGA 1584 0
GTTGGTAGCT CTTGATCCGG CAAACAAACC ACCGCTGGTA GCGGTGGTTT TTTTGTTTGC 15900
AAGCAGCAGA TTACGCGCAG AAAAAAAGGA TCTCAAGAAG ATCCTTTGAT CTTTTCTACG 15960
GGGTCTGACG CTCAGTGGAA CGAAAACTCA CGTTAAGGGA TTTTGGTCAT GAGATTATCA 16020
AAAAGGATCT TCACCTAGAT CCTTTTAAAT TAAAAATGAA GTTTTAAATC AATCTAAAGT 16080
ATATATGAGT AAACTTGGTC TGACAGTTAC CAATGCTTAA TCAGTGAGGC ACCTATCTCA 1614 0
GCGATCTGTC TATTTCGTTC ATCCATAGTT GCCTGACTCC CCGTCGTGTA GATAACTACG 16200
ATACGGGAGG GCTTACCATC TGGCCCCAGT GCTGCAATGA TACCGCGAGA CCCACGCTCA 16260
CCGGCTCCAG ATTTATCAGC AATAAACCAG CCAGCCGGAA GGGCCGAGCG CAGAAGTGGT 16320
CCTGCAACTT TATCCGCCTC CATCCAGTCT ATTAATTGTT GCCGGGAAGC TAGAGTAAGT 16380
AGTTCGCCAG TTAATAGTTT GCGCAACGTT GTTGCCATTG CTGCAGGGGG GGGGGGGGGG 16440
GGGTTCCATT GTTCATTCCA CGGACAAAAA CAGAGAAAGG AAACGACAGA GGCCAAAAAG 16500
CTCGCTTTCA GCACCTGTCG TTTCCTTTCT TTTCAGAGGG TATTTTAAAT AAAAACATTA 16560
AGTTATGACG AAGAAGAACG GAAACGCCTT AAACCGGAAA ATTTTCATAA ATAGCGAAAA 16620
CCCGCGAGGT CCCTGTCGGA TCACCGGAAA GGACCCGTAA AGTGATAATG ATTATCATCT 16680
ACATATCACA ACGTGCGTGG AGGCCATCAA ACCACGTCAA ATAATCAATT ATGACGCAGG 16740
TATCGTATTA ATTGATCTGC ATCAACTTAA CGTAAAAACA ACTTCAGACA ATACAAATCA 16800
GCGACACTGA ATACGGGGCA ACCTCATGTC CCCCCCCCCC CCCCCCCTGC AGGCATCGTG 168 60
GTGTCACGCT CGTCGTTTGG TATGGCTTCA TTCAGCTCCG GTTCCCAACG ATCAAGGCGA 16920
GTTACATGAT CCCCCATGTT GTGCAAAAAA GCGGTTAGCT CCTTCGGTCC TCCGATCGTT 16980
GTCAGAAGTA AGTTGGCCGC AGTGTTATCA CTCATGGTTA TGGCAGCACT GCATAATTCT 17 040
CTTACTGTCA TGCCATCCGT AAGATGCTTT TCTGTGACTG GTGAGTACTC AACCAAGTCA 17100
TTCTGAGAAT AGTGTATGCG GCGACCGAGT TGCTCTTGCC CGGCGTCAAC ACGGGATAAT 17160
ACCGCGCCAC ATAGCAGAAC TTTAAAAGTG CTCATCATTG GAAAACGTTC TTCGGGGCGA 17220
AAACTCTCAA GGATCTTACC GCTGTTGAGA TCCAGTTCGA TGTAACCCAC TCGTGCACCC 17280
AACTGATCTT CAGCATCTTT TACTTTCACC AGCGTTTCTG GGTGAGCAAA AACAGGAAGG 1734 0
CAAAATGCCG CAAAAAAGGG AATAAGGGCG ACACGGAAAT GTTGAATACT CATACTCTTC 17 4 00
CTTTTTCAAT ATTATTGAAG CATTTATCAG GGTTATTGTC TCATGAGCGG ATACATATTT 174 60
GAATGTATTT AGAAAAATAA ACAAATAGGG GTTCCGCGCA CATTTCCCCG AAAAGTGCCA 17520
CCTGACGTCT AAGAAACCAT TATTATCATG ACATTAACCT ATAAAAATAG GCGTATCACG 17580
AGGCCCTTTC GTCTTCAAGA ATTGGTCGAC GATCTTGCTG CGTTCGGATA TTTTCGTGGA 17640
GTTCCCGCCA CAGACCCGGA TTGAAGGCGA GATCCAGCAA CTCGCGCCAG ATCATCCTGT 177 00
GACGGAACTT TGGCGCGTGA TGACTGGCCA GGACGTCGGC CGAAAGAGCG ACAAGCAGAT 17760
CACGCTTTTC GACAGCGTCG GATTTGCGAT CGAGGATTTT TCGGCGCTGC GCTACGTCCG 17 820
CGACCGCGTT GAGGGATCAA GCCACAGCAG CCCACTCGAC CTTCTAGCCG ACCCAGACGA 17880
GCCAAGGGAT CTTTTTGGAA TGCTGCTCCG TCGTCAGGCT TTCCGACGTT TGGGTGGTTG 17940
AACAGAAGTC ATTATCGTAC GGAATGCCAA GCACTCCCGA GGGGAACCCT GTGGTTGGCA 18000
TGCACATACA AATGGACGAA CGGATAAACC TTTTCACGCC CTTTTAAATA TCCGTTATTC 18060
TAATAAACGC TCTTTTCTCT TAGGTTTACC CGCCAATATA TCCTGTCAAA CACTGATAGT 18120
TTAAACTGAA GGCGGGAAAC GACAATCTGA TCATGAGCGG AGAATTAAGG GAGTCACGTT 18180
ATGACCCCCG CCGATGACGC GGGACAAGCC GTTTTACGTT TGGAACTGAC AGAACCGCAA 18240
CGTTGAAGGA GCCACTCAGC AAGCTGGTAC GATTGTAATA CGACTCACTA TAGGGCGAAT 18300
TGAGCGCTGT TTAAACGCTC TTCAACTGGA AGAGCGGTTA CCCGGACCGA AGCTTGCATG 18360
CCTGCAGTGC AGCGTGACCC GGTCGTGCCC CTCTCTAGAG ATAATGAGCA TTGCATGTCT 18420
AAGTTATAAA AAATTACCAC ATATTTTTTT TGTCACACTT GTTTGAAGTG CAGTTTATCT 184 80
ATCTTTATAC ATATATTTAA ACTTTACTCT ACGAATAATA TAATCTATAG TACTACAATA 1854 0
ATATCAGTGT TTTAGAGAAT CATATAAATG AACAGTTAGA CATGGTCTAA AGGACAATTG 18 600
AGTATTTTGA CAACAGGACT CTACAGTTTT ATCTTTTTAG TGTGCATGTG TTCTCCTTTT 18660
TTTTTGCAAA TAGCTTCACC TATATAATAC TTCATCCATT TTATTAGTAC ATCCATTTAG 18720GGTTTAGGGT TAATGGTTTT TATAGACTAA TTTTTTTAGT ACATCTATTT TATTCTATTT 187 80
TAGCCTCTAA ATTAAGAAAA CTAAAACTCT ATTTTAGTTT TTTTATTTAA TAATTTAGAT 1884 0
ATAAAATAGA ATAAAATAAA GTGACTAAAA ATTAAACAAA TACCCTTTAA GAAATTAAAA 18 900
AAACTAAGGA AACATTTTTC TTGTTTCGAG TAGATAATGC CAGCCTGTTA AACGCCGTCG 18960
ACGAGTCTAA CGGACACCAA CCAGCGAACC AGCAGCGTCG CGTCGGGCCA AGCGAAGCAG 19020
ACGGCACGGC ATCTCTGTCG CTGCCTCTGG ACCCCTCTCG AGAGTTCCGC TCCACCGTTG 19080
GACTTGCTCC GCTGTCGGCA TCCAGAAATT GCGTGGCGGA GCGGCAGACG TGAGCCGGCA 19140
CGGCAGGCGG CCTCCTCCTC CTCTCACGGC ACGGCAGCTA CGGGGGATTC CTTTCCCACC 19200
GCTCCTTCGC TTTCCCTTCC TCGCCCGCCG TAATAAATAG ACACCCCCTC CACACCCTCT 19260
TTCCCCAACC TCGTGTTGTT CGGAGCGCAC ACACACACAA CCAGATCTCC CCCAAATCCA 19320
CCCGTCGGCA CCTCCGCTTC AAGGTACGCC GCTCGTCCTC CCCCCCCCCC CCTCTCTACC 19380
TTCTCTAGAT CGGCGTTCCG GTCCATGGTT AGGGCCCGGT AGTTCTACTT CTGTTCATGT 19440
TTGTGTTAGA TCCGTGTTTG TGTTAGATCC GTGCTGCTAG CGTTCGTACA CGGATGCGAC 19500
CTGTACGTCA GACACGTTCT GATTGCTAAC TTGCCAGTGT TTCTCTTTGG GGAATCCTGG 19560
GATGGCTCTA GCCGTTCCGC AGACGGGATC GATTTCATGA TTTTTTTTGT TTCGTTGCAT 19620
AGGGTTTGGT TTGCCCTTTT CCTTTATTTC AATATATGCC GTGCACTTGT TTGTCGGGTC 19680
ATCTTTTCAT GCTTTTTTTT GTCTTGGTTG TGATGATGTG GTCTGGTTGG GCGGTCGTTC 19740
TAGATCGGAG TAGAATTCTG TTTCAAACTA CCTGGTGGAT TTATTAATTT TGGATCTGTA 19800
TGTGTGTGCC ATACATATTC ATAGTTACGA ATTGAAGATG ATGGATGGAA ATATCGATCT 19860
AGGATAGGTA TACATGTTGA TGCGGGTTTT ACTGATGCAT ATACAGAGAT GCTTTTTGTT 19920
CGCTTGGTTG TGATGATGTG GTGTGGTTGG GCGGTCGTTC ATTCGTTCTA GATCGGAGTA 19980
GAATACTGTT TCAAACTACC TGGTGTATTT ATTAATTTTG GAACTGTATG TGTGTGTCAT 20040
ACATCTTCAT AGTTACGAGT TTAAGATGGA TGGAAATATC GATCTAGGAT AGGTATACAT 20100
GTTGATGTGG GTTTTACTGA TGCATATACA TGATGGCATA TGCAGCATCT ATTCATATGC 20160
TCTAACCTTG AGTACCTATC TATTATAATA AACAAGTATG TTTTATAATT ATTTTGATCT 20220
TGATATACTT GGATGATGGC ATATGCAGCA GCTATATGTG GATTTTTTTA GCCCTGCCTT 20280
CATACGCTAT TTATTTGCTT GGTACTGTTT CTTTTGTCGA TGCTCACCCT GTTGTTTGGT 20340
GTTACTTCTG CAGGTCGACT CTAGAGGATC TACAAGTTTG TACAAAAAAG CAGGCTCCGC 204 00
GGCCGCCCCC TTCACCATGA CGATGGCTCG TCCTGGGGCG GCTTTGCCGC TGCTGCTGGT 204 60
CGTGGTCGGC GCTTGCTGCG CGCGCCTGGC GGCGGCAGTG CACCTCTCCG CGCTCGGCAG 20520
GACACTCATC GTCGAGGCGT CGCCGAAGGC CGGACAAGTC CTGCACGCCG GCGAGGACAC 20580
GATAACCGTG ACATGGCACC TCAACGCGTC GGCGTCCAGC GTCGGGTACA AGGCGCTGGA 20640
GGTGACCCTC TGCTACGCGC CGGCGAGCCA GGAGGACCGC GGGTGGCGCA AGGCCAACGA 20700
CGACTTGAGC AAGGACAAGG CGTGCCAGTT CAGGATCGCC CGGCATGCAT ACGCCGGCGG 207 60
CCAGGGGACG CTCCGGTACA GGGTCGCCCG CGACGTCCCC ACCGCGTCCT ACCACGTGCG 20820
CGCCTACGCG CTGGACGCGT CCGGGGCGCC GGTGGGCTAC GGCCAGACCG CGCCCGCCTA 20880
CTACTTCCAC GTCGCGGGCG TCTCGGGCGT CCACGCGTCC CTCCGGGTCG CCGCCGCCGT 20940
GCTCTCCGCG TTCTCCATCG CCGCGCTCGC CTTCTTTGTC GTCGTCGAGA AGAGGAGGAA 21000
GGACGAGTAG AAGGGTGGGC GCGCCGACCC AGCTTTCTTG TACAAAGTGG TGTTAACCTA 21060
GACTTGTCCA TCTTCTGGAT TGGCCAACTT AATTAATGTA TGAAATAAAA GGATGCACAC 21120
ATAGTGACAT GCTAATCACT ATAATGTGGG CATCAAAGTT GTGTGTTATG TGTAATTACT 21180
AGTTATCTGA ATAAAAGAGA AAGAGATCAT CCATATTTCT TATCCTAAAT GAATGTCACG 21240
TGTCTTTATA ATTCTTTGAT GAACCAGATG CATTTCATTA ACCAAATCCA TATACATATA 21300
AATATTAATC ATATATAATT AATATCAATT GGGTTAGCAA AACAAATCTA GTCTAGGTGT 21360
GTTTTGCGAA TTGCGGCCGC CACCGCGGTG GAGCTCGAAT TCCGGTCCGG GTCACCTTTG 21420
TCCACCAAGA TGGAACTGCG GCCGCTCATT AATTAAGTCA GGCGCGCCTC TAGTTGAAGA 21480
CACGTTCATG TCTTCATCGT AAGAAGACAC TCAGTAGTCT TCGGCCAGAA TGGCCATCTG 2154 0
GATTCAGCAG GCCTAGAAGG CCATTTAAAT CCTGAGGATC TGGTCTTCCT AAGGACCCGG 21600
GCGGTCCGAT TAAACTTTAA TTCGGACCGA AGCTTGCATG CCTGCAGTGC AGCGTGACCC 21660
GGTCGTGCCC CTCTCTAGAG ATAATGAGCA TTGCATGTCT AAGTTATAAA AAATTACCAC 21720
ATATTTTTTT TGTCACACTT GTTTGAAGTG CAGTTTATCT ATCTTTATAC ATATATTTAA 21780
ACTTTACTCT ACGAATAATA TAATCTATAG TACTACAATA ATATCAGTGT TTTAGAGAAT 21840
CATATAAATG AACAGTTAGA CATGGTCTAA AGGACAATTG AGTATTTTGA CAACAGGACT 21900
CTACAGTTTT ATCTTTTTAG TGTGCATGTG TTCTCCTTTT TTTTTGCAAA TAGCTTCACC 21960
TATATAATAC TTCATCCATT TTATTAGTAC ATCCATTTAG GGTTTAGGGT TAATGGTTTT 22020
TATAGACTAA TTTTTTTAGT ACATCTATTT TATTCTATTT TAGCCTCTAA ATTAAGAAAA 22080
CTAAAACTCT ATTTTAGTTT TTTTATTTAA TAATTTAGAT ATAAAATAGA ATAAAATAAA 2214 0
GTGACTAAAA ATTAAACAAA TACCCTTTAA GAAATTAAAA AAACTAAGGA AACATTTTTC 22200
TTGTTTCGAG TAGATAATGC CAGCCTGTTA AACGCCGTCG ACGAGTCTAA CGGACACCAA 22260CCAGCGAACC AGCAGCGTCG CGTCGGGCCA AGCGAAGCAG ACGGCACGGC ATCTCTGTCG 22320
CTGCCTCTGG ACCCCTCTCG AGAGTTCCGC TCCACCGTTG GACTTGCTCC GCTGTCGGCA 22380
TCCAGAAATT GCGTGGCGGA GCGGCAGACG TGAGCCGGCA CGGCAGGCGG CCTCCTCCTC 224 4 0
CTCTCACGGC ACCGGCAGCT ACGGGGGATT CCTTTCCCAC CGCTCCTTCG CTTTCCCTTC 22500
CTCGCCCGCC GTAATAAATA GACACCCCCT CCACACCCTC TTTCCCCAAC CTCGTGTTGT 22560
TCGGAGCGCA CACACACACA ACCAGATCTC CCCCAAATCC ACCCGTCGGC ACCTCCGCTT 22620
CAAGGTACGC CGCTCGTCCT CCCCCCCCCC CCTCTCTACC TTCTCTAGAT CGGCGTTCCG 22 680
GTCCATGCAT GGTTAGGGCC CGGTAGTTCT ACTTCTGTTC ATGTTTGTGT TAGATCCGTG 22740
TTTGTGTTAG ATCCGTGCTG CTAGCGTTCG TACACGGATG CGACCTGTAC GTCAGACACG 22800
TTCTGATTGC TAACTTGCCA GTGTTTCTCT TTGGGGAATC CTGGGATGGC TCTAGCCGTT 228 60
CCGCAGACGG GATCGATTTC ATGATTTTTT TTGTTTCGTT GCATAGGGTT TGGTTTGCCC 22920
TTTTCCTTTA TTTCAATATA TGCCGTGCAC TTGTTTGTCG GGTCATCTTT TCATGCTTTT 22980
TTTTGTCTTG GTTGTGATGA TGTGGTCTGG TTGGGCGGTC GTTCTAGATC GGAGTAGAAT 23040
TCTGTTTCAA ACTACCTGGT GGATTTATTA ATTTTGGATC TGTATGTGTG TGCCATACAT 23100
ATTCATAGTT ACGAATTGAA GATGATGGAT GGAAATATCG ATCTAGGATA GGTATACATG 23160
TTGATGCGGG TTTTACTGAT GCATATACAG AGATGCTTTT TGTTCGCTTG GTTGTGATGA 23220
TGTGGTGTGG TTGGGCGGTC GTTCATTCGT TCTAGATCGG AGTAGAATAC TGTTTCAAAC 23280
TACCTGGTGT ATTTATTAAT TTTGGAACTG TATGTGTGTG TCATACATCT TCATAGTTAC 23340
GAGTTTAAGA TGGATGGAAA TATCGATCTA GGATAGGTAT ACATGTTGAT GTGGGTTTTA 23400
CTGATGCATA TACATGATGG CATATGCAGC ATCTATTCAT ATGCTCTAAC CTTGAGTACC 234 60
TATCTATTAT AATAAACAAG TATGTTTTAT AATTATTTTG ATCTTGATAT ACTTGGATGA 23520
TGGCATATGC AGCAGCTATA TGTGGATTTT TTTAGCCCTG CCTTCATACG CTATTTATTT 23580
GCTTGGTACT GTTTCTTTTG TCGATGCTCA CCCTGTTGTT TGGTGTTACT TCTGCAGGTC 2364 0
GACTTTAACT TAGCCTAGGA TCCACACGAC ACCATGTCCC CCGAGCGCCG CCCCGTCGAG 23700
ATCCGCCCGG CCACCGCCGC CGACATGGCC GCCGTGTGCG ACATCGTGAA CCACTACATC 237 60
GAGACCTCCA CCGTGAACTT CCGCACCGAG CCGCAGACCC CGCAGGAGTG GATCGACGAC 23820
CTGGAGCGCC TCCAGGACCG CTACCCGTGG CTCGTGGCCG AGGTGGAGGG CGTGGTGGCC 23880
GGCATCGCCT ACGCCGGCCC GTGGAAGGCC CGCAACGCCT ACGACTGGAC CGTGGAGTCC 23940
ACCGTGTACG TGTCCCACCG CCACCAGCGC CTCGGCCTCG GCTCCACCCT CTACACCCAC 24000
CTCCTCAAGA GCATGGAGGC CCAGGGCTTC AAGTCCGTGG TGGCCGTGAT CGGCCTCCCG 24 060
AACGACCCGT CCGTGCGCCT CCACGAGGCC CTCGGCTACA CCGCCCGCGG CACCCTCCGC 24120
GCCGCCGGCT ACAAGCACGG CGGCTGGCAC GACGTCGGCT TCTGGCAGCG CGACTTCGAG 24180
CTGCCGGCCC CGCCGCGCCC GGTGCGCCCG GTGACGCAGA TCTGAGTCGA AACCTAGACT 24 240
TGTCCATCTT CTGGATTGGC CAACTTAATT AATGTATGAA ATAAAAGGAT GCACACATAG 24300
TGACATGCTA ATCACTATAA TGTGGGCATC AAAGTTGTGT GTTATGTGTA ATTACTAGTT 24 360
ATCTGAATAA AAGAGAAAGA GATCATCCAT ATTTCTTATC CTAAATGAAT GTCACGTGTC 24 420
TTTATAATTC TTTGATGAAC CAGATGCATT TCATTAACCA AATCCATATA CATATAAATA 24 480
TTAATCATAT ATAATTAATA TCAATTGGGT TAGCAAAACA AATCTAGTCT AGGTGTGTTT 24540
TGCGAATTGC GGCCGCCACC GCGGTGGAGC TCGAATTCAT TCCGATTAAT CGTGGCCTCT 24 600
TGCTCTTCAG GATGAAGAGC TATGTTTAAA CGTGCAAGCG CTACTAGACA ATTCAGTACA 24 660
TTAAAAACGT CCGCAATGTG TTATTAAGTT GTCTAAGCGT CAATTTGTTT ACACCACAAT 24 720
ATATCCTGCC ACCAGCCAGC CAACAGCTCC CCGACCGGCA GCTCGGCACA AAATCACCAC 24 780
TCGATACAGG CAGCCCATCA GTCCGGGACG GCGTCAGCGG GAGAGCCGTT GTAAGGCGGC 24840
AGACTTTGCT CATGTTACCG ATGCTATTCG GAAGAACGGC AACTAAGCTG CCGGGTTTGA 24 900
AACACGGATG ATCTCGCGGA GGGTAGCATG TTGATTGTAA CGATGACAGA GCGTTGCTGC 24 960
CTGTGATCAA ATATCATCTC CCTCGCAGAG ATCCGAATTA TCAGCCTTCT TATTCATTTC 25020
TCGCTTAACC GTGACAGGCT GTCGATCTTG AGAACTATGC CGACATAATA GGAAATCGCT 25080
GGATAAAGCC GCTGAGGAAG CTGAGTGGCG CTATTTCTTT AGAAGTGAAC GTTGACGATC 2514 0
GTCGACCGTA CCCCGATGAA TTAATTCGGA CGTACGTTCT GAACACAGCT GGATACTTAC 25200
TTGGGCGATT GTCATACATG ACATCAACAA TGTACCCGTT TGTGTAACCG TCTCTTGGAG 25260
GTTCGTATGA CACTAGTGGT TCCCCTCAGC TTGCGACTAG ATGTTGAGGC CTAACATTTT 25320
ATTAGAGAGC AGGCTAGTTG CTTAGATACA TGATCTTCAG GCCGTTATCT GTCAGGGCAA 25380
GCGAAAATTG GCCATTTATG ACGACCAATG CCCCGCAGAA GCTCCCATCT TTGCCGCCAT 25440
AGACGCCGCG CCCCCCTTTT GGGGTGTAGA ACATCCTTTT GCCAGATGTG GAAAAGAAGT 25500
TCGTTGTCCC ATTGTTGGCA ATGACGTAGT AGCCGGCGAA AGTGCGAGAC CCATTTGCGC 25560
TATATATAAG CCTACGATTT CCGTTGCGAC TATTGTCGTA ATTGGATGAA CTATTATCGT 25620
AGTTGCTCTC AGAGTTGTCG TAATTTGATG GACTATTGTC GTAATTGCTT ATGGAGTTGT 25680
CGTAGTTGCT TGGAGAAATG TCGTAGTTGG ATGGGGAGTA GTCATAGGGA AGACGAGCTT 25740
CATCCACTAA AACAATTGGC AGGTCAGCAA GTGCCTGCCC CGATGCCATC GCAAGTACGA 25800GGCTTAGAAC CACCTTCAAC AGATCGCGCATAAGCCGCGC CGCGAAGCGG CGTCGGCTTGCCTTGGTGAT CTCGCCTTTC ACGTAGTGAACCAAGCGATC TTCTTGTCCA AGATAAGCCTGGGCCGGCAG GCGCTCCATT GCCCAGTCGGTTACTGCGCT GTACCAAATG CGGGACAACGAGTCGGGCGG CGAGTTCCAT AGCGTTAAGGCAGGAACCGG ATCAAAGAGT TCCTCCGCCGTTGCTTTTGT CAGCAAGATA GCCAGATCAACAAGAATGTC ATTGCGCTGC CATTCTCCAAACGGAATGAT GTCGTCGTGC ACAACAATGGCTCCAGGGGA AGCCGAAGTT TCCAAAAGGTCAAGCCTTAC AGTCACCGTA ACCAGCAAATCCACTGCGGA GCCGTACAAA TGTACGGCCACGCCAACTAC CTCTGATAGT TGAGTCGATATTAACTCCTG AATTAAGCCG CGCCGCGAAGCATCCTGTGC TCCCGAGAAC CAGTACCAGTTAGTTTTATA CGTGAACAGG TCAATGCCGCTGCAGGCAGG TACATTGTTC GTTTGTGTCTGTGCCCACTT TTTCGCAAAT TCGATGAGACGCGACACAAC AATGTGTTCG ATAGAGGCTATCCCGACAAG CTCTTGGTCG ATGAATGCGCCATCCGAGAT GTAATCCTTC CGGTAGGGGCGGTCGGATAG GTGCACATCG AACACTTCACTTTCCGCCAC CTGCTCAGGG ATCACCGAAACGGATCGCAA ACCTGGCGCG GCTTTTGGCAGCTGCCACTT GTTAACCCTT TTGCCAGATTTCTTGGGTAA AAACTGGCCT AAAATTGCTGGGCTCGATGT CTATTGTAGA TATATGTAGTCGCGCGTTTC GGTGATGACG GTGAAAACCTAGCTTGTCTG TAAGCGGATG CCGGGAGCAGTGGCGGGTGT CGGGGCGCAG CCATGACCCACTTAACTATG CGGCATCAGA GCAGATTGTACCGCACAGAT GCGTAAGGAG AAAATACCGCGACTCGCTGC GCTCGGTCGT TCGGCTGCGGATACGGTTAT CCACAGAATC AGGGGATAACCAAAAGGCCA GGAACCGTAA AAAGGCCGCGCCTGACGAGC ATCACAAAAA TCGACGCTCATAAAGATACC AGGCGTTTCC CCCTGGAAGCCCGCTTACCG GATACCTGTC CGCCTTTCTCTCACGCTGTA GGTATCTCAG TTCGGTGTAGGAACCCCCCG TTCAGCCCGA CCGCTGCGCCCCGGTAAGAC ACGACTTATC GCCACTGGCAAGGTATGTAG GCGGTGCTAC AGAGTTCTTGAGGACAGTAT TTGGTATCTG CGCTCTGCTGAGCTCTTGAT CCGGCAAACA AACCACCGCTCAGATTACGC GCAGAAAAAA AGGATCTCAAGACGCTCAGT GGAACGAAAA CTCACGTTAAATCTTCACCT AGATCCTTTT AAATTAAAAAGAGTAAACTT GGTCTGACAG TTACCAATGCTGTCTATTTC GTTCATCCAT AGTTGCCTGAGAGGGCTTAC CATCTGGCCC CAGTGCTGCACCAGATTTAT CAGCAATAAA CCAGCCAGCCACTTTATCCG CCTCCATCCA GTCTATTAATCCAGTTAATA GTTTGCGCAA CGTTGTTGCCTTCCATTGTT CATTCCACGG ACAAAAACAGCGCTTTCAGC ACCTGTCGTT TCCTTTCTTTTTATGACGAA GAAGAACGGA AACGCCTTAACGCGAGGTCG CCGCCCCGTA AGCCGCCCCG
TAGTCTTCCC CAGCTCTCTA ACGCTTGAGT 258 60
AACGAATTGT TAGACATTAT TTGCCGACTA 25920
CAAATTCTTC CAACTGATCT GCGCGCGAGG 25980
GCCTAGCTTC AAGTATGACG GGCTGATACT 26040
CAGCGACATC CTTCGGCGCG ATTTTGCCGG 26100
TAAGCACTAC ATTTCGCTCA TCGCCAGCCC 26160
TTTCATTTAG CGCCTCAAAT AGATCCTGTT 26220
CTGGACCTAC CAAGGCAACG CTATGTTCTC 26280
TGTCGATCGT GGCTGGCTCG AAGATACCTG 26340
ATTGCAGTTC GCGCTTAGCT GGATAACGCC 264 00
TGACTTCTAC AGCGCGGAGA ATCTCGCTCT 264 60
CGTTGATCAA AGCTCGCCGC GTTGTTTCAT 26520
CAATATCACT GTGTGGCTTC AGGCCGCCAT 26580
GCAACGTCGG TTCGAGATGG CGCTCGATGA 26640
CTTCGGCGAT CACCGCTTCC CTCATGATGT 26700
CGGTGTCGGC TTGAATGAAT TGTTAGGCGT 2 67 60
ACATCGCTGT TTCGTTCGAG ACTTGAGGTC 26820
CGAGAGTAAA GCCACATTTT GCGTACAAAT 26880
CTAATCGTAT GCCAAGGAGC TGTCTGCTTA 26940
TGTGCGCGAC TCCTTTGCCT CGGTGCGTGT 27000
GATCGTTCCA TGTTGAGTTG AGTTCAATCT 27 060
CATAGCAAGC AGAGTCTTCA TCAGAGTCAT 27120
TCACACTTCT GGTAGATAGT TCAAAGCCTT 27180
GAACAATGAA ATGGTTCTCA GCATCCAATG 27240
TCTTCATATG ACGCCTAACG CCTGGCACAG 27300
CAAAAGGCGT GACAGGTTTG CGAATCCGTT 27360
TGGTAACTAT AATTTATGTT AGAGGCGAAG 27 420
GGGATTTCAG GAAAGTAAAC ATCACCTTCC 274 80
GTATCTACTT GATCGGGGGA TCTGCTGCCT 27 54 0
CTGACACATG CAGCTCCCGG AGACGGTCAC 27 600
ACAAGCCCGT CAGGGCGCGT CAGCGGGTGT 27 660
GTCACGTAGC GATAGCGGAG TGTATACTGG 27 720
CTGAGAGTGC ACCATATGCG GTGTGAAATA 27 7 80
ATCAGGCGCT CTTCCGCTTC CTCGCTCACT 2784 0
CGAGCGGTAT CAGCTCACTC AAAGGCGGTA 27 900
GCAGGAAAGA ACATGTGAGC AAAAGGCCAG 27 960
TTGCTGGCGT TTTTCCATAG GCTCCGCCCC 28020
AGTCAGAGGT GGCGAAACCC GACAGGACTA 28080
TCCCTCGTGC GCTCTCCTGT TCCGACCCTG 2814 0
CCTTCGGGAA GCGTGGCGCT TTCTCATAGC 28200
GTCGTTCGCT CCAAGCTGGG CTGTGTGCAC 28260
TTATCCGGTA ACTATCGTCT TGAGTCCAAC 28320
GCAGCCACTG GTAACAGGAT TAGCAGAGCG 28380
AAGTGGTGGC CTAACTACGG CTACACTAGA 28440
AAGCCAGTTA CCTTCGGAAA AAGAGTTGGT 28500
GGTAGCGGTG GTTTTTTTGT TTGCAAGCAG 28560
GAAGATCCTT TGATCTTTTC TACGGGGTCT 28 620
GGGATTTTGG TCATGAGATT ATCAAAAAGG 28 680
TGAAGTTTTA AATCAATCTA AAGTATATAT 28740
TTAATCAGTG AGGCACCTAT CTCAGCGATC 28800
CTCCCCGTCG TGTAGATAAC TACGATACGG 288 60
ATGATACCGC GAGACCCACG CTCACCGGCT 28 920
GGAAGGGCCG AGCGCAGAAG TGGTCCTGCA 28 980
TGTTGCCGGG AAGCTAGAGT AAGTAGTTCG 29040
ATTGCTGCAG GGGGGGGGGG GGGGGGGGAC 2 9100
AGAAAGGAAA CGACAGAGGC CAAAAAGCCT 29160
TCAGAGGGTA TTTTAAATAA AAACATTAAG 29220
ACCGGAAAAT TTTCATAAAT AGCGAAAACC 29280
TAACCTGTCG GATCACCGGA AAGGACCCGT 29340AAAGTGATAA TGATTATCAT CTACATATCA CAACGTGCGT GGAGGCCATC AAACCACGTC 29400
AAATAATCAA TTATGACGCA GGTATCGTAT TAATTGATCT GCATCAACTT AACGTAAAAA 294 60
CAACTTCAGA CAATACAAAT CAGCGACACT GAATACGGGG CAACCTCATG TCCCCCCCCC 29520
CCCCCCCCCT GCAGGCATCG TGGTGTCACG CTCGTCGTTT GGTATGGCTT CATTCAGCTC 29580
CGGTTCCCAA CGATCAAGGC GAGTTACATG ATCCCCCATG TTGTGCAAAA AAGCGGTTAG 29640
CTCCTTCGGT CCTCCGATCG TTGTCAGAAG TAAGTTGGCC GCAGTGTTAT CACTCATGGT 29700
TATGGCAGCA CTGCATAATT CTCTTACTGT CATGCCATCC GTAAGATGCT TTTCTGTGAC 2 97 60
TGGTGAGTAC TCAACCAAGT CATTCTGAGA ATAGTGTATG CGGCGACCGA GTTGCTCTTG 2 9820
CCCGGCGTCA ACACGGGATA ATACCGCGCC ACATAGCAGA ACTTTAAAAG TGCTCATCAT 29880
TGGAAAACGT TCTTCGGGGC GAAAACTCTC AAGGATCTTA CCGCTGTTGA GATCCAGTTC 2 994 0
GATGTAACCC ACTCGTGCAC CCAACTGATC TTCAGCATCT TTTACTTTCA CCAGCGTTTC 30000
TGGGTGAGCA AAAACAGGAA GGCAAAATGC CGCAAAAAAG GGAATAAGGG CGACACGGAA 30060
ATGTTGAATA CTCATACTCT TCCTTTTTCA ATATTATTGA AGCATTTATC AGGGTTATTG 30120
TCTCATGAGC GGATACATAT TTGAATGTAT TTAGAAAAAT AAACAAATAG GGGTTCCGCG 30180
CACATTTCCC CGAAAAGTGC CACCTGACGT CTAAGAAACC ATTATTATCA TGACATTAAC 3024 0
CTATAAAAAT AGGCGTATCA CGAGGCCCTT TCGTCTTCAA GAATTCGGAG CTTTTGCCAT 30300
TCTCACCGGA TTCAGTCGTC ACTCATGGTG ATTTCTCACT TGATAACCTT ATTTTTGACG 30360
AGGGGAAATT AATAGGTTGT ATTGATGTTG GACGAGTCGG AATCGCAGAC CGATACCAGG 304 20
ATCTTGCCAT CCTATGGAAC TGCCTCGGTG AGTTTTCTCC TTCATTACAG AAACGGCTTT 304 80
TTCAAAAATA TGGTATTGAT AATCCTGATA TGAATAAATT GCAGTTTCAT TTGATGCTCG 3054 0
ATGAGTTTTT CTAATCAGAA TTGGTTAATT GGTTGTAACA CTGGCAGAGC ATTACGCTGA 30600
CTTGACGGGA CGGCGGCTTT GTTGAATAAA TCGAACTTTT GCTGAGTTGA AGGATCAGAT 30660
CACGCATCTT CCCGACAACG CAGACCGTTC CGTGGCAAAG CAAAAGTTCA AAATCACCAA 30720
CTGGTCCACC TACAACAAAG CTCTCATCAA CCGTGGCTCC CTCACTTTCT GGCTGGATGA 30780
TGGGGCGATT CAGGCCTGGT ATGAGTCAGC AACACCTTCT TCACGAGGCA GACCTCAGCG 3084 0
CCAGAAGGCC GCCAGAGAGG CCGAGCGCGG CCGTGAGGCT TGGACGCTAG GGCAGGGCAT 30900
GAAAAAGCCC GTAGCGGGCT GCTACGGGCG TCTGACGCGG TGGAAAGGGG GAGGGGATGT 30960
TGTCTACATG GCTCTGCTGT AGTGAGTGGG TTGCGCTCCG GCAGCGGTCC TGATCAATCG 31020
TCACCCTTTC TCGGTCCTTC AACGTTCCTG ACAACGAGCC TCCTTTTCGC CAATCCATCG 31080
ACAATCACCG CGAGTCCCTG CTCGAACGCT GCGTCCGGAC CGGCTTCGTC GAAGGCGTCT 31140
ATCGCGGCCC GCAACAGCGG CGAGAGCGGA GCCTGTTCAA CGGTGCCGCC GCGCTCGCCG 31200
GCATCGCTGT CGCCGGCCTG CTCCTCAAGC ACGGCCCCAA CAGTGAAGTA GCTGATTGTC 31260
ATCAGCGCAT TGACGGCGTC CCCGGCCGAA AAACCCGCCT CGCAGAGGAA GCGAAGCTGC 31320
GCGTCGGCCG TTTCCATCTG CGGTGCGCCC GGTCGCGTGC CGGCATGGAT GCGCGCGCCA 31380
TCGCGGTAGG CGAGCAGCGC CTGCCTGAAG CTGCGGGCAT TCCCGATCAG AAATGAGCGC 314 4 0
CAGTCGTCGT CGGCTCTCGG CACCGAATGC GTATGATTCT CCGCCAGCAT GGCTTCGGCC 31500
AGTGCGTCGA GCAGCGCCCG CTTGTTCCTG AAGTGCCAGT AAAGCGCCGG CTGCTGAACC 31560
CCCAACCGTT CCGCCAGTTT GCGTGTCGTC AGACCGTCTA CGCCGACCTC GTTCAACAGG 31620
TCCAGGGCGG CACGGATCAC TGTATTCGGC TGCAACTTTG TCATGCTTGA CACTTTATCA 31680
CTGATAAACA TAATATGTCC ACCAACTTAT CAGTGATAAA GAATCCGCGC GTTCAATCGG 31740
ACCAGCGGAG GCTGGTCCGG AGGCCAGACG TGAAACCCAA CATACCCCTG ATCGTAATTC 31800
TGAGCACTGT CGCGCTCGAC GCTGTCGGCA TCGGCCTGAT TATGCCGGTG CTGCCGGGCC 318 60
TCCTGCGCGA TCTGGTTCAC TCGAACGACG TCACCGCCCA CTATGGCATT CTGCTGGCGC 31920
TGTATGCGTT GGTGCAATTT GCCTGCGCAC CTGTGCTGGG CGCGCTGTCG GATCGTTTCG 31980
GGCGGCGGCC AATCTTGCTC GTCTCGCTGG CCGGCGCCAC TGTCGACTAC GCCATCATGG 3204 0
CGACAGCGCC TTTCCTTTGG GTTCTCTATA TCGGGCGGAT CGTGGCCGGC ATCACCGGGG 32100
CGACTGGGGC GGTAGCCGGC GCTTATATTG CCGATATCAC TGATGGCGAT GAGCGCGCGC 32160
GGCACTTCGG CTTCATGAGC GCCTGTTTCG GGTTCGGGAT GGTCGCGGGA CCTGTGCTCG 32220
GTGGGCTGAT GGGCGGTTTC TCCCCCCACG CTCCGTTCTT CGCCGCGGCA GCCTTGAACG 32280
GCCTCAATTT CCTGACGGGC TGTTTCCTTT TGCCGGAGTC GCACAAAGGC GAACGCCGGC 32340
CGTTACGCCG GGAGGCTCTC AACCCGCTCG CTTCGTTCCG GTGGGCCCGG GGCATGACCG 32400
TCGTCGCCGC CCTGATGGCG GTCTTCTTCA TCATGCAACT TGTCGGACAG GTGCCGGCCG 324 60
CGCTTTGGGT CATTTTCGGC GAGGATCGCT TTCACTGGGA CGCGACCACG ATCGGCATTT 32520
CGCTTGCCGC ATTTGGCATT CTGCATTCAC TCGCCCAGGC AATGATCACC GGCCCTGTAG 32580
CCGCCCGGCT CGGCGAAAGG CGGGCACTCA TGCTCGGAAT GATTGCCGAC GGCACAGGCT 3264 0
ACATCCTGCT TGCCTTCGCG ACACGGGGAT GGATGGCGTT CCCGATCATG GTCCTGCTTG 32700
CTTCGGGTGG CATCGGAATG CCGGCGCTGC AAGCAATGTT GTCCAGGCAG GTGGATGAGG 327 60
AACGTCAGGG GCAGCTGCAA GGCTCACTGG CGGCGCTCAC CAGCCTGACC TCGATCGTCG 32820
GACCCCTCCT CTTCACGGCG ATCTATGCGG CTTCTATAAC AACGTGGAAC GGGTGGGCAT 32880GGATTGCAGG CGCTGCCCTC TACTTGCTCT GCCTGCCGGC GCTGCGTCGC GGGCTTTGGA 3294 0
GCGGCGCAGG GCAACGAGCC GATCGCTGAT CGTGGAAACG ATAGGCCTAT GCCATGCGGG 33000
TCAAGGCGAC TTCCGGCAAG CTATACGCGC CCTAGGAGTG CGGTTGGAAC GTTGGCCCAG 33060
CCAGATACTC CCGATCACGA GCAGGACGCC GATGATTTGA AGCGCACTCA GCGTCTGATC 33120
CAAGAACAAC CATCCTAGCA ACACGGCGGT CCCCGGGCTG AGAAAGCCCA GTAAGGAAAC 33180
AACTGTAGGT TCGAGTCGCG AGATCCCCCG GAACCAAAGG AAGTAGGTTA AACCCGCTCC 3324 0
GATCAGGCCG AGCCACGCCA GGCCGAGAAC ATTGGTTCCT GTAGGCATCG GGATTGGCGG 33300
ATCAAACACT AAAGCTACTG GAACGAGCAG AAGTCCTCCG GCCGCCAGTT GCCAGGCGGT 33360
AAAGGTGAGC AGAGGCACGG GAGGTTGCCA CTTGCGGGTC AGCACGGTTC CGAACGCCAT 33420
GGAAACCGCC CCCGCCAGGC CCGCTGCGAC GCCGACAGGA TCTAGCGCTG CGTTTGGTGT 334 80
CAACACCAAC AGCGCCACGC CCGCAGTTCC GCAAATAGCC CCCAGGACCG CCATCAATCG 33540
TATCGGGCTA CCTAGCAGAG CGGCAGAGAT GAACACGACC ATCAGCGGCT GCACAGCGCC 33600
TACCGTCGCC GCGACCCCGC CCGGCAGGCG GTAGACCGAA ATAAACAACA AGCTCCAGAA 33660
TAGCGAAATA TTAAGTGCGC CGAGGATGAA GATGCGCATC CACCAGATTC CCGTTGGAAT 33720
CTGTCGGACG ATCATCACGA GCAATAAACC CGCCGGCAAC GCCCGCAGCA GCATACCGGC 337 80
GACCCCTCGG CCTCGCTGTT CGGGCTCCAC GAAAACGCCG GACAGATGCG CCTTGTGAGC 33840
GTCCTTGGGG CCGTCCTCCT GTTTGAAGAC CGACAGCCCA ATGATCTCGC CGTCGATGTA 33900
GGCGCCGAAT GCCACGGCAT CTCGCAACCG TTCAGCGAAC GCCTCCATGG GCTTTTTCTC 33960
CTCGTGCTCG TAAACGGACC CGAACATCTC TGGAGCTTTC TTCAGGGCCG ACAATCGGAT 34 020
CTCGCGGAAA TCCTGCACGT CGGCCGCTCC AAGCCGTCGA ATCTGAGCCT TAATCACAAT 34 080
TGTCAATTTT AATCCTCTGT TTATCGGCAG TTCGTAGAGC GCGCCGTGCG TCCCGAGCGA 3414 0
TACTGAGCGA AGCAAGTGCG TCGAGCAGTG CCCGCTTGTT CCTGAAATGC CAGTAAAGCG 34 200
CTGGCTGCTG AACCCCCAGC CGGAACTGAC CCCACAAGGC CCTAGCGTTT GCAATGCACC 34 260
AGGTCATCAT TGACCCAGGC GTGTTCCACC AGGCCGCTGC CTCGCAACTC TTCGCAGGCT 34 320
TCGCCGACCT GCTCGCGCCA CTTCTTCACG CGGGTGGAAT CCGATCCGCA CATGAGGCGG 34 380
AAGGTTTCCA GCTTGAGCGG GTACGGCTCC CGGTGCGAGC TGAAATAGTC GAACATCCGT 34 44 0
CGGGCCGTCG GCGACAGCTT GCGGTACTTC TCCCATATGA ATTTCGTGTA GTGGTCGCCA 34 500
GCAAACAGCA CGACGATTTC CTCGTCGATC AGGACCTGGC AACGGGACGT TTTCTTGCCA 34 560
CGGTCCAGGA CGCGGAAGCG GTGCAGCAGC GACACCGATT CCAGGTGCCC AACGCGGTCG 34 620
GACGTGAAGC CCATCGCCGT CGCCTGTAGG CGCGACAGGC ATTCCTCGGC CTTCGTGTAA 34 680
TACCGGCCAT TGATCGACCA GCCCAGGTCC TGGCAAAGCT CGTAGAACGT GAAGGTGATC 34 740
GGCTCGCCGA TAGGGGTGCG CTTCGCGTAC TCCAACACCT GCTGCCACAC CAGTTCGTCA 34 800
TCGTCGGCCC GCAGCTCGAC GCCGGTGTAG GTGATCTTCA CGTCCTTGTT GACGTGGAAA 34 860
ATGACCTTGT TTTGCAGCGC CTCGCGCGGG ATTTTCTTGT TGCGCGTGGT GAACAGGGCA 34 920
GAGCGGGCCG TGTCGTTTGG CATCGCTCGC ATCGTGTCCG GCCACGGCGC AATATCGAAC 34 980
AAGGAAAGCT GCATTTCCTT GATCTGCTGC TTCGTGTGTT TCAGCAACGC GGCCTGCTTG 3504 0
GCCTCGCTGA CCTGTTTTGC CAGGTCCTCG CCGGCGGTTT TTCGCTTCTT GGTCGTCATA 35100
GTTCCTCGCG TGTCGATGGT CATCGACTTC GCCAAACCTG CCGCCTCCTG TTCGAGACGA 35160
CGCGAACGCT CCACGGCGGC CGATGGCGCG GGCAGGGCAG GGGGAGCCAG TTGCACGCTG 35220
TCGCGCTCGA TCTTGGCCGT AGCTTGCTGG ACCATCGAGC CGACGGACTG GAAGGTTTCG 35280
CGGGGCGCAC GCATGACGGT GCGGCTTGCG ATGGTTTCGG CATCCTCGGC GGAAAACCCC 35340
GCGTCGATCA GTTCTTGCCT GTATGCCTTC CGGTCAAACG TCCGATTCAT TCACCCTCCT 35400
TGCGGGATTG CCCCGACTCA CGCCGGGGCA ATGTGCCCTT ATTCCTGATT TGACCCGCCT 354 60
GGTGCCTTGG TGTCCAGATA ATCCACCTTA TCGGCAATGA AGTCGGTCCC GTAGACCGTC 35520
TGGCCGTCCT TCTCGTACTT GGTATTCCGA ATCTTGCCCT GCACGAATAC CAGCGACCCC 35580
TTGCCCAAAT ACTTGCCGTG GGCCTCGGCC TGAGAGCCAA AACACTTGAT GCGGAAGAAG 35640
TCGGTGCGCT CCTGCTTGTC GCCGGCATCG TTGCGCCACT CTTCATTAAC CGCTATATCG 35700
AAAATTGCTT GCGGCTTGTT AGAATTGCCA TGACGTACCT CGGTGTCACG GGTAAGATTA 35760
CCGATAAACT GGAACTGATT ATGGCTCATA TCGAAAGTCT CCTTGAGAAA GGAGACTCTA 35820
GTTTAGCTAA ACATTGGTTC CGCTGTCAAG AACTTTAGCG GCTAAAATTT TGCGGGCCGC 35880
GACCAAAGGT GCGAGGGGCG GCTTCCGCTG TGTACAACCA GATATTTTTC ACCAACATCC 3594 0
TTCGTCTGCT CGATGAGCGG GGCATGACGA AACATGAGCT GTCGGAGAGG GCAGGGGTTT 36000
CAATTTCGTT TTTATCAGAC TTAACCAACG GTAAGGCCAA CCCCTCGTTG AAGGTGATGG 36060
AGGCCATTGC CGACGCCCTG GAAACTCCCC TACCTCTTCT CCTGGAGTCC ACCGACCTTG 36120
ACCGCGAGGC ACTCGCGGAG ATTGCGGGTC ATCCTTTCAA GAGCAGCGTG CCGCCCGGAT 36180
ACGAACGCAT CAGTGTGGTT TTGCCGTCAC ATAAGGCGTT TATCGTAAAG AAATGGGGCG 36240
ACGACACCCG AAAAAAGCTG CGTGGAAGGC TCTGACGCCA AGGGTTAGGG CTTGCACTTC 36300
CTTCTTTAGC CGCTAAAACG GCCCCTTCTC TGCGGGCCGT CGGCTCGCGC ATCATATCGA 36360
CATCCTCAAC GGAAGCCGTG CCGCGAATGG CATCGGGCGG GTGCGCTTTG ACAGTTGTTT 36420TCTATCAGAA CCCCTACGTC GTGCGGTTCG ATTAGCTGTT TGTCTTGCAG GCTAAACACT 36480
TTCGGTATAT CGTTTGCCTG TGCGATAATG TTGCTAATGA TTTGTTGCGT AGGGGTTACT 36540
GAAAAGTGAG CGGGAAAGAA GAGTTTCAGA CCATCAAGGA GCGGGCCAAG CGCAAGCTGG 36600
AACGCGACAT GGGTGCGGAC CTGTTGGCCG CGCTCAACGA CCCGAAAACC GTTGAAGTCA 36660
TGCTCAACGC GGACGGCAAG GTGTGGCACG AACGCCTTGG CGAGCCGATG CGGTACATCT 36720
GCGACATGCG GCCCAGCCAG TCGCAGGCGA TTATAGAAAC GGTGGCCGGA TTCCACGGCA 36780
AAGAGGTCAC GCGGCATTCG CCCATCCTGG AAGGCGAGTT CCCCTTGGAT GGCAGCCGCT 36840
TTGCCGGCCA ATTGCCGCCG GTCGTGGCCG CGCCAACCTT TGCGATCCGC AAGCGCGCGG 36900
TCGCCATCTT CACGCTGGAA CAGTACGTCG AGGCGGGCAT CATGACCCGC GAGCAATACG 36960
AGGTCATTAA AAGCGCCGTC GCGGCGCATC GAAACATCCT CGTCATTGGC GGTACTGGCT 37020
CGGGCAAGAC CACGCTCGTC AACGCGATCA TCAATGAAAT GGTCGCCTTC AACCCGTCTG 37080
AGCGCGTCGT CATCATCGAG GACACCGGCG AAATCCAGTG CGCCGCAGAG AACGCCGTCC 37140
AATACCACAC CAGCATCGAC GTCTCGATGA CGCTGCTGCT CAAGACAACG CTGCGTATGC 37200
GCCCCGACCG CATCCTGGTC GGTGAGGTAC GTGGCCCCGA AGCCCTTGAT CTGTTGATGG 37 260
CCTGGAACAC CGGGCATGAA GGAGGTGCCG CCACCCTGCA CGCAAACAAC CCCAAAGCGG 37320
GCCTGAGCCG GCTCGCCATG CTTATCAGCA TGCACCCGGA TTCACCGAAA CCCATTGAGC 37 380
CGCTGATTGG CGAGGCGGTT CATGTGGTCG TCCATATCGC CAGGACCCCT AGCGGCCGTC 374 40
GAGTGCAAGA AATTCTCGAA GTTCTTGGTT ACGAGAACGG CCAGTACATC ACCAAAACCC 37 500
TGTAAGGAGT ATTTCCAATG ACAACGGCTG TTCCGTTCCG TCTGACCATG AATCGCGGCA 37 560
TTTTGTTCTA CCTTGCCGTG TTCTTCGTTC TCGCTCTCGC GTTATCCGCG CATCCGGCGA 37 620
TGGCCTCGGA AGGCACCGGC GGCAGCTTGC CATATGAGAG CTGGCTGACG AACCTGCGCA 37 680
ACTCCGTAAC CGGCCCGGTG GCCTTCGCGC TGTCCATCAT CGGCATCGTC GTCGCCGGCG 37740
GCGTGCTGAT CTTCGGCGGC GAACTCAACG CCTTCTTCCG AACCCTGATC TTCCTGGTTC 37800
TGGTGATGGC GCTGCTGGTC GGCGCGCAGA ACGTGATGAG CACCTTCTTC GGTCGTGGTG 37860
CCGAAATCGC GGCCCTCGGC AACGGGGCGC TGCACCAGGT GCAAGTCGCG GCGGCGGATG 37 920
CCGTGCGTGC GGTAGCGGCT GGACGGCTCG CCTAATCATG GCTCTGCGCA CGATCCCCAT 37 980
CCGTCGCGCA GGCAACCGAG AAAACCTGTT CATGGGTGGT GATCGTGAAC TGGTGATGTT 3804 0
CTCGGGCCTG ATGGCGTTTG CGCTGATTTT CAGCGCCCAA GAGCTGCGGG CCACCGTGGT 38100
CGGTCTGATC CTGTGGTTCG GGGCGCTCTA TGCGTTCCGA ATCATGGCGA AGGCCGATCC 38160
GAAGATGCGG TTCGTGTACC TGCGTCACCG CCGGTACAAG CCGTATTACC CGGCCCGCTC 38220
GACCCCGTTC CGCGAGAACA CCAATAGCCA AGGGAAGCAA TACCGATGAT CCAAGCAATT 38280
GCGATTGCAA TCGCGGGCCT CGGCGCGCTT CTGTTGTTCA TCCTCTTTGC CCGCATCCGC 38340
GCGGTCGATG CCGAACTGAA ACTGAAAAAG CATCGTTCCA AGGACGCCGG CCTGGCCGAT 38400
CTGCTCAACT ACGCCGCTGT CGTCGATGAC GGCGTAATCG TGGGCAAGAA CGGCAGCTTT 384 60
ATGGCTGCCT GGCTGTACAA GGGCGATGAC AACGCAAGCA GCACCGACCA GCAGCGCGAA 38520
GTAGTGTCCG CCCGCATCAA CCAGGCCCTC GCGGGCCTGG GAAGTGGGTG GATGATCCAT 38580
GTGGACGCCG TGCGGCGTCC TGCTCCGAAC TACGCGGAGC GGGGCCTGTC GGCGTTCCCT 38640
GACCGTCTGA CGGCAGCGAT TGAAGAAGAG CGCTCGGTCT TGCCTTGCTC GTCGGTGATG 387 00
TACTTCACCA GCTCCGCGAA GTCGCTCTTC TTGATGGAGC GCATGGGGAC GTGCTTGGCA 387 60
ATCACGCGCA CCCCCCGGCC GTTTTAGCGG CTAAAAAAGT CATGGCTCTG CCCTCGGGCG 38820
GACCACGCCC ATCATGACCT TGCCAAGCTC GTCCTGCTTC TCTTCGATCT TCGCCAGCAG 38880
GGCGAGGATC GTGGCATCAC CGAACCGCGC CGTGCGCGGG TCGTCGGTGA GCCAGAGTTT 38 940
CAGCAGGCCG CCCAGGCGGC CCAGGTCGCC ATTGATGCGG GCCAGCTCGC GGACGTGCTC 39000
ATAGTCCACG ACGCCCGTGA TTTTGTAGCC CTGGCCGACG GCCAGCAGGT AGGCCGACAG 39060
GCTCATGCCG GCCGCCGCCG CCTTTTCCTC AATCGCTCTT CGTTCGTCTG GAAGGCAGTA 39120
CACCTTGATA GGTGGGCTGC CCTTCCTGGT TGGCTTGGTT TCATCAGCCA TCCGCTTGCC 39180
CTCATCTGTT ACGCCGGCGG TAGCCGGCCA GCCTCGCAGA GCAGGATTCC CGTTGAGCAC 39240
CGCCAGGTGC GAATAAGGGA CAGTGAAGAA GGAACACCCG CTCGCGGGTG GGCCTACTTC 39300
ACCTATCCTG CCCGGCTGAC GCCGTTGGAT ACACCAAGGA AAGTCTACAC GAACCCTTTG 39360
GCAAAATCCT GTATATCGTG CGAAAAAGGA TGGATATACC GAAAAAATCG CTATAATGAC 394 20
CCCGAAGCAG GGTTATGCAG CGGAAAAGCG CTGCTTCCCT GCTGTTTTGT GGAATATCTA 39480
CCGACTGGAA ACAGGCAAAT GCAGGAAATT ACTGAACTGA GGGGACAGGC GAGAGACGAT 3954 0
GCCAAAGAGC TACACCGACG AGCTGGCCGA GTGGGTTGAA TCCCGCGCGG CCAAGAAGCG 39600
CCGGCGTGAT GAGGCTGCGG TTGCGTTCCT GGCGGTGAGG GCGGATGTCG AGGCGGCGTT 39660
AGCGTCCGGC TATGCGCTCG TCACCATTTG GGAGCACATG CGGGAAACGG GGAAGGTCAA 39720
GTTCTCCTAC GAGACGTTCC GCTCGCACGC CAGGCGGCAC ATCAAGGCCA AGCCCGCCGA 39780
TGTGCCCGCA CCGCAGGCCA AGGCTGCGGA ACCCGCGCCG GCACCCAAGA CGCCGGAGCC 39840
ACGGCGGCCG AAGCAGGGGG GCAAGGCTGA AAAGCCGGCC CCCGCTGCGG CCCCGACCGG 39900
CTTCACCTTC AACCCAACAC CGGACAAAAA GGATCTACTG TAATGGCGAA AATTCACATG 39960GTTTTGCAGG GCAAGGGCGG GGTCGGCAAG TCGGCCATCG CCGCGATCAT TGCGCAGTAC 4 0020
AAGATGGACA AGGGGCAGAC ACCCTTGTGC ATCGACACCG ACCCGGTGAA CGCGACGTTC 40080
GAGGGCTACA AGGCCCTGAA CGTCCGCCGG CTGAACATCA TGGCCGGCGA CGAAATTAAC 4 014 0
TCGCGCAACT TCGACACCCT GGTCGAGCTG ATTGCGCCGA CCAAGGATGA CGTGGTGATC 40200
GACAACGGTG CCAGCTCGTT CGTGCCTCTG TCGCATTACC TCATCAGCAA CCAGGTGCCG 4 02 60
GCTCTGCTGC AAGAAATGGG GCATGAGCTG GTCATCCATA CCGTCGTCAC CGGCGGCCAG 40320
GCTCTCCTGG ACACGGTGAG CGGCTTCGCC CAGCTCGCCA GCCAGTTCCC GGCCGAAGCG 40380
CTTTTCGTGG TCTGGCTGAA CCCGTATTGG GGGCCTATCG AGCATGAGGG CAAGAGCTTT 40440
GAGCAGATGA AGGCGTACAC GGCCAACAAG GCCCGCGTGT CGTCCATCAT CCAGATTCCG 40500
GCCCTCAAGG AAGAAACCTA CGGCCGCGAT TTCAGCGACA TGCTGCAAGA GCGGCTGACG 40560
TTCGACCAGG CGCTGGCCGA TGAATCGCTC ACGATCATGA CGCGGCAACG CCTCAAGATC 40620
GTCCGGCGCG GCCTGTTTGA ACAGCTCGAC GCGGCGGCCG TGCTATGAGC GACCAGATTG 4 0680
AAGAGCTGAT CCGGGAGATT GCGGCCAAGC ACGGCATCGC CGTCGGCCGC GACGACCCGG 4 0740
TGCTGATCCT GCATACCATC AACGCCCGGC TCATGGCCGA CAGTGCGGCC AAGCAAGAGG 4 0800
AAATCCTTGC CGCGTTCAAG GAAGAGCTGG AAGGGATCGC CCATCGTTGG GGCGAGGACG 4 08 60
CCAAGGCCAA AGCGGAGCGG ATGCTGAACG CGGCCCTGGC GGCCAGCAAG GACGCAATGG 4 0920
CGAAGGTAAT GAAGGACAGC GCCGCGCAGG CGGCCGAAGC GATCCGCAGG GAAATCGACG 4 0980
ACGGCCTTGG CCGCCAGCTC GCGGCCAAGG TCGCGGACGC GCGGCGCGTG GCGATGATGA 41040
ACATGATCGC CGGCGGCATG GTGTTGTTCG CGGCCGCCCT GGTGGTGTGG GCCTCGTTAT 41100
GAATCGCAGA GGCGCAGATG AAAAAGCCCG GCGTTGCCGG GCTTTGTTTT TGCGTTAGCT 41160
GGGCTTGTTT GACAGGCCCA AGCTCTGACT GCGCCCGCGC TCGCGCTCCT GGGCCTGTTT 41220
CTTCTCCTGC TCCTGCTTGC GCATCAGGGC CTGGTGCCGT CGGGCTGCTT CACGCATCGA 41280
ATCCCAGTCG CCGGCCAGCT CGGGATGCTC CGCGCGCATC TTGCGCGTCG CCAGTTCCTC 41340
GATCTTGGGC GCGTGAATGC CCATGCCTTC CTTGATTTCG CGCACCATGT CCAGCCGCGT 41400
GTGCAGGGTC TGCAAGCGGG CTTGCTGTTG GGCCTGCTGC TGCTGCCAGG CGGCCTTTGT 414 60
ACGCGGCAGG GACAGCAAGC CGGGGGCATT GGACTGTAGC TGCTGCAAAC GCGCCTGCTG 41520
ACGGTCTACG AGCTGTTCTA GGCGGTCCTC GATGCGCTCC ACCTGGTCAT GCTTTGCCTG 4158 0
CACGTAGAGC GCAAGGGTCT GCTGGTAGGT CTGCTCGATG GGCGCGGATT CTAAGAGGGC 41640
CTGCTGTTCC GTCTCGGCCT CCTGGGCCGC CTGTAGCAAA TCCTCGCCGC TGTTGCCGCT 417 00
GGACTGCTTT ACTGCCGGGG ACTGCTGTTG CCCTGCTCGC GCCGTCGTCG CAGTTCGGCT 417 60
TGCCCCCACT CGATTGACTG CTTCATTTCG AGCCGCAGCG ATGCGATCTC GGATTGCGTC 41820
AACGGACGGG GCAGCGCGGA GGTGTCCGGC TTCTCCTTGG GTGAGTCGGT CGATGCCATA 41880
GCCAAAGGTT TCCTTCCAAA ATGCGTCCAT TGCTGGACCG TGTTTCTCAT TGATGCCCGC 41940
AAGCATCTTC GGCTTGACCG CCAGGTCAAG CGCGCCTTCA TGGGCGGTCA TGACGGACGC 4 2000
CGCCATGACC TTGCCGCCGT TGTTCTCGAT GTAGCCGCGT AATGAGGCAA TGGTGCCGCC 42060
CATCGTCAGC GTGTCATCGA CAACGATGTA CTTCTGGCCG GGGATCACCT CCCCCTCGAA 4 2120
AGTCGGGTTG AACGCCAGGC GATGATCTGA ACCGGCTCCG GTTCGGGCGA CCTTCTCCCG 4 2180
CTGCACAATG TCCGTTTCGA CCTCAAGGCC AAGGCGGTCG GCCAGAACGA CCGCCATCAT 4 2240
GGCCGGAATC TTGTTGTTCC CCGCCGCCTC GACGGCGAGG ACTGGAACGA TGCGGGGCTT 4 2300
GTCGTCGCCG ATCAGCGTCT TGAGCTGGGC AACAGTGTCG TCCGAAATCA GGCGCTCGAC 42360
CAAATTAAGC GCCGCTTCCG CGTCGCCCTG CTTCGCAGCC TGGTATTCAG GCTCGTTGGT 42420
CAAAGAACCA AGGTCGCCGT TGCGAACCAC CTTCGGGAAG TCTCCCCACG GTGCGCGCTC 42480
GGCTCTGCTG TAGCTGCTCA AGACGCCTCC CTTTTTAGCC GCTAAAACTC TAACGAGTGC 42540
GCCCGCGACT CAACTTGACG CTTTCGGCAC TTACCTGTGC CTTGCCACTT GCGTCATAGG 4 2600
TGATGCTTTT CGCACTCCCG ATTTCAGGTA CTTTATCGAA ATCTGACCGG GCGTGCATTA 42660
CAAAGTTCTT CCCCACCTGT TGGTAAATGC TGCCGCTATC TGCGTGGACG ATGCTGCCGT 4 2720
CGTGGCGCTG CGACTTATCG GCCTTTTGGG CCATATAGAT GTTGTAAATG CCAGGTTTCA 4 27 80
GGGCCCCGGC TTTATCTACC TTCTGGTTCG TCCATGCGCC TTGGTTCTCG GTCTGGACAA 42840
TTCTTTGCCC ATTCATGACC AGGAGGCGGT GTTTCATTGG GTGACTCCTG ACGGTTGCCT 4 2900
CTGGTGTTAA ACGTGTCCTG GTCGCTTGCC GGCTAAAAAA AAGCCGACCT CGGCAGTTCG 4 2 960
AGGCCGGCTT TCCCTAGAGC CGGGCGCGTC AAGGTTGTTC CATCTATTTT AGTGAACTGC 4 3020
GTTCGATTTA TCAGTTACTT TCCTCCCGCT TTGTGTTTCC TCCCACTCGT TTCCGCGTCT 43080
AGCCGACCCC TCAACATAGC GGCCTCTTCT TGGGCTGCCT TTGCCTCTTG CCGCGCTTCG 4 3140
TCACGCTCGG CTTGCACCGT CGTAAAGCGC TCGGCCTGCC TGGCCGCCTC TTGCGCCGCC 43200
AACTTCCTTT GCTCCTGGTG GGCCTCGGCG TCGGCCTGCG CCTTCGCTTT CACCGCTGCC 43260
AACTCCGTGC GCAAACTCTC CGCTTCGCGC CTGGTGGCGT CGCGCTCGCC GCGAAGCGCC 4 3320
TGCATTTCCT GGTTGGCCGC GTCCAGGGTC TTGCGGCTCT CTTCTTTGAA TGCGCGGGCG 43380
TCCTGGTGAG CGTAGTCCAG CTCGGCGCGC AGCTCCTGCG CTCGACGCTC CACCTCGTCG 4 3440
GCCCGCTGCG TCGCCAGCGC GGCCCGCTGC TCGGCTCCTG CCAGGGCGGT GCGTGCTTCG 43500GCCAGGGCTT GCCGCTGGCG TGCGGCCAGC TCGGCCGCCT CGGCGGCCTG CTGCTCTAGC 43560
AATGTAACGC GCGCCTGGGC TTCTTCCAGC TCGCGGGCCT GCGCCTCGAA GGCGTCGGCC 4 3620
AGCTCCCCGC GCACGGCTTC CAACTCGTTG CGCTCACGAT CCCAGCCGGC TTGCGCTGCC 43680
TGCAACGATT CATTGGCAAG GGCCTGGGCG GCTTGCCAGA GGGCGGCCAC GGCCTGGTTG 43740
CCGGCCTGCT GCACCGCGTC CGGCACCTGG ACTGCCAGCG GGGCGGCCTG CGCCGTGCGC 4 3800
TGGCGTCGCC ATTCGCGCAT GCCGGCGCTG GCGTCGTTCA TGTTGACGCG GGCGGCCTTA 43860
CGCACTGCAT CCACGGTCGG GAAGTTCTCC CGGTCGCCTT GCTCGAACAG CTCGTCCGCA 4 3920
GCCGCAAAAA TGCGGTCGCG CGTCTCTTTG TTCAGTTCCA TGTTGGCTCC GGTAATTGGT 43980
AAGAATAATA ATACTCTTAC CTACCTTATC AGCGCAAGAG TTTAGCTGAA CAGTTCTCGA 4 4 040
CTTAACGGCA GGTTTTTTAG CGGCTGAAGG GCAGGCAAAA AAAGCCCCGC ACGGTCGGCG 4 4100
GGGGCAAAGG GTCAGCGGGA AGGGGATTAG CGGGCGTCGG GCTTCTTCAT GCGTCGGGGC 44160
CGCGCTTCTT GGGATGGAGC ACGACGAAGC GCGCACGCGC ATCGTCCTCG GCCCTATCGG 4 4 220
CCCGCGTCGC GGTCAGGAAC TTGTCGCGCG CTAGGTCCTC CCTGGTGGGC ACCAGGGGCA 4 4280
TGAACTCGGC CTGCTCGATG TAGGTCCACT CCATGACCGC ATCGCAGTCG AGGCCGCGTT 4 4 340
CCTTCACCGT CTCTTGCAGG TCGCGGTACG CCCGCTCGTT GAGCGGCTGG TAACGGGCCA 4 4 400
ATTGGTCGTA AATGGCTGTC GGCCATGAGC GGCCTTTCCT GTTGAGCCAG CAGCCGACGA 44460
CGAAGCCGGC AATGCAGGCC CCTGGCACAA CCAGGCCGAC GCCGGGGGCA GGGGATGGCA 4 4 520
GCAGCTCGCC AACCAGGAAC CCCGCCGCGA TGATGCCGAT GCCGGTCAAC CAGCCCTTGA 4 4 580
AACTATCCGG CCCCGAAACA CCCCTGCGCA TTGCCTGGAT GCTGCGCCGG ATAGCTTGCA 44 640
ACATCAGGAG CCGTTTCTTT TGTTCGTCAG TCATGGTCCG CCCTCACCAG TTGTTCGTAT 4 4 700
CGGTGTCGGA CGAACTGAAA TCGCAAGAGC TGCCGGTATC GGTCCAGCCG CTGTCCGTGT 44760
CGCTGCTGCC GAAGCACGGC GAGGGGTCCG CGAACGCCGC AGACGGCGTA TCCGGCCGCA 4 4 820
GCGCATCGCC CAGCATGGCC CCGGTCAGCG AGCCGCCGGC CAGGTAGCCC AGCATGGTGC 4 4 880
TGTTGGTCGC CCCGGCCACC AGGGCCGACG TGACGAAATC GCCGTCATTC CCTCTGGATT 4 4 940
GTTCGCTGCT CGGCGGGGCA GTGCGCCGCG CCGGCGGCGT CGTGGATGGC TCGGGTTGGC 4 5000
TGGCCTGCGA CGGCCGGCGA AAGGTGCGCA GCAGCTCGTT ATCGACCGGC TGCGGCGTCG 4 5060
GGGCCGCCGC CTTGCGCTGC GGTCGGTGTT CCTTCTTCGG CTCGCGCAGC TTGAACAGCA 45120
TGATCGCGGA AACCAGCAGC AACGCCGCGC CTACGCCTCC CGCGATGTAG AACAGCATCG 4 5180
GATTCATTCT TCGGTCCTCC TTGTAGCGGA ACCGTTGTCT GTGCGGCGCG GGTGGCCCGC 4 5240
GCCGCTGTCT TTGGGGATCA GCCCTCGATG AGCGCGACCA GTTTCACGTC GGCAAGGTTC 45300
GCCTCGAACT CCTGGCCGTC GTCCTCGTAC TTCAACCAGG CATAGCCTTC CGCCGGCGGC 4 5360
CGACGGTTGA GGATAAGGCG GGCAGGGCGC TCGTCGTGCT CGACCTGGAC GATGGCCTTT 4 5420
TTCAGCTTGT CCGGGTCCGG CTCCTTCGCG CCCTTTTCCT TGGCGTCCTT ACCGTCCTGG 4 5480
TCGCCGTCCT CGCCGTCCTG GCCGTCGCCG GCCTCCGCGT CACGCTCGGC ATCAGTCTGG 4 554 0
CCGTTGAAGG CATCGACGGT GTTGGGATCG CGGCCCTTCT CGTCCAGGAA CTCGCGCAGC 4 5600
AGCTTGACCG TGCCGCGCGT GATTTCCTGG GTGTCGTCGT CAAGCCACGC CTCGACTTCC 45660
TCCGGGCGCT TCTTGAAGGC CGTCACCAGC TCGTTCACCA CGGTCACGTC GCGCACGCGG 4 5720
CCGGTGTTGA ACGCATCGGC GATCTTCTCC GGCAGGTCCA GCAGCGTGAC GTGCTGGGTG 4 5780
ATGAACGCCG GCGACTTGCC GATTTCCTTG GCGATATCGC CTTTCTTCTT GCCCTTCGCC 4 5840
AGCTCGCGGC CAATGAAGTC GGCAATTTCG CGCGGGGTCA GCTCGTTGCG TTGCAGGTTC 4 5900
TCGATAACCT GGTCGGCTTC GTTGTAGTCG TTGTCGATGA ACGCCGGGAT GGACTTCTTG 4 5960
CCGGCCCACT TCGAGCCACG GTAGCGGCGG GCGCCGTGAT TGATGATATA GCGGCCCGGC 4 6020
TGCTCCTGGT TCTCGCGCAC CGAAATGGGT GACTTCACCC CGCGCTCTTT GATCGTGGCA 4 6080
CCGATTTCCG CGATGCTCTC CGGGGAAAAG CCGGGGTTGT CGGCCGTCCG CGGCTGATGC 4 6140
GGATCTTCGT CGATCAGGTC CAGGTCCAGC TCGATAGGGC CGGAACCGCC CTGAGACGCC 4 6200
GCAGGAGCGT CCAGGAGGCT CGACAGGTCG CCGATGCTAT CCAACCCCAG GCCGGACGGC 4 62 60
TGCGCCGCGC CTGCGGCTTC CTGAGCGGCC GCAGCGGTGT TTTTCTTGGT GGTCTTGGCT 4 6320
TGAGCCGCAG TCATTGGGAA ATCTCCATCT TCGTGAACAC GTAATCAGCC AGGGCGCGAA 4 6380
CCTCTTTCGA TGCCTTGCGC GCGGCCGTTT TCTTGATCTT CCAGACCGGC ACACCGGATG 4 6440
CGAGGGCATC GGCGATGCTG CTGCGCAGGC CAACGGTGGC CGGAATCATC ATCTTGGGGT 4 6500
ACGCGGCCAG CAGCTCGGCT TGGTGGCGCG CGTGGCGCGG ATTCCGCGCA TCGACCTTGC 4 6560
TGGGCACCAT GCCAAGGAAT TGCAGCTTGG CGTTCTTCTG GCGCACGTTC GCAATGGTCG 4 6620
TGACCATCTT CTTGATGCCC TGGATGCTGT ACGCCTCAAG CTCGATGGGG GACAGCACAT 4 6680
AGTCGGCCGC GAAGAGGGCG GCCGCCAGGC CGACGCCAAG GGTCGGGGCC GTGTCGATCA 4 6740
GGCACACGTC GAAGCCTTGG TTCGCCAGGG CCTTGATGTT CGCCCCGAAC AGCTCGCGGG 4 6800
CGTCGTCCAG CGACAGCCGT TCGGCGTTCG CCAGTACCGG GTTGGACTCG ATGAGGGCGA 4 68 60
GGCGCGCGGC CTGGCCGTCG CCGGCTGCGG GTGCGGTTTC GGTCCAGCCG CCGGCAGGGA 4 6920
CAGCGCCGAA CAGCTTGCTT GCATGCAGGC CGGTAGCAAA GTCCTTGAGC GTGTAGGACG 4 6980
CATTGCCCTG GGGGTCCAGG TCGATCACGG CAACCCGCAA GCCGCGCTCG AAAAAGTCGA 4 7040AGGCAAGATG CACAAGGGTC GAAGTCTTGCAAGTTTTCAT CGTTTGGTTT CCTGTTTTTTGTACGCCTGA TGTTCCGGCA GAACCGCCGTGTCCTCGAAC GCGGCCCACA CGCGATGCACCAGCGACGTT GCGAACGTCG CCTGTGGCTTGATGGTCTGC TGCCCCACTT CCAGCCCCTGCCGTTTCTTC ATGGATAACA CCCATAATTTCAGCCGCCAG CACATGAGAG AAGTTTAGCTCGCTAAAACT CGTCCTTGGC GTAACAAAACGCCGCTTATG GCTCTGCACC CGGCTCCATCTTGCGGATCG ACACTGCCAG CCCAACAAAGATGATGCCGG CCACACCGGC CATCGCCCACTGGTACTGCT TCGCAATGCT GGACCTCGGCGCCGCTTCTC CCCTTGGCGT AAAACCCAGCGCTTTCCCGA CCACGACGCG CGCACCAGGCTGCGCAAGGA CATAATCAGC CGCCGACTTGCGCGCGAAAT CCTTGGCCTC CACGGCCGCCGGGCCGGCGT CGTGATCGCC GCCGAGAATGATGCTGACGG CTATCACCAT CATGCAGACGGCACGGCACC CGCGACCACT ATGCCAAGAATGAAGTCCGT GAATGCCCCG ACGGCCGAAGCCTCACTGCC CGGCACCTGG TCGCTGAATGTTCCGGGCGT CGCGCTCGGG CTGATCGCCCCAAGGACTGC CAGCGCTGCC ATTTTTGGGGCCTGGGGGGA TGGGAGGCCC GCGTTAGCGGCCCTTCGGCG TGCGCGGTCA ÇGCGCACAGGAATATTGGTT TAAAAGCAGG TTAAAAGACACCCTTGCAAA TGCTGGATTT TCTGCCTGTGCCTCATCTGT CAGCACTCTG CCCCTCAAGTGTCGCGCCCC TCAAGTGTCA ATACCGCAGGTGTGGGAAAC TCGCGTAAAA TCAGGCGTTTGTCGCCGGCC GAAATCGAGC CTGCCCCTCACCTCAAGTGT CAACGTCCGC CCCTCATCTGCCACAACGCC GGCGGCCGCG GTGTCTCGCAGCAGGGCCAT AGACGGCCGC CAGCCCAGCGAAGGCGCTGG AAGCCCCGTA GCGACGCGGACGATGCGCAG CACGACATAG CCGGTTCTCGCAAGTGTCAA TGAAAGTTTC CAACGCGAGCTGAGAGCTTT GTTGTAGGTG GACCAGTTGGGGTCTGCGTT GTCGGGAAGA TGCGTGATCTTTCAACAAAG CCACGTTGTG TCTCAAAATCTATCATCATG AACAATAAAA CTGTCTGCTTGCCATATTCA ACGGGAAAC
CGACGCCGCC TTTCTGGTTG GCCGTGACCACTTGGCGTCC GCTTCCCACT TCCGGACGATTACCCGCGCG TACCCCTCGG GCAAGTTCTTCGCTTGCGAC ACTGCGCCCC TGGTCAGTCCCCCATCGACT AAGACGCCCC GCGCTATCTCGATCGCCTCC TGGAACTGGC TTTCGGTAAGGCTCCGCGCC TTGGTTGAAC ATAGCGGTGAAAACATTTCT CGCACGTCAA CACCTTTAGCAAAAGCCCGG AAACCGGGCT TTCGTCTCTTACCAACAGGT CGCGCACGCG CTTCACTCGGCCGGTTGCCG CCGCCGCCAG GATCGCGCCGCAGGTCGCCG CCTTCCGGTT CCATTCCTGCTCACCATAGG CTGACCGCTC GATGGCGTATGCCGCAGGCG GCATTGCCAT GCTGCCCGCCTTGCGGTCCA GACCTTCGGC CACGGCGAGCGCTCCACGCG CCTCGATCAG CTCTTGCACTATGAATCGCG CACGCGGCGA AGGCTCCGCACCCTTCACCA AGTTCGACGA CACGAAAATCGATCGCACGA ACCCGCTGAA TTGAACACGATGCCCAAGGT AAAAATTGCC GGCCCCGCCATGAAGGGCAG GCCGCCACCC AGGCCGCCGCTCGATGCCAG CACCTGCGGC ACGTCAATGCATCCCGTTAC TGCCCCGATC CCGGCAATGGTGAGGCCGTT CGCGGCCGAG GGGCGCAGCCGCCGGGAGGG TTCGAGAAGG GGGGGCACCCGCGCAGCCCT GGTTAAAAAC AAGGTTTATAGGTTAGCGGT GGCCGAAAAA CGGGCGGAAAGACAGCCCCT CAAATGTCAA TAGGTGCGCCGTCAAGGATC GCGCCCCTCA TCTGTCAGTAGCACTTATCC CCAGGCTTGT CCACATCATCTCGCCGATTT GCGAGGCTGG CCAGCTCCACTCTGTCAACG CCGCGCCGGG TGAGTCGGCCTCAGTGAGGG CCAAGTTTTC CGCGAGGTATCACGGCTTCG ACGGCGTTTC TGGCGCGTTTGCGAGGGCAA CCAGCCCGGT GAGCGTCGGAGAGGGGCGAG ACAAGCCAAG GGCGCAGGCTCAAGGACGAG AATTTCCCTG CGGTGCCCCTCATTCGCGAG AGCCTTGAGT CCACGCTAGATGATTTTGAA CTTTTGCTTT GCCACGGAACGATCCTTCAA CTCAGCAAAA GTTCGATTTATCTGATGTTA CATTGCACAA GATAAAAATAACATAAACAG TAATACAAGG GGTGTTATGA
<210> 95
<211> 49015
<212> DNA
<213> VETOR
<400> 95
GTCTTGCTCG ACTCTAGAGCCGGGGAAGCT TACAATAATGTTTCGTCATA AATCCCGGCCGCGGAACGGG AATATCGAGAACAGGTACTC CAGCTGATTGTGCGAATGAT TACTTGAGCGAGTGCTACAA GGCACCTTTCAAATGGAGCG CAGTAGTCCACTCGCACAGC CTCCAGATCC
TCGTTCCTCG AGGCCTCGAGTGTGTTGTTA AGTCTTGTTGTCCGTAACCC AGCTTTGGGCTGCCGGGCTG AACGCTGCAGATTATCTGCT GAAGGGTCTTCGATCGGGCA TCCAATTTTCAGTAACGAGC GACCGTCGATTCGAGGGCGG CGAAAGCCTCGATCGAGGGT CTTCGGCGTA
GCCTCGAGGA ACGGTACCTGCCTGTCATCG TCTGACTGACAAGCTCACGG ATTTGATCCGTTCCAGCTTT CCCTTTCGGGGGTTCCACCT CCTGGCACAATCCCGTCAGG TGCGTGGTCACCGTCGCCGG GATACGGACAGCCAAAAGCA ATACGTTCATGGCAGATAGA AGCATGGATA
47100471604722047280473404740047460475204758047640477004776047820478804794048000480604812048180482404830048360484204848048540486004866048720487804884048900489604902049080491404920049260493204938049440495004956049579
60120180240300360420480540198020402100
CATTGCTTGA GAGTATTCCG ATGGACTGAA GTATGGCTTC CATCTTTTCT CGTGTGTCTG 600
CATCTATTTC GAGAAAGCCC CCGATGCGGC GCACCGCAAC GCGAATTGCC ATACTATCCG 660
AAAGTCCCAG CAGGCGCGCT TGATAGGAAA AGGTTTCATA CTCGGCCGAT CGCAGACGGG 720
CACTCACGAC CTTGAACCCT TCAACTTTCA GGGATCGATG CTGGTTGATG GTAGTCTCAC 780
TCGACGTGGC TCTGGTGTGT TTTGACATAG CTTCCTCCAA AGAAAGCGGA AGGTCTGGAT 840
ACTCCAGCAC GAAATGTGCC CGGGTAGACG GATGGAAGTC TAGCCCTGCT CAATATGAAA 900
TCAACAGTAC ATTTACAGTC AATACTGAAT ATACTTGCTA CATTTGCAAT TGTCTTATAA 960
CGAATGTGAA ATAAAAATAG TGTAACAACG CTTTTACTCA TCGATAATCA CAAAAACATT 1020
TATACGAACA AAAATACAAA TGCACTCCGG TTTCACAGGA TAGGCGGGAT CAGAATATGC 1080
AACTTTTGAC GTTTTGTTCT TTCAAAGGGG GTGCTGGCAA AACCACCGCA CTCATGGGCC 114 0
TTTGCGCTGC TTTGGCAAAT GACGGTAAAC GAGTGGCCCT CTTTGATGCC GACGAAAACC 1200
GGCCTCTGAC GCGATGGAGA GAAAACGCCT TACAAAGCAG TACTGGGATC CTCGCTGTGA 1260
AGTCTATTCC GCCGACGAAA TGCCCCTTCT TGAAGCAGCC TATGAAAATG CCGAGCTCGA 1320
AGGATTTGAT TATGCGTTGG CCGATACGCG TGGCGGCTCG AGCGAGCTCA ACAACACAAT 1380
CATCGCTAGC TCAAACCTGC TTCTGATCCC CACCATGCTA ACGCCGCTCG ACATCGATGA 14 40
GGCACTATCT ACCTACCGCT ACGTCATCGA GCTGCTGTTG AGTGAAAATT TGGCAATTCC 1500
TACAGCTGTT TTGCGCCAAC GCGTCCCGGT CGGCCGATTG ACAACATCGC AACGCAGGAT 1560
GTCAGAGACG CTAGAGAGCC TTCCAGTTGT ACCGTCTCCC ATGCATGAAA GAGATGCATT 1620
TGCCGCGATG AAAGAACGCG GCATGTTGCA TCTTACATTA CTAAACACGG GAACTGATCC 1680
GACGATGCGC CTCATAGAGA GGAATCTTCG GATTGCGATG GAGGAAGTCG TGGTCATTTC 17 40
GAAACTGATC AGCAAAATCT TGGAGGCTTG AAGATGGCAA TTCGCAAGCC CGCATTGTCG 1800
GTCGGCGAAG CACGGCGGCT TGCTGGTGCT CGACCCGAGA TCCACCATCC CAACCCGACA 1860
CTTGTTCCCC AGAAGCTGGA CCTCCAGCAC TTGCCTGAAA AAGCCGACGA GAAAGACCAG 1920CAACGTGAGC CTCTCGTCGC CGATCACATT TACAGTCCCG ATCGACAACT TAAGCTAACTGTGGATGCCC TTAGTCCACC TCCGTCCCCG AAAAAGCTCC AGGTTTTTCT TTCAGCGCGACCGCCCGCGC CTCAAGTGTC GAAAACATAT GACAACCTCG TTCGGCAATA CAGTCCCTCG
AAGTCGCTAC AAATGATTTT AAGGCGCGCG TTGGACGATT TCGAAAGCAT GCTGGCAGAT 2160
GGATCATTTC GCGTGGCCCC GAAAAGTTAT CCGATCCCTT CAACTACAGA AAAATCCGTT 2220
CTCGTTCAGA CCTCACGCAT GTTCCCGGTT GCGTTGCTCG AGGTCGCTCG AAGTCATTTT 2280
GATCCGTTGG GGTTGGAGAC CGCTCGAGCT TTCGGCCACA AGCTGGCTAC CGCCGCGCTC 234 0
GCGTCATTCT TTGCTGGAGA GAAGCCATCG AGCAATTGGT GAAGAGGGAC CTATCGGAAC 24 00
CCCTCACCAA ATATTGAGTG TAGGTTTGAG GCCGCTGGCC GCGTCCTCAG TCACCTTTTG 24 60
AGCCAGATAA TTAAGAGCCA AATGCAATTG GCTCAGGCTG CCATCGTCCC CCCGTGCGAA 2520
ACCTGCACGT CCGCGTCAAA GAAATAACCG GCACCTCTTG CTGTTTTTAT CAGTTGAGGG 2580
CTTGACGGAT CCGCCTCAAG TTTGCGGCGC AGCCGCAAAA TGAGAACATC TATACTCCTG 264 0
TCGTAAACCT CCTCGTCGCG TACTCGACTG GCAATGAGAA GTTGCTCGCG CGATAGAACG 2700
TCGCGGGGTT TCTCTAAAAA CGCGAGGAGA AGATTGAACT CACCTGCCGT AAGTTTCACC 2760
TCACCGCCAG CTTCGGACAT CAAGCGACGT TGCCTGAGAT TAAGTGTCCA GTCAGTAAAA 2820
CAAAAAGACC GTCGGTCTTT GGAGCGGACA ACGTTGGGGC GCACGCGCAA GGCAACCCGA 2880
ATGCGTGCAA GAAACTCTCT CGTACTAAAC GGCTTAGCGA TAAAATCACT TGCTCCTAGC 294 0
TCGAGTGCAA CAACTTTATC CGTCTCCTCA AGGCGGTCGC CACTGATAAT TATGATTGGA 3000
ATATCAGACT TTGCCGCCAG ATTTCGAACG ATCTCAAGCC CATCTTCACG ACCTAAATTT 3060
AGATCAACAA CCACGACATC GACCGTCGCG GAAGAGAGTA CTCTAGTGAA CTGGGTGCTG 3120
TCGGCTACCG CGGTCACTTT GAAGGCGTGG ATCGTAAGGT ATTCGATAAT AAGATGCCGC 3180
ATAGCGACAT CGTCATCGAT AAGAAGAACG TGTTTCAACG GCTCACCTTT CAATCTAAAA 3240
TCTGAACCCT TGTTCACAGC GCTTGAGAAA TTTTCACGTG AAGGATGTAC AATCATCTCC 3300
AGCTAAATGG GCAGTTCGTC AGAATTGCGG CTGACCGCGG ATGACGAAAA TGCGAACCAA 3360
GTATTTCAAT TTTATGACAA AAGTTCTCAA TCGTTGTTAC AAGTGAAACG CTTCGAGGTT 3420
ACAGCTACTA TTGATTAAGG AGATCGCCTA TGGTCTCGCC CCGGCGTCGT GCGTCCGCCG 3480
CGAGCCAGAT CTCGCCTACT TCATAAACGT CCTCATAGGC ACGGAATGGA ATGATGACAT 3540
CGATCGCCGT AGAGAGCATG TCAATCAGTG TGCGATCTTC CAAGCTAGCA CCTTGGGCGC 3600
TACTTTTGAC AAGGGAAAAC AGTTTCTTGA ATCCTTGGAT TGGATTCGCG CCGTGTATTG 3660
TTGAAATCGA TCCCGGATGT CCCGAGACGA CTTCACTCAG ATAAGCCCAT GCTGCATCGT 3720
CGCGCATCTC GCCAAGCAAT ATCCGGTCCG GCCGCATACG CAGACTTGCT TGGAGCAAGT 3780
GCTCGGCGCT CACAGCACCC AGCCCAGCAC CGTTCTTGGA GTAGAGTAGT CTAACATGAT 3840
TATCGTGTGG AATGACGAGT TCGAGCGTAT CTTCTATGGT GATTAGCCTT TCCTGGGGGG 3900
GGATGGCGCT GATCAAGGTC TTGCTCATTG TTGTCTTGCC GCTTCCGGTA GGGCCACATA 3960
GCAACATCGT CAGTCGGCTG ACGACGCATG CGTGCAGAAA CGCTTCCAAA TCCCCGTTGT 4 020
CAAAATGCTG AAGGATAGCT TCATCATCCT GATTTTGGCG TTTCCTTCGT GTCTGCCACT 4 080GGTTCCACCT CGAAGCATCA TAACGGGAGG AGACTTCTTT AAGACCAGAA ACACGCGAGC 4140
TTGGCCGTCG AATGGTCAAG CTGACGGTGC CCGAGGGAAC GGTCGGCGGC AGACAGATTT 4200
GTAGTCGTTC ACCACCAGGA AGTTCAGTGG CGCAGAGGGG GTTACGTGGT CCGACATCCT 4260
GCTTTCTCAG CGCGCCCGCT AAAATAGCGA TATCTTCAAG ATCATCATAA GAGACGGGCA 4320
AAGGCATCTT GGTAAAAATG CCGGCTTGGC GCACAAATGC CTCTCCAGGT CGATTGATCG 4 380
CAATTTCTTC AGTCTTCGGG TCATCGAGCC ATTCCAAAAT CGGCTTCAGA AGAAAGCGTA 4 440
GTTGCGGATC CACTTCCATT TACAATGTAT CCTATCTCTA AGCGGAAATT TGAATTCATT 4 500
AAGAGCGGCG GTTCCTCCCC CGCGTGGCGC CGCCAGTCAG GCGGAGCTGG TAAACACCAA 4 560
AGAAATCGAG GTCCCGTGCT ACGAAAATGG AAACGGTGTC ACCCTGATTC TTCTTCAGGG 4 620
TTGGCGGTAT GTTGATGGTT GCCTTAAGGG CTGTCTCAGT TGTCTGCTCA CCGTTATTTT 4 680
GAAAGCTGTT GAAGCTCATC CCGCCACCCG AGCTGCCGGC GTAGGTGCTA GCTGCCTGGA 47 40
AGGCGCCTTG AACAACACTC AAGAGCATAG CTCCGCTAAA ACGCTGCCAG AAGTGGCTGT 4 800
CGACCGAGCC CGGCAATCCT GAGCGACCGA GTTCGTCCGC GCTTGGCGAT GTTAACGAGA 4 8 60
TCATCGCATG GTCAGGTGTC TCGGCGCGAT CCCACAACAC AAAAACGCGC CCATCTCCCT 4 920
GTTGCAAGCC ACGCTGTATT TCGCCAACAA CGGTGGTGCC ACGATCAAGA AGCACGATAT 4 980
TGTTCGTTGT TCCACGAATA TCCTGAGGCA AGACACACTT TACATAGCCT GCCAAATTTG 5040
TGTCGATTGC GGTTTGCAAG ATGCACGGAA TTATTGTCCC TTGCGTTACC ATAAAATCGG 5100
GGTGCGGCAA GAGCGTGGCG CTGCTGGGCT GCAGCTCGGT GGGTTTCATA CGTATCGACA 5160
AATCGTTCTC GCCGGACACT TCGCCATTCG GCAAGGAGTT GTCGTCACGC TTGCCTTCTT 5220
GTCTTCGGCC CGTGTCGCCC TGAATGGCGC GTTTGCTGAC CCCTTGATCG CCGCTGCTAT 5280
ATGCAAAAAT CGGTGTTTCT TCCGGCCGTG GCTCATGCCG CTCCGGTTCG CCCCTCGGCG 534 0
GTAGAGGAGC AGCAGGCTGA ACAGCCTCTT GAACCGCTGG AGGATCCGGC GGCACCTCAA 54 00
TCGGAGCTGG ATGAAATGGC TTGGTGTTTG TTGCGATCAA AGTTGACGGC GATGCGTTCT 54 60
CATTCACCTT CTTTTGGCGC CCACCTAGCC AAATGAGGCT TAATGATAAC GCGAGAACGA 5520
CACCTCCGAC GATCAATTTC TGAGACCCCG AAAGACGCCG GCGATGTTTG TCGGAGACCA 5580
GGGATCCAGA TGCATCAACC TCATGTGCCG CTTGCTGACT ATCGTTATTC ATCCCTTCGC 5640
CCCCTTCAGG ACGCGTTTCA CATCGGGCCT CACCGTGCCC GTTTGCGGCC TTTGGCCAAC 5700
GGGATCGTAA GCGGTGTTCC AGATACATAG TACTGTGTGG CCATCCCTCA GACGCCAACC 57 60
TCGGGAAACC GAAGAAATCT CGACATCGCT CCCTTTAACT GAATAGTTGG CAACAGCTTC 5820
CTTGCCATCA GGATTGATGG TGTAGATGGA GGGTATGCGT ACATTGCCCG GAAAGTGGAA 5880
TACCGTCGTA AATCCATTGT CGAAGACTTC GAGTGGCAAC AGCGAACGAT CGCCTTGGGC 5940
GACGTAGTGC CAATTACTGT CCGCCGCACC AAGGGCTGTG ACAGGCTGAT CCAATAAATT 6000
CTCAGCTTTC CGTTGATATT GTGCTTCCGC GTGTAGTCTG TCCACAACAG CCTTCTGTTG 6060
TGCCTCCCTT CGCCGAGCCG CCGCATCGTC GGCGGGGTAG GCGAATTGGA CGCTGTAATA 6120
GAGATCGGGC TGCTCTTTAT CGAGGTGGGA CAGAGTCTTG GAACTTATAC TGAAAACATA 6180
ACGGCGCATC CCGGAGTCGC TTGCGGTTAG CACGATTACT GGCTGAGGCG TGAGGACCTG 624 0
GCTTGCCTTG AAAAATAGAT AATTTCCCCG CGGTAGGGCT GCTAGATCTT TGCTATTTGA 6300
AACGGCAACC GCTGTCACCG TTTCGTTCGT GGCGAATGTT ACGACCAAAG TAGCTCCAAC 6360
CGCCGTCGAG AGGCGCACCA CTTGATCGGG ATTGTAAGCC AAATAACGCA TGCGCGGATC 64 20
TAGCTTGCCC GCCATTGGAG TGTCTTCAGC CTCCGCACCA GTCGCAGCGG CAAATAAACA 64 80
TGCTAAAATG AAAAGTGCTT TTCTGATCAT GGTTCGCTGT GGCCTACGTT TGAAACGGTA 654 0
TCTTCCGATG TCTGATAGGA GGTGACAACC AGACCTGCCG GGTTGGTTAG TCTCAATCTG 6600
CCGGGCAAGC TGGTCACCTT TTCGTAGCGA ACTGTCGCGG TCCACGTACT CACCACAGGC 6660
ATTTTGCCGT CAACGACGAG GGTCCTTTTA TAGCGAATTT GCTGCGTGCT TGGAGTTACA 6720
TCATTTGAAG CGATGTGCTC GACCTCCACC CTGCCGCGTT TGCCAAGAAT GACTTGAGGC 6780
GAACTGGGAT TGGGATAGTT GAAGAATTGC TGGTAATCCT GGCGCACTGT TGGGGCACTG 6840
AAGTTCGATA CCAGGTCGTA GGCGTACTGA GCGGTGTCGG CATCATAACT CTCGCGCAGG 6900
CGAACGTACT CCCACAATGA GGCGTTAACG ACGGCCTCCT CTTGAGTTGC AGGCAATCGC 6960
GAGACAGACA CCTCGCTGTC AACGGTGCCG TCCGGCCGTA TCCATAGATA TACGGGCACA 7 020
AGCCTGCTCA ACGGCACCAT TGTGGCTATA GCGAACGCTT GAGCAACATT TCCCAAAATC 7 080
GCGATAGCTG CGACAGCTGC AATGAGTTTG GAGAGACGTC GCGCCGATTT CGCTCGCGCG 7140
GTTTGAAAGG CTTCTACTTC CTTATAGTGC TCGGCAAGGC TTTCGCGCGC CACTAGCATG 7200
GCATATTCAG GCCCCGTCAT AGCGTCCACC CGAATTGCCG AGCTGAAGAT CTGACGGAGT 7260
AGGCTGCCAT CGCCCCACAT TCAGCGGGAA GATCGGGCCT TTGCAGCTCG CTAATGTGTC 7320
GTTTGTCTGG CAGCCGCTCA AAGCGACAAC TAGGCACAGC AGGCAATACT TCATAGAATT 7380
CTCCATTGAG GCGAATTTTT GCGCGACCTA GCCTCGCTCA ACCTGAGCGA AGCGACGGTA 7 4 40
CAAGCTGCTG GCAGATTGGG TTGCGCCGCT CCAGTAACTG CCTCCAATGT TGCCGGCGAT 7500
CGCCGGCAAA GCGACAATGA GCGCATCCCC TGTCAGAAAA AACATATCGA GTTCGTAAAG 7560
ACCAATGATC TTGGCCGCGG TCGTACCGGC GAAGGTGATT ACACCAAGCA TAAGGGTGAG 7620CGCAGTCGCT TCGGTTAGGA TGACGATCGT TGCCACGAGG TTTAAGAGGA GAAGCAAGAG 7 680
ACCGTAGGTG ATAAGTTGCC CGATCCACTT AGCTGCGATG TCCCGCGTGC GATCAAAAAT 774 0
ATATCCGACG AGGATCAGAG GCCCGATCGC GAGAAGCACT TTCGTGAGAA TTCCAACGGC 7 800
GTCGTAAACT CCGAAGGCAG ACCAGAGCGT GCCGTAAAGG ACCCACTGTG CCCCTTGGAA 7 860
AGCAAGGATG TCCTGGTCGT TCATCGGACC GATTTCGGAT GCGATTTTCT GAAAAACGGC 7 920
CTGGGTCACG GCGAACATTG TATCCAACTG TGCCGGAACA GTCTGCAGAG GCAAGCCGGT 7 980
TACACTAAAC TGCTGAACAA AGTTTGGGAC CGTCTTTTCG AAGATGGAAA CCACATAGTC 8040
TTGGTAGTTA GCCTGCCCAA CAATTAGAGC AACAACGATG GTGACCGTGA TCACCCGAGT 8100
GATACCGCTA CGGGTATCGA CTTCGCCGCG TATGACTAAA ATACCCTGAA CAATAATCCA 8160
AAGAGTGACA CAGGCGATCA ATGGCGCACT CACCGCCTCC TGGATAGTCT CAAGCATCGA 8220
GTCCAAGCCT GTCGTGAAGG CTACATCGAA GATCGTATGA ATGGCCGTAA ACGGCGCCGG 8280
AATCGTGAAA TTCATCGATT GGACCTGAAC TTGACTGGTT TGTCGCATAA TGTTGGATAA 834 0
AATGAGCTCG CATTCGGCGA GGATGCGGGC GGATGAACAA ATCGCCCAGC CTTAGGGGAG 8400
GGCACCAAAG ATGACAGCGG TCTTTTGATG CTCCTTGCGT TGAGCGGCCG CCTCTTCCGC 84 60
CTCGTGAAGG CCGGCCTGCG CGGTAGTCAT CGTTAATAGG CTTGTCGCCT GTACATTTTG 8520
AATCATTGCG TCATGGATCT GCTTGAGAAG CAAACCATTG GTCACGGTTG CCTGCATGAT 8580
ATTGCGAGAT CGGGAAAGCT GAGCAGACGT ATCAGCATTC GCCGTCAAGC GTTTGTCCAT 8 640
CGTTTCCAGA TTGTCAGCCG CAATGCCAGC GCTGTTTGCG GAACCGGTGA TCTGCGATCG 8700
CAACAGGTCC GCTTCAGCAT CACTACCCAC GACTGCACGA TCTGTATCGC TGGTGATCGC 87 60
ACGTGCCGTG GTCGACATTG GCATTCGCGG CGAAAACATT TCATTGTCTA GGTCCTTCGT 8820
CGAAGGATAC TGATTTTTCT GGTTGAGCGA AGTCAGTAGT CCAGTAACGC CGTAGGCCGA 8880
CGTCAACATC GTAACCATCG CTATAGTCTG AGTGAGATTC TCCGCAGTCG CGAGCGCAGT 8 94 0
CGCGAGCGTC TCAGCCTCCG TTGCCGGGTC GCTAACAACA AACTGCGCCC GCGCGGGCTG 9000
AATATATAGA AAGCTGCAGG TCAAAACTGT TGCAATAAGT TGCGTCGTCT TCATCGTTTC 9060
CTACCTTATC AATCTTCTGC CTCGTGGTGA CGGGCCATGA ATTCGCTGAG CCAGCCAGAT 9120
GAGTTGCCTT CTTGTGCCTC GCGTAGTCGA GTTGCAAAGC GCACCGTGTT GGCACGCCCC 9180
GAAAGCACGG CGACATATTC ACGCATATCC CGCAGATCAA ATTCGCAGAT GACGCTTCCA 924 0
CTTTCTCGTT TAAGAAGAAA CTTACGGCTG CCGACCGTCA TGTCTTCACG GATCGCCTGA 9300
AATTCCTTTT CGGTACATTT CAGTCCATCG ACATAAGCCG ATCGATCTGC GGTTGGTGAT 9360
GGATAGAAAA TCTTCGTCAT ACATTGCGCA ACCAAGCTGG CTCCTAGCGG CGATTCCAGA 9420
ACATGCTCTG GTTGCTGCGT TGCCAGTATT AGCATCCCGT TGTTTTTTCG AACGGTCAGG 9480
AGGAATTTGT CGACGACAGT CGAAAATTTA GGGTTTAACA AATAGGCGCG AAACTCATCG 954 0
CAGCTCATCA CAAAACGGCG GCCGTCGATC ATGGCTCCAA TCCGATGCAG GAGATATGCT 9600
GCAGCGGGAG CGCATACTTC CTCGTATTCG AGAAGATGCG TCATGTCGAA GCCGGTAATC 9660
GACGGATCTA ACTTTACTTC GTCAACTTCG CCGTCAAATG CCCAGCCAAG CGCATGGCCC 9720
CGGCACCAGC GTTGGAGCCG CGCTCCTGCG CCTTCGGCGG GCCCATGCAA CAAAAATTCA 9780
CGTAACCCCG CGATTGAACG CATTTGTGGA TCAAACGAGA GCTGACGATG GATACCACGG 984 0
ACCAGACGGC GGTTCTCTTC CGGAGAAATC CCACCCCGAC CATCACTCTC GATGAGAGCC 9900
ACGATCCATT CGCGCAGAAA ATCGTGTGAG GCTGCTGTGT TTTCTAGGCC ACGCAACGGC 9960
GCCAACCCGC TGGGTGTGCC TCTGTGAAGT GCCAAATATG TTCCTCCTGT GGCGCGAACC 10020
AGCAATTCGC CACCCCGGTC CTTGTCAAAG AACACGACCG TACCTGCACG GTCGACCATG 10080
CTCTGTTCGA GCATGGCTAG AACAAACATC ATGAGCGTCG TCTTACCCCT CCCGATAGGC 10140
CCGAATATTG CCGTCATGCC AACATCGTGC TCATGCGGGA TATAGTCGAA AGGCGTTCCG 10200
CCATTGGTAC GAAATCGGGC AATCGCGTTG CCCCAGTGGC CTGAGCTGGC GCCCTCTGGA 10260
AAGTTTTCGA AAGAGACAAA CCCTGCGAAA TTGCGTGAAG TGATTGCGCC AGGGCGTGTG 10320
CGCCACTTAA AATTCCCCGG CAATTGGGAC CAATAGGCCG CTTCCATACC AATACCTTCT 10380
TGGACAACCA CGGCACCTGC ATCCGCCATT CGTGTCCGAG CCCGCGCGCC CCTGTCCCCA 10440
AGACTATTGA GATCGTCTGC ATAGACGCAA AGGCTCAAAT GATGTGAGCC CATAACGAAT 10500
TCGTTGCTCG CAAGTGCGTC CTCAGCCTCG GATAATTTGC CGATTTGAGT CACGGCTTTA 10560
TCGCCGGAAC TCAGCATCTG GCTCGATTTG AGGCTAAGTT TCGCGTGCGC TTGCGGGCGA 10620
GTCAGGAACG AAAAACTCTG CGTGAGAACA AGTGGAAAAT CGAGGGATAG CAGCGCGTTG 10680
AGCATGCCCG GCCGTGTTTT TGCAGGGTAT TCGCGAAACG AATAGATGGA TCCAACGTAA 10740
CTGTCTTTTG GCGTTCTGAT CTCGAGTCCT CGCTTGCCGC AAATGACTCT GTCGGTATAA 10800
ATCGAAGCGC CGAGTGAGCC GCTGACGACC GGAACCGGTG TGAACCGACC AGTCATGATC 10860
AACCGTAGCG CTTCGCCAAT TTCGGTGAAG AGCACACCCT GCTTCTCGCG GATGCCAAGA 10920
CGATGCAGGC CATACGCTTT AAGAGAGCCA GCGACAACAT GCCAAAGATC TTCCATGTTC 10980
CTGATCTGGC CCGTGAGATC GTTTTCCCTT TTTCCGCTTA GCTTGGTGAA CCTCCTCTTT 11040
ACCTTCCCTA AAGCCGCCTG TGGGTAGACA ATCAACGTAA GGAAGTGTTC ATTGCGGAGG 11100
AGTTGGCCGG AGAGCACGCG CTGTTCAAAA GCTTCGTTCA GGCTAGCGGC GAAAACACTA 11160CGGAAGTGTC GCGGCGCCGA TGATGGCACG TCGGCATGAC GTACGAGGTG AGCATATATT 11220
GACACATGAT CATCAGCGAT ATTGCGCAAC AGCGTGTTGA ACGCACGACA ACGCGCATTG 11280
CGCATTTCAG TTTCCTCAAG CTCGAATGCA ACGCCATCAA TTCTCGCAAT GGTCATGATC 11340
GATCCGTCTT CAAGAAGGAC GATATGGTCG CTGAGGTGGC CAATATAAGG GAGATAGATC 11400
TCACCGGATC TTTCGGTCGT TCCACTCGCG CCGAGCATCA CACCATTCCT CTCCCTCGTG 11460
GGGGAACCCT AATTGGATTT GGGCTAACAG TAGCGCCCCC CCAAACTGCA CTATCAATGC 11520
TTCTTCCCGC GGTCCGCAAA AATAGCAGGA CGACGCTCGC CGCATTGTAG TCTCGCTCCA 11580
CGATGAGCCG GGCTGCAAAC CATAACGGCA CGAGAACGAC TTCGTAGAGC GGGTTCTGAA 11640
CGATAACGAT GACAAAGCCG GCGAACATCA TGAATAACCC TGCCAATGTC AGTGGCACCC 11700
CAAGAAACAA TGCGGGCCGT GTGGCTGCGA GGTAAAGGGT CGATTCTTCC AAACGATCAG 11760
CCATCAACTA CCGCCAGTGA GCGTTTGGCC GAGGAAGCTC GCCCCAAACA TGATAACAAT 11820
GCCGCCGACG ACGCCGGCAA CCAGCCCAAG CGAAGCCCGC CCGAACATCC AGGAGATCCC 11880
GATAGCGACA ATGCCGAGAA CAGCGAGTGA CTGGCCGAAC GGACCAAGGA TAAACGTGCA 11940
TATATTGTTA ACCATTGTGG CGGGGTCAGT GCCGCCACCC GCAGATTGCG CTGCGGCGGG 12000
TCCGGATGAG GAAATGCTCC ATGCAATTGC ACCGCACAAG CTTGGGGCGC AGCTCGATAT 12060
CACGCGCATC ATCGCATTCG AGAGCGAGAG GCGATTTAGA TGTAAACGGT ATCTCTCAAA 12120
GCATCGCATC AATGCGCACC TCCTTAGTAT AAGTCGAATA AGACTTGATT GTCGTCTGCG 12180
GATTTGCCGT TGTCCTGGTG TGGCGGTGGC GGAGCGATTA AACCGCCAGC GCCATCCTCC 12240
TGCGAGCGGC GCTGATATGA CCCCCAAACA TCCCACGTCT CTTCGGATTT TAGCGCCTCG 12300
TGATCGTCTT TTGGAGGCTC GATTAACGCG GGCACCAGCG ATTGAGCAGC TGTTTCAACT 12360
TTTCGCACGT AGCCGTTTGC AAAACCGCCG ATGAAATTAC CGGTGTTGTA AGCGGAGATC 12420
GCCCGACGAA GCGCAAATTG CTTCTCGTCA ATCGTTTCGC CGCCTGCATA ACGACTTTTC 12480
AGCATGTTTG CAGCGGCAGA TAATGATGTG CACGCCTGGA GCGCACCGTC AGGTGTCAGA 12540
CCGAGCATAG AAAAATTTCG AGAGTTTATT TGCATGAGGC CAACATCCAG CGAATGCCGT 12600
GCATCGAGAC GGTGCCTGAC GACTTGGGTT GCTTGGCTGT GATCTTGCCA GTGAAGCGTT 12660
TCGCCGGTCG TGTTGTCATG AATCGCTAAA GGATCAAAGC GACTCTCCAC CTTAGCTATC 12720
GCCGCAAGCG TAGATGTCGC AACTGATGGG GCACACTTGC GAGCAACATG GTCAAACTCA 12780
GCAGATGAGA GTGGCGTGGC AAGGCTCGAC GAACAGAAGG AGACCATCAA GGCAAGAGAA 12840
AGCGACCCCG ATCTCTTAAG CATACCTTAT CTCCTTAGCT CGCAACTAAC ACCGCCTCTC 12900
CCGTTGGAAG AAGTGCGTTG TTTTATGTTG AAGATTATCG GGAGGGTCGG TTACTCGAAA 12960
ATTTTCAATT GCTTCTTTAT GATTTCAATT GAAGCGAGAA ACCTCGCCCG GCGTCTTGGA 13020
ACGCAACATG GACCGAGAAC CGCGCATCCA TGACTAAGCA ACCGGATCGA CCTATTCAGG 13080
CCGCAGTTGG TCAGGTCAGG CTCAGAACGA AAATGCTCGG CGAGGTTACG CTGTCTGTAA 13140
ACCCATTCGA TGAACGGGAA GCTTCCTTCC GATTGCTCTT GGCAGGAATA TTGGCCCATG 13200
CCTGCTTGCG CTTTGCAAAT GCTCTTATCG CGTTGGTATC ATATGCCTTG TCCGCCAGCA 13260
GAAACGCACT CTAAGCGATT ATTTGTAAAA ATGTTTCGGT CATGCGGCGG TCATGGGCTT 13320
GACCCGCTGT CAGCGCAAGA CGGATCGGTC AACCGTCGGC ATCGACAACA GCGTGAATCT 13380
TGGTGGTCAA ACCGCCACGG GAACGTCCCA TACAGCCATC GTCTTGATCC CGCTGTTTCC 13440
CGTCGCCGCA TGTTGGTGGA CGCGGACACA GGAACTGTCA ATCATGACGA CATTCTATCG 13500
AAAGCCTTGG AAATCACACT CAGAATATGA TCCCAGACGT CTGCCTCACG CCATCGTACA 13560
AAGCGATTGT AGCAGGTTGT ACAGGAACCG TATCGATCAG GAACGTCTGC CCAGGGCGGG 13620
CCCGTCCGGA AGCGCCACAA GATGACATTG ATCACCCGCG TCAACGCGCG GCACGCGACG 13680
CGGCTTATTT GGGAACAAAG GACTGAACAA CAGTCCATTC GAAATCGGTG ACATCAAAGC 13740
GGGGACGGGT TATCAGTGGC CTCCAAGTCA AGCCTCAATG AATCAAAATC AGACCGATTT 13800
GCAAACCTGA TTTATGAGTG TGCGGCCTAA ATGATGAAAT CGTCCTTCTA GATCGCCTCC 13860
GTGGTGTAGC AACACCTCGC AGTATCGCCG TGCTGACCTT GGCCAGGGAA TTGACTGGCA 13920
AGGGTGCTTT CACATGACCG CTCTTTTGGC CGCGATAGAT GATTTCGTTG CTGCTTTGGG 13980
CACGTAGAAG GAGAGAAGTC ATATCGGAGA AATTCCTCCT GGCGCGAGAG CCTGCTCTAT 14040
CGCGACGGCA TCCCACTGTC GGGAACAGAC CGGATCATTC ACGAGGCGAA AGTCGTCAAC 14100
ACATGCGTTA TAGGCATCTT CCCTTGAAGG ATGATCTTGT TGCTGCCAAT CTGGAGGTGC 14160
GGCAGCCGCA GGCAGATGCG ATCTCAGCGC AACTTGCGGC AAAACATCTC ACTCACCTGA 14220
AAACCACTAG CGAGTCTCGC GATCAGACGA AGGCCTTTTA CTTAACGACA CAATATCCGA 14280
TGTCTGCATC ACAGGCGTCG CTATCCCAGT CAATACTAAA GCGGTGCAGG AACTAAAGAT 14340
TACTGATGAC TTAGGCGTGC CACGAGGCCT GAGACGACGC GCGTAGACAG TTTTTTGAAA 14400
TCATTATCAA AGTGATGGCC TCCGCTGAAG CCTATCACCT CTGCGCCGGT CTGTCGGAGA 14460
GATGGGCAAG CATTATTACG GTCTTCGCGC CCGTACATGC ATTGGACGAT TGCAGGGTCA 14520
ATGGATCTGA GATCATCCAG AGGATTGCCG CCCTTACCTT CCGTTTCGAG TTGGAGCCAG 14580
CCCCTAAATG AGACGACATA GTCGACTTGA TGTGACAATG CCAAGAGAGA GATTTGCTTA 14640
ACCCGATTTT TTTGCTCAAG CGTAAGCCTA TTGAAGCTTG CCGGCATGAC GTCCGCGCCG 14700AAAGAATATC CTACAAGTAA AACATTCTGC ACACCGAAAT GCTTGGTGTA GACATCGATT 14760
ATGTGACCAA GATCCTTAGC AGTTTCGCTT GGGGACCGCT CCGACCAGAA ATACCGAAGT 14 820
GAACTGACGC CAATGACAGG AATCCCTTCC GTCTGCAGAT AGGTACCATC GATAGATCTG 14 880
CTGCCTCGCG CGTTTCGGTG ATGACGGTGA AAACCTCTGA CACATGCAGC TCCCGGAGAC 14 940
GGTCACAGCT TGTCTGTAAG CGGATGCCGG GAGCAGACAA GCCCGTCAGG GCGCGTCAGC 15000
GGGTGTTGGC GGGTGTCGGG GCGCAGCCAT GACCCAGTCA CGTAGCGATA GCGGAGTGTA 15060
TACTGGCTTA ACTATGCGGC ATCAGAGCAG ATTGTACTGA GAGTGCACCA TATGCGGTGT 15120
GAAATACCGC ACAGATGCGT AAGGAGAAAA TACCGCATCA GGCGCTCTTC CGCTTCCTCG 15180
CTCACTGACT CGCTGCGCTC GGTCGTTCGG CTGCGGCGAG CGGTATCAGC TCACTCAAAG 1524 0
GCGGTAATAC GGTTATCCAC AGAATCAGGG GATAACGCAG GAAAGAACAT GTGAGCAAAA 15300
GGCCAGCAAA AGGCCAGGAA CCGTAAAAAG GCCGCGTTGC TGGCGTTTTT CCATAGGCTC 15360
CGCCCCCCTG ACGAGCATCA CAAAAATCGA CGCTCAAGTC AGAGGTGGCG AAACCCGACA 15420
GGACTATAAA GATACCAGGC GTTTCCCCCT GGAAGCTCCC TCGTGCGCTC TCCTGTTCCG 15480
ACCCTGCCGC TTACCGGATA CCTGTCCGCC TTTCTCCCTT CGGGAAGCGT GGCGCTTTCT 1554 0
CATAGCTCAC GCTGTAGGTA TCTCAGTTCG GTGTAGGTCG TTCGCTCCAA GCTGGGCTGT 15600
GTGCACGAAC CCCCCGTTCA GCCCGACCGC TGCGCCTTAT CCGGTAACTA TCGTCTTGAG 15660
TCCAACCCGG TAAGACACGA CTTATCGCCA CTGGCAGCAG CCACTGGTAA CAGGATTAGC 15720
AGAGCGAGGT ATGTAGGCGG TGCTACAGAG TTCTTGAAGT GGTGGCCTAA CTACGGCTAC 15780
ACTAGAAGGA CAGTATTTGG TATCTGCGCT CTGCTGAAGC CAGTTACCTT CGGAAAAAGA 15840
GTTGGTAGCT CTTGATCCGG CAAACAAACC ACCGCTGGTA GCGGTGGTTT TTTTGTTTGC 15900
AAGCAGCAGA TTACGCGCAG AAAAAAAGGA TCTCAAGAAG ATCCTTTGAT CTTTTCTACG 15960
GGGTCTGACG CTCAGTGGAA CGAAAACTCA CGTTAAGGGA TTTTGGTCAT GAGATTATCA 16020
AAAAGGATCT TCACCTAGAT CCTTTTAAAT TAAAAATGAA GTTTTAAATC AATCTAAAGT 16080
ATATATGAGT AAACTTGGTC TGACAGTTAC CAATGCTTAA TCAGTGAGGC ACCTATCTCA 1614 0
GCGATCTGTC TATTTCGTTC ATCCATAGTT GCCTGACTCC CCGTCGTGTA GATAACTACG 16200
ATACGGGAGG GCTTACCATC TGGCCCCAGT GCTGCAATGA TACCGCGAGA CCCACGCTCA 162 60
CCGGCTCCAG ATTTATCAGC AATAAACCAG CCAGCCGGAA GGGCCGAGCG CAGAAGTGGT 16320
CCTGCAACTT TATCCGCCTC CATCCAGTCT ATTAATTGTT GCCGGGAAGC TAGAGTAAGT 16380
AGTTCGCCAG TTAATAGTTT GCGCAACGTT GTTGCCATTG CTGCAGGGGG GGGGGGGGGG 16440
GGGTTCCATT GTTCATTCCA CGGACAAAAA CAGAGAAAGG AAACGACAGA GGCCAAAAAG 16500
CTCGCTTTCA GCACCTGTCG TTTCCTTTCT TTTCAGAGGG TATTTTAAAT AAAAACATTA 16560
AGTTATGACG AAGAAGAACG GAAACGCCTT AAACCGGAAA ATTTTCATAA ATAGCGAAAA 16620
CCCGCGAGGT CCCTGTCGGA TCACCGGAAA GGACCCGTAA AGTGATAATG ATTATCATCT 16680
ACATATCACA ACGTGCGTGG AGGCCATCAA ACCACGTCAA ATAATCAATT ATGACGCAGG 16740
TATCGTATTA ATTGATCTGC ATCAACTTAA CGTAAAAACA ACTTCAGACA ATACAAATCA 16800
GCGACACTGA ATACGGGGCA ACCTCATGTC CCCCCCCCCC CCCCCCCTGC AGGCATCGTG 16860
GTGTCACGCT CGTCGTTTGG TATGGCTTCA TTCAGCTCCG GTTCCCAACG ATCAAGGCGA 16920
GTTACATGAT CCCCCATGTT GTGCAAAAAA GCGGTTAGCT CCTTCGGTCC TCCGATCGTT 16980
GTCAGAAGTA AGTTGGCCGC AGTGTTATCA CTCATGGTTA TGGCAGCACT GCATAATTCT 17 040
CTTACTGTCA TGCCATCCGT AAGATGCTTT TCTGTGACTG GTGAGTACTC AACCAAGTCA 17100
TTCTGAGAAT AGTGTATGCG■GCGACCGAGT TGCTCTTGCC CGGCGTCAAC ACGGGATAAT 17160
ACCGCGCCAC ATAGCAGAAC TTTAAAAGTG CTCATCATTG GAAAACGTTC TTCGGGGCGA 17220
AAACTCTCAA GGATCTTACC GCTGTTGAGA TCCAGTTCGA TGTAACCCAC TCGTGCACCC 17280
AACTGATCTT CAGCATCTTT TACTTTCACC AGCGTTTCTG GGTGAGCAAA AACAGGAAGG 17340
CAAAATGCCG CAAAAAAGGG AATAAGGGCG ACACGGAAAT GTTGAATACT CATACTCTTC 17 4 00
CTTTTTCAAT ATTATTGAAG CATTTATCAG GGTTATTGTC TCATGAGCGG ATACATATTT 17 4 60
GAATGTATTT AGAAAAATAA ACAAATAGGG GTTCCGCGCA CATTTCCCCG AAAAGTGCCA 17 520
CCTGACGTCT AAGAAACCAT TATTATCATG ACATTAACCT ATAAAAATAG GCGTATCACG 17 580
AGGCCCTTTC GTCTTCAAGA ATTGGTCGAC GATCTTGCTG CGTTCGGATA TTTTCGTGGA 17 640
GTTCCCGCCA CAGACCCGGA TTGAAGGCGA GATCCAGCAA CTCGCGCCAG ATCATCCTGT 17700
GACGGAACTT TGGCGCGTGA TGACTGGCCA GGACGTCGGC CGAAAGAGCG ACAAGCAGAT 177 60
CACGCTTTTC GACAGCGTCG GATTTGCGAT CGAGGATTTT TCGGCGCTGC GCTACGTCCG 17820
CGACCGCGTT GAGGGATCAA GCCACAGCAG CCCACTCGAC CTTCTAGCCG ACCCAGACGA 17880
GCCAAGGGAT CTTTTTGGAA TGCTGCTCCG TCGTCAGGCT TTCCGACGTT TGGGTGGTTG 17940
AACAGAAGTC ATTATCGTAC GGAATGCCAA GCACTCCCGA GGGGAACCCT GTGGTTGGCA 18000
TGCACATACA AATGGACGAA CGGATAAACC TTTTCACGCC CTTTTAAATA TCCGTTATTC 18060
TAATAAACGC TCTTTTCTCT TAGGTTTACC CGCCAATATA TCCTGTCAAA CACTGATAGT 18120
TTAAACTGAA GGCGGGAAAC GACAATCTGA TCATGAGCGG AGAATTAAGG GAGTCACGTT 18180
ATGACCCCCG CCGATGACGC GGGACAAGCC GTTTTACGTT TGGAACTGAC AGAACCGCAA 1824 0CGTTGAAGGA GCCACTCAGC AAGCTGGTAC GATTGTAATA CGACTCACTA TAGGGCGAAT 18300
TGAGCGCTGT TTAAACGCTC TTCAACTGGA AGAGCGGTTA CCAGAGCTGG TCACCTTTGT 18360
CCACCAAGAT GGAACTGCGG CCGCTCATTA ATTAAGTCAG GCGCGCCTCT AGTTGAAGAC 18420
ACGTTCATGT CTTCATCGTA AGAAGACACT CAGTAGTCTT CGGCCAGAAT GGCCATCTGG 184 80
ATTCAGCAGG CCTAGAAGGC CATTTAAATC CTGAGGATCT GGTCTTCCTA AGGACCCGGG 1854 0
ATATCGCTAT CAACTTTGTA TAGAAAAGTT GGGCCGAATT CGCCCTTGTT TAAACTTAAT 18 600
ATTTGTTTAA ACTTTTTACT AAATTCATGT AATAATTAAT GTATGCGTTA TATATATATG 18 660
TCTAGGTTTA TAATTATTCA TATGAATATG AACATAAAAA TCTAGGGCTA AAACGACTAC 18720
TATTTTGAAA ACGGAAGGAG TAGTAAGTTA TTTAAGCGGA GGGGAACCAT GATGGGCTAG 18780
TGATTTAATT TACATATATA TATTGGTGTT CTGGGCTCTT ACATGAGAAG ATCTAGTTAA 1884 0
CTGTTGTTAC TGAACAGCGA AGACAAATAT ATAATTTAAG CTCCCCAACT GCTAGTGATT 18 900
CTGTTAAGAG GTAATGTTTA AAGTAAATTT ACAAGAGCCC GTCTAGCTCA GTCGGTAGAG 18960
CGCAAGGCTC TTAACCTTGT GGTCGTGGGT TCGAGCCCCA CGGTGGGCGC ACAATTTTTT 19020
GTTTTTTGAC ATTTTTTGTT TGCTTAGTTG CAGACGGTTT TTCCCCTGCT AGGAGATTTC 19080
CGAGAGAAAA AAAAGGCACT ACAGGTTAAC CAAAACCACC AACCTTTGGA GCGTCGAGGC 1914 0
GACGGGGCAT TTGCGTAGTT GAAGCTTACA AAGTTGCATA TGAGATGAGT GCCGGACATG 19200
AAGCGGATAA CGTTTTAAAC TGGCAACAAT ATCTAGCTGT TTCAAATTCA GGCGTGGGAA 192 60
GCTACGCCTA CGCGCCCTGG ACGGCGTGTA AAGAGCCAGC ATCGGCATCA TTGTCAAACG 19320
ATCGACAAGG CCAAGAAATT CCAAATATAT TATTAATAAA AAAGAAGGCA CCAAATTAGT 19380
TTTTGTTTTT TAGTATGTGT GGCGGAGGAA ATTTTGAGAA CGAACGTATC CAAAGAAGGC 19440
ACAAGACGAT ATAGATTGAC GCGGCTAGAA AGTTGCAGCA AGACAGTGGG TACGGTCTTA 19500
TATATCCTAA TAAATAAAAA ATAAAACTAT AGTGTGTCAA ATGTCAACAA GAGGAGGAGG 19560
CAGCCAAATT AGCAGAGGGA GACAAGTAGA GCACGCCTTA TTAGCTTGCT TATTTATCGT 19620
GGTGGTGTAC TTGTTAATTA CTGGCACGCA TTATCAACAA CGCAGTTCTG GATGTGAATC 19680
TAGACAAACA TTTGTCTAGG TTCCGCACGT ATAGTTTTTT TTCTTTTTTT TTGGGGGGGG 19740
GGGGGAACGG AAGCTGTAAT AAACGGTACT AGGAACGAAA GCAACCGCCG CGCGCATGTT 19800
TTTGCAATAG ATTACGGTGA CCTTGATGCA CCACCGCGTG CTATAAAAAC CAGTGTCCCC 198 60
GAGTCTACTC ATCAACCAAT CCATAACTCG AAACCTTTTC TTGTGCTCTG TTCTGTCTGT 19920
GTGTTTCCAA AGCAAGCGAA AGAGGTCGAG GGGATCAGCT TCAAGTTTGT ACAAAAAAGC 19980
AGGCTCCGCG GCCGCCCCCT TCACCATGGC TCGGCAGCAA AGCGTGCAGG CCTTGTGTGT 2004 0
GCTGGCGGCG CTTCTCTTCG CCGCCTCCCT GCCGTCGCCG GCCGCCGCGG GGGTGCACCT 20100
CTCCTCGCTG CCCAAAGCGC TCGACGTCAC CACCTCCGCC AAACCCGGCC AAGTCCTGCA 20160
CGCCGGCGTG GACTCGCTGA CGGTGACGTG GAGCCTGAAC GCCACGGAGC CGGCCGGCGC 20220
CGACGCCGGG TACAAGGGCG TGAAGGTGAA GCTGTGCTAC GCGCCGGCGA GCCAGAAGGA 20280
CCGCGGGTGG CGCAAGTCCG AGGACGACAT CAGCAAGGAC AAGGCGTGCC AGTTCAAGGT 20340
CACCGAGCAG GCGTACGCGG CGGCGGCGCC CGGCAGCTTC CAGTACGCCG TCGCCCGCGA 204 00
CGTCCCCTCG GGCTCCTACT ACCTGCGCGC CTTCGCCACG GACGCGTCGG GCGCCGAGGT 204 60
GGCCTACGGC CAGACGGCGC CCACCGCCGC CTTCGACGTC GCCGGCATCA CCGGCATCCA 20520
CGCCTCTCTC AAGATCGCCG CCGGCGTCTT CTCGGCCTTC TCCGTCGTCG CGCTCGCCTT 20580
CTTCTTCGTC ATCGAGACCC GCAAGAAGAA CAAGTAGAAG GGTGGGCGCG CCGACCCAGC 20640
TTTCTTGTAC AAAGTGGCCG TTAACGGATC CAGACTTGTC CATCTTCTGG ATTGGCCAAC 20700
TTAATTAATG TATGAAATAA AAGGATGCAC ACATAGTGAC ATGCTAATCA CTATAATGTG 207 60
GGCATCAAAG TTGTGTGTTA TGTGTAATTA CTAGTTATCT GAATAAAAGA GAAAGAGATC 20820
ATCCATATTT CTTATCCTAA ATGAATGTCA CGTGTCTTTA TAATTCTTTG ATGAACCAGA 20880
TGCATTTCAT TAACCAAATC CATATACATA TAAATATTAA TCATATATAA TTAATATCAA 20940
TTGGGTTAGC AAAACAAATC TAGTCTAGGT GTGTTTTGCG AATTGCGGCA AGCTTGCGGC 21000
CGCCCCGGGC AACTTTATTA TACAAAGTTG ATAGATATCG GACCGATTAA ACTTTAATTC 21060
GGTCCGAAGC TTGCATGCCT GCAGTGCAGC GTGACCCGGT CGTGCCCCTC TCTAGAGATA 21120
ATGAGCATTG CATGTCTAAG TTATAAAAAA TTACCACATA TTTTTTTTGT CACACTTGTT 21180
TGAAGTGCAG TTTATCTATC TTTATACATA TATTTAAACT TTACTCTACG AATAATATAA 21240
TCTATAGTAC TACAATAATA TCAGTGTTTT AGAGAATCAT ATAAATGAAC AGTTAGACAT 21300
GGTCTAAAGG ACAATTGAGT ATTTTGACAA CAGGACTCTA CAGTTTTATC TTTTTAGTGT 21360
GCATGTGTTC TCCTTTTTTT TTGCAAATAG CTTCACCTAT ATAATACTTC ATCCATTTTA 21420
TTAGTACATC CATTTAGGGT TTAGGGTTAA TGGTTTTTAT AGACTAATTT TTTTAGTACA 21480
TCTATTTTAT TCTATTTTAG CCTCTAAATT AAGAAAACTA AAACTCTATT TTAGTTTTTT 21540
TATTTAATAA TTTAGATATA AAATAGAATA AAATAAAGTG ACTAAAAATT AAACAAATAC 21600
CCTTTAAGAA ATTAAAAAAA CTAAGGAAAC ATTTTTCTTG TTTCGAGTAG ATAATGCCAG 21660
CCTGTTAAAC GCCGTCGACG AGTCTAACGG ACACCAACCA GCGAACCAGC AGCGTCGCGT 21720
CGGGCCAAGC GAAGCAGACG GCACGGCATC TCTGTCGCTG CCTCTGGACC CCTCTCGAGA 21780GTTCCGCTCC ACCGTTGGAC TTGCTCCGCT GTCGGCATCC AGAAATTGCG TGGCGGAGCG 2184 0
GCAGACGTGA GCCGGCACGG CAGGCGGCCT CCTCCTCCTC TCACGGCACC GGCAGCTACG 21900
GGGGATTCCT TTCCCACCGC TCCTTCGCTT TCCCTTCCTC GCCCGCCGTA ATAAATAGAC 21960
ACCCCCTCCA CACCCTCTTT CCCCAACCTC GTGTTGTTCG GAGCGCACAC ACACACAACC 22020
AGATCTCCCC CAAATCCACC CGTCGGCACC TCCGCTTCAA GGTACGCCGC TCGTCCTCCC 22080
CCCCCCCCCT CTCTACCTTC TCTAGATCGG CGTTCCGGTC CATGCATGGT TAGGGCCCGG 22140
TAGTTCTACT TCTGTTCATG TTTGTGTTAG ATCCGTGTTT GTGTTAGATC CGTGCTGCTA 22200
GCGTTCGTAC ACGGATGCGA CCTGTACGTC AGACACGTTC TGATTGCTAA CTTGCCAGTG 22260
TTTCTCTTTG GGGAATCCTG GGATGGCTCT AGCCGTTCCG CAGACGGGAT CGATTTCATG 22320
ATTTTTTTTG TTTCGTTGCA TAGGGTTTGG TTTGCCCTTT TCCTTTATTT CAATATATGC 22380
CGTGCACTTG TTTGTCGGGT CATCTTTTCA TGCTTTTTTT TGTCTTGGTT GTGATGATGT 22440
GGTCTGGTTG GGCGGTCGTT CTAGATCGGA GTAGAATTCT GTTTCAAACT ACCTGGTGGA 22500
TTTATTAATT TTGGATCTGT ATGTGTGTGC CATACATATT CATAGTTACG AATTGAAGAT 22560
GATGGATGGA AATATCGATC TAGGATAGGT ATACATGTTG ATGCGGGTTT TACTGATGCA 22620
TATACAGAGA TGCTTTTTGT TCGCTTGGTT GTGATGATGT GGTGTGGTTG GGCGGTCGTT 22 680
CATTCGTTCT AGATCGGAGT AGAATACTGT TTCAAACTAC CTGGTGTATT TATTAATTTT 22740
GGAACTGTAT GTGTGTGTCA TACATCTTCA TAGTTACGAG TTTAAGATGG ATGGAAATAT 22800
CGATCTAGGA TAGGTATACA TGTTGATGTG GGTTTTACTG ATGCATATAC ATGATGGCAT 22860
ATGCAGCATC TATTCATATG CTCTAACCTT GAGTACCTAT CTATTATAAT AAACAAGTAT 22 920
GTTTTATAAT TATTTTGATC TTGATATACT TGGATGATGG CATATGCAGC AGCTATATGT 22 980
GGATTTTTTT AGCCCTGCCT TCATACGCTA TTTATTTGCT TGGTACTGTT TCTTTTGTCG 23040
ATGCTCACCC TGTTGTTTGG TGTTACTTCT GCAGGTCGAC TTTAACTTAG CCTAGGATCC 23100
ACACGACACC ATGTCCCCCG AGCGCCGCCC CGTCGAGATC CGCCCGGCCA CCGCCGCCGA 23160
CATGGCCGCC GTGTGCGACA TCGTGAACCA CTACATCGAG ACCTCCACCG TGAACTTCCG 23220
CACCGAGCCG CAGACCCCGC AGGAGTGGAT CGACGACCTG GAGCGCCTCC AGGACCGCTA 23280
CCCGTGGCTC GTGGCCGAGG TGGAGGGCGT GGTGGCCGGC ATCGCCTACG CCGGCCCGTG 23340
GAAGGCCCGC AACGCCTACG ACTGGACCGT GGAGTCCACC GTGTACGTGT CCCACCGCCA 234 00
CCAGCGCCTC GGCCTCGGCT CCACCCTCTA CACCCACCTC CTCAAGAGCA TGGAGGCCCA 234 60
GGGCTTCAAG TCCGTGGTGG CCGTGATCGG CCTCCCGAAC GACCCGTCCG TGCGCCTCCA 23520
CGAGGCCCTC GGCTACACCG CCCGCGGCAC CCTCCGCGCC GCCGGCTACA AGCACGGCGG 23580
CTGGCACGAC GTCGGCTTCT GGCAGCGCGA CTTCGAGCTG CCGGCCCCGC CGCGCCCGGT 23640
GCGCCCGGTG ACGCAGATCT GAGTCGAAAC CTAGACTTGT CCATCTTCTG GATTGGCCAA 23700
CTTAATTAAT GTATGAAATA AAAGGATGCA CACATAGTGA CATGCTAATC ACTATAATGT 237 60
GGGCATCAAA GTTGTGTGTT ATGTGTAATT ACTAGTTATC TGAATAAAAG AGAAAGAGAT 23820
CATCCATATT TCTTATCCTA AATGAATGTC ACGTGTCTTT ATAATTCTTT GATGAACCAG 23880
ATGCATTTCA TTAACCAAAT CCATATACAT ATAAATATTA ATCATATATA ATTAATATCA 23940
ATTGGGTTAG CAAAACAAAT CTAGTCTAGG TGTGTTTTGC GAATGCGGCC GCCACCGCGG 24 000
TGGAGCTCGA ATTCATTCCG ATTAATCGTG GCCTCTTGCT CTTCAGGATG AAGAGCTATG 24 060
TTTAAACGTG CAAGCGCTAC TAGACAATTC AGTACATTAA AAACGTCCGC AATGTGTTAT 24120
TAAGTTGTCT AAGCGTCAAT TTGTTTACAC CACAATATAT CCTGCCACCA GCCAGCCAAC 24180
AGCTCCCCGA CCGGCAGCTC GGCACAAAAT CACCACTCGA TACAGGCAGC CCATCAGTCC 24240
GGGACGGCGT CAGCGGGAGA GCCGTTGTAA GGCGGCAGAC TTTGCTCATG TTACCGATGC 24300
TATTCGGAAG AACGGCAACT AAGCTGCCGG GTTTGAAACA CGGATGATCT CGCGGAGGGT 24360
AGCATGTTGA TTGTAACGAT GACAGAGCGT TGCTGCCTGT GATCAAATAT CATCTCCCTC 24 420
GCAGAGATCC GAATTATCAG CCTTCTTATT CATTTCTCGC TTAACCGTGA CAGGCTGTCG 24 480
ATCTTGAGAA CTATGCCGAC ATAATAGGAA ATCGCTGGAT AAAGCCGCTG AGGAAGCTGA 24 540
GTGGCGCTAT TTCTTTAGAA GTGAACGTTG ACGATCGTCG ACCGTACCCC GATGAATTAA 24 600
TTCGGACGTA CGTTCTGAAC ACAGCTGGAT ACTTACTTGG GCGATTGTCA TACATGACAT 24 660
CAACAATGTA CCCGTTTGTG TAACCGTCTC TTGGAGGTTC GTATGACACT AGTGGTTCCC 24720
CTCAGCTTGC GACTAGATGT TGAGGCCTAA CATTTTATTA GAGAGCAGGC TAGTTGCTTA 24780
GATACATGAT CTTCAGGCCG TTATCTGTCA GGGCAAGCGA AAATTGGCCA TTTATGACGA 2484 0
CCAATGCCCC GCAGAAGCTC CCATCTTTGC CGCCATAGAC GCCGCGCCCC CCTTTTGGGG 24 900
TGTAGAACAT CCTTTTGCCA GATGTGGAAA AGAAGTTCGT TGTCCCATTG TTGGCAATGA 24 960
CGTAGTAGCC GGCGAAAGTG CGAGACCCAT TTGCGCTATA TATAAGCCTA CGATTTCCGT 25020
TGCGACTATT GTCGTAATTG GATGAACTAT TATCGTAGTT GCTCTCAGAG TTGTCGTAAT 25080
TTGATGGACT ATTGTCGTAA TTGCTTATGG AGTTGTCGTA GTTGCTTGGA GAAATGTCGT 25140
AGTTGGATGG GGAGTAGTCA TAGGGAAGAC GAGCTTCATC CACTAAAACA ATTGGCAGGT 25200
CAGCAAGTGC CTGCCCCGAT GCCATCGCAA GTACGAGGCT TAGAACCACC TTCAACAGAT 25260
CGCGCATAGT CTTCCCCAGC TCTCTAACGC TTGAGTTAAG CCGCGCCGCG AAGCGGCGTC 25320GGCTTGAACG AATTGTTAGA CATTATTTGC CGACTACCTT GGTGATCTCG CCTTTCACGT 25380
AGTGAACAAA TTCTTCCAAC TGATCTGCGC GCGAGGCCAA GCGATCTTCT TGTCCAAGAT 254 40
AAGCCTGCCT AGCTTCAAGT ATGACGGGCT GATACTGGGC CGGCAGGCGC TCCATTGCCC 25500
AGTCGGCAGC GACATCCTTC GGCGCGATTT TGCCGGTTAC TGCGCTGTAC CAAATGCGGG 25560
ACAACGTAAG CACTACATTT CGCTCATCGC CAGCCCAGTC GGGCGGCGAG TTCCATAGCG 25620
TTAAGGTTTC ATTTAGCGCC TCAAATAGAT CCTGTTCAGG AACCGGATCA AAGAGTTCCT 25680
CCGCCGCTGG ACCTACCAAG GCAACGCTAT GTTCTCTTGC TTTTGTCAGC AAGATAGCCA 25740
GATCAATGTC GATCGTGGCT GGCTCGAAGA TACCTGCAAG AATGTCATTG CGCTGCCATT 25800
CTCCAAATTG CAGTTCGCGC TTAGCTGGAT AACGCCACGG AATGATGTCG TCGTGCACAA 25860
CAATGGTGAC TTCTACAGCG CGGAGAATCT CGCTCTCTCC AGGGGAAGCC GAAGTTTCCA 25920
AAAGGTCGTT GATCAAAGCT CGCCGCGTTG TTTCATCAAG CCTTACAGTC ACCGTAACCA 25980
GCAAATCAAT ATCACTGTGT GGCTTCAGGC CGCCATCCAC TGCGGAGCCG TACAAATGTA 26040
CGGCCAGCAA CGTCGGTTCG AGATGGCGCT CGATGACGCC AACTACCTCT GATAGTTGAG 2 6100
TCGATACTTC GGCGATCACC GCTTCCCTCA TGATGTTTAA CTCCTGAATT AAGCCGCGCC 26160
GCGAAGCGGT GTCGGCTTGA ATGAATTGTT AGGCGTCATC CTGTGCTCCC GAGAACCAGT 26220
ACCAGTACAT CGCTGTTTCG TTCGAGACTT GAGGTCTAGT TTTATACGTG AACAGGTCAA 26280
TGCCGCCGAG AGTAAAGCCA CATTTTGCGT ACAAATTGCA GGCAGGTACA TTGTTCGTTT 26340
GTGTCTCTAA TCGTATGCCA AGGAGCTGTC TGCTTAGTGC CCACTTTTTC GCAAATTCGA 264 00
TGAGACTGTG CGCGACTCCT TTGCCTCGGT GCGTGTGCGA CACAACAATG TGTTCGATAG 264 60
AGGCTAGATC GTTCCATGTT GAGTTGAGTT CAATCTTCCC GACAAGCTCT TGGTCGATGA 26520
ATGCGCCATA GCAAGCAGAG TCTTCATCAG AGTCATCATC CGAGATGTAA TCCTTCCGGT 26580
AGGGGCTCAC ACTTCTGGTA GATAGTTCAA AGCCTTGGTC GGATAGGTGC ACATCGAACA 26640
CTTCACGAAC AATGAAATGG TTCTCAGCAT CCAATGTTTC CGCCACCTGC TCAGGGATCA 26700
CCGAAATCTT CATATGACGC CTAACGCCTG GCACAGCGGA TCGCAAACCT GGCGCGGCTT 267 60
TTGGCACAAA AGGCGTGACA GGTTTGCGAA TCCGTTGCTG CCACTTGTTA ACCCTTTTGC 26820
CAGATTTGGT AACTATAATT TATGTTAGAG GCGAAGTCTT GGGTAAAAAC TGGCCTAAAA 26880
TTGCTGGGGA TTTCAGGAAA GTAAACATCA CCTTCCGGCT CGATGTCTAT TGTAGATATA 2694 0
TGTAGTGTAT CTACTTGATC GGGGGATCTG CTGCCTCGCG CGTTTCGGTG ATGACGGTGA 27000
AAACCTCTGA CACATGCAGC TCCCGGAGAC GGTCACAGCT TGTCTGTAAG CGGATGCCGG 27060
GAGCAGACAA GCCCGTCAGG GCGCGTCAGC GGGTGTTGGC GGGTGTCGGG GCGCAGCCAT 27120
GACCCAGTCA CGTAGCGATA GCGGAGTGTA TACTGGCTTA ACTATGCGGC ATCAGAGCAG 27180
ATTGTACTGA GAGTGCACCA TATGCGGTGT GAAATACCGC ACAGATGCGT AAGGAGAAAA 2724 0
TACCGCATCA GGCGCTCTTC CGCTTCCTCG CTCACTGACT CGCTGCGCTC GGTCGTTCGG 27300
CTGCGGCGAG CGGTATCAGC TCACTCAAAG GCGGTAATAC GGTTATCCAC AGAATCAGGG 27360
GATAACGCAG GAAAGAACAT GTGAGCAAAA GGCCAGCAAA AGGCCAGGAA CCGTAAAAAG 27 420
GCCGCGTTGC TGGCGTTTTT CCATAGGCTC CGCCCCCCTG ACGAGCATCA CAAAAATCGA 27480
CGCTCAAGTC AGAGGTGGCG AAACCCGACA GGACTATAAA GATACCAGGC GTTTCCCCCT 27 54 0
GGAAGCTCCC TCGTGCGCTC TCCTGTTCCG ACCCTGCCGC TTACCGGATA CCTGTCCGCC 27 600
TTTCTCCCTT CGGGAAGCGT GGCGCTTTCT CATAGCTCAC GCTGTAGGTA TCTCAGTTCG 27 660
GTGTAGGTCG TTCGCTCCAA GCTGGGCTGT GTGCACGAAC CCCCCGTTCA GCCCGACCGC 27 720
TGCGCCTTAT CCGGTAACTA TCGTCTTGAG TCCAACCCGG TAAGACACGA CTTATCGCCA 27780
CTGGCAGCAG CCACTGGTAA CAGGATTAGC AGAGCGAGGT ATGTAGGCGG TGCTACAGAG 2784 0
TTCTTGAAGT GGTGGCCTAA CTACGGCTAC ACTAGAAGGA CAGTATTTGG TATCTGCGCT 27 900
CTGCTGAAGC CAGTTACCTT CGGAAAAAGA GTTGGTAGCT CTTGATCCGG CAAACAAACC 27960
ACCGCTGGTA GCGGTGGTTT TTTTGTTTGC AAGCAGCAGA TTACGCGCAG AAAAAAAGGA 28020
TCTCAAGAAG ATCCTTTGAT CTTTTCTACG GGGTCTGACG CTCAGTGGAA CGAAAACTCA 28080
CGTTAAGGGA TTTTGGTCAT GAGATTATCA AAAAGGATCT TCACCTAGAT CCTTTTAAAT 28140
TAAAAATGAA GTTTTAAATC AATCTAAAGT ATATATGAGT AAACTTGGTC TGACAGTTAC 28200
CAATGCTTAA TCAGTGAGGC ACCTATCTCA GCGATCTGTC TATTTCGTTC ATCCATAGTT 28260
GCCTGACTCC CCGTCGTGTA GATAACTACG ATACGGGAGG GCTTACCATC TGGCCCCAGT 28320
GCTGCAATGA TACCGCGAGA CCCACGCTCA CCGGCTCCAG ATTTATCAGC AATAAACCAG 28380
CCAGCCGGAA GGGCCGAGCG CAGAAGTGGT CCTGCAACTT TATCCGCCTC CATCCAGTCT 28440
ATTAATTGTT GCCGGGAAGC TAGAGTAAGT AGTTCGCCAG TTAATAGTTT GCGCAACGTT 28500
GTTGCCATTG CTGCAGGGGG GGGGGGGGGG GGGGACTTCC ATTGTTCATT CCACGGACAA 28560
AAACAGAGAA AGGAAACGAC AGAGGCCAAA AAGCCTCGCT TTCAGCACCT GTCGTTTCCT 28 620
TfICTTTTCAG AGGGTATTTT AAATAAAAAC ATTAAGTTAT GACGAAGAAG AACGGAAACG 28 680
CCTTAAACCG GAAAATTTTC ATAAATAGCG AAAACCCGCG AGGTCGCCGC CCCGTAAGCC 28740
GCCCCGTAAC CTGTCGGATC ACCGGAAAGG ACCCGTAAAG TGATAATGAT TATCATCTAC 28800
ATATCACAAC GTGCGTGGAG GCCATCAAAC CACGTCAAAT AATCAATTAT GACGCAGGTA 28860TCGTATTAAT TGATCTGCAT CAACTTAACG TAAAAACAAC TTCAGACAAT ACAAATCAGC 28920
GACACTGAAT ACGGGGCAAC CTCATGTCCC CCCCCCCCCC CCCCCTGCAG GCATCGTGGT 28980
GTCACGCTCG TCGTTTGGTA TGGCTTCATT CAGCTCCGGT TCCCAACGAT CAAGGCGAGT 29040
TACATGATCC CCCATGTTGT GCAAAAAAGC GGTTAGCTCC TTCGGTCCTC CGATCGTTGT 2 9100
CAGAAGTAAG TTGGCCGCAG TGTTATCACT CATGGTTATG GCAGCACTGC ATAATTCTCT 29160
TACTGTCATG CCATCCGTAA GATGCTTTTC TGTGACTGGT GAGTACTCAA CCAAGTCATT 29220
CTGAGAATAG TGTATGCGGC GACCGAGTTG CTCTTGCCCG GCGTCAACAC GGGATAATAC 29280
CGCGCCACAT AGCAGAACTT TAAAAGTGCT CATCATTGGA AAACGTTCTT CGGGGCGAAA 2 9340
ACTCTCAAGG ATCTTACCGC TGTTGAGATC CAGTTCGATG TAACCCACTC GTGCACCCAA 29400
CTGATCTTCA GCATCTTTTA CTTTCACCAG CGTTTCTGGG TGAGCAAAAA CAGGAAGGCA 294 60
AAATGCCGCA AAAAAGGGAA TAAGGGCGAC ACGGAAATGT TGAATACTCA TACTCTTCCT 29520
TTTTCAATAT TATTGAAGCA TTTATCAGGG TTATTGTCTC ATGAGCGGAT ACATATTTGA 29580
ATGTATTTAG AAAAATAAAC AAATAGGGGT TCCGCGCACA TTTCCCCGAA AAGTGCCACC 2964 0
TGACGTCTAA GAAACCATTA TTATCATGAC ATTAACCTAT AAAAATAGGC GTATCACGAG 29700
GCCCTTTCGT CTTCAAGAAT TCGGAGCTTT TGCCATTCTC ACCGGATTCA GTCGTCACTC 29760
ATGGTGATTT CTCACTTGAT AACCTTATTT TTGACGAGGG GAAATTAATA GGTTGTATTG 2 9820
ATGTTGGACG AGTCGGAATC GCAGACCGAT ACCAGGATCT TGCCATCCTA TGGAACTGCC 29880
TCGGTGAGTT TTCTCCTTCA TTACAGAAAC GGCTTTTTCA AAAATATGGT ATTGATAATC 29940
CTGATATGAA TAAATTGCAG TTTCATTTGA TGCTCGATGA GTTTTTCTAA TCAGAATTGG 30000
TTAATTGGTT GTAACACTGG CAGAGCATTA CGCTGACTTG ACGGGACGGC GGCTTTGTTG 30060
AATAAATCGA ACTTTTGCTG AGTTGAAGGA TCAGATCACG CATCTTCCCG ACAACGCAGA 30120
CCGTTCCGTG GCAAAGCAAA AGTTCAAAAT CACCAACTGG TCCACCTACA ACAAAGCTCT 30180
CATCAACCGT GGCTCCCTCA CTTTCTGGCT GGATGATGGG GCGATTCAGG CCTGGTATGA 3024 0
GTCAGCAACA CCTTCTTCAC GAGGCAGACC TCAGCGCCAG AAGGCCGCCA GAGAGGCCGA 30300
GCGCGGCCGT GAGGCTTGGA CGCTAGGGCA GGGCATGAAA AAGCCCGTAG CGGGCTGCTA 30360
CGGGCGTCTG ACGCGGTGGA AAGGGGGAGG GGATGTTGTC TACATGGCTC TGCTGTAGTG 304 20
AGTGGGTTGC GCTCCGGCAG CGGTCCTGAT CAATCGTCAC CCTTTCTCGG TCCTTCAACG 304 80
TTCCTGACAA CGAGCCTCCT TTTCGCCAAT CCATCGACAA TCACCGCGAG TCCCTGCTCG 3054 0
AACGCTGCGT CCGGACCGGC TTCGTCGAAG GCGTCTATCG CGGCCCGCAA CAGCGGCGAG 30600
AGCGGAGCCT GTTCAACGGT GCCGCCGCGC TCGCCGGCAT CGCTGTCGCC GGCCTGCTCC 30660
TCAAGCACGG CCCCAACAGT GAAGTAGCTG ATTGTCATCA GCGCATTGAC GGCGTCCCCG 30720
GCCGAAAAAC CCGCCTCGCA GAGGAAGCGA AGCTGCGCGT CGGCCGTTTC CATCTGCGGT 30780
GCGCCCGGTC GCGTGCCGGC ATGGATGCGC GCGCCATCGC GGTAGGCGAG CAGCGCCTGC 3084 0
CTGAAGCTGC GGGCATTCCC GATCAGAAAT GAGCGCCAGT CGTCGTCGGC TCTCGGCACC 30900
GAATGCGTAT GATTCTCCGC CAGCATGGCT TCGGCCAGTG CGTCGAGCAG CGCCCGCTTG 30960
TTCCTGAAGT GCCAGTAAAG CGCCGGCTGC TGAACCCCCA ACCGTTCCGC CAGTTTGCGT 31020
GTCGTCAGAC CGTCTACGCC GACCTCGTTC AACAGGTCCA GGGCGGCACG GATCACTGTA 31080
TTCGGCTGCA ACTTTGTCAT GCTTGACACT TTATCACTGA TAAACATAAT ATGTCCACCA 3114 0
ACTTATCAGT GATAAAGAAT CCGCGCGTTC AATCGGACCA GCGGAGGCTG GTCCGGAGGC 31200
CAGACGTGAA ACCCAACATA CCCCTGATCG TAATTCTGAG CACTGTCGCG CTCGACGCTG 31260
TCGGCATCGG CCTGATTATG CCGGTGCTGC CGGGCCTCCT GCGCGATCTG GTTCACTCGA 31320
ACGACGTCAC CGCCCACTAT GGCATTCTGC TGGCGCTGTA TGCGTTGGTG CAATTTGCCT 31380
GCGCACCTGT GCTGGGCGCG CTGTCGGATC GTTTCGGGCG GCGGCCAATC TTGCTCGTCT 314 40
CGCTGGCCGG CGCCACTGTC GACTACGCCA TCATGGCGAC AGCGCCTTTC CTTTGGGTTC 31500
TCTATATCGG GCGGATCGTG GCCGGCATCA CCGGGGCGAC TGGGGCGGTA GCCGGCGCTT 31560
ATATTGCCGA TATCACTGAT GGCGATGAGC GCGCGCGGCA CTTCGGCTTC ATGAGCGCCT 31620
GTTTCGGGTT CGGGATGGTC GCGGGACCTG TGCTCGGTGG GCTGATGGGC GGTTTCTCCC 31680
CCCACGCTCC GTTCTTCGCC GCGGCAGCCT TGAACGGCCT CAATTTCCTG ACGGGCTGTT 31740
TCCTTTTGCC GGAGTCGCAC AAAGGCGAAC GCCGGCCGTT ACGCCGGGAG GCTCTCAACC 31800
CGCTCGCTTC GTTCCGGTGG GCCCGGGGCA TGACCGTCGT CGCCGCCCTG ATGGCGGTCT 318 60
TCTTCATCAT GCAACTTGTC GGACAGGTGC CGGCCGCGCT TTGGGTCATT TTCGGCGAGG 31920
ATCGCTTTCA CTGGGACGCG ACCACGATCG GCATTTCGCT TGCCGCATTT GGCATTCTGC 31980
ATTCACTCGC CCAGGCAATG ATCACCGGCC CTGTAGCCGC CCGGCTCGGC GAAAGGCGGG 32040
CACTCATGCT CGGAATGATT GCCGACGGCA CAGGCTACAT CCTGCTTGCC TTCGCGACAC 32100
GGGGATGGAT GGCGTTCCCG ATCATGGTCC TGCTTGCTTC GGGTGGCATC GGAATGCCGG 32160
CGCTGCAAGC AATGTTGTCC AGGCAGGTGG ATGAGGAACG TCAGGGGCAG CTGCAAGGCT 32220
CACTGGCGGC GCTCACCAGC CTGACCTCGA TCGTCGGACC CCTCCTCTTC ACGGCGATCT 32280
ATGCGGCTTC TATAACAACG TGGAACGGGT GGGCATGGAT TGCAGGCGCT GCCCTCTACT 3234 0
TGCTCTGCCT GCCGGCGCTG CGTCGCGGGC TTTGGAGCGG CGCAGGGCAA CGAGCCGATC 32400gctgatcgtg gaaacgatag gcctatgccaacgcgcccta ggagtgcggt tggaacgttggacgccgatg atttgaagcg cactcagcgtggcggtcccc gggctgagaa agcccagtaacccccggaac caaaggaagt aggttaaaccgagaacattg gttcctgtag gcatcgggatgagcagaagt cctccggccg ccagttgccattgccacttg cgggtcagca cggttccgaatgcgacgccg acaggatcta gcgctgcgttagttccgcaa atagccccca ggaccgccatagagatgaac acgaccatca gcggctgcaccaggcggtag accgaaataa acaacaagctgatgaagatg cgcatccacc agattcccgttaaacccgcc ggcaacgccc gcagcagcatctccacgaaa acgccggaca gatgcgccttgaagaccgac agcccaatga tctcgccgtccaaccgttca gcgaacgcct ccatgggcttcatctctgga gctttcttca gggccgacaacgctccaagc cgtcgaatct gagccttaatcggcagttcg tagagcgcgc cgtgcgtcccgcagtgcccg cttgttcctg aaatgccagtactgacccca caaggcccta gcgtttgcaatccaccaggc cgctgcctcg caactcttcgttcacgcggg tggaatccga tccgcacatgggctcccggt gcgagctgaa atagtcgaactacttctccc atatgaattt cgtgtagtggtcgatcagga cctggcaacg ggacgttttcagcagcgaca ccgattccag gtgcccaacgtgtaggcgcg acaggcattc ctcggccttcaggtcctggc aaagctcgta gaacgtgaaggcgtactcca acacctgctg ccacaccagtgtgtaggtga tcttcacgtc cttgttgacgcgcgggattt tcttgttgcg cgtggtgaacgctcgcatcg tgtccggcca cggcgcaatatgctgcttcg tgtgtttcag caacgcggcctcctcgccgg cggtttttcg cttcttggtcgacttcgcca aacctgccgc ctcctgttcgggcgcgggca gggcaggggg agccagttgctgctggacca tcgagccgac ggactggaagcttgcgatgg tttcggcatc ctcggcggaagccttccggt caaacgtccg attcattcacggggcaatgt gcccttattc ctgatttgacaccttatcgg caatgaagtc ggtcccgtagttccgaatct tgccctgcac gaataccagctcggcctgag agccaaaaca cttgatgcgggcatcgttgc gccactcttc attaaccgctttgccatgac gtacctcggt gtcacgggtactcatatcga aagtctcctt gagaaaggaggtcaagaact ttagcggcta aaattttgcgccgctgtgta caaccagata tttttcaccatgacgaaaca tgagctgtcg gagagggcagccaacggtaa ggccaacccc tcgttgaaggctcccctacc tcttctcctg gagtccaccgcgggtcatcc tttcaagagc agcgtgccgccgtcacataa ggcgtttatc gtaaagaaatgaaggctctg acgccaaggg ttagggcttgcttctctgcg ggccgtcggc tcgcgcatcagaatggcatc gggcgggtgc gctttgacagggttcgatta gctgtttgtc ttgcaggcta
tgcgggtcaa ggcgacttcc ggcaagctat 324 60
gcccagccag atactcccga tcacgagcag 32520
ctgatccaag aacaaccatc ctagcaacac 32580
ggaaacaact gtaggttcga gtcgcgagat 3264 0
cgctccgatc aggccgagcc acgccaggcc 32700
tggcggatca aacactaaag ctactggaac 32760
ggcggtaaag gtgagcagag gcacgggagg 32820
cgccatggaa accgcccccg ccaggcccgc 32880
tggtgtcaac accaacagcg ccacgcccgc 3294 0
caatcgtatc gggctaccta gcagagcggc 33000
agcgcctacc gtcgccgcga ccccgcccgg 33060
ccagaatagc gaaatattaa gtgcgccgag 33120
tggaatctgt cggacgatca tcacgagcaa 33180
accggcgacc cctcggcctc gctgttcggg 33240
gtgagcgtcc ttggggccgt cctcctgttt 33300
gatgtaggcg ccgaatgcca cggcatctcg 33360
tttctcctcg tgctcgtaaa cggacccgaa 334 20
tcggatctcg cggaaatcct gcacgtcggc 334 80
cacaattgtc aattttaatc ctctgtttat 33540
gagcgatact gagcgaagca agtgcgtcga 33600
aaagcgctgg ctgctgaacc cccagccgga 33660
tgcaccaggt catcattgac ccaggcgtgt 337 20
caggcttcgc cgacctgctc gcgccacttc 33780
aggcggaagg tttccagctt gagcgggtac 3384 0
atccgtcggg ccgtcggcga cagcttgcgg 33900
tcgccagcaa acagcacgac gatttcctcg 33960
ttgccacggt ccaggacgcg gaagcggtgc 34 020
cggtcggacg tgaagcccat cgccgtcgcc 34 080
gtgtaatacc ggccattgat cgaccagccc 34140
gtgatcggct cgccgatagg ggtgcgcttc 34200
tcgtcatcgt cggcccgcag ctcgacgccg 34 260
tggaaaatga ccttgttttg cagcgcctcg 34 320
agggcagagc gggccgtgtc gtttggcatc 34 380
tcgaacaagg aaagctgcat ttccttgatc 34 4 40
tgcttggcct cgctgacctg ttttgccagg 34 500
gtcatagttc ctcgcgtgtc gatggtcatc 34560
agacgacgcg aacgctccac ggcggccgat 34 620
acgctgtcgc gctcgatctt ggccgtagct 34 680
gtttcgcggg gcgcacgcat gacggtgcgg 34740
aaccccgcgt cgatcagttc ttgcctgtat 34 800
cctccttgcg ggattgcccc gactcacgcc 34 8 60
ccgcctggtg ccttggtgtc cagataatcc 34 920
accgtctggc cgtccttctc gtacttggta 34 980
gaccccttgc ccaaatactt gccgtgggcc 35040
aagaagtcgg tgcgctcctg cttgtcgccg 35100
atatcgaaaa ttgcttgcgg cttgttagaa 35160
agattaccga taaactggaa ctgattatgg 35220
actctagttt agctaaacat tggttccgct 35280
ggccgcgacc aaaggtgcga ggggcggctt 35340
acatccttcg tctgctcgat gagcggggca 354 00gggtttcaat ttcgttttta tcagacttaa 354 60tgatggaggc cattgccgac gccctggaaa 35520
accttgaccg cgaggcactc gcggagattg 35580
ccggatacga acgcatcagt gtggttttgc 35640
ggggcgacga cacccgaaaa aagctgcgtg 35700
cacttccttc tttagccgct aaaacggccc 357 60
tatcgacatc ctcaacggaa gccgtgccgc 35820
ttgttttcta tcagaacccc tacgtcgtgc 35880
aacactttcg gtatatcgtt tgcctgtgcg 35940ATAATGTTGC TAATGATTTG TTGCGTAGGG GTTACTGAAA AGTGAGCGGG AAAGAAGAGT 36000
TTCAGACCAT CAAGGAGCGG GCCAAGCGCA AGCTGGAACG CGACATGGGT GCGGACCTGT 36060
TGGCCGCGCT CAACGACCCG AAAACCGTTG AAGTCATGCT CAACGCGGAC GGCAAGGTGT 36120
GGCACGAACG CCTTGGCGAG CCGATGCGGT ACATCTGCGA CATGCGGCCC AGCCAGTCGC 36180
AGGCGATTAT AGAAACGGTG GCCGGATTCC ACGGCAAAGA GGTCACGCGG CATTCGCCCA 36240
TCCTGGAAGG CGAGTTCCCC TTGGATGGCA GCCGCTTTGC CGGCCAATTG CCGCCGGTCG 36300
TGGCCGCGCC AACCTTTGCG ATCCGCAAGC GCGCGGTCGC CATCTTCACG CTGGAACAGT 36360
ACGTCGAGGC GGGCATCATG ACCCGCGAGC AATACGAGGT CATTAAAAGC GCCGTCGCGG 364 20
CGCATCGAAA CATCCTCGTC ATTGGCGGTA CTGGCTCGGG CAAGACCACG CTCGTCAACG 36480
CGATCATCAA TGAAATGGTC GCCTTCAACC CGTCTGAGCG CGTCGTCATC ATCGAGGACA 36540
CCGGCGAAAT CCAGTGCGCC GCAGAGAACG CCGTCCAATA CCACACCAGC ATCGACGTCT 36600
CGATGACGCT GCTGCTCAAG ACAACGCTGC GTATGCGCCC CGACCGCATC CTGGTCGGTG 36660
AGGTACGTGG CCCCGAAGCC CTTGATCTGT TGATGGCCTG GAACACCGGG CATGAAGGAG 36720
GTGCCGCCAC CCTGCACGCA AACAACCCCA AAGCGGGCCT GAGCCGGCTC GCCATGCTTA 36780
TCAGCATGCA CCCGGATTCA CCGAAACCCA TTGAGCCGCT GATTGGCGAG GCGGTTCATG 36840
TGGTCGTCCA TATCGCCAGG ACCCCTAGCG GCCGTCGAGT GCAAGAAATT CTCGAAGTTC 36900
TTGGTTACGA GAACGGCCAG TACATCACCA AAACCCTGTA AGGAGTATTT CCAATGACAA 36960
CGGCTGTTCC GTTCCGTCTG ACCATGAATC GCGGCATTTT GTTCTACCTT GCCGTGTTCT 37 020
TCGTTCTCGC TCTCGCGTTA TCCGCGCATC CGGCGATGGC CTCGGAAGGC ACCGGCGGCA 37080
GCTTGCCATA TGAGAGCTGG CTGACGAACC TGCGCAACTC CGTAACCGGC CCGGTGGCCT 3714 0
TCGCGCTGTC CATCATCGGC ATCGTCGTCG CCGGCGGCGT GCTGATCTTC GGCGGCGAAC 37200
TCAACGCCTT CTTCCGAACC CTGATCTTCC TGGTTCTGGT GATGGCGCTG CTGGTCGGCG 37260
CGCAGAACGT GATGAGCACC TTCTTCGGTC GTGGTGCCGA AATCGCGGCC CTCGGCAACG 37320
GGGCGCTGCA CCAGGTGCAA GTCGCGGCGG CGGATGCCGT GCGTGCGGTA GCGGCTGGAC 37 380
GGCTCGCCTA ATCATGGCTC TGCGCACGAT CCCCATCCGT CGCGCAGGCA ACCGAGAAAA 374 40
CCTGTTCATG GGTGGTGATC GTGAACTGGT GATGTTCTCG GGCCTGATGG CGTTTGCGCT 37500
GATTTTCAGC GCCCAAGAGC TGCGGGCCAC CGTGGTCGGT CTGATCCTGT GGTTCGGGGC 37 560
GCTCTATGCG TTCCGAATCA TGGCGAAGGC CGATCCGAAG ATGCGGTTCG TGTACCTGCG 37 620
TCACCGCCGG TACAAGCCGT ATTACCCGGC CCGCTCGACC CCGTTCCGCG AGAACACCAA 37680
TAGCCAAGGG AAGCAATACC GATGATCCAA GCAATTGCGA TTGCAATCGC GGGCCTCGGC 3774 0
GCGCTTCTGT TGTTCATCCT CTTTGCCCGC ATCCGCGCGG TCGATGCCGA ACTGAAACTG 37800
AAAAAGCATC GTTCCAAGGA CGCCGGCCTG GCCGATCTGC TCAACTACGC CGCTGTCGTC 37 8 60
GATGACGGCG TAATCGTGGG CAAGAACGGC AGCTTTATGG CTGCCTGGCT GTACAAGGGC 37920
GATGACAACG CAAGCAGCAC CGACCAGCAG CGCGAAGTAG TGTCCGCCCG CATCAACCAG 37 980
GCCCTCGCGG GCCTGGGAAG TGGGTGGATG ATCCATGTGG ACGCCGTGCG GCGTCCTGCT 38040
CCGAACTACG CGGAGCGGGG CCTGTCGGCG TTCCCTGACC GTCTGACGGC AGCGATTGAA 38100
GAAGAGCGCT CGGTCTTGCC TTGCTCGTCG GTGATGTACT TCACCAGCTC CGCGAAGTCG 38160
CTCTTCTTGA TGGAGCGCAT GGGGACGTGC TTGGCAATCA CGCGCACCCC CCGGCCGTTT 38220
TAGCGGCTAA AAAAGTCATG GCTCTGCCCT CGGGCGGACC ACGCCCATCA TGACCTTGCC 38280
AAGCTCGTCC TGCTTCTCTT CGATCTTCGC CAGCAGGGCG AGGATCGTGG CATCACCGAA 3834 0
CCGCGCCGTG CGCGGGTCGT CGGTGAGCCA GAGTTTCAGC AGGCCGCCCA GGCGGCCCAG 38400
GTCGCCATTG ATGCGGGCCA GCTCGCGGAC GTGCTCATAG TCCACGACGC CCGTGATTTT 384 60
GTAGCCCTGG CCGACGGCCA GCAGGTAGGC CGACAGGCTC ATGCCGGCCG CCGCCGCCTT 38520
TTCCTCAATC GCTCTTCGTT CGTCTGGAAG GCAGTACACC TTGATAGGTG GGCTGCCCTT 38580
CCTGGTTGGC TTGGTTTCAT CAGCCATCCG CTTGCCCTCA TCTGTTACGC CGGCGGTAGC 38 64 0
CGGCCAGCCT CGCAGAGCAG GATTCCCGTT GAGCACCGCC AGGTGCGAAT AAGGGACAGT 38700
GAAGAAGGAA CACCCGCTCG CGGGTGGGCC TACTTCACCT ATCCTGCCCG GCTGACGCCG 387 60
TTGGATACAC CAAGGAAAGT CTACACGAAC CCTTTGGCAA AATCCTGTAT ATCGTGCGAA 38820
AAAGGATGGA TATACCGAAA AAATCGCTAT AATGACCCCG AAGCAGGGTT ATGCAGCGGA 38880
AAAGCGCTGC TTCCCTGCTG TTTTGTGGAA TATCTACCGA CTGGAAACAG GCAAATGCAG 38940
GAAATTACTG AACTGAGGGG ACAGGCGAGA GACGATGCCA AAGAGCTACA CCGACGAGCT 39000
GGCCGAGTGG GTTGAATCCC GCGCGGCCAA GAAGCGCCGG CGTGATGAGG CTGCGGTTGC 39060
GTTCCTGGCG GTGAGGGCGG ATGTCGAGGC GGCGTTAGCG TCCGGCTATG CGCTCGTCAC 39120
CATTTGGGAG CACATGCGGG AAACGGGGAA GGTCAAGTTC TCCTACGAGA CGTTCCGCTC 39180
GCACGCCAGG CGGCACATCA AGGCCAAGCC CGCCGATGTG CCCGCACCGC AGGCCAAGGC 39240
TGCGGAACCC GCGCCGGCAC CCAAGACGCC GGAGCCACGG CGGCCGAAGC AGGGGGGCAA 39300
GGCTGAAAAG CCGGCCCCCG CTGCGGCCCC GACCGGCTTC ACCTTCAACC CAACACCGGA 39360
CAAAAAGGAT CTACTGTAAT GGCGAAAATT CACATGGTTT TGCAGGGCAA GGGCGGGGTC 39420
GGCAAGTCGG CCATCGCCGC GATCATTGCG CAGTACAAGA TGGACAAGGG GCAGACACCC 39480TTGTGCATCG ACACCGACCC GGTGAACGCG ACGTTCGAGG GCTACAAGGC CCTGAACGTC 39540
CGCCGGCTGA ACATCATGGC CGGCGACGAA ATTAACTCGC GCAACTTCGA CACCCTGGTC 39600
GAGCTGATTG CGCCGACCAA GGATGACGTG GTGATCGACA ACGGTGCCAG CTCGTTCGTG 39660
CCTCTGTCGC ATTACCTCAT CAGCAACCAG GTGCCGGCTC TGCTGCAAGA AATGGGGCAT 39720
GAGCTGGTCA TCCATACCGT CGTCACCGGC GGCCAGGCTC TCCTGGACAC GGTGAGCGGC 397 80
TTCGCCCAGC TCGCCAGCCA GTTCCCGGCC GAAGCGCTTT TCGTGGTCTG GCTGAACCCG 39840
TATTGGGGGC CTATCGAGCA TGAGGGCAAG AGCTTTGAGC AGATGAAGGC GTACACGGCC 39900
AACAAGGCCC GCGTGTCGTC CATCATCCAG ATTCCGGCCC TCAAGGAAGA AACCTACGGC 39960
CGCGATTTCA GCGACATGCT GCAAGAGCGG CTGACGTTCG ACCAGGCGCT GGCCGATGAA 4 0020
TCGCTCACGA TCATGACGCG GCAACGCCTC AAGATCGTGC GGCGCGGCCT GTTTGAACAG 4 0080
CTCGACGCGG CGGCCGTGCT ATGAGCGACC AGATTGAAGA GCTGATCCGG GAGATTGCGG 40140
CCAAGCACGG CATCGCCGTC GGCCGCGACG ACCCGGTGCT GATCCTGCAT ACCATCAACG 40200
CCCGGCTCAT GGCCGACAGT GCGGCCAAGC AAGAGGAAAT CCTTGCCGCG TTCAAGGAAG 4 0260
AGCTGGAAGG GATCGCCCAT CGTTGGGGCG AGGACGCCAA GGCCAAAGCG GAGCGGATGC 4 0320
TGAACGCGGC CCTGGCGGCC AGCAAGGACG CAATGGCGAA GGTAATGAAG GACAGCGCCG 4 0380
CGCAGGCGGC CGAAGCGATC CGCAGGGAAA TCGACGACGG CCTTGGCCGC CAGCTCGCGG 40440
CCAAGGTCGC GGACGCGCGG CGCGTGGCGA TGATGAACAT GATCGCCGGC GGCATGGTGT 4 0500
TGTTCGCGGC CGCCCTGGTG GTGTGGGCCT CGTTATGAAT CGCAGAGGCG CAGATGAAAA 40560
AGCCCGGCGT TGCCGGGCTT TGTTTTTGCG TTAGCTGGGC TTGTTTGACA GGCCCAAGCT 4 0620
CTGACTGCGC CCGCGCTCGC GCTCCTGGGC CTGTTTCTTC TCCTGCTCCT GCTTGCGCAT 40680
CAGGGCCTGG TGCCGTCGGG CTGCTTCACG CATCGAATCC CAGTCGCCGG CCAGCTCGGG 4 0740
ATGCTCCGCG CGCATCTTGC GCGTCGCCAG TTCCTCGATC TTGGGCGCGT GAATGCCCAT 40800
GCCTTCCTTG ATTTCGCGCA CCATGTCCAG CCGCGTGTGC AGGGTCTGCA AGCGGGCTTG 4 08 60
CTGTTGGGCC TGCTGCTGCT GCCAGGCGGC CTTTGTACGC GGCAGGGACA GCAAGCCGGG 40920
GGCATTGGAC TGTAGCTGCT GCAAACGCGC CTGCTGACGG TCTACGAGCT GTTCTAGGCG 40980
GTCCTCGATG CGCTCCACCT GGTCATGCTT TGCCTGCACG TAGAGCGCAA GGGTCTGCTG 4104 0
GTAGGTCTGC TCGATGGGCG CGGATTCTAA GAGGGCCTGC TGTTCCGTCT CGGCCTCCTG 41100
GGCCGCCTGT AGCAAATCCT CGCCGCTGTT GCCGCTGGAC TGCTTTACTG CCGGGGACTG 41160
CTGTTGCCCT GCTCGCGCCG TCGTCGCAGT TCGGCTTGCC CCCACTCGAT TGACTGCTTC 41220
ATTTCGAGCC GCAGCGATGC GATCTCGGAT TGCGTCAACG GACGGGGCAG CGCGGAGGTG 41280
TCCGGCTTCT CCTTGGGTGA GTCGGTCGAT GCCATAGCCA AAGGTTTCCT TCCAAAATGC 41340
GTCCATTGCT GGACCGTGTT TCTCATTGAT GCCCGCAAGC ATCTTCGGCT TGACCGCCAG 414 00
GTCAAGCGCG CCTTCATGGG CGGTCATGAC GGACGCCGCC ATGACCTTGC CGCCGTTGTT 414 60
CTCGATGTAG CCGCGTAATG AGGCAATGGT GCCGCCCATC GTCAGCGTGT CATCGACAAC 41520
GATGTACTTC TGGCCGGGGA TCACCTCCCC CTCGAAAGTC GGGTTGAACG CCAGGCGATG 41580
ATCTGAACCG GCTCCGGTTC GGGCGACCTT CTCCCGCTGC ACAATGTCCG TTTCGACCTC 41640
AAGGCCAAGG CGGTCGGCCA GAACGACCGC CATCATGGCC GGAATCTTGT TGTTCCCCGC 417 00
CGCCTCGACG GCGAGGACTG GAACGATGCG GGGCTTGTCG TCGCCGATCA GCGTCTTGAG 417 60
CTGGGCAACA GTGTCGTCCG AAATCAGGCG CTCGACCAAA TTAAGCGCCG CTTCCGCGTC 41820
GCCCTGCTTC GCAGCCTGGT ATTCAGGCTC GTTGGTCAAA GAACCAAGGT CGCCGTTGCG 41880
AACCACCTTC GGGAAGTCTC CCCACGGTGC GCGCTCGGCT CTGCTGTAGC TGCTCAAGAC 41940
GCCTCCCTTT TTAGCCGCTA AAACTCTAAC GAGTGCGCCC GCGACTCAAC TTGACGCTTT 4 2000
CGGCACTTAC CTGTGCCTTG CCACTTGCGT CATAGGTGAT GCTTTTCGCA CTCCCGATTT 4 2060
CAGGTACTTT ATCGAAATCT GACCGGGCGT GCATTACAAA GTTCTTCCCC ACCTGTTGGT 42120
AAATGCTGCC GCTATCTGCG TGGACGATGC TGCCGTCGTG GCGCTGCGAC TTATCGGCCT 4 2180
TTTGGGCCAT ATAGATGTTG TAAATGCCAG GTTTCAGGGC CCCGGCTTTA TCTACCTTCT 4 2240
GGTTCGTCCA TGCGCCTTGG TTCTCGGTCT GGACAATTCT TTGCCCATTC ATGACCAGGA 42300
GGCGGTGTTT CATTGGGTGA CTCCTGACGG TTGCCTCTGG TGTTAAACGT GTCCTGGTCG 4 2360
CTTGCCGGCT AAAAAAAAGC CGACCTCGGC AGTTCGAGGC CGGCTTTCCC TAGAGCCGGG 42420
CGCGTCAAGG TTGTTCCATC TATTTTAGTG AACTGCGTTC GATTTATCAG TTACTTTCCT 42480
CCCGCTTTGT GTTTCCTCCC ACTCGTTTCC GCGTCTAGCC GACCCCTCAA CATAGCGGCC 4 2540
TCTTCTTGGG CTGCCTTTGC CTCTTGCCGC GCTTCGTCAC GCTCGGCTTG CACCGTCGTA 42600
AAGCGCTCGG CCTGCCTGGC CGCCTCTTGC GCCGCCAACT TCCTTTGCTC CTGGTGGGCC 42660
TCGGCGTCGG CCTGCGCCTT CGCTTTCACC GCTGCCAACT CCGTGCGCAA ACTCTCCGCT 42720
TCGCGCCTGG TGGCGTCGCG CTCGCCGCGA AGCGCCTGCA TTTCCTGGTT GGCCGCGTCC 42780
AGGGTCTTGC GGCTCTCTTC TTTGAATGCG CGGGCGTCCT GGTGAGCGTA GTCCAGCTCG 4 2840
GCGCGCAGCT CCTGCGCTCG ACGCTCCACC TCGTCGGCCC GCTGCGTCGC CAGCGCGGCC 42900
CGCTGCTCGG CTCCTGCCAG GGCGGTGCGT GCTTCGGCCA GGGCTTGCCG CTGGCGTGCG 4 2960
GCCAGCTCGG CCGCCTCGGC GGCCTGCTGC TCTAGCAATG TAACGCGCGC CTGGGCTTCT 43020TCCAGCTCGC GGGCCTGCGC CTCGAAGGCG TCGGCCAGCT CCCCGCGCAC GGCTTCCAAC 43080
TCGTTGCGCT CACGATCCCA GCCGGCTTGC GCTGCCTGCA ACGATTCATT GGCAAGGGCC 43140
TGGGCGGCTT GCCAGAGGGC GGCCACGGCC TGGTTGCCGG CCTGCTGCAC CGCGTCCGGC 4 3200
ACCTGGACTG CCAGCGGGGC GGCCTGCGCC GTGCGCTGGC GTCGCCATTC GCGCATGCCG 4 3260
GCGCTGGCGT CGTTCATGTT GACGCGGGCG GCCTTACGCA CTGCATCCAC GGTCGGGAAG 4 3320
TTCTCCCGGT CGCCTTGCTC GAACAGCTCG TCCGCAGCCG CAAAAATGCG GTCGCGCGTC 43380
TCTTTGTTCA GTTCCATGTT GGCTCCGGTA ATTGGTAAGA ATAATAATAC TCTTACCTAC 4 3440
CTTATCAGCG CAAGAGTTTA GCTGAACAGT TCTCGACTTA ACGGCAGGTT TTTTAGCGGC 43500
TGAAGGGCAG GCAAAAAAAG CCCCGCACGG TCGGCGGGGG CAAAGGGTCA GCGGGAAGGG 43560
GATTAGCGGG CGTCGGGCTT CTTCATGCGT CGGGGCCGCG CTTCTTGGGA TGGAGCACGA 4 3620
CGAAGCGCGC ACGCGCATCG TCCTCGGCCC TATCGGCCCG CGTCGCGGTC AGGAACTTGT 4 3680
CGCGCGCTAG GTCCTCCCTG GTGGGCACCA GGGGCATGAA CTCGGCCTGC TCGATGTAGG 4 3740
TCCACTCCAT GACCGCATCG CAGTCGAGGC CGCGTTCCTT CACCGTCTCT TGCAGGTCGC 4 3800
GGTACGCCCG CTCGTTGAGC GGCTGGTAAC GGGCCAATTG GTCGTAAATG GCTGTCGGCC 4 3860
ATGAGCGGCC TTTCCTGTTG AGCCAGCAGC CGACGACGAA GCCGGCAATG CAGGCCCCTG 4 3920
GCACAACCAG GCCGACGCCG GGGGCAGGGG ATGGCAGCAG CTCGCCAACC AGGAACCCCG 4 3980
CCGCGATGAT GCCGATGCCG GTCAACCAGC CCTTGAAACT ATCCGGCCCC GAAACACCCC 4 4 040
TGCGCATTGC CTGGATGCTG CGCCGGATAG CTTGCAACAT CAGGAGCCGT TTCTTTTGTT 4 4100
CGTCAGTCAT GGTCCGCCCT CACCAGTTGT TCGTATCGGT GTCGGACGAA CTGAAATCGC 4 4160
AAGAGCTGCC GGTATCGGTC CAGCCGCTGT CCGTGTCGCT GCTGCCGAAG CACGGCGAGG 44220
GGTCCGCGAA CGCCGCAGAC GGCGTATCCG GCCGCAGCGC ATCGCCCAGC ATGGCCCCGG 4 4 280
TCAGCGAGCC GCCGGCCAGG TAGCCCAGCA TGGTGCTGTT GGTCGCCCCG GCCACCAGGG 4 4 340
CCGACGTGAC GAAATCGCCG TCATTCCCTC TGGATTGTTC GCTGCTCGGC GGGGCAGTGC 4 4 400
GCCGCGCCGG CGGCGTCGTG GATGGCTCGG GTTGGCTGGC CTGCGACGGC CGGCGAAAGG 4 4460
TGCGCAGCAG CTCGTTATCG ACCGGCTGCG GCGTCGGGGC CGCCGCCTTG CGCTGCGGTC 4 4 520
GGTGTTCCTT CTTCGGCTCG CGCAGCTTGA ACAGCATGAT CGCGGAAACC AGCAGCAACG 4 4580
CCGCGCCTAC GCCTCCCGCG ATGTAGAACA GCATCGGATT CATTCTTCGG TCCTCCTTGT 4 4 640
AGCGGAACCG TTGTCTGTGC GGCGCGGGTG GCCCGCGCCG CTGTCTTTGG GGATCAGCCC 44700
TCGATGAGCG CGACCAGTTT CACGTCGGCA AGGTTCGCCT CGAACTCCTG GCCGTCGTCC 4 4760
TCGTACTTCA ACCAGGCATA GCCTTCCGCC GGCGGCCGAC GGTTGAGGAT AAGGCGGGCA 4 4 820
GGGCGCTCGT CGTGCTCGAC CTGGACGATG GCCTTTTTCA GCTTGTCCGG GTCCGGCTCC 44880
TTCGCGCCCT TTTCCTTGGC GTCCTTACCG TCCTGGTCGC CGTCCTCGCC GTCCTGGCCG 4 4 940
TCGCCGGCCT CCGCGTCACG CTCGGCATCA GTCTGGCCGT TGAAGGCATC GACGGTGTTG 4 5000
GGATCGCGGC CCTTCTCGTC CAGGAACTCG CGCAGCAGCT TGACCGTGCC GCGCGTGATT 4 5060
TCCTGGGTGT CGTCGTCAAG CCACGCCTCG ACTTCCTCCG GGCGCTTCTT GAAGGCCGTC 45120
ACCAGCTCGT TCACCACGGT CACGTCGCGC ACGCGGCCGG TGTTGAACGC ATCGGCGATC 4 5180
TTCTCCGGCA GGTCCAGCAG CGTGACGTGC TGGGTGATGA ACGCCGGCGA CTTGCCGATT 4 5240
TCCTTGGCGA TATCGCCTTT CTTCTTGCCC TTCGCCAGCT CGCGGCCAAT GAAGTCGGCA 4 5300
ATTTCGCGCG GGGTCAGCTC GTTGCGTTGC AGGTTCTCGA TAACCTGGTC GGCTTCGTTG 45360
TAGTCGTTGT CGATGAACGC CGGGATGGAC TTCTTGCCGG CCCACTTCGA GCCACGGTAG 4 5420
CGGCGGGCGC CGTGATTGAT GATATAGCGG CCCGGCTGCT CCTGGTTCTC GCGCACCGAA 4 5480
ATGGGTGACT TCACCCCGCG CTCTTTGATC GTGGCACCGA TTTCCGCGAT GCTCTCCGGG 4 5540
GAAAAGCCGG GGTTGTCGGC CGTCCGCGGC TGATGCGGAT CTTCGTCGAT CAGGTCCAGG 4 5600
TCCAGCTCGA TAGGGCCGGA ACCGCCCTGA GACGCCGCAG GAGCGTCCAG GAGGCTCGAC 4 5660
AGGTCGCCGA TGCTATCCAA CCCCAGGCCG GACGGCTGCG CCGCGCCTGC GGCTTCCTGA 45720
GCGGCCGCAG CGGTGTTTTT CTTGGTGGTC TTGGCTTGAG CCGCAGTCAT TGGGAAATCT 4 5780
CCATCTTCGT GAACACGTAA TCAGCCAGGG CGCGAACCTC TTTCGATGCC TTGCGCGCGG 4 5840
CCGTTTTCTT GATCTTCCAG ACCGGCACAC CGGATGCGAG GGCATCGGCG ATGCTGCTGC 4 5900
GCAGGCCAAC GGTGGCCGGA ATCATCATCT TGGGGTACGC GGCCAGCAGC TCGGCTTGGT 4 5960
GGCGCGCGTG GCGCGGATTC CGCGCATCGA CCTTGCTGGG CACCATGCCA AGGAATTGCA 4 6020
GCTTGGCGTT CTTCTGGCGC ACGTTCGCAA TGGTCGTGAC CATCTTCTTG ATGCCCTGGA 4 6080
TGCTGTACGC CTCAAGCTCG ATGGGGGACA GCACATAGTC GGCCGCGAAG AGGGCGGCCG 4 6140
CCAGGCCGAC GCCAAGGGTC GGGGCCGTGT CGATCAGGCA CACGTCGAAG CCTTGGTTCG 4 6200
CCAGGGCCTT GATGTTCGCC CCGAACAGCT CGCGGGCGTC GTCCAGCGAC AGCCGTTCGG 4 6260
CGTTCGCCAG TACCGGGTTG GACTCGATGA GGGCGAGGCG CGCGGCCTGG CCGTCGCCGG 4 6320
CTGCGGGTGC GGTTTCGGTC CAGCCGCCGG CAGGGACAGC GCCGAACAGC TTGCTTGCAT 4 6380
GCAGGCCGGT AGCAAAGTCC TTGAGCGTGT AGGACGCATT GCCCTGGGGG TCCAGGTCGA 4 6440
TCACGGCAAC CCGCAAGCCG CGCTCGAAAA AGTCGAAGGC AAGATGCACA AGGGTCGAAG 4 6500
TCTTGCCGAC GCCGCCTTTC TGGTTGGCCG TGACCAAAGT TTTCATCGTT TGGTTTCCTG 4 6560TTTTTTCTTG GCGTCCGCTT CCCACTTCCG GACGATGTAC GCCTGATGTT CCGGCAGAAC 46620
CGCCGTTACC CGCGCGTACC CCTCGGGCAA GTTCTTGTCC TCGAACGCGG CCCACACGCG 46680
ATGCACCGCT TGCGACACTG CGCCCCTGGT CAGTCCCAGC GACGTTGCGA ACGTCGCCTG 46740
TGGCTTCCCA TCGACTAAGA CGCCCCGCGC TATCTCGATG GTCTGCTGCC CCACTTCCAG 46800
CCCCTGGATC GCCTCCTGGA ACTGGCTTTC GGTAAGCCGT TTCTTCATGG ATAACACCCA 46860
TAATTTGCTC CGCGCCTTGG TTGAACATAG CGGTGACAGC CGCCAGCACA TGAGAGAAGT 46920
TTAGCTAAAC ATTTCTCGCA CGTCAACACC TTTAGCCGCT AAAACTCGTC CTTGGCGTAA 46980
CAAAACAAAA GCCCGGAAAC CGGGCTTTCG TCTCTTGCCG CTTATGGCTC TGCACCCGGC 4 7040
TCCATCACCA ACAGGTCGCG CACGCGCTTC ACTCGGTTGC GGATCGACAC TGCCAGCCCA 4 7100
ACAAAGCCGG TTGCCGCCGC CGCCAGGATC GCGCCGATGA TGCCGGCCAC ACCGGCCATC 4 7160
GCCCACCAGG TCGCCGCCTT CCGGTTCCAT TCCTGCTGGT ACTGCTTCGC AATGCTGGAC 4 7220
CTCGGCTCAC CATAGGCTGA CCGCTCGATG GCGTATGCCG CTTCTCCCCT TGGCGTAAAA 4 7 280
CCCAGCGCCG CAGGCGGCAT TGCCATGCTG CCCGCCGCTT TCCCGACCAC GACGCGCGCA 4 7 340
CCAGGCTTGC GGTCCAGACC TTCGGCCACG GCGAGCTGCG CAAGGACATA ATCAGCCGCC 47400
GACTTGGCTC CACGCGCCTC GATCAGCTCT TGCACTCGCG CGAAATCCTT GGCCTCCACG 4 74 60
GCCGCCATGA ATCGCGCACG CGGCGAAGGC TCCGCAGGGC CGGCGTCGTG ATCGCCGCCG 4 7520
AGAATGCCCT TCACCAAGTT CGACGACACG AAAATCATGC TGACGGCTAT CACCATCATG 4 7 580
CAGACGGATC GCACGAACCC GCTGAATTGA ACACGAGCAC GGCACCCGCG ACCACTATGC 4 7 640
CAAGAATGCC CAAGGTAAAA ATTGCCGGCC CCGCCATGAA GTCCGTGAAT GCCCCGACGG 47700
CCGAAGTGAA GGGCAGGCCG CCACCCAGGC CGCCGCCCTC ACTGCCCGGC ACCTGGTCGC 4 77 60
TGAATGTCGA TGCCAGCACC TGCGGCACGT CAATGCTTCC GGGCGTCGCG CTCGGGCTGA 4 7820
TCGCCCATCC CGTTACTGCC CCGATCCCGG CAATGGCAAG GACTGCCAGC GCTGCCATTT 4 7 880
TTGGGGTGAG GCCGTTCGCG GCCGAGGGGC GCAGCCCCTG GGGGGATGGG AGGCCCGCGT 4 7940
TAGCGGGCCG GGAGGGTTCG AGAAGGGGGG GCACCCCCCT TCGGCGTGCG CGGTCACGCG 4 8000
CACAGGGCGC AGCCCTGGTT AAAAACAAGG TTTATAAATA TTGGTTTAAA AGCAGGTTAA 4 8060
AAGACAGGTT AGCGGTGGCC GAAAAACGGG CGGAAACCCT TGCAAATGCT GGATTTTCTG 4 8120
CCTGTGGACA GCCCCTCAAA TGTCAATAGG TGCGCCCCTC ATCTGTCAGC ACTCTGCCCC 4 8180
TCAAGTGTCA AGGATCGCGC CCCTCATCTG TCAGTAGTCG CGCCCCTCAA GTGTCAATAC 4 824 0
CGCAGGGCAC TTATCCCCAG GCTTGTCCAC ATCATCTGTG GGAAACTCGC GTAAAATCAG 4 8300
GCGTTTTCGC CGATTTGCGA GGCTGGCCAG CTCCACGTCG CCGGCCGAAA TCGAGCCTGC 4 8360
CCCTCATCTG TCAACGCCGC GCCGGGTGAG TCGGCCCCTC AAGTGTCAAC GTCCGCCCCT 4 8420
CATCTGTCAG TGAGGGCCAA GTTTTCCGCG AGGTATCCAC AACGCCGGCG GCCGCGGTGT 4 84 80
CTCGCACACG GCTTCGACGG CGTTTCTGGC GCGTTTGCAG GGCCATAGAC GGCCGCCAGC 4 8540
CCAGCGGCGA GGGCAACCAG CCCGGTGAGC GTCGGAAAGG CGCTGGAAGC CCCGTAGCGA 4 8 600
CGCGGAGAGG GGCGAGACAA GCCAAGGGCG CAGGCTCGAT GCGCAGCACG ACATAGCCGG 4 8 660
TTCTCGCAAG GACGAGAATT TCCCTGCGGT GCCCCTCAAG TGTCAATGAA AGTTTCCAAC 4 8720
GCGAGCCATT CGCGAGAGCC TTGAGTCCAC GCTAGATGAG AGCTTTGTTG TAGGTGGACC 4 87 80
AGTTGGTGAT TTTGAACTTT TGCTTTGCCA CGGAACGGTC TGCGTTGTCG GGAAGATGCG 4 8840
TGATCTGATC CTTCAACTCA GCAAAAGTTC GATTTATTCA ACAAAGCCAC GTTGTGTCTC 4 8900
AAAATCTCTG ATGTTACATT GCACAAGATA AAAATATATC ATCATGAACA ATAAAACTGT 48960
CTGCTTACAT AAACAGTAAT ACAAGGGGTG TTATGAGCCA TATTCAACGG GAAAC 4 9015
<210> 96
<211> 48997
<212> DNA
<213> VETOR
<400> 96
GTCTTGCTCG ACTCTAGAGC TCGTTCCTCGCGGGGAAGCT TACAATAATG TGTGTTGTTATTTCGTCATA AATCCCGGCC TCCGTAACCCGCGGAACGGG AATATCGAGA TGCCGGGCTGACAGGTACTC CAGCTGATTG ATTATCTGCTTGCGAATGAT TACTTGAGCG CGATCGGGCAAGTGCTACAA GGCACCTTTC AGTAACGAGCAAATGGAGCG CAGTAGTCCA TCGAGGGCGGCTCGCACAGC CTCCAGATCC GATCGAGGGTCATTGCTTGA GAGTATTCCG ATGGACTGAACATCTATTTC GAGAAAGCCC CCGATGCGGC
AGGCCTCGAG GCCTCGAGGA ACGGTACCTG 60AGTCTTGTTG CCTGTCATCG TCTGACTGAC 120AGCTTTGGGC AAGCTCACGG ATTTGATCCG 180AACGCTGCAG TTCCAGCTTT CCCTTTCGGG 240GAAGGGTCTT GGTTCCACCT CCTGGCACAA 300TCCAATTTTC TCCCGTCAGG TGCGTGGTCA 360GACCGTCGAT CCGTCGCCGG GATACGGACA 420CGAAAGCCTC GCCAAAAGCA ATACGTTCAT 480CTTCGGCGTA GGCAGATAGA AGCATGGATA 540GTATGGCTTC CATCTTTTCT CGTGTGTCTG 600GCACCGCAAC GCGAATTGCC ATACTATCCG 660AAAGTCCCAG CAGGCGCGCT TGATAGGAAA AGGTTTCATA CTCGGCCGAT CGCAGACGGG 7 20
CACTCACGAC CTTGAACCCT TCAACTTTCA GGGATCGATG CTGGTTGATG GTAGTCTCAC 780
TCGACGTGGC TCTGGTGTGT TTTGACATAG CTTCCTCCAA AGAAAGCGGA AGGTCTGGAT 840
ACTCCAGCAC GAAATGTGCC CGGGTAGACG GATGGAAGTC TAGCCCTGCT CAATATGAAA 900
TCAACAGTAC ATTTACAGTC AATACTGAAT ATACTTGCTA CATTTGCAAT TGTCTTATAA 960
CGAATGTGAA ATAAAAATAG TGTAACAACG CTTTTACTCA TCGATAATCA CAAAAACATT 1020
TATACGAACA AAAATACAAA TGCACTCCGG TTTCACAGGA TAGGCGGGAT CAGAATATGC 1080
AACTTTTGAC GTTTTGTTCT TTCAAAGGGG GTGCTGGCAA AACCACCGCA CTCATGGGCC 114 0
TTTGCGCTGC TTTGGCAAAT GACGGTAAAC GAGTGGCCCT CTTTGATGCC GACGAAAACC 1200
GGCCTCTGAC GCGATGGAGA GAAAACGCCT TACAAAGCAG TACTGGGATC CTCGCTGTGA 1260
AGTCTATTCC GCCGACGAAA TGCCCCTTCT TGAAGCAGCC TATGAAAATG CCGAGCTCGA 1320
AGGATTTGAT TATGCGTTGG CCGATACGCG TGGCGGCTCG AGCGAGCTCA ACAACACAAT 1380
CATCGCTAGC TCAAACCTGC TTCTGATCCC CACCATGCTA ACGCCGCTCG ACATCGATGA 14 40
GGCACTATCT ACCTACCGCT ACGTCATCGA GCTGCTGTTG AGTGAAAATT TGGCAATTCC 1500
TACAGCTGTT TTGCGCCAAC GCGTCCCGGT CGGCCGATTG ACAACATCGC AACGCAGGAT 1560
GTCAGAGACG CTAGAGAGCC TTCCAGTTGT ACCGTCTCCC ATGCATGAAA GAGATGCATT 1620
TGCCGCGATG AAAGAACGCG GCATGTTGCA TCTTACATTA CTAAACACGG GAACTGATCC 1680
GACGATGCGC CTCATAGAGA GGAATCTTCG GATTGCGATG GAGGAAGTCG TGGTCATTTC 17 4 0
GAAACTGATC AGCAAAATCT TGGAGGCTTG AAGATGGCAA TTCGCAAGCC CGCATTGTCG 1800
GTCGGCGAAG CACGGCGGCT TGCTGGTGCT CGACCCGAGA TCCACCATCC CAACCCGACA 18 60
CTTGTTCCCC AGAAGCTGGA CCTCCAGCAC TTGCCTGAAA AAGCCGACGA GAAAGACCAG 1920
CAACGTGAGC CTCTCGTCGC CGATCACATT TACAGTCCCG ATCGACAACT TAAGCTAACT 1980
GTGGATGCCC TTAGTCCACC TCCGTCCCCG AAAAAGCTCC AGGTTTTTCT TTCAGCGCGA 204 0
CCGCCCGCGC CTCAAGTGTC GAAAACATAT GACAACCTCG TTCGGCAATA CAGTCCCTCG 2100
AAGTCGCTAC AAATGATTTT AAGGCGCGCG TTGGACGATT TCGAAAGCAT GCTGGCAGAT 2160
GGATCATTTC GCGTGGCCCC GAAAAGTTAT CCGATCCCTT CAACTACAGA AAAATCCGTT 2220
CTCGTTCAGA CCTCACGCAT GTTCCCGGTT GCGTTGCTCG AGGTCGCTCG AAGTCATTTT 2280
GATCCGTTGG GGTTGGAGAC CGCTCGAGCT TTCGGCCACA AGCTGGCTAC CGCCGCGCTC 234 0
GCGTCATTCT TTGCTGGAGA GAAGCCATCG AGCAATTGGT GAAGAGGGAC CTATCGGAAC 24 00
CCCTCACCAA ATATTGAGTG TAGGTTTGAG GCCGCTGGCC GCGTCCTCAG TCACCTTTTG 24 60
AGCCAGATAA TTAAGAGCCA AATGCAATTG GCTCAGGCTG CCATCGTCCC CCCGTGCGAA 2520
ACCTGCACGT CCGCGTCAAA GAAATAACCG GCACCTCTTG CTGTTTTTAT CAGTTGAGGG 2580
CTTGACGGAT CCGCCTCAAG TTTGCGGCGC AGCCGCAAAA TGAGAACATC TATACTCCTG 264 0
TCGTAAACCT CCTCGTCGCG TACTCGACTG GCAATGAGAA GTTGCTCGCG CGATAGAACG 27 00
TCGCGGGGTT TCTCTAAAAA CGCGAGGAGA AGATTGAACT CACCTGCCGT AAGTTTCACC 27 60
TCACCGCCAG CTTCGGACAT CAAGCGACGT TGCCTGAGAT TAAGTGTCCA GTCAGTAAAA 2820
CAAAAAGACC GTCGGTCTTT GGAGCGGACA ACGTTGGGGC GCACGCGCAA GGCAACCCGA 2880
ATGCGTGCAA GAAACTCTCT CGTACTAAAC GGCTTAGCGA TAAAATCACT TGCTCCTAGC 294 0
TCGAGTGCAA CAACTTTATC CGTCTCCTCA AGGCGGTCGC CACTGATAAT TATGATTGGA 3000
ATATCAGACT TTGCCGCCAG ATTTCGAACG ATCTCAAGCC CATCTTCACG ACCTAAATTT 3060
AGATCAACAA CCACGACATC GACCGTCGCG GAAGAGAGTA CTCTAGTGAA CTGGGTGCTG 3120
TCGGCTACCG CGGTCACTTT GAAGGCGTGG ATCGTAAGGT ATTCGATAAT AAGATGCCGC 3180
ATAGCGACAT CGTCATCGAT AAGAAGAACG TGTTTCAACG GCTCACCTTT CAATCTAAAA 3240
TCTGAACCCT TGTTCACAGC GCTTGAGAAA TTTTCACGTG AAGGATGTAC AATCATCTCC 3300
AGCTAAATGG GCAGTTCGTC AGAATTGCGG CTGACCGCGG ATGACGAAAA TGCGAACCAA 3360
GTATTTCAAT TTTATGACAA AAGTTCTCAA TCGTTGTTAC AAGTGAAACG CTTCGAGGTT 3420
ACAGCTACTA TTGATTAAGG AGATCGCCTA TGGTCTCGCC CCGGCGTCGT GCGTCCGCCG 3480
CGAGCCAGAT CTCGCCTACT TCATAAACGT CCTCATAGGC ACGGAATGGA ATGATGACAT 354 0
CGATCGCCGT AGAGAGCATG TCAATCAGTG TGCGATCTTC CAAGCTAGCA CCTTGGGCGC 3600
TACTTTTGAC AAGGGAAAAC AGTTTCTTGA ATCCTTGGAT TGGATTCGCG CCGTGTATTG 3660
TTGAAATCGA TCCCGGATGT CCCGAGACGA CTTCACTCAG ATAAGCCCAT GCTGCATCGT 3720
CGCGCATCTC GCCAAGCAAT ATCCGGTCCG GCCGCATACG CAGACTTGCT TGGAGCAAGT 3780
GCTCGGCGCT CACAGCACCC AGCCCAGCAC CGTTCTTGGA GTAGAGTAGT CTAACATGAT 3840
TATCGTGTGG AATGACGAGT TCGAGCGTAT CTTCTATGGT GATTAGCCTT TCCTGGGGGG 3900
GGATGGCGCT GATCAAGGTC TTGCTCATTG TTGTCTTGCC GCTTCCGGTA GGGCCACATA 3960
GCAACATCGT CAGTCGGCTG ACGACGCATG CGTGCAGAAA CGCTTCCAAA TCCCCGTTGT 4 020
CAAAATGCTG AAGGATAGCT TCATCATCCT GATTTTGGCG TTTCCTTCGT GTCTGCCACT 4 080
GGTTCCACCT CGAAGCATCA TAACGGGAGG AGACTTCTTT AAGACCAGAA ACACGCGAGC 4140
TTGGCCGTCG AATGGTCAAG CTGACGGTGC CCGAGGGAAC GGTCGGCGGC AGACAGATTT 4 200GTAGTCGTTC ACCACCAGGA AGTTCAGTGG CGCAGAGGGG GTTACGTGGT CCGACATCCT 4260
GCTTTCTCAG CGCGCCCGCT AAAATAGCGA TATCTTCAAG ATCATCATAA GAGACGGGCA 4320
AAGGCATCTT GGTAAAAATG CCGGCTTGGC GCACAAATGC CTCTCCAGGT CGATTGATCG 4380
CAATTTCTTC AGTCTTCGGG TCATCGAGCC ATTCCAAAAT CGGCTTCAGA AGAAAGCGTA 4440
GTTGCGGATC CACTTCCATT TACAATGTAT CCTATCTCTA AGCGGAAATT TGAATTCATT 4500
AAGAGCGGCG GTTCCTCCCC CGCGTGGCGC CGCCAGTCAG GCGGAGCTGG TAAACACCAA 4560
AGAAATCGAG GTCCCGTGCT ACGAAAATGG AAACGGTGTC ACCCTGATTC TTCTTCAGGG 4620
TTGGCGGTAT GTTGATGGTT GCCTTAAGGG CTGTCTCAGT TGTCTGCTCA CCGTTATTTT 4680
GAAAGCTGTT GAAGCTCATC CCGCCACCCG AGCTGCCGGC GTAGGTGCTA GCTGCCTGGA 4740
AGGCGCCTTG AACAACACTC AAGAGCATAG CTCCGCTAAA ACGCTGCCAG AAGTGGCTGT 4800
CGACCGAGCC CGGCAATCCT GAGCGACCGA GTTCGTCCGC GCTTGGCGAT GTTAACGAGA 4860
TCATCGCATG GTCAGGTGTC TCGGCGCGAT CCCACAACAC AAAAACGCGC CCATCTCCCT 4920
GTTGCAAGCC ACGCTGTATT TCGCCAACAA CGGTGGTGCC ACGATCAAGA AGCACGATAT 4980
TGTTCGTTGT TCCACGAATA TCCTGAGGCA AGACACACTT TACATAGCCT GCCAAATTTG 5040
TGTCGATTGC GGTTTGCAAG ATGCACGGAA TTATTGTCCC TTGCGTTACC ATAAAATCGG 5100
GGTGCGGCAA GAGCGTGGCG CTGCTGGGCT GCAGCTCGGT GGGTTTCATA CGTATCGACA 5160
AATCGTTCTC GCCGGACACT TCGCCATTCG GCAAGGAGTT GTCGTCACGC TTGCCTTCTT 5220
GTCTTCGGCC CGTGTCGCCC TGAATGGCGC GTTTGCTGAC CCCTTGATCG CCGCTGCTAT 5280
ATGCAAAAAT CGGTGTTTCT TCCGGCCGTG GCTCATGCCG CTCCGGTTCG CCCCTCGGCG 5340
GTAGAGGAGC AGCAGGCTGA ACAGCCTCTT GAACCGCTGG AGGATCCGGC GGCACCTCAA 5400
TCGGAGCTGG ATGAAATGGC TTGGTGTTTG TTGCGATCAA AGTTGACGGC GATGCGTTCT 5460
CATTCACCTT CTTTTGGCGC CCACCTAGCC AAATGAGGCT TAATGATAAC GCGAGAACGA 5520
CACCTCCGAC GATCAATTTC TGAGACCCCG AAAGACGCCG GCGATGTTTG TCGGAGACCA 5580
GGGATCCAGA TGCATCAACC TCATGTGCCG CTTGCTGACT ATCGTTATTC ATCCCTTCGC 5640
CCCCTTCAGG ACGCGTTTCA CATCGGGCCT CACCGTGCCC GTTTGCGGCC TTTGGCCAAC 5700
GGGATCGTAA GCGGTGTTCC AGATACATAG TACTGTGTGG CCATCCCTCA GACGCCAACC 5760
TCGGGAAACC GAAGAAATCT CGACATCGCT CCCTTTAACT GAATAGTTGG CAACAGCTTC 5820
CTTGCCATCA GGATTGATGG TGTAGATGGA GGGTATGCGT ACATTGCCCG GAAAGTGGAA 5880
TACCGTCGTA AATCCATTGT CGAAGACTTC GAGTGGCAAC AGCGAACGAT CGCCTTGGGC 5940
GACGTAGTGC CAATTACTGT CCGCCGCACC AAGGGCTGTG ACAGGCTGAT CCAATAAATT 6000
CTCAGCTTTC CGTTGATATT GTGCTTCCGC GTGTAGTCTG TCCACAACAG CCTTCTGTTG 6060
TGCCTCCCTT CGCCGAGCCG CCGCATCGTC GGCGGGGTAG GCGAATTGGA CGCTGTAATA 6120
GAGATCGGGC TGCTCTTTAT CGAGGTGGGA CAGAGTCTTG GAACTTATAC TGAAAACATA 6180
ACGGCGCATC CCGGAGTCGC TTGCGGTTAG CACGATTACT GGCTGAGGCG TGAGGACCTG 6240
GCTTGCCTTG AAAAATAGAT AATTTCCCCG CGGTAGGGCT GCTAGATCTT TGCTATTTGA 6300
AACGGCAACC GCTGTCACCG TTTCGTTCGT GGCGAATGTT ACGACCAAAG TAGCTCCAAC 6360
CGCCGTCGAG AGGCGCACCA CTTGATCGGG ATTGTAAGCC AAATAACGCA TGCGCGGATC 6420
TAGCTTGCCC GCCATTGGAG TGTCTTCAGC CTCCGCACCA GTCGCAGCGG CAAATAAACA 6480
TGCTAAAATG AAAAGTGCTT TTCTGATCAT GGTTCGCTGT GGCCTACGTT TGAAACGGTA 6540
TCTTCCGATG TCTGATAGGA GGTGACAACC AGACCTGCCG GGTTGGTTAG TCTCAATCTG 6600
CCGGGCAAGC TGGTCACCTT TTCGTAGCGA ACTGTCGCGG TCCACGTACT CACCACAGGC 6660
ATTTTGCCGT CAACGACGAG GGTCCTTTTA TAGCGAATTT GCTGCGTGCT TGGAGTTACA 6720
TCATTTGAAG CGATGTGCTC GACCTCCACC CTGCCGCGTT TGCCAAGAAT GACTTGAGGC 6780
GAACTGGGAT TGGGATAGTT GAAGAATTGC TGGTAATCCT GGCGCACTGT TGGGGCACTG 6840
AAGTTCGATA CCAGGTCGTA GGCGTACTGA GCGGTGTCGG CATCATAACT CTCGCGCAGG 6900
CGAACGTACT CCCACAATGA GGCGTTAACG ACGGCCTCCT CTTGAGTTGC AGGCAATCGC 6960
GAGACAGACA CCTCGCTGTC AACGGTGCCG TCCGGCCGTA TCCATAGATA TACGGGCACA 7020
AGCCTGCTCA ACGGCACCAT TGTGGCTATA GCGAACGCTT GAGCAACATT TCCCAAAATC 7080
GCGATAGCTG CGACAGCTGC AATGAGTTTG GAGAGACGTC GCGCCGATTT CGCTCGCGCG 7140
GTTTGAAAGG CTTCTACTTC CTTATAGTGC TCGGCAAGGC TTTCGCGCGC CACTAGCATG 7200
GCATATTCAG GCCCCGTCAT AGCGTCCACC CGAATTGCCG AGCTGAAGAT CTGACGGAGT 7260
AGGCTGCCAT CGCCCCACAT TCAGCGGGAA GATCGGGCCT TTGCAGCTCG CTAATGTGTC 7320
GTTTGTCTGG CAGCCGCTCA AAGCGACAAC TAGGCACAGC AGGCAATACT TCATAGAATT 7380
CTCCATTGAG GCGAATTTTT GCGCGACCTA GCCTCGCTCA ACCTGAGCGA AGCGACGGTA 7440
CAAGCTGCTG GCAGATTGGG TTGCGCCGCT CCAGTAACTG CCTCCAATGT TGCCGGCGAT 7500
CGCCGGCAAA GCGACAATGA GCGCATCCCC TGTCAGAAAA AACATATCGA GTTCGTAAAG 7560
ACCAATGATC TTGGCCGCGG TCGTACCGGC GAAGGTGATT ACACCAAGCA TAAGGGTGAG 7620
CGCAGTCGCT TCGGTTAGGA TGACGATCGT TGCCACGAGG TTTAAGAGGA GAAGCAAGAG 7680
ACCGTAGGTG ATAAGTTGCC CGATCCACTT AGCTGCGATG TCCCGCGTGC GATCAAAAAT 7740atatccgacg aggatcagag gcccgatcgc gagaagcact ttcgtgagaa ttccaacggc 7 800
gtcgtaaact ccgaaggcag accagagcgt gccgtaaagg acccactgtg ccccttggaa 7860
agcaaggatg tcctggtcgt tcatcggacc gatttcggat gcgattttct gaaaaacggc 7920
ctgggtcacg gcgaacattg tatccaactg tgccggaaca gtctgcagag gcaagccggt 7 980
tacactaaac tgctgaacaa agtttgggac cgtcttttcg aagatggaaa ccacatagtc 804 0
ttggtagtta gcctgcccaa caattagagc aacaacgatg gtgaccgtga tcacccgagt 8100
gataccgcta cgggtatcga cttcgccgcg tatgactaaa ataccctgaa caataatcca 8160
aagagtgaca caggcgatca atggcgcact caccgcctcc tggatagtct caagcatcga 8220
gtccaagcct gtcgtgaagg ctacatcgaa gatcgtatga atggccgtaa acggcgccgg 8280
aatcgtgaaa ttcatcgatt ggacctgaac ttgactggtt tgtcgcataa tgttggataa 8340
aatgagctcg cattcggcga ggatgcgggc ggatgaacaa atcgcccagc cttaggggag 8400
ggcaccaaag atgacagcgg tcttttgatg ctccttgcgt tgagcggccg cctcttccgc 84 60
ctcgtgaagg ccggcctgcg cggtagtcat cgttaatagg cttgtcgcct gtacattttg 8520
aatcattgcg tcatggatct gcttgagaag caaaccattg gtcacggttg cctgcatgat 8580
attgcgagat cgggaaagct gagcagacgt atcagcattc gccgtcaagc gtttgtccat 864 0
cgtttccaga ttgtcagccg caatgccagc gctgtttgcg gaaccggtga tctgcgatcg 8700
caacaggtcc gcttcagcat cactacccac gactgcacga tctgtatcgc tggtgatcgc 87 60
acgtgccgtg gtcgacattg gcattcgcgg cgaaaacatt tcattgtcta ggtccttcgt 8820
cgaaggatac tgatttttct ggttgagcga agtcagtagt ccagtaacgc cgtaggccga 8880
cgtcaacatc gtaaccatcg ctatagtctg agtgagattc tccgcagtcg cgagcgcagt 8940
cgcgagcgtc tcagcctccg ttgccgggtc gctaacaaca aactgcgccc gcgcgggctg 9000
aatatataga aagctgcagg tcaaaactgt tgcaataagt tgcgtcgtct tcatcgtttc 9060
ctaccttatc aatcttctgc ctcgtggtga cgggccatga attcgctgag ccagccagat 9120
gagttgcctt cttgtgcctc gcgtagtcga gttgcaaagc gcaccgtgtt ggcacgcccc 9180
gaaagcacgg cgacatattc acgcatatcc cgcagatcaa attcgcagat gacgcttcca 924 0
ctttctcgtt taagaagaaa cttacggctg ccgaccgtca tgtcttcacg gatcgcctga 9300
aattcctttt cggtacattt cagtccatcg acataagccg atcgatctgc ggttggtgat 9360
ggatagaaaa tcttcgtcat acattgcgca accaagctgg ctcctagcgg cgattccaga 9420
acatgctctg gttgctgcgt tgccagtatt agcatcccgt tgttttttcg aacggtcagg 94 80
aggaatttgt cgacgacagt cgaaaattta gggtttaaca aataggcgcg aaactcatcg 9540
cagctcatca caaaacggcg gccgtcgatc atggctccaa tccgatgcag gagatatgct 9600
gcagcgggag cgcatacttc ctcgtattcg agaagatgcg tcatgtcgaa gccggtaatc 9660
gacggatcta actttacttc gtcaacttcg ccgtcaaatg cccagccaag cgcatggccc 9720
cggcaccagc gttggagccg cgctcctgcg ccttcggcgg gcccatgcaa caaaaattca 9780
cgtaaccccg cgattgaacg catttgtgga tcaaacgaga gctgacgatg gataccacgg 98 4 0
accagacggc ggttctcttc cggagaaatc ccaccccgac catcactctc gatgagagcc 9900
acgatccatt cgcgcagaaa atcgtgtgag gctgctgtgt tttctaggcc acgcaacggc 9960
gccaacccgc tgggtgtgcc tctgtgaagt gccaaatatg ttcctcctgt ggcgcgaacc 10020
agcaattcgc caccccggtc cttgtcaaag aacacgaccg tacctgcacg gtcgaccatg 10080
ctctgttcga gcatggctag aacaaacatc atgagcgtcg tcttacccct cccgataggc 1014 0
ccgaatattg ccgtcatgcc aacatcgtgc tcatgcggga tatagtcgaa aggcgttccg 10200
ccattggtac gaaatcgggc aatcgcgttg ccccagtggc ctgagctggc gccctctgga 10260
aagttttcga aagagacaaa ccctgcgaaa ttgcgtgaag tgattgcgcc agggcgtgtg 10320
cgccacttaa aattccccgg caattgggac caataggccg cttccatacc aataccttct 10380
tggacaacca cggcacctgc atccgccatt cgtgtccgag cccgcgcgcc cctgtcccca 104 4 0
agactattga gatcgtctgc atagacgcaa aggctcaaat gatgtgagcc cataacgaat 10500
tcgttgctcg caagtgcgtc ctcagcctcg gataatttgc cgatttgagt cacggcttta 10560
tcgccggaac tcagcatctg gctcgatttg aggctaagtt tcgcgtgcgc ttgcgggcga 10620
gtcaggaacg aaaaactctg cgtgagaaca agtggaaaat cgagggatag cagcgcgttg 10680
agcatgcccg gccgtgtttt tgcagggtat tcgcgaaacg aatagatgga tccaacgtaa 10740
ctgtcttttg gcgttctgat ctcgagtcct cgcttgccgc aaatgactct gtcggtataa 10800
atcgaagcgc cgagtgagcc gctgacgacc ggaaccggtg tgaaccgacc agtcatgatc 108 60
aaccgtagcg cttcgccaat ttcggtgaag agcacaccct gcttctcgcg gatgccaaga 10920
cgatgcaggc catacgcttt aagagagcca gcgacaacat gccaaagatc ttccatgttc 10980
ctgatctggc ccgtgagatc gttttccctt tttccgctta gcttggtgaa cctcctcttt 1104 0
accttcccta aagccgcctg tgggtagaca atcaacgtaa ggaagtgttc attgcggagg 11100
agttggccgg agagcacgcg ctgttcaaaa gcttcgttca ggctagcggc gaaaacacta 11160
cggaagtgtc gcggcgccga tgatggcacg tcggcatgac gtacgaggtg agcatatatt 11220
gacacatgat catcagcgat attgcgcaac agcgtgttga acgcacgaca acgcgcattg 11280CGCATTTCAG TTTCCTCAAG CTCGAATGCA ACGCCATCAA TTCTCGCAAT GGTCATGATC 11340
GATCCGTCTT CAAGAAGGAC GATATGGTCG CTGAGGTGGC CAATATAAGG GAGATAGATC 11400
TCACCGGATC TTTCGGTCGT TCCACTCGCG CCGAGCATCA CACCATTCCT CTCCCTCGTG 114 60
GGGGAACCCT AATTGGATTT GGGCTAACAG TAGCGCCCCC CCAAACTGCA CTATCAATGC 11520
TTCTTCCCGC GGTCCGCAAA AATAGCAGGA CGACGCTCGC CGCATTGTAG TCTCGCTCCA 11580
CGATGAGCCG GGCTGCAAAC CATAACGGCA CGAGAACGAC TTCGTAGAGC GGGTTCTGAA 11640
CGATAACGAT GACAAAGCCG GCGAACATCA TGAATAACCC TGCCAATGTC AGTGGCACCC 117 00
CAAGAAACAA TGCGGGCCGT GTGGCTGCGA GGTAAAGGGT CGATTCTTCC AAACGATCAG 117 60
CCATCAACTA CCGCCAGTGA GCGTTTGGCC GAGGAAGCTC GCCCCAAACA TGATAACAAT 11820
GCCGCCGACG ACGCCGGCAA CCAGCCCAAG CGAAGCCCGC CCGAACATCC AGGAGATCCC 11880
GATAGCGACA ATGCCGAGAA CAGCGAGTGA CTGGCCGAAC GGACCAAGGA TAAACGTGCA 11940
TATATTGTTA ACCATTGTGG CGGGGTCAGT GCCGCCACCC GCAGATTGCG CTGCGGCGGG 12000
TCCGGATGAG GAAATGCTCC ATGCAATTGC ACCGCACAAG CTTGGGGCGC AGCTCGATAT 12060
CACGCGCATC ATCGCATTCG AGAGCGAGAG GCGATTTAGA TGTAAACGGT ATCTCTCAAA 12120
GCATCGCATC AATGCGCACC TCCTTAGTAT AAGTCGAATA AGACTTGATT GTCGTCTGCG 12180
GATTTGCCGT TGTCCTGGTG TGGCGGTGGC GGAGCGATTA AACCGCCAGC GCCATCCTCC 1224 0
TGCGAGCGGC GCTGATATGA CCCCCAAACA TCCCACGTCT CTTCGGATTT TAGCGCCTCG 12300
TGATCGTCTT TTGGAGGCTC GATTAACGCG GGCACCAGCG ATTGAGCAGC TGTTTCAACT 12 360
TTTCGCACGT AGCCGTTTGC AAAACCGCCG ATGAAATTAC CGGTGTTGTA AGCGGAGATC 12420
GCCCGACGAA GCGCAAATTG CTTCTCGTCA ATCGTTTCGC CGCCTGCATA ACGACTTTTC 124 80
AGCATGTTTG CAGCGGCAGA TAATGATGTG CACGCCTGGA GCGCACCGTC AGGTGTCAGA 1254 0
CCGAGCATAG AAAAATTTCG AGAGTTTATT TGCATGAGGC CAACATCCAG CGAATGCCGT 12 600
GCATCGAGAC GGTGCCTGAC GACTTGGGTT GCTTGGCTGT GATCTTGCCA GTGAAGCGTT 12 660
TCGCCGGTCG TGTTGTCATG AATCGCTAAA GGATCAAAGC GACTCTCCAC CTTAGCTATC 12720
GCCGCAAGCG TAGATGTCGC AACTGATGGG GCACACTTGC GAGCAACATG GTCAAACTCA 12780
GCAGATGAGA GTGGCGTGGC AAGGCTCGAC GAACAGAAGG AGACCATCAA GGCAAGAGAA 12840
AGCGACCCCG ATCTCTTAAG CATACCTTAT CTCCTTAGCT CGCAACTAAC ACCGCCTCTC 12900
CCGTTGGAAG AAGTGCGTTG TTTTATGTTG AAGATTATCG GGAGGGTCGG TTACTCGAAA 12 960
ATTTTCAATT GCTTCTTTAT GATTTCAATT GAAGCGAGAA ACCTCGCCCG GCGTCTTGGA 13020
ACGCAACATG GACCGAGAAC CGCGCATCCA TGACTAAGCA ACCGGATCGA CCTATTCAGG 13080
CCGCAGTTGG TCAGGTCAGG CTCAGAACGA AAATGCTCGG CGAGGTTACG CTGTCTGTAA 1314 0
ACCCATTCGA TGAACGGGAA GCTTCCTTCC GATTGCTCTT GGCAGGAATA TTGGCCCATG 13200
CCTGCTTGCG CTTTGCAAAT GCTCTTATCG CGTTGGTATC ATATGCCTTG TCCGCCAGCA 13260
GAAACGCACT CTAAGCGATT ATTTGTAAAA ATGTTTCGGT CATGCGGCGG TCATGGGCTT 13320
GACCCGCTGT CAGCGCAAGA CGGATCGGTC AACCGTCGGC ATCGACAACA GCGTGAATCT 13380
TGGTGGTCAA ACCGCCACGG GAACGTCCCA TACAGCCATC GTCTTGATCC CGCTGTTTCC 134 4 0
CGTCGCCGCA TGTTGGTGGA CGCGGACACA GGAACTGTCA ATCATGACGA CATTCTATCG 13500
AAAGCCTTGG AAATCACACT CAGAATATGA TCCCAGACGT CTGCCTCACG CCATCGTACA 13560
AAGCGATTGT AGCAGGTTGT ACAGGAACCG TATCGATCAG GAACGTCTGC CCAGGGCGGG 13620
CCCGTCCGGA AGCGCCACAA GATGACATTG ATCACCCGCG TCAACGCGCG GCACGCGACG 13680
CGGCTTATTT GGGAACAAAG GACTGAACAA CAGTCCATTC GAAATCGGTG ACATCAAAGC 137 4 0
GGGGACGGGT TATCAGTGGC CTCCAAGTCA AGCCTCAATG AATCAAAATC AGACCGATTT 13800
GCAAACCTGA TTTATGAGTG TGCGGCCTAA ATGATGAAAT CGTCCTTCTA GATCGCCTCC 13860
GTGGTGTAGC AACACCTCGC AGTATCGCCG TGCTGACCTT GGCCAGGGAA TTGACTGGCA 13920
AGGGTGCTTT CACATGACCG CTCTTTTGGC CGCGATAGAT GATTTCGTTG CTGCTTTGGG 13980
CACGTAGAAG GAGAGAAGTC ATATCGGAGA AATTCCTCCT GGCGCGAGAG CCTGCTCTAT 14 04 0
CGCGACGGCA TCCCACTGTC GGGAACAGAC CGGATCATTC ACGAGGCGAA AGTCGTCAAC 14100
ACATGCGTTA TAGGCATCTT CCCTTGAAGG ATGATCTTGT TGCTGCCAAT CTGGAGGTGC 14160
GGCAGCCGCA GGCAGATGCG ATCTCAGCGC AACTTGCGGC AAAACATCTC ACTCACCTGA 14 220
AAACCACTAG CGAGTCTCGC GATCAGACGA AGGCCTTTTA CTTAACGACA CAATATCCGA 14 280
TGTCTGCATC ACAGGCGTCG CTATCCCAGT CAATACTAAA GCGGTGCAGG AACTAAAGAT 14 34 0
TACTGATGAC TTAGGCGTGC CACGAGGCCT GAGACGACGC GCGTAGACAG TTTTTTGAAA 14 400
TCATTATCAA AGTGATGGCC TCCGCTGAAG CCTATCACCT CTGCGCCGGT CTGTCGGAGA 144 60
GATGGGCAAG CATTATTACG GTCTTCGCGC CCGTACATGC ATTGGACGAT TGCAGGGTCA 14520
ATGGATCTGA GATCATCCAG AGGATTGCCG CCCTTACCTT CCGTTTCGAG TTGGAGCCAG 14580
CCCCTAAATG AGACGACATA GTCGACTTGA TGTGACAATG CCAAGAGAGA GATTTGCTTA 14 640
ACCCGATTTT TTTGCTCAAG CGTAAGCCTA TTGAAGCTTG CCGGCATGAC GTCCGCGCCG 14700
AAAGAATATC CTACAAGTAA AACATTCTGC ACACCGAAAT GCTTGGTGTA GACATCGATT 14 7 60
ATGTGACCAA GATCCTTAGC AGTTTCGCTT GGGGACCGCT CCGACCAGAA ATACCGAAGT 14 820GAACTGACGC CAATGACAGG AATCCCTTCC GTCTGCAGAT AGGTACCATC GATAGATCTG 14 880
CTGCCTCGCG CGTTTCGGTG ATGACGGTGA AAACCTCTGA CACATGCAGC TCCCGGAGAC 14 940
GGTCACAGCT TGTCTGTAAG CGGATGCCGG GAGCAGACAA GCCCGTCAGG GCGCGTCAGC 15000
GGGTGTTGGC GGGTGTCGGG GCGCAGCCAT GACCCAGTCA CGTAGCGATA GCGGAGTGTA 15060
TACTGGCTTA ACTATGCGGC ATCAGAGCAG ATTGTACTGA GAGTGCACCA TATGCGGTGT 15120
GAAATACCGC ACAGATGCGT AAGGAGAAAA TACCGCATCA GGCGCTCTTC CGCTTCCTCG 15180
CTCACTGACT CGCTGCGCTC GGTCGTTCGG CTGCGGCGAG CGGTATCAGC TCACTCAAAG 1524 0
GCGGTAATAC GGTTATCCAC AGAATCAGGG GATAACGCAG GAAAGAACAT GTGAGCAAAA 15300
GGCCAGCAAA AGGCCAGGAA CCGTAAAAAG GCCGCGTTGC TGGCGTTTTT CCATAGGCTC 15360
CGCCCCCCTG ACGAGCATCA CAAAAATCGA CGCTCAAGTC AGAGGTGGCG AAACCCGACA 15420
GGACTATAAA GATACCAGGC GTTTCCCCCT GGAAGCTCCC TCGTGCGCTC TCCTGTTCCG 154 80
ACCCTGCCGC TTACCGGATA CCTGTCCGCC TTTCTCCCTT CGGGAAGCGT GGCGCTTTCT 15540
CATAGCTCAC GCTGTAGGTA TCTCAGTTCG GTGTAGGTCG TTCGCTCCAA GCTGGGCTGT 15600
GTGCACGAAC CCCCCGTTCA GCCCGACCGC TGCGCCTTAT CCGGTAACTA TCGTCTTGAG 15660
TCCAACCCGG TAAGACACGA CTTATCGCCA CTGGCAGCAG CCACTGGTAA CAGGATTAGC 15720
AGAGCGAGGT ATGTAGGCGG TGCTACAGAG TTCTTGAAGT GGTGGCCTAA CTACGGCTAC 15780
ACTAGAAGGA CAGTATTTGG TATCTGCGCT CTGCTGAAGC CAGTTACCTT CGGAAAAAGA 15840
GTTGGTAGCT CTTGATCCGG CAAACAAACC ACCGCTGGTA GCGGTGGTTT TTTTGTTTGC 15900
AAGCAGCAGA TTACGCGCAG AAAAAAAGGA TCTCAAGAAG ATCCTTTGAT CTTTTCTACG 15960
GGGTCTGACG CTCAGTGGAA CGAAAACTCA CGTTAAGGGA TTTTGGTCAT GAGATTATCA 16020
AAAAGGATCT TCACCTAGAT CCTTTTAAAT TAAAAATGAA GTTTTAAATC AATCTAAAGT 16080
ATATATGAGT AAACTTGGTC TGACAGTTAC CAATGCTTAA TCAGTGAGGC ACCTATCTCA 1614 0
GCGATCTGTC TATTTCGTTC ATCCATAGTT GCCTGACTCC CCGTCGTGTA GATAACTACG 16200
ATACGGGAGG GCTTACCATC TGGCCCCAGT GCTGCAATGA TACCGCGAGA CCCACGCTCA 16260
CCGGCTCCAG ATTTATCAGC AATAAACCAG CCAGCCGGAA GGGCCGAGCG CAGAAGTGGT 16320
CCTGCAACTT TATCCGCCTC CATCCAGTCT ATTAATTGTT GCCGGGAAGC TAGAGTAAGT 16380
AGTTCGCCAG TTAATAGTTT GCGCAACGTT GTTGCCATTG CTGCAGGGGG GGGGGGGGGG 16440
GGGTTCCATT GTTCATTCCA CGGACAAAAA CAGAGAAAGG AAACGACAGA GGCCAAAAAG 16500
CTCGCTTTCA GCACCTGTCG TTTCCTTTCT TTTCAGAGGG TATTTTAAAT AAAAACATTA 16560
AGTTATGACG AAGAAGAACG GAAACGCCTT AAACCGGAAA ATTTTCATAA ATAGCGAAAA 16620
CCCGCGAGGT CCCTGTCGGA TCACCGGAAA GGACCCGTAA AGTGATAATG ATTATCATCT 16680
ACATATCACA ACGTGCGTGG AGGCCATCAA ACCACGTCAA ATAATCAATT ATGACGCAGG 16740
TATCGTATTA ATTGATCTGC ATCAACTTAA CGTAAAAACA ACTTCAGACA ATACAAATCA 16800
GCGACACTGA ATACGGGGCA ACCTCATGTC CCCCCCCCCC CCCCCCCTGC AGGCATCGTG 168 60
GTGTCACGCT CGTCGTTTGG TATGGCTTCA TTCAGCTCCG GTTCCCAACG ATCAAGGCGA 16920
GTTACATGAT CCCCCATGTT GTGCAAAAAA GCGGTTAGCT CCTTCGGTCC TCCGATCGTT 16980
GTCAGAAGTA AGTTGGCCGC AGTGTTATCA CTCATGGTTA TGGCAGCACT GCATAATTCT 17 040
CTTACTGTCA TGCCATCCGT AAGATGCTTT TCTGTGACTG GTGAGTACTC AACCAAGTCA 17100
TTCTGAGAAT AGTGTATGCG GCGACCGAGT TGCTCTTGCC CGGCGTCAAC ACGGGATAAT 17160
ACCGCGCCAC ATAGCAGAAC TTTAAAAGTG CTCATCATTG GAAAACGTTC TTCGGGGCGA 17220
AAACTCTCAA GGATCTTACC GCTGTTGAGA TCCAGTTCGA TGTAACCCAC TCGTGCACCC 17280
AACTGATCTT CAGCATCTTT TACTTTCACC AGCGTTTCTG GGTGAGCAAA AACAGGAAGG 17340
CAAAATGCCG CAAAAAAGGG AATAAGGGCG ACACGGAAAT GTTGAATACT CATACTCTTC 17400
CTTTTTCAAT ATTATTGAAG CATTTATCAG GGTTATTGTC TCATGAGCGG ATACATATTT 174 60
GAATGTATTT AGAAAAATAA ACAAATAGGG GTTCCGCGCA CATTTCCCCG AAAAGTGCCA 17520
CCTGACGTCT AAGAAACCAT TATTATCATG ACATTAACCT ATAAAAATAG GCGTATCACG 17580
AGGCCCTTTC GTCTTCAAGA ATTGGTCGAC GATCTTGCTG CGTTCGGATA TTTTCGTGGA 17 640
GTTCCCGCCA CAGACCCGGA TTGAAGGCGA GATCCAGCAA CTCGCGCCAG ATCATCCTGT 177 00
GACGGAACTT TGGCGCGTGA TGACTGGCCA GGACGTCGGC CGAAAGAGCG ACAAGCAGAT 177 60
CACGCTTTTC GACAGCGTCG GATTTGCGAT CGAGGATTTT TCGGCGCTGC GCTACGTCCG 17820
CGACCGCGTT GAGGGATCAA GCCACAGCAG CCCACTCGAC CTTCTAGCCG ACCCAGACGA 17880
GCCAAGGGAT CTTTTTGGAA TGCTGCTCCG TCGTCAGGCT TTCCGACGTT TGGGTGGTTG 17940
AACAGAAGTC ATTATCGTAC GGAATGCCAA GCACTCCCGA GGGGAACCCT GTGGTTGGCA 18000
TGCACATACA AATGGACGAA CGGATAAACC TTTTCACGCC CTTTTAAATA TCCGTTATTC 18060
TAATAAACGC TCTTTTCTCT TAGGTTTACC CGCCAATATA TCCTGTCAAA CACTGATAGT 18120
TTAAACTGAA GGCGGGAAAC GACAATCTGA TCATGAGCGG AGAATTAAGG GAGTCACGTT 18180
ATGACCCCCG CCGATGACGC GGGACAAGCC GTTTTACGTT TGGAACTGAC AGAACCGCAA 18240
CGTTGAAGGA GCCACTCAGC AAGCTGGTAC GATTGTAATA CGACTCACTA TAGGGCGAAT 18300
TGAGCGCTGT TTAAACGCTC TTCAACTGGA AGAGCGGTTA CCAGAGCTGG TCACCTTTGT 18360CCACCAAGAT GGAACTGCGG CCGCTCATTA ATTAAGTCAG GCGCGCCTCT AGTTGAAGAC 18420
ACGTTCATGT CTTCATCGTA AGAAGACACT CAGTAGTCTT CGGCCAGAAT GGCCATCTGG 184 80
ATTCAGCAGG CCTAGAAGGC CATTTAAATC CTGAGGATCT GGTCTTCCTA AGGACCCGGG 18540
ATATCGCTAT CAACTTTGTA TAGAAAAGTT GGGCCGAATT CGCCCTTGTT TAAACTTAAT 18 600
ATTTGTTTAA ACTTTTTACT AAATTCATGT AATAATTAAT GTATGCGTTA TATATATATG 18 660
TCTAGGTTTA TAATTATTCA TATGAATATG AACATAAAAA TCTAGGGCTA AAACGACTAC 18720
TATTTTGAAA ACGGAAGGAG TAGTAAGTTA TTTAAGCGGA GGGGAACCAT GATGGGCTAG 18780
TGATTTAATT TACATATATA TATTGGTGTT CTGGGCTCTT ACATGAGAAG ATCTAGTTAA 1884 0
CTGTTGTTAC TGAACAGCGA AGACAAATAT ATAATTTAAG CTCCCCAACT GCTAGTGATT 18900
CTGTTAAGAG GTAATGTTTA AAGTAAATTT ACAAGAGCCC GTCTAGCTCA GTCGGTAGAG 18 960
CGCAAGGCTC TTAACCTTGT GGTCGTGGGT TCGAGCCCCA CGGTGGGCGC ACAATTTTTT 19020
GTTTTTTGAC ATTTTTTGTT TGCTTAGTTG CAGACGGTTT TTCCCCTGCT AGGAGATTTC 19080
CGAGAGAAAA AAAAGGCACT ACAGGTTAAC CAAAACCACC AACCTTTGGA GCGTCGAGGC 1914 0
GACGGGGCAT TTGCGTAGTT GAAGCTTACA AAGTTGCATA TGAGATGAGT GCCGGACATG 19200
AAGCGGATAA CGTTTTAAAC TGGCAACAAT ATCTAGCTGT TTCAAATTCA GGCGTGGGAA 19260
GCTACGCCTA CGCGCCCTGG ACGGCGTGTA AAGAGCCAGC ATCGGCATCA TTGTCAAACG 19320
ATCGACAAGG CCAAGAAATT CCAAATATAT TATTAATAAA AAAGAAGGCA CCAAATTAGT 19380
TTTTGTTTTT TAGTATGTGT GGCGGAGGAA ATTTTGAGAA CGAACGTATC CAAAGAAGGC 19440
ACAAGACGAT ATAGATTGAC GCGGCTAGAA AGTTGCAGCA AGACAGTGGG TACGGTCTTA 19500
TATATCCTAA TAAATAAAAA ATAAAACTAT AGTGTGTCAA ATGTCAACAA GAGGAGGAGG 19560
CAGCCAAATT AGCAGAGGGA GACAAGTAGA GCACGCCTTA TTAGCTTGCT TATTTATCGT 19620
GGTGGTGTAC TTGTTAATTA CTGGCACGCA TTATCAACAA CGCAGTTCTG GATGTGAATC 19680
TAGACAAACA TTTGTCTAGG TTCCGCACGT ATAGTTTTTT TTCTTTTTTT TTGGGGGGGG 19740
GGGGGAACGG AAGCTGTAAT AAACGGTACT AGGAACGAAA GCAACCGCCG CGCGCATGTT 19800
TTTGCAATAG ATTACGGTGA CCTTGATGCA CCACCGCGTG CTATAAAAAC CAGTGTCCCC 198 60
GAGTCTACTC ATCAACCAAT CCATAACTCG AAACCTTTTC TTGTGCTCTG TTCTGTCTGT 19920
GTGTTTCCAA AGCAAGCGAA AGAGGTCGAG GGGATCAGCT TCAAGTTTGT ACAAAAAAGC 19980
AGGCTCCGCG GCCGCCCCCT TCACCATGAC GATGGCTCGT CCTGGGGCGG CTTTGCCGCT 2004 0
GCTGCTGGTC GTGGTCGGCG CTTGCTGCGC GCGCCTGGCG GCGGCAGTGC ACCTCTCCGC 20100
GCTCGGCAGG ACACTCATCG TCGAGGCGTC GCCGAAGGCC GGACAAGTCC TGCACGCCGG 20160
CGAGGACACG ATAACCGTGA CATGGCACCT CAACGCGTCG GCGTCCAGCG TCGGGTACAA 20220
GGCGCTGGAG GTGACCCTCT GCTACGCGCC GGCGAGCCAG GAGGACCGCG GGTGGCGCAA 20280
GGCCAACGAC GACTTGAGCA AGGACAAGGC GTGCCAGTTC AGGATCGCCC GGCATGCATA 2034 0
CGCCGGCGGC CAGGGGACGC TCCGGTACAG GGTCGCCCGC GACGTCCCCA CCGCGTCCTA 204 00
CCACGTGCGC GCCTACGCGC TGGACGCGTC CGGGGCGCCG GTGGGCTACG GCCAGACCGC 204 60
GCCCGCCTAC TACTTCCACG TCGCGGGCGT CTCGGGCGTC CACGCGTCCC TCCGGGTCGC 20520
CGCCGCCGTG CTCTCCGCGT TCTCCATCGC CGCGCTCGCC TTCTTTGTCG TCGTCGAGAA 20580
GAGGAGGAAG GACGAGTAGA AGGGTGGGCG CGCCGACCCA GCTTTCTTGT ACAAAGTGGC 20640
CGTTAACGGA TCCAGACTTG TCCATCTTCT GGATTGGCCA ACTTAATTAA TGTATGAAAT 20700
AAAAGGATGC ACACATAGTG ACATGCTAAT CACTATAATG TGGGCATCAA AGTTGTGTGT 207 60
TATGTGTAAT TACTAGTTAT CTGAATAAAA GAGAAAGAGA TCATCCATAT TTCTTATCCT 20820
AAATGAATGT CACGTGTCTT TATAATTCTT TGATGAACCA GATGCATTTC ATTAACCAAA 20880
TCCATATACA ΤΑΤΑΑΑΤΑΤΤ AATCATATAT AATTAATATC AATTGGGTTA GCAAAACAAA 20940
TCTAGTCTAG GTGTGTTTTG CGAATTGCGG CAAGCTTGCG GCCGCCCCGG GCAACTTTAT 21000
TATACAAAGT TGATAGATAT CGGACCGATT AAACTTTAAT TCGGTCCGAA GCTTGCATGC 21060
CTGCAGTGCA GCGTGACCCG GTCGTGCCCC TCTCTAGAGA TAATGAGCAT TGCATGTCTA 21120
AGTTATAAAA AATTACCACA ΤΑΤΤΤΤΤΤΤΤ GTCACACTTG TTTGAAGTGC AGTTTATCTA 21180
TCTTTATACA TATATTTAAA CTTTACTCTA CGAATAATAT AATCTATAGT ACTACAATAA 2124 0
TATCAGTGTT TTAGAGAATC ATATAAATGA ACAGTTAGAC ATGGTCTAAA GGACAATTGA 21300
GTATTTTGAC AACAGGACTC TACAGTTTTA TCTTTTTAGT GTGCATGTGT TCTCCTTTTT 21360
TTTTGCAAAT AGCTTCACCT ATATAATACT TCATCCATTT TATTAGTACA TCCATTTAGG 21420
GTTTAGGGTT AATGGTTTTT ATAGACTAAT TTTTTTAGTA CATCTATTTT ATTCTATTTT 21480
AGCCTCTAAA TTAAGAAAAC TAAAACTCTA TTTTAGTTTT ΤΤΤΑΤΤΤΑΑΤ AATTTAGATA 21540
TAAAATAGAA TAAAATAAAG TGACTAAAAA TTAAACAAAT ACCCTTTAAG AAATTAAAAA 21600
AACTAAGGAA ACATTTTTCT TGTTTCGAGT AGATAATGCC AGCCTGTTAA ACGCCGTCGA 21660
CGAGTCTAAC GGACACCAAC CAGCGAACCA GCAGCGTCGC GTCGGGCCAA GCGAAGCAGA 21720
CGGCACGGCA TCTCTGTCGC TGCCTCTGGA CCCCTCTCGA GAGTTCCGCT CCACCGTTGG 21780
ACTTGCTCCG CTGTCGGCAT CCAGAAATTG CGTGGCGGAG CGGCAGACGT GAGCCGGCAC 2184 0
GGCAGGCGGC CTCCTCCTCC TCTCACGGCA CCGGCAGCTA CGGGGGATTC CTTTCCCACC 21900GCTCCTTCGC TTTCCCTTCC TCGCCCGCCG TAATAAATAG ACACCCCCTC CACACCCTCT 21960
TTCCCCAACC TCGTGTTGTT CGGAGCGCAC ACACACACAA CCAGATCTCC CCCAAATCCA 22020
CCCGTCGGCA CCTCCGCTTC AAGGTACGCC GCTCGTCCTC CCCCCCCCCC CTCTCTACCT 22080
TCTCTAGATC GGCGTTCCGG TCCATGCATG GTTAGGGCCC GGTAGTTCTA CTTCTGTTCA 22140
TGTTTGTGTT AGATCCGTGT TTGTGTTAGA TCCGTGCTGC TAGCGTTCGT ACACGGATGC 22200
GACCTGTACG TCAGACACGT TCTGATTGCT AACTTGCCAG TGTTTCTCTT TGGGGAATCC 22260
TGGGATGGCT CTAGCCGTTC CGCAGACGGG ATCGATTTCA TGATTTTTTT TGTTTCGTTG 22320
CATAGGGTTT GGTTTGCCCT TTTCCTTTAT TTCAATATAT GCCGTGCACT TGTTTGTCGG 22380
GTCATCTTTT CATGCTTTTT TTTGTCTTGG TTGTGATGAT GTGGTCTGGT TGGGCGGTCG 22440
TTCTAGATCG GAGTAGAATT CTGTTTCAAA CTACCTGGTG GATTTATTAA TTTTGGATCT 22500
GTATGTGTGT GCCATACATA TTCATAGTTA CGAATTGAAG ATGATGGATG GAAATATCGA 22560
TCTAGGATAG GTATACATGT TGATGCGGGT TTTACTGATG CATATACAGA GATGCTTTTT 22620
GTTCGCTTGG TTGTGATGAT GTGGTGTGGT TGGGCGGTCG TTCATTCGTT CTAGATCGGA 22680
GTAGAATACT GTTTCAAACT ACCTGGTGTA TTTATTAATT TTGGAACTGT ATGTGTGTGT 227 40
CATACATCTT CATAGTTACG AGTTTAAGAT GGATGGAAAT ATCGATCTAG GATAGGTATA 22800
CATGTTGATG TGGGTTTTAC TGATGCATAT ACATGATGGC ATATGCAGCA TCTATTCATA 22860
TGCTCTAACC TTGAGTACCT ATCTATTATA ATAAACAAGT ATGTTTTATA ATTATTTTGA 22920
TCTTGATATA CTTGGATGAT GGCATATGCA GCAGCTATAT GTGGATTTTT TTAGCCCTGC 22980
CTTCATACGC TATTTATTTG CTTGGTACTG TTTCTTTTGT CGATGCTCAC CCTGTTGTTT 23040
GGTGTTACTT CTGCAGGTCG ACTTTAACTT AGCCTAGGAT CCACACGACA CCATGTCCCC 23100
CGAGCGCCGC CCCGTCGAGA TCCGCCCGGC CACCGCCGCC GACATGGCCG CCGTGTGCGA 23160
CATCGTGAAC CACTACATCG AGACCTCCAC CGTGAACTTC CGCACCGAGC CGCAGACCCC 23220
GCAGGAGTGG ATCGACGACC TGGAGCGCCT CCAGGACCGC TACCCGTGGC TCGTGGCCGA 23280
GGTGGAGGGC GTGGTGGCCG GCATCGCCTA CGCCGGCCCG TGGAAGGCCC GCAACGCCTA 23340
CGACTGGACC GTGGAGTCCA CCGTGTACGT GTCCCACCGC CACCAGCGCC TCGGCCTCGG 234 00
CTCCACCCTC TACACCCACC TCCTCAAGAG CATGGAGGCC CAGGGCTTCA AGTCCGTGGT 234 60
GGCCGTGATC GGCCTCCCGA ACGACCCGTC CGTGCGCCTC CACGAGGCCC TCGGCTACAC 23520
CGCCCGCGGC ACCCTCCGCG CCGCCGGCTA CAAGCACGGC GGCTGGCACG ACGTCGGCTT 23580
CTGGCAGCGC GACTTCGAGC TGCCGGCCCC GCCGCGCCCG GTGCGCCCGG TGACGCAGAT 23640
CTGAGTCGAA ACCTAGACTT GTCCATCTTC TGGATTGGCC AACTTAATTA ATGTATGAAA 23700
TAAAAGGATG CACACATAGT GACATGCTAA TCACTATAAT GTGGGCATCA AAGTTGTGTG 237 60
TTATGTGTAA TTACTAGTTA TCTGAATAAA AGAGAAAGAG ATCATCCATA TTTCTTATCC 23820
TAAATGAATG TCACGTGTCT TTATAATTCT TTGATGAACC AGATGCATTT CATTAACCAA 23880
ATCCATATAC ATATAAATAT TAATCATATA TAATTAATAT CAATTGGGTT AGCAAAACAA 23940
ATCTAGTCTA GGTGTGTTTT GCGAATGCGG CCGCCACCGC GGTGGAGCTC GAATTCATTC 24 000
CGATTAATCG TGGCCTCTTG CTCTTCAGGA TGAAGAGCTA TGTTTAAACG TGCAAGCGCT 24060
ACTAGACAAT TCAGTACATT AAAAACGTCC GCAATGTGTT ATTAAGTTGT CTAAGCGTCA 24120
ATTTGTTTAC ACCACAATAT ATCCTGCCAC CAGCCAGCCA ACAGCTCCCC GACCGGCAGC 24180
TCGGCACAAA ATCACCACTC GATACAGGCA GCCCATCAGT CCGGGACGGC GTCAGCGGGA 24240
GAGCCGTTGT AAGGCGGCAG ACTTTGCTCA TGTTACCGAT GCTATTCGGA AGAACGGCAA 24 300
CTAAGCTGCC GGGTTTGAAA CACGGATGAT CTCGCGGAGG GTAGCATGTT GATTGTAACG 24 360
ATGACAGAGC GTTGCTGCCT GTGATCAAAT ATCATCTCCC TCGCAGAGAT CCGAATTATC 24420
AGCCTTCTTA TTCATTTCTC GCTTAACCGT GACAGGCTGT CGATCTTGAG AACTATGCCG 24 480
ACATAATAGG AAATCGCTGG ATAAAGCCGC TGAGGAAGCT GAGTGGCGCT ATTTCTTTAG 24 540
AAGTGAACGT TGACGATCGT CGACCGTACC CCGATGAATT AATTCGGACG TACGTTCTGA 24 600
ACACAGCTGG ATACTTACTT GGGCGATTGT CATACATGAC ATCAACAATG TACCCGTTTG 24 660
TGTAACCGTC TCTTGGAGGT TCGTATGACA CTAGTGGTTC CCCTCAGCTT GCGACTAGAT 24 720
GTTGAGGCCT AACATTTTAT TAGAGAGCAG GCTAGTTGCT TAGATACATG ATCTTCAGGC 24 780
CGTTATCTGT CAGGGCAAGC GAAAATTGGC CATTTATGAC GACCAATGCC CCGCAGAAGC 24840
TCCCATCTTT GCCGCCATAG ACGCCGCGCC CCCCTTTTGG GGTGTAGAAC ATCCTTTTGC 24 900
CAGATGTGGA AAAGAAGTTC GTTGTCCCAT TGTTGGCAAT GACGTAGTAG CCGGCGAAAG 24960
TGCGAGACCC ATTTGCGCTA TATATAAGCC TACGATTTCC GTTGCGACTA TTGTCGTAAT 25020
TGGATGAACT ATTATCGTAG TTGCTCTCAG AGTTGTCGTA ATTTGATGGA CTATTGTCGT 25080
AATTGCTTAT GGAGTTGTCG TAGTTGCTTG GAGAAATGTC GTAGTTGGAT GGGGAGTAGT 25140
CATAGGGAAG ACGAGCTTCA TCCACTAAAA CAATTGGCAG GTCAGCAAGT GCCTGCCCCG 25200
ATGCCATCGC AAGTACGAGG CTTAGAACCA CCTTCAACAG ATCGCGCATA GTCTTCCCCA 252 60
GCTCTCTAAC GCTTGAGTTA AGCCGCGCCG CGAAGCGGCG TCGGCTTGAA CGAATTGTTA 25320
GACATTATTT GCCGACTACC TTGGTGATCT CGCCTTTCAC GTAGTGAACA AATTCTTCCA 25380
ACTGATCTGC GCGCGAGGCC AAGCGATCTT CTTGTCCAAG ATAAGCCTGC CTAGCTTCAA 25440GTATGACGGG CTGATACTGG GCCGGCAGGC GCTCCATTGC CCAGTCGGCA GCGACATCCT 25500
TCGGCGCGAT TTTGCCGGTT ACTGCGCTGT ACCAAATGCG GGACAACGTA AGCACTACAT 25560
TTCGCTCATC GCCAGCCCAG TCGGGCGGCG AGTTCCATAG CGTTAAGGTT TCATTTAGCG 25620
CCTCAAATAG ATCCTGTTCA GGAACCGGAT CAAAGAGTTC CTCCGCCGCT GGACCTACCA 25680
AGGCAACGCT ATGTTCTCTT GCTTTTGTCA GCAAGATAGC CAGATCAATG TCGATCGTGG 25740
CTGGCTCGAA GATACCTGCA AGAATGTCAT TGCGCTGCCA TTCTCCAAAT TGCAGTTCGC 25800
GCTTAGCTGG ATAACGCCAC GGAATGATGT CGTCGTGCAC AACAATGGTG ACTTCTACAG 258 60
CGCGGAGAAT CTCGCTCTCT CCAGGGGAAG CCGAAGTTTC CAAAAGGTCG TTGATCAAAG 25920
CTCGCCGCGT TGTTTCATCA AGCCTTACAG TCACCGTAAC CAGCAAATCA ATATCACTGT 25980
GTGGCTTCAG GCCGCCATCC ACTGCGGAGC CGTACAAATG TACGGCCAGC AACGTCGGTT 2604 0
CGAGATGGCG CTCGATGACG CCAACTACCT CTGATAGTTG AGTCGATACT TCGGCGATCA 2 6100
CCGCTTCCCT CATGATGTTT AACTCCTGAA TTAAGCCGCG CCGCGAAGCG GTGTCGGCTT 2 6160
GAATGAATTG TTAGGCGTCA TCCTGTGCTC CCGAGAACCA GTACCAGTAC ATCGCTGTTT 2 6220
CGTTCGAGAC TTGAGGTCTA GTTTTATACG TGAACAGGTC AATGCCGCCG AGAGTAAAGC 26280
CACATTTTGC GTACAAATTG CAGGCAGGTA CATTGTTCGT TTGTGTCTCT AATCGTATGC 2 634 0
CAAGGAGCTG TCTGCTTAGT GCCCACTTTT TCGCAAATTC GATGAGACTG TGCGCGACTC 26400
CTTTGCCTCG GTGCGTGTGC GACACAACAA TGTGTTCGAT AGAGGCTAGA TCGTTCCATG 2 64 60
TTGAGTTGAG TTCAATCTTC CCGACAAGCT CTTGGTCGAT GAATGCGCCA TAGCAAGCAG 2 6520
AGTCTTCATC AGAGTCATCA TCCGAGATGT AATCCTTCCG GTAGGGGCTC ACACTTCTGG 2 6580
TAGATAGTTC AAAGCCTTGG TCGGATAGGT GCACATCGAA CACTTCACGA ACAATGAAAT 2 6640
GGTTCTCAGC ATCCAATGTT TCCGCCACCT GCTCAGGGAT CACCGAAATC TTCATATGAC 2 6700
GCCTAACGCC TGGCACAGCG GATCGCAAAC CTGGCGCGGC TTTTGGCACA AAAGGCGTGA 2 67 60
CAGGTTTGCG AATCCGTTGC TGCCACTTGT TAACCCTTTT GCCAGATTTG GTAACTATAA 2 6820
TTTATGTTAG AGGCGAAGTC TTGGGTAAAA ACTGGCCTAA AATTGCTGGG GATTTCAGGA 26880
AAGTAAACAT CACCTTCCGG CTCGATGTCT ATTGTAGATA TATGTAGTGT ATCTACTTGA 26940
TCGGGGGATC TGCTGCCTCG CGCGTTTCGG TGATGACGGT GAAAACCTCT GACACATGCA 27 000
GCTCCCGGAG ACGGTCACAG CTTGTCTGTA AGCGGATGCC GGGAGCAGAC AAGCCCGTCA 27060
GGGCGCGTCA GCGGGTGTTG GCGGGTGTCG GGGCGCAGCC ATGACCCAGT CACGTAGCGA 27120
TAGCGGAGTG TATACTGGCT TAACTATGCG GCATCAGAGC AGATTGTACT GAGAGTGCAC 27180
CATATGCGGT GTGAAATACC GCACAGATGC GTAAGGAGAA AATACCGCAT CAGGCGCTCT 2724 0
TCCGCTTCCT CGCTCACTGA CTCGCTGCGC TCGGTCGTTC GGCTGCGGCG AGCGGTATCA 27300
GCTCACTCAA AGGCGGTAAT ACGGTTATCC ACAGAATCAG GGGATAACGC AGGAAAGAAC 27360
ATGTGAGCAA AAGGCCAGCA AAAGGCCAGG AACCGTAAAA AGGCCGCGTT GCTGGCGTTT 27 4 20
TTCCATAGGC TCCGCCCCCC TGACGAGCAT CACAAAAATC GACGCTCAAG TCAGAGGTGG 274 80
CGAAACCCGA CAGGACTATA AAGATACCAG GCGTTTCCCC CTGGAAGCTC CCTCGTGCGC 2754 0
TCTCCTGTTC CGACCCTGCC GCTTACCGGA TACCTGTCCG CCTTTCTCCC TTCGGGAAGC 27 600
GTGGCGCTTT CTCATAGCTC ACGCTGTAGG TATCTCAGTT CGGTGTAGGT CGTTCGCTCC 27660
AAGCTGGGCT GTGTGCACGA ACCCCCCGTT CAGCCCGACC GCTGCGCCTT ATCCGGTAAC 27720
TATCGTCTTG AGTCCAACCC GGTAAGACAC GACTTATCGC CACTGGCAGC AGCCACTGGT 277 80
AACAGGATTA GCAGAGCGAG GTATGTAGGC GGTGCTACAG AGTTCTTGAA GTGGTGGCCT 27840
AACTACGGCT ACACTAGAAG GACAGTATTT GGTATCTGCG CTCTGCTGAA GCCAGTTACC 27 900
TTCGGAAAAA GAGTTGGTAG CTCTTGATCC GGCAAACAAA CCACCGCTGG TAGCGGTGGT 27 960
TTTTTTGTTT GCAAGCAGCA GATTACGCGC AGAAAAAAAG GATCTCAAGA AGATCCTTTG 28020
ATCTTTTCTA CGGGGTCTGA CGCTCAGTGG AACGAAAACT CACGTTAAGG GATTTTGGTC 28080
ATGAGATTAT CAAAAAGGAT CTTCACCTAG ATCCTTTTAA ATTAAAAATG AAGTTTTAAA 28140
TCAATCTAAA GTATATATGA GTAAACTTGG TCTGACAGTT ACCAATGCTT AATCAGTGAG 28200
GCACCTATCT CAGCGATCTG TCTATTTCGT TCATCCATAG TTGCCTGACT CCCCGTCGTG 28260
TAGATAACTA CGATACGGGA GGGCTTACCA TCTGGCCCCA GTGCTGCAAT GATACCGCGA 28320
GACCCACGCT CACCGGCTCC AGATTTATCA GCAATAAACC AGCCAGCCGG AAGGGCCGAG 28380
CGCAGAAGTG GTCCTGCAAC TTTATCCGCC TCCATCCAGT CTATTAATTG TTGCCGGGAA 284 4 0
GCTAGAGTAA GTAGTTCGCC AGTTAATAGT TTGCGCAACG TTGTTGCCAT TGCTGCAGGG 28500
GGGGGGGGGG GGGGGGACTT CCATTGTTCA TTCCACGGAC AAAAACAGAG AAAGGAAACG 28560
ACAGAGGCCA AAAAGCCTCG CTTTCAGCAC CTGTCGTTTC CTTTCTTTTC AGAGGGTATT 28 620
TTAAATAAAA ACATTAAGTT ATGACGAAGA AGAACGGAAA CGCCTTAAAC CGGAAAATTT 28 680
TCATAAATAG CGAAAACCCG CGAGGTCGCC GCCCCGTAAG CCGCCCCGTA ACCTGTCGGA 2874 0
TCACCGGAAA GGACCCGTAA AGTGATAATG ATTATCATCT ACATATCACA ACGTGCGTGG 28800
AGGCCATCAA ACCACGTCAA ATAATCAATT ATGACGCAGG TATCGTATTA ATTGATCTGC 288 60
ATCAACTTAA CGTAAAAACA ACTTCAGACA ATACAAATCA GCGACACTGA ATACGGGGCA 28920
ACCTCATGTC CCCCCCCCCC CCCCCCCTGC AGGCATCGTG GTGTCACGCT CGTCGTTTGG 28 980TATGGCTTCA TTCAGCTCCG GTTCCCAACG ATCAAGGCGA GTTACATGAT CCCCCATGTT 2904 0
GTGCAAAAAA GCGGTTAGCT CCTTCGGTCC TCCGATCGTT GTCAGAAGTA AGTTGGCCGC 29100
AGTGTTATCA CTCATGGTTA TGGCAGCACT GCATAATTCT CTTACTGTCA TGCCATCCGT 29160
AAGATGCTTT TCTGTGACTG GTGAGTACTC AACCAAGTCA TTCTGAGAAT AGTGTATGCG 29220
GCGACCGAGT TGCTCTTGCC CGGCGTCAAC ACGGGATAAT ACCGCGCCAC ATAGCAGAAC 2 9280
TTTAAAAGTG CTCATCATTG GAAAACGTTC TTCGGGGCGA AAACTCTCAA GGATCTTACC 2934 0
GCTGTTGAGA TCCAGTTCGA TGTAACCCAC TCGTGCACCC AACTGATCTT CAGCATCTTT 294 00
TACTTTCACC AGCGTTTCTG GGTGAGCAAA AACAGGAAGG CAAAATGCCG CAAAAAAGGG 294 60
AATAAGGGCG ACACGGAAAT GTTGAATACT CATACTCTTC CTTTTTCAAT ATTATTGAAG 29520
CATTTATCAG GGTTATTGTC TCATGAGCGG ATACATATTT GAATGTATTT AGAAAAATAA 29580
ACAAATAGGG GTTCCGCGCA CATTTCCCCG AAAAGTGCCA CCTGACGTCT AAGAAACCAT 29640
TATTATCATG ACATTAACCT ATAAAAATAG GCGTATCACG AGGCCCTTTC GTCTTCAAGA 297 00
ATTCGGAGCT TTTGCCATTC TCACCGGATT CAGTCGTCAC TCATGGTGAT TTCTCACTTG 297 60
ATAACCTTAT TTTTGACGAG GGGAAATTAA TAGGTTGTAT TGATGTTGGA CGAGTCGGAA 29820
TCGCAGACCG ATACCAGGAT CTTGCCATCC TATGGAACTG CCTCGGTGAG TTTTCTCCTT 29880
CATTACAGAA ACGGCTTTTT CAAAAATATG GTATTGATAA TCCTGATATG AATAAATTGC 2994 0
AGTTTCATTT GATGCTCGAT GAGTTTTTCT AATCAGAATT GGTTAATTGG TTGTAACACT 30000
GGCAGAGCAT TACGCTGACT TGACGGGACG GCGGCTTTGT TGAATAAATC GAACTTTTGC 30060
TGAGTTGAAG GATCAGATCA CGCATCTTCC CGACAACGCA GACCGTTCCG TGGCAAAGCA 30120
AAAGTTCAAA ATCACCAACT GGTCCACCTA CAACAAAGCT CTCATCAACC GTGGCTCCCT 30180
CACTTTCTGG CTGGATGATG GGGCGATTCA GGCCTGGTAT GAGTCAGCAA CACCTTCTTC 30240
ACGAGGCAGA CCTCAGCGCC AGAAGGCCGC CAGAGAGGCC GAGCGCGGCC GTGAGGCTTG 30300
GACGCTAGGG CAGGGCATGA AAAAGCCCGT AGCGGGCTGC TACGGGCGTC TGACGCGGTG 30360
GAAAGGGGGA GGGGATGTTG TCTACATGGC TCTGCTGTAG TGAGTGGGTT GCGCTCCGGC 30420
AGCGGTCCTG ATCAATCGTC ACCCTTTCTC GGTCCTTCAA CGTTCCTGAC AACGAGCCTC 304 80
CTTTTCGCCA ATCCATCGAC AATCACCGCG AGTCCCTGCT CGAACGCTGC GTCCGGACCG 3054 0
GCTTCGTCGA AGGCGTCTAT CGCGGCCCGC AACAGCGGCG AGAGCGGAGC CTGTTCAACG 30600
GTGCCGCCGC GCTCGCCGGC ATCGCTGTCG CCGGCCTGCT CCTCAAGCAC GGCCCCAACA 30660
GTGAAGTAGC TGATTGTCAT CAGCGCATTG ACGGCGTCCC CGGCCGAAAA ACCCGCCTCG 30720
CAGAGGAAGC GAAGCTGCGC GTCGGCCGTT TCCATCTGCG GTGCGCCCGG TCGCGTGCCG 30780
GCATGGATGC GCGCGCCATC GCGGTAGGCG AGCAGCGCCT GCCTGAAGCT GCGGGCATTC 30840
CCGATCAGAA ATGAGCGCCA GTCGTCGTCG GCTCTCGGCA CCGAATGCGT ATGATTCTCC 30900
GCCAGCATGG CTTCGGCCAG TGCGTCGAGC AGCGCCCGCT TGTTCCTGAA GTGCCAGTAA 30960
AGCGCCGGCT GCTGAACCCC CAACCGTTCC GCCAGTTTGC GTGTCGTCAG ACCGTCTACG 31020
CCGACCTCGT TCAACAGGTC CAGGGCGGCA CGGATCACTG TATTCGGCTG CAACTTTGTC 31080
ATGCTTGACA CTTTATCACT GATAAACATA ATATGTCCAC CAACTTATCA GTGATAAAGA 3114 0
ATCCGCGCGT TCAATCGGAC CAGCGGAGGC TGGTCCGGAG GCCAGACGTG AAACCCAACA 31200
TACCCCTGAT CGTAATTCTG AGCACTGTCG CGCTCGACGC TGTCGGCATC GGCCTGATTA 312 60
TGCCGGTGCT GCCGGGCCTC CTGCGCGATC TGGTTCACTC GAACGACGTC ACCGCCCACT 31320
ATGGCATTCT GCTGGCGCTG TATGCGTTGG TGCAATTTGC CTGCGCACCT GTGCTGGGCG 31380
CGCTGTCGGA TCGTTTCGGG CGGCGGCCAA TCTTGCTCGT CTCGCTGGCC GGCGCCACTG 31440
TCGACTACGC CATCATGGCG ACAGCGCCTT TCCTTTGGGT TCTCTATATC GGGCGGATCG 31500
TGGCCGGCAT CACCGGGGCG ACTGGGGCGG TAGCCGGCGC TTATATTGCC GATATCACTG 31560
ATGGCGATGA GCGCGCGCGG CACTTCGGCT TCATGAGCGC CTGTTTCGGG TTCGGGATGG 31620
TCGCGGGACC TGTGCTCGGT GGGCTGATGG GCGGTTTCTC CCCCCACGCT CCGTTCTTCG 31680
CCGCGGCAGC CTTGAACGGC CTCAATTTCC TGACGGGCTG TTTCCTTTTG CCGGAGTCGC 3174 0
ACAAAGGCGA ACGCCGGCCG TTACGCCGGG AGGCTCTCAA CCCGCTCGCT TCGTTCCGGT 31800
GGGCCCGGGG CATGACCGTC GTCGCCGCCC TGATGGCGGT CTTCTTCATC ATGCAACTTG 31860
TCGGACAGGT GCCGGCCGCG CTTTGGGTCA TTTTCGGCGA GGATCGCTTT CACTGGGACG 31920
CGACCACGAT CGGCATTTCG CTTGCCGCAT TTGGCATTCT GCATTCACTC GCCCAGGCAA 31980
TGATCACCGG CCCTGTAGCC GCCCGGCTCG GCGAAAGGCG GGCACTCATG CTCGGAATGA 32040
TTGCCGACGG CACAGGCTAC ATCCTGCTTG CCTTCGCGAC ACGGGGATGG ATGGCGTTCC 32100
CGATCATGGT CCTGCTTGCT TCGGGTGGCA TCGGAATGCC GGCGCTGCAA GCAATGTTGT 32160
CCAGGCAGGT GGATGAGGAA CGTCAGGGGC AGCTGCAAGG CTCACTGGCG GCGCTCACCA 32220
GCCTGACCTC GATCGTCGGA CCCCTCCTCT TCACGGCGAT CTATGCGGCT TCTATAACAA 32280
CGTGGAACGG GTGGGCATGG ATTGCAGGCG CTGCCCTCTA CTTGCTCTGC CTGCCGGCGC 32340
TGCGTCGCGG GCTTTGGAGC GGCGCAGGGC AACGAGCCGA TCGCTGATCG TGGAAACGAT 324 00
AGGCCTATGC CATGCGGGTC AAGGCGACTT CCGGCAAGCT ATACGCGCCC TAGGAGTGCG 324 60
GTTGGAACGT TGGCCCAGCC AGATACTCCC GATCACGAGC AGGACGCCGA TGATTTGAAG 32520CGCACTCAGC GTCTGATCCA AGAACAACCA TCCTAGCAAC ACGGCGGTCC CCGGGCTGAG 32580
AAAGCCCAGT AAGGAAACAA CTGTAGGTTC GAGTCGCGAG ATCCCCCGGA ACCAAAGGAA 3264 0
GTAGGTTAAA CCCGCTCCGA TCAGGCCGAG CCACGCCAGG CCGAGAACAT TGGTTCCTGT 327 00
AGGCATCGGG ATTGGCGGAT CAAACACTAA AGCTACTGGA ACGAGCAGAA GTCCTCCGGC 32760
CGCCAGTTGC CAGGCGGTAA AGGTGAGCAG AGGCACGGGA GGTTGCCACT TGCGGGTCAG 32820
CACGGTTCCG AACGCCATGG AAACCGCCCC CGCCAGGCCC GCTGCGACGC CGACAGGATC 32880
TAGCGCTGCG TTTGGTGTCA ACACCAACAG CGCCACGCCC GCAGTTCCGC AAATAGCCCC 3294 0
CAGGACCGCC ATCAATCGTA TCGGGCTACC TAGCAGAGCG GCAGAGATGA ACACGACCAT 33000
CAGCGGCTGC ACAGCGCCTA CCGTCGCCGC GACCCCGCCC GGCAGGCGGT AGACCGAAAT 33060
AAACAACAAG CTCCAGAATA GCGAAATATT AAGTGCGCCG AGGATGAAGA TGCGCATCCA 33120
CCAGATTCCC GTTGGAATCT GTCGGACGAT CATCACGAGC AATAAACCCG CCGGCAACGC 33180
CCGCAGCAGC ATACCGGCGA CCCCTCGGCC TCGCTGTTCG GGCTCCACGA AAACGCCGGA 3324 0
CAGATGCGCC TTGTGAGCGT CCTTGGGGCC GTCCTCCTGT TTGAAGACCG ACAGCCCAAT 33300
GATCTCGCCG TCGATGTAGG CGCCGAATGC CACGGCATCT CGCAACCGTT CAGCGAACGC 33360
CTCCATGGGC TTTTTCTCCT CGTGCTCGTA AACGGACCCG AACATCTCTG GAGCTTTCTT 33420
CAGGGCCGAC AATCGGATCT CGCGGAAATC CTGCACGTCG GCCGCTCCAA GCCGTCGAAT 33480
CTGAGCCTTA ATCACAATTG TCAATTTTAA TCCTCTGTTT ATCGGCAGTT CGTAGAGCGC 33540
GCCGTGCGTC CCGAGCGATA CTGAGCGAAG CAAGTGCGTC GAGCAGTGCC CGCTTGTTCC 33600
TGAAATGCCA GTAAAGCGCT GGCTGCTGAA CCCCCAGCCG GAACTGACCC CACAAGGCCC 33660
TAGCGTTTGC AATGCACCAG GTCATCATTG ACCCAGGCGT GTTCCACCAG GCCGCTGCCT 33720
CGCAACTCTT CGCAGGCTTC GCCGACCTGC TCGCGCCACT TCTTCACGCG GGTGGAATCC 33780
GATCCGCACA TGAGGCGGAA GGTTTCCAGC TTGAGCGGGT ACGGCTCCCG GTGCGAGCTG 338 4 0
AAATAGTCGA ACATCCGTCG GGCCGTCGGC GACAGCTTGC GGTACTTCTC CCATATGAAT 33900
TTCGTGTAGT GGTCGCCAGC AAACAGCACG ACGATTTCCT CGTCGATCAG GACCTGGCAA 33960
CGGGACGTTT TCTTGCCACG GTCCAGGACG CGGAAGCGGT GCAGCAGCGA CACCGATTCC 34 020
AGGTGCCCAA CGCGGTCGGA CGTGAAGCCC ATCGCCGTCG CCTGTAGGCG CGACAGGCAT 34 080
TCCTCGGCCT TCGTGTAATA CCGGCCATTG ATCGACCAGC CCAGGTCCTG GCAAAGCTCG 3414 0
TAGAACGTGA AGGTGATCGG CTCGCCGATA GGGGTGCGCT TCGCGTACTC CAACACCTGC 34 200
TGCCACACCA GTTCGTCATC GTCGGCCCGC AGCTCGACGC CGGTGTAGGT GATCTTCACG 34 2 60
TCCTTGTTGA CGTGGAAAAT GACCTTGTTT TGCAGCGCCT CGCGCGGGAT TTTCTTGTTG 34 320
CGCGTGGTGA ACAGGGCAGA GCGGGCCGTG TCGTTTGGCA TCGCTCGCAT CGTGTCCGGC 34 380
CACGGCGCAA TATCGAACAA GGAAAGCTGC ATTTCCTTGA TCTGCTGCTT CGTGTGTTTC 344 40
AGCAACGCGG CCTGCTTGGC CTCGCTGACC TGTTTTGCCA GGTCCTCGCC GGCGGTTTTT 34 500
CGCTTCTTGG TCGTCATAGT TCCTCGCGTG TCGATGGTCA TCGACTTCGC CAAACCTGCC 34560
GCCTCCTGTT CGAGACGACG CGAACGCTCC ACGGCGGCCG ATGGCGCGGG CAGGGCAGGG 34 620
GGAGCCAGTT GCACGCTGTC GCGCTCGATC TTGGCCGTAG CTTGCTGGAC CATCGAGCCG 34 680
ACGGACTGGA AGGTTTCGCG GGGCGCACGC ATGACGGTGC GGCTTGCGAT GGTTTCGGCA 34 740
TCCTCGGCGG AAAACCCCGC GTCGATCAGT TCTTGCCTGT ATGCCTTCCG GTCAAACGTC 34 800
CGATTCATTC ACCCTCCTTG CGGGATTGCC CCGACTCACG CCGGGGCAAT GTGCCCTTAT 34 860
TCCTGATTTG ACCCGCCTGG TGCCTTGGTG TCCAGATAAT CCACCTTATC GGCAATGAAG 34 920
TCGGTCCCGT AGACCGTCTG GCCGTCCTTC TCGTACTTGG TATTCCGAAT CTTGCCCTGC 34 980
ACGAATACCA GCGACCCCTT GCCCAAATAC TTGCCGTGGG CCTCGGCCTG AGAGCCAAAA 3504 0
CACTTGATGC GGAAGAAGTC GGTGCGCTCC TGCTTGTCGC CGGCATCGTT GCGCCACTCT 35100
TCATTAACCG CTATATCGAA AATTGCTTGC GGCTTGTTAG AATTGCCATG ACGTACCTCG 35160
GTGTCACGGG TAAGATTACC GATAAACTGG AACTGATTAT GGCTCATATC GAAAGTCTCC 35220
TTGAGAAAGG AGACTCTAGT TTAGCTAAAC ATTGGTTCCG CTGTCAAGAA CTTTAGCGGC 35280
TAAAATTTTG CGGGCCGCGA CCAAAGGTGC GAGGGGCGGC TTCCGCTGTG TACAACCAGA 35340
TATTTTTCAC CAACATCCTT CGTCTGCTCG ATGAGCGGGG CATGACGAAA CATGAGCTGT 354 00
CGGAGAGGGC AGGGGTTTCA ATTTCGTTTT TATCAGACTT AACCAACGGT AAGGCCAACC 354 60
CCTCGTTGAA GGTGATGGAG GCCATTGCCG ACGCCCTGGA AACTCCCCTA CCTCTTCTCC 35520
TGGAGTCCAC CGACCTTGAC CGCGAGGCAC TCGCGGAGAT TGCGGGTCAT CCTTTCAAGA 35580
GCAGCGTGCC GCCCGGATAC GAACGCATCA GTGTGGTTTT GCCGTCACAT AAGGCGTTTA 3564 0
TCGTAAAGAA ATGGGGCGAC GACACCCGAA AAAAGCTGCG TGGAAGGCTC TGACGCCAAG 35700
GGTTAGGGCT TGCACTTCCT TCTTTAGCCG CTAAAACGGC CCCTTCTCTG CGGGCCGTCG 35760
GCTCGCGCAT CATATCGACA TCCTCAACGG AAGCCGTGCC GCGAATGGCA TCGGGCGGGT 35820
GCGCTTTGAC AGTTGTTTTC TATCAGAACC CCTACGTCGT GCGGTTCGAT TAGCTGTTTG 35880
TCTTGCAGGC TAAACACTTT CGGTATATCG TTTGCCTGTG CGATAATGTT GCTAATGATT 3594 0
TGTTGCGTAG GGGTTACTGA AAAGTGAGCG GGAAAGAAGA GTTTCAGACC ATCAAGGAGC 36000
GGGCCAAGCG CAAGCTGGAA CGCGACATGG GTGCGGACCT GTTGGCCGCG CTCAACGACC 36060CGAAAACCGT TGAAGTCATG CTCAACGCGGAGCCGATGCG GTACATCTGC GACATGCGGCTGGCCGGATT CCACGGCAAA GAGGTCACGCCCTTGGATGG CAGCCGCTTT GCCGGCCAATCGATCCGCAA GCGCGCGGTC GCCATCTTCATGACCCGCGA GCAATACGAG GTCATTAAAATCATTGGCGG TACTGGCTCG GGCAAGACCATCGCCTTCAA CCCGTCTGAG CGCGTCGTCACCGCAGAGAA CGCCGTCCAA TACCACACCAAGACAACGCT GCGTATGCGC CCCGACCGCACCCTTGATCT GTTGATGGCC TGGAACACCGCAAACAACCC CAAAGCGGGC CTGAGCCGGCCACCGAAACC CATTGAGCCG CTGATTGGCGGGACCCCTAG CGGCCGTCGA GTGCAAGAAAAGTACATCAC CAAAACCCTG TAAGGAGTATTGACCATGAA TCGCGGCATT TTGTTCTACCTATCCGCGCA TCCGGCGATG GCCTCGGAAGGGCTGACGAA CCTGCGCAAC TCCGTAACCGGCATCGTCGT CGCCGGCGGC GTGCTGATCTCCCTGATCTT CCTGGTTCTG GTGATGGCGCCCTTCTTCGG TCGTGGTGCC GAAATCGCGGAAGTCGCGGC GGCGGATGCC GTGCGTGCGGTCTGCGCACG ATCCCCATCC GTCGCGCAGGTCGTGAACTG GTGATGTTCT CGGGCCTGATGCTGCGGGCC ACCGTGGTCG GTCTGATCCTCATGGCGAAG GCCGATCCGA AGATGCGGTTGTATTACCCG GCCCGCTCGA CCCCGTTCCGCCGATGATCC AAGCAATTGC GATTGCAATCCTCTTTGCCC GCATCCGCGC GGTCGATGCCGACGCCGGCC TGGCCGATCT GCTCAACTACGGCAAGAACG GCAGCTTTAT GGCTGCCTGGACCGACCAGC AGCGCGAAGT AGTGTCCGCCAGTGGGTGGA TGATCCATGT GGACGCCGTGGGCCTGTCGG CGTTCCCTGA CCGTCTGACGCCTTGCTCGT CGGTGATGTA CTTCACCAGCATGGGGACGT GCTTGGCAAT CACGCGCACCTGGCTCTGCC CTCGGGCGGA CCACGCCCATTTCGATCTTC GCCAGCAGGG CGAGGATCGTGTCGGTGAGC CAGAGTTTCA GCAGGCCGCCCAGCTCGCGG ACGTGCTCAT AGTCCACGACCAGCAGGTAG GCCGACAGGC TCATGCCGGCTTCGTCTGGA AGGCAGTACA CCTTGATAGGATCAGCCATC CGCTTGCCCT CATCTGTTACAGGATTCCCG TTGAGCACCG CCAGGTGCGACGCGGGTGGG CCTACTTCAC CTATCCTGCCGTCTACACGA ACCCTTTGGC AAAATCCTGTAAAAATCGCT ATAATGACCC CGAAGCAGGGTGTTTTGTGG AATATCTACC GACTGGAAACGGACAGGCGA GAGACGATGC CAAAGAGCTACCGCGCGGCC AAGAAGCGCC GGCGTGATGAGGATGTCGAG GCGGCGTTAG CGTCCGGCTAGGAAACGGGG AAGGTCAAGT TCTCCTACGACAAGGCCAAG CCCGCCGATG TGCCCGCACCACCCAAGACG CCGGAGCCAC GGCGGCCGAACGCTGCGGCC CCGACCGGCT TCACCTTCAAATGGCGAAAA TTCACATGGT TTTGCAGGGCGCGATCATTG CGCAGTACAA GATGGACAAGCCGGTGAACG CGACGTTCGA GGGCTACAAGGCCGGCGACG AAATTAACTC GCGCAACTTC
ACGGCAAGGT GTGGCACGAA CGCCTTGGCG 36120
CCAGCCAGTC GCAGGCGATT ATAGAAACGG 36180
GGCATTCGCC CATCCTGGAA GGCGAGTTCC 36240
TGCCGCCGGT CGTGGCCGCG CCAACCTTTG 36300
CGCTGGAACA GTACGTCGAG GCGGGCATCA 36360
GCGCCGTCGC GGCGCATCGA AACATCCTCG 36420
CGCTCGTCAA CGCGATCATC AATGAAATGG 36480
TCATCGAGGA CACCGGCGAA ATCCAGTGCG 36540
GCATCGACGT CTCGATGACG CTGCTGCTCA 36600
TCCTGGTCGG TGAGGTACGT GGCCCCGAAG 36660
GGCATGAAGG AGGTGCCGCC ACCCTGCACG 36720
TCGCCATGCT TATCAGCATG CACCCGGATT 36780
AGGCGGTTCA TGTGGTCGTC CATATCGCCA 36840
TTCTCGAAGT TCTTGGTTAC GAGAACGGCC 36900
TTCCAATGAC AACGGCTGTT CCGTTCCGTC 36960
TTGCCGTGTT CTTCGTTCTC GCTCTCGCGT 37020
GCACCGGCGG CAGCTTGCCA TATGAGAGCT 37080
GCCCGGTGGC CTTCGCGCTG TCCATCATCG 37140
TCGGCGGCGA ACTCAACGCC TTCTTCCGAA 37200
TGCTGGTCGG CGCGCAGAAC GTGATGAGCA 37260
CCCTCGGCAA CGGGGCGCTG CACCAGGTGC 37320
TAGCGGCTGG ACGGCTCGCC TAATCATGGC 37 380
CAACCGAGAA AACCTGTTCA TGGGTGGTGA 374 4 0
GGCGTTTGCG CTGATTTTCA GCGCCCAAGA 37500
GTGGTTCGGG GCGCTCTATG CGTTCCGAAT 37560
CGTGTACCTG CGTCACCGCC GGTACAAGCC 37 620
CGAGAACACC AATAGCCAAG GGAAGCAATA 37 680
GCGGGCCTCG GCGCGCTTCT GTTGTTCATC 37740
GAACTGAAAC TGAAAAAGCA TCGTTCCAAG 37 800
GCCGCTGTCG TCGATGACGG CGTAATCGTG 378 60
CTGTACAAGG GCGATGACAA CGCAAGCAGC 37920
CGCATCAACC AGGCCCTCGC GGGCCTGGGA 37 980
CGGCGTCCTG CTCCGAACTA CGCGGAGCGG 3804 0
GCAGCGATTG AAGAAGAGCG CTCGGTCTTG 38100
TCCGCGAAGT CGCTCTTCTT GATGGAGCGC 38160
CCCCGGCCGT TTTAGCGGCT AAAAAAGTCA 38220
CATGACCTTG CCAAGCTCGT CCTGCTTCTC 38280
GGCATCACCG AACCGCGCCG TGCGCGGGTC 3834 0
CAGGCGGCCC AGGTCGCCAT TGATGCGGGC 38400
GCCCGTGATT TTGTAGCCCT GGCCGACGGC 384 60
CGCCGCCGCC TTTTCCTCAA TCGCTCTTCG 38520
TGGGCTGCCC TTCCTGGTTG GCTTGGTTTC 38580
GCCGGCGGTA GCCGGCCAGC CTCGCAGAGC 38 640
ATAAGGGACA GTGAAGAAGG AACACCCGCT 38700
CGGCTGACGC CGTTGGATAC ACCAAGGAAA 387 60
ATATCGTGCG AAAAAGGATG GATATACCGA 38820
TTATGCAGCG GAAAAGCGCT GCTTCCCTGC 38880
AGGCAAATGC AGGAAATTAC TGAACTGAGG 38 94 0
CACCGACGAG CTGGCCGAGT GGGTTGAATC 39000
GGCTGCGGTT GCGTTCCTGG CGGTGAGGGC 39060
TGCGCTCGTC ACCATTTGGG AGCACATGCG 39120
GACGTTCCGC TCGCACGCCA GGCGGCACAT 39180
GCAGGCCAAG GCTGCGGAAC CCGCGCCGGC 39240
GCAGGGGGGC AAGGCTGAAA AGCCGGCCCC 39300
CCCAACACCG GACAAAAAGG ATCTACTGTA 39360
AAGGGCGGGG TCGGCAAGTC GGCCATCGCC 39420
GGGCAGACAC CCTTGTGCAT CGACACCGAC 39480
GCCCTGAACG TCCGCCGGCT GAACATCATG 3954 0
GACACCCTGG TCGAGCTGAT TGCGCCGACC 39600AAGGATGACG TGGTGATCGA CAACGGTGCC AGCTCGTTCG TGCCTCTGTC GCATTACCTC 39660
ATCAGCAACC AGGTGCCGGC TCTGCTGCAA GAAATGGGGC ATGAGCTGGT CATCCATACC 39720
GTCGTCACCG GCGGCCAGGC TCTCCTGGAC ACGGTGAGCG GCTTCGCCCA GCTCGCCAGC 39780
CAGTTCCCGG CCGAAGCGCT TTTCGTGGTC TGGCTGAACC CGTATTGGGG GCCTATCGAG 39840
CATGAGGGCA AGAGCTTTGA GCAGATGAAG GCGTACACGG CCAACAAGGC CCGCGTGTCG 39900
TCCATCATCC AGATTCCGGC CCTCAAGGAA GAAACCTACG GCCGCGATTT CAGCGACATG 39960
CTGCAAGAGC GGCTGACGTT CGACCAGGCG CTGGCCGATG AATCGCTCAC GATCATGACG 4 0020
CGGCAACGCC TCAAGATCGT GCGGCGCGGC CTGTTTGAAC AGCTCGACGC GGCGGCCGTG 4 0080
CTATGAGCGA CCAGATTGAA GAGCTGATCC GGGAGATTGC GGCCAAGCAC GGCATCGCCG 4 014 0
TCGGCCGCGA CGACCCGGTG CTGATCCTGC ATACCATCAA CGCCCGGCTC ATGGCCGACA 4 0200
GTGCGGCCAA GCAAGAGGAA ATCCTTGCCG CGTTCAAGGA AGAGCTGGAA GGGATCGCCC 40260
ATCGTTGGGG CGAGGACGCC AAGGCCAAAG CGGAGCGGAT GCTGAACGCG GCCCTGGCGG 4 0320
CCAGCAAGGA CGCAATGGCG AAGGTAATGA AGGACAGCGC CGCGCAGGCG GCCGAAGCGA 4 0380
TCCGCAGGGA AATCGACGAC GGCCTTGGCC GCCAGCTCGC GGCCAAGGTC GCGGACGCGC 4 0440
GGCGCGTGGC GATGATGAAC ATGATCGCCG GCGGCATGGT GTTGTTCGCG GCCGCCCTGG 40500
TGGTGTGGGC CTCGTTATGA ATCGCAGAGG CGCAGATGAA AAAGCCCGGC GTTGCCGGGC 40560
TTTGTTTTTG CGTTAGCTGG GCTTGTTTGA CAGGCCCAAG CTCTGACTGC GCCCGCGCTC 40620
GCGCTCCTGG GCCTGTTTCT TCTCCTGCTC CTGCTTGCGC ATCAGGGCCT GGTGCCGTCG 4 0680
GGCTGCTTCA CGCATCGAAT CCCAGTCGCC GGCCAGCTCG GGATGCTCCG CGCGCATCTT 4 0740
GCGCGTCGCC AGTTCCTCGA TCTTGGGCGC GTGAATGCCC ATGCCTTCCT TGATTTCGCG 4 0800
CACCATGTCC AGCCGCGTGT GCAGGGTCTG CAAGCGGGCT TGCTGTTGGG CCTGCTGCTG 4 08 60
CTGCCAGGCG GCCTTTGTAC GCGGCAGGGA CAGCAAGCCG GGGGCATTGG ACTGTAGCTG 4 0920
CTGCAAACGC GCCTGCTGAC GGTCTACGAG CTGTTCTAGG CGGTCCTCGA TGCGCTCCAC 4 0980
CTGGTCATGC TTTGCCTGCA CGTAGAGCGC AAGGGTCTGC TGGTAGGTCT GCTCGATGGG 4104 0
CGCGGATTCT AAGAGGGCCT GCTGTTCCGT CTCGGCCTCC TGGGCCGCCT GTAGCAAATC 41100
CTCGCCGCTG TTGCCGCTGG ACTGCTTTAC TGCCGGGGAC TGCTGTTGCC CTGCTCGCGC 41160
CGTCGTCGCA GTTCGGCTTG CCCCCACTCG ATTGACTGCT TCATTTCGAG CCGCAGCGAT 41220
GCGATCTCGG ATTGCGTCAA CGGACGGGGC AGCGCGGAGG TGTCCGGCTT CTCCTTGGGT 41280
GAGTCGGTCG ATGCCATAGC CAAAGGTTTC CTTCCAAAAT GCGTCCATTG CTGGACCGTG 41340
TTTCTCATTG ATGCCCGCAA GCATCTTCGG CTTGACCGCC AGGTCAAGCG CGCCTTCATG 414 00
GGCGGTCATG ACGGACGCCG CCATGACCTT GCCGCCGTTG TTCTCGATGT AGCCGCGTAA 414 60
TGAGGCAATG GTGCCGCCCA TCGTCAGCGT GTCATCGACA ACGATGTACT TCTGGCCGGG 41520
GATCACCTCC CCCTCGAAAG TCGGGTTGAA CGCCAGGCGA TGATCTGAAC CGGCTCCGGT 41580
TCGGGCGACC TTCTCCCGCT GCACAATGTC CGTTTCGACC TCAAGGCCAA GGCGGTCGGC 41640
CAGAACGACC GCCATCATGG CCGGAATCTT GTTGTTCCCC GCCGCCTCGA CGGCGAGGAC 41700
TGGAACGATG CGGGGCTTGT CGTCGCCGAT CAGCGTCTTG AGCTGGGCAA CAGTGTCGTC 417 60
CGAAATCAGG CGCTCGACCA AATTAAGCGC CGCTTCCGCG TCGCCCTGCT TCGCAGCCTG 41820
GTATTCAGGC TCGTTGGTCA AAGAACCAAG GTCGCCGTTG CGAACCACCT TCGGGAAGTC 41880
TCCCCACGGT GCGCGCTCGG CTCTGCTGTA GCTGCTCAAG ACGCCTCCCT TTTTAGCCGC 41940
TAAAACTCTA ACGAGTGCGC CCGCGACTCA ACTTGACGCT TTCGGCACTT ACCTGTGCCT 4 2000
TGCCACTTGC GTCATAGGTG ATGCTTTTCG CACTCCCGAT TTCAGGTACT TTATCGAAAT 42060
CTGACCGGGC GTGCATTACA AAGTTCTTCC CCACCTGTTG GTAAATGCTG CCGCTATCTG 42120
CGTGGACGAT GCTGCCGTCG TGGCGCTGCG ACTTATCGGC CTTTTGGGCC ATATAGATGT 42180
TGTAAATGCC AGGTTTCAGG GCCCCGGCTT TATCTACCTT CTGGTTCGTC CATGCGCCTT 4224 0
GGTTCTCGGT CTGGACAATT CTTTGCCCAT TCATGACCAG GAGGCGGTGT TTCATTGGGT 4 2300
GACTCCTGAC GGTTGCCTCT GGTGTTAAAC GTGTCCTGGT CGCTTGCCGG CTAAAAAAAA 4 2360
GCCGACCTCG GCAGTTCGAG GCCGGCTTTC CCTAGAGCCG GGCGCGTCAA GGTTGTTCCA 4 24 20
TCTATTTTAG TGAACTGCGT TCGATTTATC AGTTACTTTC CTCCCGCTTT GTGTTTCCTC 4 2480
CCACTCGTTT CCGCGTCTAG CCGACCCCTC AACATAGCGG CCTCTTCTTG GGCTGCCTTT 4 254 0
GCCTCTTGCC GCGCTTCGTC ACGCTCGGCT TGCACCGTCG TAAAGCGCTC GGCCTGCCTG 4 2 600
GCCGCCTCTT GCGCCGCCAA CTTCCTTTGC TCCTGGTGGG CCTCGGCGTC GGCCTGCGCC 4 2 660
TTCGCTTTCA CCGCTGCCAA CTCCGTGCGC AAACTCTCCG CTTCGCGCCT GGTGGCGTCG 42720
CGCTCGCCGC GAAGCGCCTG CATTTCCTGG TTGGCCGCGT CCAGGGTCTT GCGGCTCTCT 4 27 80
TCTTTGAATG CGCGGGCGTC CTGGTGAGCG TAGTCCAGCT CGGCGCGCAG CTCCTGCGCT 4 2840
CGACGCTCCA CCTCGTCGGC CCGCTGCGTC GCCAGCGCGG CCCGCTGCTC GGCTCCTGCC 4 2900
AGGGCGGTGC GTGCTTCGGC CAGGGCTTGC CGCTGGCGTG CGGCCAGCTC GGCCGCCTCG 42960
GCGGCCTGCT GCTCTAGCAA TGTAACGCGC GCCTGGGCTT CTTCCAGCTC GCGGGCCTGC 4 3020
GCCTCGAAGG CGTCGGCCAG CTCCCCGCGC ACGGCTTCCA ACTCGTTGCG CTCACGATCC 4 3080
CAGCCGGCTT GCGCTGCCTG CAACGATTCA TTGGCAAGGG CCTGGGCGGC TTGCCAGAGG 4 314 0GCGGCCACGG CCTGGTTGCC GGCCTGCTGC ACCGCGTCCG GCACCTGGAC TGCCAGCGGG 43200
GCGGCCTGCG CCGTGCGCTG GCGTCGCCAT TCGCGCATGC CGGCGCTGGC GTCGTTCATG 43260
TTGACGCGGG CGGCCTTACG CACTGCATCC ACGGTCGGGA AGTTCTCCCG GTCGCCTTGC 4 3320
TCGAACAGCT CGTCCGCAGC CGCAAAAATG CGGTCGCGCG TCTCTTTGTT CAGTTCCATG 4 3380
TTGGCTCCGG TAATTGGTAA GAATAATAAT ACTCTTACCT ACCTTATCAG CGCAAGAGTT 4 3440
TAGCTGAACA GTTCTCGACT TAACGGCAGG TTTTTTAGCG GCTGAAGGGC AGGCAAAAAA 43500
AGCCCCGCAC GGTCGGCGGG GGCAAAGGGT CAGCGGGAAG GGGATTAGCG GGCGTCGGGC 43560
TTCTTCATGC GTCGGGGCCG CGCTTCTTGG GATGGAGCAC GACGAAGCGC GCACGCGCAT 4 3620
CGTCCTCGGC CCTATCGGCC CGCGTCGCGG TCAGGAACTT GTCGCGCGCT AGGTCCTCCC 4 3680
TGGTGGGCAC CAGGGGCATG AACTCGGCCT GCTCGATGTA GGTCCACTCC ATGACCGCAT 43740
CGCAGTCGAG GCCGCGTTCC TTCACCGTCT CTTGCAGGTC GCGGTACGCC CGCTCGTTGA 43800
GCGGCTGGTA ACGGGCCAAT TGGTCGTAAA TGGCTGTCGG CCATGAGCGG CCTTTCCTGT 4 3860
TGAGCCAGCA GCCGACGACG AAGCCGGCAA TGCAGGCCCC TGGCACAACC AGGCCGACGC 43920
CGGGGGCAGG GGATGGCAGC AGCTCGCCAA CCAGGAACCC CGCCGCGATG ATGCCGATGC 4 3980
CGGTCAACCA GCCCTTGAAA CTATCCGGCC CCGAAACACC CCTGCGCATT GCCTGGATGC 4 4 040
TGCGCCGGAT AGCTTGCAAC ATCAGGAGCC GTTTCTTTTG TTCGTCAGTC ATGGTCCGCC 44100
CTCACCAGTT GTTCGTATCG GTGTCGGACG AACTGAAATC GCAAGAGCTG CCGGTATCGG 44160
TCCAGCCGCT GTCCGTGTCG CTGCTGCCGA AGCACGGCGA GGGGTCCGCG AACGCCGCAG 4 4 220
ACGGCGTATC CGGCCGCAGC GCATCGCCCA GCATGGCCCC GGTCAGCGAG CCGCCGGCCA 4 4 280
GGTAGCCCAG CATGGTGCTG TTGGTCGCCC CGGCCACCAG GGCCGACGTG ACGAAATCGC 4 4 340
CGTCATTCCC TCTGGATTGT TCGCTGCTCG GCGGGGCAGT GCGCCGCGCC GGCGGCGTCG 44400
TGGATGGCTC GGGTTGGCTG GCCTGCGACG GCCGGCGAAA GGTGCGCAGC AGCTCGTTAT 444 60
CGACCGGCTG CGGCGTCGGG GCCGCCGCCT TGCGCTGCGG TCGGTGTTCC TTCTTCGGCT 4 4 520
CGCGCAGCTT GAACAGCATG ATCGCGGAAA CCAGCAGCAA CGCCGCGCCT ACGCCTCCCG 4 4 580
CGATGTAGAA CAGCATCGGA TTCATTCTTC GGTCCTCCTT GTAGCGGAAC CGTTGTCTGT 44640
GCGGCGCGGG TGGCCCGCGC CGCTGTCTTT GGGGATCAGC CCTCGATGAG CGCGACCAGT 4 4 700
TTCACGTCGG CAAGGTTCGC CTCGAACTCC TGGCCGTCGT CCTCGTACTT CAACCAGGCA 44760
TAGCCTTCCG CCGGCGGCCG ACGGTTGAGG ATAAGGCGGG CAGGGCGCTC GTCGTGCTCG 4 4 820
ACCTGGACGA TGGCCTTTTT CAGCTTGTCC GGGTCCGGCT CCTTCGCGCC CTTTTCCTTG 44880
GCGTCCTTAC CGTCCTGGTC GCCGTCCTCG CCGTCCTGGC CGTCGCCGGC CTCCGCGTCA 4 4 940
CGCTCGGCAT CAGTCTGGCC GTTGAAGGCA TCGACGGTGT TGGGATCGCG GCCCTTCTCG 45000
TCCAGGAACT CGCGCAGCAG CTTGACCGTG CCGCGCGTGA TTTCCTGGGT GTCGTCGTCA 45060
AGCCACGCCT CGACTTCCTC CGGGCGCTTC TTGAAGGCCG TCACCAGCTC GTTCACCACG 45120
GTCACGTCGC GCACGCGGCC GGTGTTGAAC GCATCGGCGA TCTTCTCCGG CAGGTCCAGC 4 5180
AGCGTGACGT GCTGGGTGAT GAACGCCGGC GACTTGCCGA TTTCCTTGGC GATATCGCCT 4 5240
TTCTTCTTGC CCTTCGCCAG CTCGCGGCCA ATGAAGTCGG CAATTTCGCG CGGGGTCAGC 4 5300
TCGTTGCGTT GCAGGTTCTC GATAACCTGG TCGGCTTCGT TGTAGTCGTT GTCGATGAAC 45360
GCCGGGATGG ACTTCTTGCC GGCCCACTTC GAGCCACGGT AGCGGCGGGC GCCGTGATTG 4 5420
ATGATATAGC GGCCCGGCTG CTCCTGGTTC TCGCGCACCG AAATGGGTGA CTTCACCCCG 4 5480
CGCTCTTTGA TCGTGGCACC GATTTCCGCG ATGCTCTCCG GGGAAAAGCC GGGGTTGTCG 4 554 0
GCCGTCCGCG GCTGATGCGG ATCTTCGTCG ATCAGGTCCA GGTCCAGCTC GATAGGGCCG 45600
GAACCGCCCT GAGACGCCGC AGGAGCGTCC AGGAGGCTCG ACAGGTCGCC GATGCTATCC 4 5660
AACCCCAGGC CGGACGGCTG CGCCGCGCCT GCGGCTTCCT GAGCGGCCGC AGCGGTGTTT 45720
TTCTTGGTGG TCTTGGCTTG AGCCGCAGTC ATTGGGAAAT CTCCATCTTC GTGAACACGT 45780
AATCAGCCAG GGCGCGAACC TCTTTCGATG CCTTGCGCGC GGCCGTTTTC TTGATCTTCC 45840
AGACCGGCAC ACCGGATGCG AGGGCATCGG CGATGCTGCT GCGCAGGCCA ACGGTGGCCG 45900
GAATCATCAT CTTGGGGTAC GCGGCCAGCA GCTCGGCTTG GTGGCGCGCG TGGCGCGGAT 45960
TCCGCGCATC GACCTTGCTG GGCACCATGC CAAGGAATTG CAGCTTGGCG TTCTTCTGGC 4 6020
GCACGTTCGC AATGGTCGTG ACCATCTTCT TGATGCCCTG GATGCTGTAC GCCTCAAGCT 4 6080
CGATGGGGGA CAGCACATAG TCGGCCGCGA AGAGGGCGGC CGCCAGGCCG ACGCCAAGGG 4 6140
TCGGGGCCGT GTCGATCAGG CACACGTCGA AGCCTTGGTT CGCCAGGGCC TTGATGTTCG 4 6200
CCCCGAACAG CTCGCGGGCG TCGTCCAGCG ACAGCCGTTC GGCGTTCGCC AGTACCGGGT 4 6260
TGGACTCGAT GAGGGCGAGG CGCGCGGCCT GGCCGTCGCC GGCTGCGGGT GCGGTTTCGG 4 6320
TCCAGCCGCC GGCAGGGACA GCGCCGAACA GCTTGCTTGC ATGCAGGCCG GTAGCAAAGT 4 6380
CCTTGAGCGT GTAGGACGCA TTGCCCTGGG GGTCCAGGTC GATCACGGCA ACCCGCAAGC 4 6440
CGCGCTCGAA AAAGTCGAAG GCAAGATGCA CAAGGGTCGA AGTCTTGCCG ACGCCGCCTT 4 6500
TCTGGTTGGC CGTGACCAAA GTTTTCATCG TTTGGTTTCC TGTTTTTTCT TGGCGTCCGC 4 6560
TTCCCACTTC CGGACGATGT ACGCCTGATG TTCCGGCAGA ACCGCCGTTA CCCGCGCGTA 4 6620
CCCCTCGGGC AAGTTCTTGT CCTCGAACGC GGCCCACACG CGATGCACCG CTTGCGACAC 4 6680TGCGCCCCTG GTCAGTCCCA GCGACGTTGC GAACGTCGCC TGTGGCTTCC CATCGACTAA 4 6740
GACGCCCCGC GCTATCTCGA TGGTCTGCTG CCCCACTTCC AGCCCCTGGA TCGCCTCCTG 4 6800
GAACTGGCTT TCGGTAAGCC GTTTCTTCAT GGATAACACC CATAATTTGC TCCGCGCCTT 4 68 60
GGTTGAACAT AGCGGTGACA GCCGCCAGCA CATGAGAGAA GTTTAGCTAA ACATTTCTCG 4 6920CACGTCAACA CCTTTAGCCG CTAAAACTCG TCCTTGGCGT AACAAAACAA AAGCCCGGAA 4 6980
ACCGGGCTTT CGTCTCTTGC CGCTTATGGC TCTGCACCCG GCTCCATCAC CAACAGGTCG 47040
CGCACGCGCT TCACTCGGTT GCGGATCGAC ACTGCCAGCC CAACAAAGCC GGTTGCCGCC 4 7100
GCCGCCAGGA TCGCGCCGAT GATGCCGGCC ACACCGGCCA TCGCCCACCA GGTCGCCGCC 47160
TTCCGGTTCC ATTCCTGCTG GTACTGCTTC GCAATGCTGG ACCTCGGCTC ACCATAGGCT 4 7220
GACCGCTCGA TGGCGTATGC CGCTTCTCCC CTTGGCGTAA AACCCAGCGC CGCAGGCGGC 47280ATTGCCATGC TGCCCGCCGC TTTCCCGACC ACGACGCGCG CACCAGGCTT GCGGTCCAGA 4 7 340
CCTTCGGCCA CGGCGAGCTG CGCAAGGACA TAATCAGCCG CCGACTTGGC TCCACGCGCC 4 7 400TCGATCAGCT CTTGCACTCG CGCGAAATCC TTGGCCTCCA CGGCCGCCAT GAATCGCGCA 4 74 60
CGCGGCGAAG GCTCCGCAGG GCCGGCGTCG TGATCGCCGC CGAGAATGCC CTTCACCAAG 47520
TTCGACGACA CGAAAATCAT GCTGACGGCT ATCACCATCA TGCAGACGGA TCGCACGAAC 4 7 580CCGCTGAATT GAACACGAGC ACGGCACCCG CGACCACTAT GCCAAGAATG CCCAAGGTAA 4 7 640
AAATTGCCGG CCCCGCCATG AAGTCCGTGA ATGCCCCGAC GGCCGAAGTG AAGGGCAGGC 47700CGCCACCCAG GCCGCCGCCC TCACTGCCCG GCACCTGGTC GCTGAATGTC GATGCCAGCA 4 77 60
CCTGCGGCAC GTCAATGCTT CCGGGCGTCG CGCTCGGGCT GATCGCCCAT CCCGTTACTG 4 7820
CCCCGATCCC GGCAATGGCA AGGACTGCCA GCGCTGCCAT TTTTGGGGTG AGGCCGTTCG 4 7880
CGGCCGAGGG GCGCAGCCCC TGGGGGGATG GGAGGCCCGC GTTAGCGGGC CGGGAGGGTT 4 7 940
CGAGAAGGGG GGGCACCCCC CTTCGGCGTG CGCGGTCACG CGCACAGGGC GCAGCCCTGG 4 8000
TTAAAAACAA GGTTTATAAA TATTGGTTTA AAAGCAGGTT AAAAGACAGG TTAGCGGTGG 4 8060CCGAAAAACG GGCGGAAACC CTTGCAAATG CTGGATTTTC TGCCTGTGGA CAGCCCCTCA 48120
AATGTCAATA GGTGCGCCCC TCATCTGTCA GCACTCTGCC CCTCAAGTGT CAAGGATCGC 4 8180
GCCCCTCATC TGTCAGTAGT CGCGCCCCTC AAGTGTCAAT ACCGCAGGGC ACTTATCCCC 4 824 0
AGGCTTGTCC ACATCATCTG TGGGAAACTC GCGTAAAATC AGGCGTTTTC GCCGATTTGC 48300
GAGGCTGGCC AGCTCCACGT CGCCGGCCGA AATCGAGCCT GCCCCTCATC TGTCAACGCC 4 8360
GCGCCGGGTG AGTCGGCCCC TCAAGTGTCA ACGTCCGCCC CTCATCTGTC AGTGAGGGCC 4 8420
AAGTTTTCCG CGAGGTATCC ACAACGCCGG CGGCCGCGGT GTCTCGCACA CGGCTTCGAC 4 84 80
GGCGTTTCTG GCGCGTTTGC AGGGCCATAG ACGGCCGCCA GCCCAGCGGC GAGGGCAACC 4 8540
AGCCCGGTGA GCGTCGGAAA GGCGCTGGAA GCCCCGTAGC GACGCGGAGA GGGGCGAGAC 4 8 600AAGCCAAGGG CGCAGGCTCG ATGCGCAGCA CGACATAGCC GGTTCTCGCA AGGACGAGAA 4 8 660
TTTCCCTGCG GTGCCCCTCA AGTGTCAATG AAAGTTTCCA ACGCGAGCCA TTCGCGAGAG 48720
CCTTGAGTCC ACGCTAGATG AGAGCTTTGT TGTAGGTGGA CCAGTTGGTG ATTTTGAACT 4 8780
TTTGCTTTGC CACGGAACGG TCTGCGTTGT CGGGAAGATG CGTGATCTGA TCCTTCAACT 4 88 40
CAGCAAAAGT TCGATTTATT CAACAAAGCC ACGTTGTGTC TCAAAATCTC TGATGTTACA 4 8 900
TTGCACAAGA TAAAAATATA TCATCATGAA CAATAAAACT GTCTGCTTAC ATAAACAGTA 4 8 960
ATACAAGGGG TGTTATGAGC CATATTCAAC GGGAAAC 4 8 997

Claims (34)

1. POLINUCLEOTÍDEO ISOLADO, caracterizado pelo fato deque compreende:(a) seqüência de nucleotídeos que codifica polipeptídeotransportador de nitrato com alta afinidade, em que o polipeptídeo contémseqüência de aminoácidos com pelo menos 80% de identidade de seqüênciascom base no método de alinhamento Clustal V em comparação com SEQ ID N0ou 49; ou(b) complemento da seqüência de nucleotídeos, em que ocomplemento e a seqüência de nucleotídeos contêm a mesma quantidade denucleotídeos e são 100% complementares.
2. POLINUCLEOTÍDEO, de acordo com a reivindicação 1,caracterizado pelo fato de que a seqüência de aminoácidos do polipeptídeopossui pelo menos 85% de identidade de seqüências, com base no método dealinhamento Clustal V, em comparação com SEQ ID N0 36, 49 ou 92.
3. POLINUCLEOTÍDEO, de acordo com a reivindicação 1,caracterizado pelo fato de que a seqüência de aminoácidos do polipeptídeopossui pelo menos 90% de identidade de seqüências, com base no método dealinhamento Clustal V, em comparação com SEQ ID N0 36, 49 ou 92.
4. POLINUCLEOTÍDEO, de acordo com a reivindicação 1,caracterizado pelo fato de que a seqüência de aminoácidos do polipeptídeopossui pelo menos 95% de identidade de seqüências, com base no método dealinhamento Clustal V, em comparação com SEQ ID N0 36, 49 ou 92.
5. POLINUCLEOTÍDEO, de acordo com a reivindicação 1,caracterizado pelo fato de que a seqüência de aminoácidos do polipeptídeopossui pelo menos 99% de identidade de seqüências, com base no método dealinhamento Clustal V, em comparação com SEQ ID N0 36, 49 ou 92.
6. POLINUCLEOTÍDEO, de acordo com a reivindicação 1,caracterizado pelo fato de que a seqüência de aminoácidos do polipeptídeocompreende uma dentre SEQ ID N0 36, 49 ou 92.
7. POLINUCLEOTÍDEO, de acordo com a reivindicação 1,caracterizado pelo fato de que a seqüência de nucleotídeos compreende umadentre SEQ ID N0 35 ou 48.
8. POLINUCLEOTÍDEO, de acordo com a reivindicação 1,caracterizado pelo fato de que a seqüência de nucleotídeos compreende pelomenos dois motivos selecionados a partir do grupo que consiste de SEQ ID N0 50, 51 e 52.
9. FRAGMENTO DE ÁCIDO NUCLÉICO ISOLADO,caracterizado pelo fato de que compreende promotor que consisteessencialmente de SEQ ID N0 37, 38, 46, 47, 56, 65, 67, 68, 69, 70, 71, 72, 73,- 74, 89 ou 90 ou subfragmento substancialmente similar e funcionalmenteequivalente do mencionado promotor.
10. CONSTRUÇÃO DE DNA RECOMBINANTE, caracterizadapelo fato de que compreende polinucleotídeo isolado que codifica a varianteHAT conforme definida na reivindicação 1 ou seu subfragmento funcionalmenteequivalente, ligado operativamente a pelo menos uma seqüência reguladora.
11. CONSTRUÇÃO, de acordo com a reivindicação 10,caracterizada pelo fato de que a mencionada seqüência reguladoracompreende o promotor de acordo com a reivindicação 9.
12. PLANTA, caracterizada pelo fato de que compreende noseu genoma a construção de DNA recombinante conforme definida nareivindicação 10.
13. SEMENTE, caracterizada pelo fato de ser obtida a partir daplanta conforme definida na reivindicação 12.
14. PLANTA, de acordo com a reivindicação 12, caracterizadapelo fato de que a mencionada planta é selecionada a partir do grupo que consistede arroz, milho, sorgo, milho branco, centeio, soja, canola, trigo, cevada, aveia,feijão e nozes.
15. CÉLULA VEGETAL, caracterizada pelo fato de quecompreende no seu genoma a construção de DNA recombinante conformedefinida na reivindicação 10.
16. TECIDO VEGETAL, caracterizado pelo fato de quecompreende a célula vegetal conforme definida na reivindicação 15.
17. MÉTODO DE ISOLAMENTO DE FRAGMENTOS DEÁCIDO NUCLÉICO, que codificam polipeptídeos que alteram o transporte denitrato de planta, caracterizado pelo fato de que compreende:(a) comparação de SEQ ID N0 36, 49, 55 ou 58 com outrasseqüências de polipeptídeos que alteram o transporte de nitrato da planta;(b) identificação da(s) seqüência(s) conservada(s) de quatroou mais aminoácidos obtidos na etapa (a);(c) elaboração de oligômero(s) ou sonda(s) de nucleotídeosespecíficos de região com base nas seqüências conservadas identificadas naetapa (b); e(d) uso do(s) oligômero(s) ou sonda(s) de nucleotídeos daetapa (c) para isolar seqüências alterando o transporte de nitrato da planta pormeio de protocolos dependentes de seqüências.
18. MÉTODO DE MAPEAMENTO DE VARIAÇÕESGENÉTICAS, relacionadas à alteração do transporte de nitrato em plantas,caracterizado pelo fato de que compreende:(a) cruzamento de duas variedades de plantas; e(b) avaliação de variações genéticas com relação a:(i) seqüência de ácidos nucléicos selecionada a partirdo grupo que consiste de SEQ ID N0 35, 48, 54 ou 57; ou(ii) seqüência de ácidos nucléicos que codificampolipeptídeo que consiste de SEQ ID N0 36, 49, 55 ou 58;em plantas progenitoras resultantes do cruzamento da etapa (a),em que a avaliação é realizada utilizando método selecionado a partir do grupo queconsiste de: análise de RFLP, análise de SNP e análise com base em PCR.
19. MÉTODO DE CULTIVO MOLECULAR, caracterizado pelofato de ser para alterar o transporte de nitrato em plantas, que compreende:(a) cruzamento de duas variedades de plantas; e(b) avaliação de variações genéticas com relação a:(i) seqüência de ácidos nucléicos selecionada a partir10 do grupo que consiste de SEQ ID N0 35, 48, 54 ou 57; ou(ii) seqüência de ácidos nucléicos que codificapolipeptídeo selecionado a partir do grupo que consiste de SEQ ID N0 36, 49,-55 ou 58;em plantas progenitoras resultantes do cruzamento da etapa (a),em que a avaliação é realizada utilizando método selecionado a partir do grupo queconsiste de: análise de RFLP, análise de SNP e análise com base em PCR.
20. PLANTA DE MILHO, caracterizada pelo fato de quecompreende:(a) primeira construção de DNA recombinante quecompreende polinucleotídeo isolado que codifica polipeptídeo HAT, ligadooperativamente a pelo menos uma seqüência reguladora; e(b) pelo menos uma construção de DNA recombinanteadicional que compreende polinucleotídeo isolado que codifica polipeptídeoNAR, ligado operativamente a pelo menos uma seqüência reguladora.
21. MÉTODO DE ALTERAÇÃO DO TRANSPORTE DENITROGÊNIO DAS PLANTAS, caracterizado pelo fato de que compreende:(a) transformação de planta com construção de DNArecombinante que compreende:(i) primeira construção de DNA recombinante quecompreende polinucleotídeo isolado que codifica polipeptídeo HAT, ligadooperativamente a pelo menos uma seqüência reguladora; e(ii) pelo menos uma construção de DNA recombinanteadicional que compreende polinucleotídeo isolado que codifica polipeptídeoNAR, ligado operativamente a pelo menos uma seqüência reguladora;(b) cultivo da planta transformada de (a) sob condiçõesapropriadas para a expressão da construção de DNA recombinante; e(c) seleção das plantas transformadas que possuem transportede nitrato alterado.
22. VARIANTES DE HAT DE PLANTAS ALTERADAS,caracterizadas pelo fato de serem com propriedades cinéticas de absorção denitrato alteradas em comparação com HAT do tipo selvagem.
23. VARIANTES DE HAT, de acordo com a reivindicação 22,caracterizadas pelo fato de que as variantes possuem Km na faixa de 0,5 a 2mM de nitrato.
24. VARIANTES DE HAT, de acordo com a reivindicação 22,caracterizadas pelo fato de que as variantes possuem Vmax pelo menos duasa dez vezes mais alta em comparação com HAT do tipo selvagem.
25. VARIANTES DE HAT, de acordo com a reivindicação 22,caracterizadas pelo fato de que as variantes possuem Km na faixa de 0,5 a 2mM de nitrato e Vmax pelo menos duas a dez vezes mais alta em comparaçãocom HATs do tipo selvagem.
26. CONSTRUÇÃO DE DNA RECOMBINANTE, caracterizadapelo fato de que compreende polinucleotídeo isolado que codifica as variantesde HAT de acordo com uma das reivindicações 22 a 25, ligadasoperativamente a pelo menos uma seqüência reguladora.
27. CONSTRUÇÃO DE DNA RECOMBINANTE, caracterizadapelo fato de que compreende polinucleotídeo isolado que codifica as variantesde HAT de acordo com uma das reivindicações 22 a 25, ligadasoperativamente a pelo menos uma seqüência reguladora, em que amencionada seqüência reguladora compreende o promotor conforme definidona reivindicação 9.
28. PLANTA, caracterizada pelo fato de que compreende noseu genoma a construção de DNA recombinante conforme definida nareivindicação 26 ou 27.
29. SEMENTE, caracterizada pelo fato de ser obtida da planta,conforme definida na reivindicação 28.
30. PLANTA, de acordo com a reivindicação 28, caracterizadapelo fato de que a mencionada planta é selecionada a partir do grupo que consistede arroz, milho, sorgo, milho branco, centeio, soja, canola, trigo, cevada, aveia,feijão e nozes.
31. CÉLULA VEGETAL, caracterizada pelo fato de quecompreende no seu genoma a construção de DNA recombinante conformedefinida na reivindicação 26 ou 27.
32. TECIDO VEGETAL, caracterizado pelo fato de quecompreende a célula vegetal conforme definida na reivindicação 31.
33. PLANTA DE MILHO, caracterizada pelo fato de quecompreende:(a) primeira construção de DNA recombinante quecompreende a construção de DNA recombinante conforme definida nareivindicação 25 ou 26; e(b) pelo menos uma construção de DNA recombinanteadicional que compreende polinucleotídeo isolado que codifica polipeptídeoNAR, ligado operativamente a pelo menos uma seqüência reguladora.
34. MÉTODO DE ALTERAÇÃO DO TRANSPORTE DENITROGÊNIO DAS PLANTAS, caracterizado pelo fato de que compreende:(a) transformação de planta com construção de DNArecombinante que compreende:(i) primeira construção de DNA recombinante quecompreende a construção de DNA recombinante conforme definida nareivindicação 26 ou 27; e(ii) pelo menos uma construção de DNA recombinanteadicional que compreende polinucleotídeo isolado que codifica polipeptídeoNAR1 ligado operativamente a pelo menos uma seqüência reguladora;(b) cultivo da planta transformada da etapa (a) sob condiçõesapropriadas para a expressão das construções de DNA recombinante; e(c) seleção das plantas transformadas que possuem transportede nitrato alterado.
BRPI0616533-8A 2005-08-15 2006-08-15 polinucleotìdeo isolado, fragmento de ácido nucléico isolado, construções de dna recombinante, plantas, sementes, células vegetais, tecidos vegetais, método de isolamento de fragmentos de ácidos nucléico, método de mapeamento de variações genéticas, método de cultivo molecular, plantas de milho, métodos de alteração do transporte de nitrogênio das plantas e variantes de hat de plantas alteradas BRPI0616533A2 (pt)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US70831805P 2005-08-15 2005-08-15
US60/708,318 2005-08-15
US78461806P 2006-03-22 2006-03-22
US60/784,618 2006-03-22
US78514306P 2006-03-23 2006-03-23
US60/785,143 2006-03-23
PCT/US2006/031862 WO2007022195A2 (en) 2005-08-15 2006-08-15 Nitrate transport components

Publications (1)

Publication Number Publication Date
BRPI0616533A2 true BRPI0616533A2 (pt) 2011-06-21

Family

ID=37758311

Family Applications (1)

Application Number Title Priority Date Filing Date
BRPI0616533-8A BRPI0616533A2 (pt) 2005-08-15 2006-08-15 polinucleotìdeo isolado, fragmento de ácido nucléico isolado, construções de dna recombinante, plantas, sementes, células vegetais, tecidos vegetais, método de isolamento de fragmentos de ácidos nucléico, método de mapeamento de variações genéticas, método de cultivo molecular, plantas de milho, métodos de alteração do transporte de nitrogênio das plantas e variantes de hat de plantas alteradas

Country Status (8)

Country Link
US (1) US20100017909A1 (pt)
EP (1) EP1926818A2 (pt)
AR (1) AR061393A1 (pt)
AU (1) AU2006279559A1 (pt)
BR (1) BRPI0616533A2 (pt)
CA (1) CA2617876A1 (pt)
MX (1) MX2008002115A (pt)
WO (1) WO2007022195A2 (pt)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101918560B (zh) 2007-11-07 2014-02-26 纳幕尔杜邦公司 在氮限制条件下具有改变的农学特性的植物以及涉及编码lnt2多肽及其同源物的基因的相关构建体和方法
BR112012003761A2 (pt) 2009-08-20 2015-09-08 Pionner Hi Bred International Inc polinucleotideo transportador de nitrato, vetor, cassete de expressao, celula hospedeira, planta transgenica, semente, metodo para aumentar a produtividade em uma planta, metodo de modulacao do nivel de proteina nt em uma celula de planta e em uma planta, metodo de modulacao de absorcao de nitrato em plantas, metodo de desacoplamento em um nitrato de planta que sinaliza a absorcao de nitrato, polinucleotideo de nitrato redutase (nr) recombinante ou isolado.
WO2011022597A1 (en) * 2009-08-20 2011-02-24 Pioneer Hi-Bred International, Inc. Functional expression of shuffled yeast nitrate transporter (ynti) in maize to improve nitrate uptake under low nitrate environment
EP2619220A1 (en) 2010-09-22 2013-07-31 British American Tobacco (Investments) Limited Transgenic plants
US20190100766A1 (en) * 2015-12-24 2019-04-04 Nanjing Agricultural University Method for increasing nitrogen-use efficiency in plants
CN110846322B (zh) * 2018-07-29 2020-12-22 山东省农业科学院玉米研究所(山东省农业科学院玉米工程技术研究中心) 一种玉米小籽粒突变体及其应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090087878A9 (en) * 1999-05-06 2009-04-02 La Rosa Thomas J Nucleic acid molecules associated with plants

Also Published As

Publication number Publication date
US20100017909A1 (en) 2010-01-21
CA2617876A1 (en) 2007-02-22
WO2007022195A2 (en) 2007-02-22
EP1926818A2 (en) 2008-06-04
AR061393A1 (es) 2008-08-27
MX2008002115A (es) 2008-04-17
AU2006279559A1 (en) 2007-02-22
WO2007022195A3 (en) 2007-09-27

Similar Documents

Publication Publication Date Title
AU2023226754A1 (en) Compositions and methods for modifying genomes
AU2018229561B2 (en) Recombinant adenoviruses and use thereof
KR102147005B1 (ko) Fad2 성능 유전자좌 및 표적화 파단을 유도할 수 있는 상응하는 표적 부위 특이적 결합 단백질
CN101939434B (zh) 用于在大豆中提高种子贮藏油脂的生成和改变脂肪酸谱的来自解脂耶氏酵母的dgat基因
CN111295449B (zh) 腺病毒载体及其用途
KR102506185B1 (ko) 표적 핵산의 변형을 위한 개선된 방법
CN101365788B (zh) Δ-9延伸酶及其在制备多不饱和脂肪酸中的用途
DK2087105T3 (da) Delta 17-desaturase og anvendelse heraf ved fremstilling af flerumættede fedtsyrer
CN101815432A (zh) 涉及编码核苷二磷酸激酶(ndk)多肽及其同源物的基因的用于修改植物根构造的方法
CN101827938A (zh) 涉及rt1基因、相关的构建体和方法的具有改变的根构造的植物
CN101889088B (zh) 从植物基因组中切除核酸序列的方法
KR20190039430A (ko) 식물에서의 염기 편집 방법
KR20130132405A (ko) 형질전환 빈도를 증가시키기 위해 변형된 아그로박테리움 균주
KR20220012327A (ko) 피토칸나비노이드 및 피토칸나비노이드 전구체의 생산을 위한 방법 및 세포
KR20070085669A (ko) 고농도의 아라키돈산을 생성하는 야로위아 리폴리티카 균주
CN101646766B (zh) △17去饱和酶及其用于制备多不饱和脂肪酸的用途
BRPI0806354A2 (pt) plantas oleaginosas transgências, sementes, óleos, produtos alimentìcios ou análogos a alimento, produtos alimentìcios medicinais ou análogos alimentìcios medicinais, produtos farmacêuticos, bebidas fórmulas para bebês, suplementos nutricionais, rações para animais domésticos, alimentos para aquacultura, rações animais, produtos de sementes inteiras, produtos de óleos misturados, produtos, subprodutos e subprodutos parcialmente processados
DK2623594T3 (da) Antistof mod human prostaglandin-E2-receptor EP4
CN113621642A (zh) 一种用于农作物杂交育种制种的遗传智能化育制种系统及其应用
CN101918560B (zh) 在氮限制条件下具有改变的农学特性的植物以及涉及编码lnt2多肽及其同源物的基因的相关构建体和方法
BRPI0616533A2 (pt) polinucleotìdeo isolado, fragmento de ácido nucléico isolado, construções de dna recombinante, plantas, sementes, células vegetais, tecidos vegetais, método de isolamento de fragmentos de ácidos nucléico, método de mapeamento de variações genéticas, método de cultivo molecular, plantas de milho, métodos de alteração do transporte de nitrogênio das plantas e variantes de hat de plantas alteradas
CN101868545B (zh) 具有改变的根构造的植物、涉及编码富含亮氨酸重复序列激酶(llrk)多肽及其同源物的基因的相关构建体和方法
AU2017252409A1 (en) Compositions and methods for nucleic acid expression and protein secretion in bacteroides
KR20220161297A (ko) 신규 세포주
CN101848931B (zh) 具有改变的根构造的植物、涉及编码exostosin家族多肽及其同源物的基因的相关的构建体和方法

Legal Events

Date Code Title Description
B06F Objections, documents and/or translations needed after an examination request according [chapter 6.6 patent gazette]
B08F Application fees: application dismissed [chapter 8.6 patent gazette]

Free format text: REFERENTE A 10A ANUIDADE.

B08K Patent lapsed as no evidence of payment of the annual fee has been furnished to inpi [chapter 8.11 patent gazette]

Free format text: EM VIRTUDE DO ARQUIVAMENTO PUBLICADO NA RPI 2385 DE 20-09-2016 E CONSIDERANDO AUSENCIA DE MANIFESTACAO DENTRO DOS PRAZOS LEGAIS, INFORMO QUE CABE SER MANTIDO O ARQUIVAMENTO DO PEDIDO DE PATENTE, CONFORME O DISPOSTO NO ARTIGO 12, DA RESOLUCAO 113/2013.