AU694865B2 - Image-guided biopsy apparatus with enhanced imaging and methods - Google Patents
Image-guided biopsy apparatus with enhanced imaging and methods Download PDFInfo
- Publication number
- AU694865B2 AU694865B2 AU53909/96A AU5390996A AU694865B2 AU 694865 B2 AU694865 B2 AU 694865B2 AU 53909/96 A AU53909/96 A AU 53909/96A AU 5390996 A AU5390996 A AU 5390996A AU 694865 B2 AU694865 B2 AU 694865B2
- Authority
- AU
- Australia
- Prior art keywords
- biopsy device
- tissue mass
- tip
- tissue
- support
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/42—Details of probe positioning or probe attachment to the patient
- A61B8/4272—Details of probe positioning or probe attachment to the patient involving the acoustic interface between the transducer and the tissue
- A61B8/4281—Details of probe positioning or probe attachment to the patient involving the acoustic interface between the transducer and the tissue characterised by sound-transmitting media or devices for coupling the transducer to the tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/34—Trocars; Puncturing needles
- A61B17/3403—Needle locating or guiding means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/08—Detecting organic movements or changes, e.g. tumours, cysts, swellings
- A61B8/0833—Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/08—Detecting organic movements or changes, e.g. tumours, cysts, swellings
- A61B8/0833—Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
- A61B8/0841—Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating instruments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/10—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis
- A61B90/14—Fixators for body parts, e.g. skull clamps; Constructional details of fixators, e.g. pins
- A61B90/17—Fixators for body parts, e.g. skull clamps; Constructional details of fixators, e.g. pins for soft tissue, e.g. breast-holding devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
- A61B10/02—Instruments for taking cell samples or for biopsy
- A61B10/0233—Pointed or sharp biopsy instruments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/36—Image-producing devices or illumination devices not otherwise provided for
- A61B90/37—Surgical systems with images on a monitor during operation
- A61B2090/378—Surgical systems with images on a monitor during operation using ultrasound
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/16—Details of sensor housings or probes; Details of structural supports for sensors
- A61B2562/168—Fluid filled sensor housings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/10—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis
- A61B90/11—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis with guides for needles or instruments, e.g. arcuate slides or ball joints
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Pathology (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Veterinary Medicine (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Radiology & Medical Imaging (AREA)
- Acoustics & Sound (AREA)
- Neurosurgery (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Description
WO 96/32066 PCTIUS96/05123 IMAGE-GUIDED BIOPSY APPARATUS WITH ENHANCED IMAGING AND METHODS Field Of The Invention The present invention relates to apparatus and methods for performing biopsy of biological tissue, and more particularly, to performing biopsy of biological tissue guided by ultrasound imaging.
SBackQround Of The Invention Apparatus and methods are known to identify tumorous masses suspected of being malignant, for example, by radiographic and sonographic techniques.
It is typical for such tissue masses to then be biopsied to determine status as, or degree of, malignancy, to determine further course of treatment.
For example, a region of a mammogram suspected to contain a lesion may be biopsied to determine whether the lesion is benign or malignant, and if malignant, the course of treatment appropriate for the degree of malignancy, e.g. mastectomy, radiation treatment or chemotherapy.
Previously known biopsy methods range from minimally invasive techniques, such as fine needle aspiration using a 21 gauge hypodermic needle and large core biopsy using a 14 gauge needle mounted in an automated biopsy gun, to open-procedures in which the lesion is surgically excised. Minimally invasive techniques are faster, less expensive, safer and less traumatic for the patient than surgical excision, and begun developing widespread acceptance.
rI WO 96/32066 PCTUS96/05123 -2- A concern common to previously known minimally invasive biopsy techniques, however, is ensuring that the biopsy needle actually obt ns a tissue sample from the suspected lesion, rathex than adjacent healthy tissue. Previously known techniques that attempt to ensure that the biopsy needle trajectory enters the region of the suspected lesion are described, for example, in Fornage et al., "Ultrasound-Guided Needle Biopsy Of The Breast And Other Interventional Procedures," Radiologic Clinics Of North America, Vol. 30, No. 1 (January 1992), Fornage et al. "Breast Masses: US-Guided Fine Needle Aspiration Biopsy," Radiology, 162:409-414 (February 1987), Parker et al., "US-guided Automated Large-Core Breast Biopsy," Radiology, 187:507-511 (May 1993), and Parker and Jobe, "Large-Core Breast Biopsy Offers Reliable Diagnosis," reprinted from Diagnostic Imaging (October 1990).
The foregoing articles describe a free-hand ultrasound technique, in which insertion of a biopsy needle into a suspected lesion is performed by holding a linear array ultrasound transducer in one hand and inserting the needle into the tissue with the other hand. In particular, 'the ultrasound transducer is held above the midline of the suspicious mass and the needle (or needle of the automated biopsy gun) is then inserted in the tissue near the base of the transducer, so that the tip of the needle appears in the ultrasound scan. In addition, when a biopsy gun is employed, additional personnel may be required to steady the biopsy gun during use or to hold the ultrasound transducer.
As described in the Fornage et al. articles and Parker et al. article, difficulties arise using the free-hand technique where the suspected lesion is located near the patient's chest wall, or in proximity to a prothesis. These articles also emphasize that the
V
WO 96/32066 PCTfUS9605123 -3 practitioner's level of skill in using the free-hand technique can dramatically influence the results obtained. All of the foregoing articles reject the use of biopsy needle guides that can be attached to the ultrasound transducer, because the guides interfere with the flexibility and maneuverability required to obtain satisfactory results.
The Parker and Jobe article also describes stereotactic mammographic biopsy systems. In such systems, two X-ray images of the breast tissue are made at different angles, thereby permitting the coordinates of a lesion to be calculated. The biopsy needle, typically an automated biopsy gun Biopty from C.R. Bard, Inc., Bard Urological Division, Covington, Georgia) mounted in a rigid housing attached to the biopsy table, is moved to the calculated coordinates and actuated. Two additional X-ray views of the breast tissue are then taken to confirm that the needle has actually sampled the region of the suspected lesion.
The Parker and Jobe article further describes the drawbacks of add-on stereotactic systems namely, the potential for breast movement that renders earlier stereo calculations worthless. That article also describes the Mammotest system sold by Fischer Imaging Corporation, Thornton, Colorado, as overcoming some of the problems of add-on stereotactic systems, but at a considerable cost differential.
A drawback common to all of the stereotactic systems, however, is the need for multiple X-rays of the tissue, thus exposing the tissue to potentially unhealthful ionizing radiation. These systems also provide no real-time imaging of the needle trajectory, so as described in the Parker and Jobe article, intervening movement of the breast tissue may render the calculated coordinates useless and result in a potentially misleading biopsy sample. Indeed, the WO 96/32066 PCTUS96/05123 -4clinician is not even aware that the biopsy needle missed the intended target until after the follow-up stereotactic views are taken.
Moreover, because the biopsy needle is secured in a fixed housing so as to provide a fixed trajectory for biopsy needle, stereotactic systems provide no freedom of movement for the biopsy needle relative to the target tissue. Consequently, several needle insertions and withdrawals are required to adequately characterize the tissue.
A major disadvantage of the above-described previously known methods and apparatus arises due to the inability of the clinician to estimate, in realtime, the correct trajectory of the biopsy needle from the breast surface to the region of the suspected tumor or lesion. Even when guided by free-hand ultrasound scanning, the clinician typically must insert and withdraw the biopsy needle ten to fifteen times or more to improve the confidence level that a portion of the suspected lesion has been collected. Then, each of the needle aspiration samples must be separately tested, significantly increasing the overall cost of the procedure.
Likewise, in stereotactic systems, the inability to monitor tissue movement and to manipulate the biopsy needle once inserted, creates the need for multiple needle insertions to obtain adequate characterization of the suspected lesion. And again, each of these multiple samples must be individually tested to properly characterize the suspected lesion.
Such repetitive insertion and withdrawal of the biopsy needle may cause significant patient discomfort. Moreover, in those cases where the biopsy indicates no need for treatment by surgical methods, the repeated biopsy needle insertion may nevertheless WO 96/32066 PCT/US96/05123 5
I
leave the patient with cosmetically unappealing scar tissue.
A further disadvantage of these previously known methods and apparatus is the potential for seeding the needle tracks with potentially malignant tumor cells. For example, because the clinician in previously known methods must make several needle insertions to confirm that he or she has sampled cells from the target tissue, there is the potential that malignant cells may be dispersed along a needle track which was not believed by the clinician to have entered the region of the suspected tumor, but which in fact did so.
In view of the foregoing, it would be desirable to provide apparatus and methods by which a biopsy needle could be positioned for insertion so as to have a real-time, predetermined trajectory to a targeted tissue region, thereby reducing the need for repetitive needle insertion and withdrawal to obtain a biopsy sample.
It would also be desirable to provide apparatus and methods by which a biopsy needle could be positioned for insertion in real-time with a high degree of confidence that the needle trajectory will enter a targeted tissue region, thus reducing the risk of spreading potential malignant tumor cells by dispersing them along multiple needle tracks.
It would also be desirable to provide apparatus and methods by which a biopsy needle could be positioned for insertion into tissue along a predetermined trajectory, and which enables the clinician to alter that trajectory once the needle has been inserted, so as to reduce the number of scars resulting from repetitive skin punctures.
A yet further drawback-of previously known biopsy systems, including those employing ultrasonic WO 96/32066 PCTUS96/05123 -6imaging of the biological tissue, is the inability to assess tissue features located near, or extending within, the chest wall. Such features typically have been inaccessible to previously known radiographic and sonographic imaging techniques due to the inability, for example, to direct such X-radiation to the X-ray film, while in sonographic systems, complicated structures including submersing the tissue in a water bath have been required.
It therefore would be desirable to provide a biopsy system having enhanced imaging capability to provide images of biological features located near or within a patient's chest line.
Summary Of The Invention In view of the foregoing, it is an object of this invention to provide a apparatus and methods by which a biopsy needle may be initially positioned in real-time for insertion so as to have a predetermined trajectory to a targeted tissue region. In this manner, the need for repetitive needle insertion and withdrawal to obtain a biopsy sample is reduced, improving the efficiency of the medical procedure, and reducing patient distress during the medical procedure.
It is another object of this invention to provide apparatus and methods by which a biopsy needle may be positioned for insertion in real-time with a high degree of confidence that the needle trajectory will enter a targeted tissue region, thereby reducing the risk of spreading potential malignant tumor cells by dispersing them along multiple needle tracks.
It is yet another object of the present invention to provide apparatus and methods by which a biopsy needle may be positioned for insertion into tissue along a predetermined trajectory, and which enables the clinician to alter the needle trajectory WO 96/32066 PCTUS96/05123 7
-I
once the needle has been inserted, thus reducing the number of scars resulting from repetitive skin punctures as well as patient discomfort.
It is yet a further object of this invention to provide apparatus and methods by which a clinician can image biological features within tissue that are located near, or extend within, a patient's chest wall, thereby enabling more thorough examination of the tissue and more thorough biopsy, if indicated.
These and other objects of the invention are accomplished in accordance with the principles of the invention by providing apparatus and methods in which a biopsy needle is guided to an initial insertion position by correlating, in real-time, the actual needle position prior to insertion with its probable trajectory once inserted. In a preferred embodiment, the needle location is tracked electronically and projected over a previously stored or real-time image of the tissue. The clinician may then observe which features of the imaged tissue the biopsy needle is likely to intersect when inserted. Additionally, ultrasound scanning of a selected trajectory may also be provided to assess depth of penetration of the biopsy needle, when inserted.
The ultrasound scanning provided by the apparatus of the present invention may include the capability, by angling either the ultrasound transducer or the upper compression plate relative to the chest wall, to provide imaging of biological features located near, or extending within, the chest line.
Further features of the invention, its nature and various advantages will be more apparent from the accompanying drawings and the following detailed description of the preferred embodiments.
t WO 96/32066 PCTUS96/05123 -8- Brief Description Of The Drawings FIG. 1 is a perspective view of an illustrative embodiment of the biopsy system of the present invention; FIG. 2 is an exploded perspective enlarged view of a portion of the biopsy system of FIG. 1, indicated in inset 2 of FIG. 1; FIGS. 3A-3C are perspective and elevational views, respectively, of an alternative needle support assembly in the open and closed positions; FIG. 4 is a perspective view from beneath of an alternative arrangement of the biopsy system of FIGS. 1 and 2; FIG. 5 is a perspective view of compressed breast tissue showing the reference axes employed with the biopsy system of the present invention; FIG. 6 is an illustrative Y-Z display of the compressed breast tissue of FIG. 5, taken along line 6--6 of FIG. FIG. 7 is an illustrative X-Y display of the compressed breast tissue of FIG. 5, taken along line 7--7 of FIG. 5, showing a biopsy needle partially inserted into the tissue; FIG. 8 is a cross-sectional view of an ultrasound scanning system constructed in accordance with the present invention that enables imaging of biological features located near, or extending within, the patient's chest line; FIG. 9 is a cross-sectional view of an alternative embodiment of the system of FIG. 8.
Detailed Description Of The Invention The present invention is directed to a system for performing biopsy of biological tissue, as indicated by, for example, a sonogram or mammogram. In overview, the apparatus of the present invention uses a awl~llanan~r~~rPrr*- WO 96/32066 PCT/US9605123 -9previously stored or real-time ultrasound image to determine an initial position for a biopsy needle so that there is a high degree of confidence that the needle trajectory will intersect a target tissue region, for example, a suspected lesion.
In a first illustrative embodiment described herein, the biopsy system includes stand-alone sonography apparatus. In an alternative embodiment, the biopsy system may be used in conjunction with a sonomammography system as described in commonly assigned U.S. Patent No. 5,479,927, which is incorporated by reference herein in its entirety.
Referring now to FIG. 1, biopsy system constructed in accordance with the principles of the present invention is described. System 10 comprises biopsy table 11 and computer-based display system 12.
Biopsy table 11 includes ultrasonic scanner 13, tissue support table 14, and needle support system 15 movably mounted on support members 16 between base 17 and top block 18. Biopsy needle 19 is releasably carried by needle support system 15, as described in detail hereinafter. Needle support system 15 is detachably coupled to computer 20 of computer-based display system 12 by cable 21, so that movement of biopsy needle is displayed by monitor 23 of computer-based display system 12.
Ultrasonic scanner 13 may be constructed as described with respect to FIG. 7 of the aboveincorporated U.S. Patent No. 5,479,927, so as to include an annular or linear array ultrasonic transducer mounted for movement in an X-Y plane as indicated by the axes shown in FIG. 1 herein. In particular, the ultrasound transducer may be mounted on a carriage that is driven by a system of belts, cables, drive screws, or similar mechanisms to provide scanning along a series of planes sufficient to generate a Io liD31PIII^---CC-~-i--a_---PIIPIQ CUI~ WO 96/32066 PCT/US96/05123 three-dimensional data model of the tissue to be biopsied.
Ultrasonic scanner 13 includes a lower surface that functions as an upper compression plate, for immobilizing tissue against tissue support table 14. While the compression plate of ultrasonic scanner 13 may be constructed of any of the materials described in the above-mentioned patent, such as polyimide, a sodium-based ionomer resin, or a polymethyl pentene, it will of course be understood that radiolucency of the compression plate is not required for stand-alone sonographic applications of the present invention.
Ultrasonic scanner 13 may also incorporate certain improvements, described in detail hereinafter, that enable imaging of biological features located near, or within, the patient's chest line. Imaging data generated by ultrasonic scanner is provided to computer-based display system 12 via cable 22.
Tissue support table 14 of the illustrative embodiment of FIG. 1 comprises a sturdy material, e.g., metal, fiberglass or plastic, such as UHMW plastic ultra high molecular weight polyethylene), or combinations thereof, and serves to support the lower surface of the biological tissue in compression. In particular, tissue support table 14 and ultrasonic scanner 13 may be releasably and adjustably mounted to support members 16 to provide both adequate compression of the tissue and to provide height adjustment to accommodate the size of the patient.
Computer-based display system 12 is illustratively shown comprising monitor 23 and computer disposed on movable cart 24. Computer 20 may be a general purpose personal computer, having for example, an 80386 or greater microprocessor, or similar processor, and a hard disk drive, or similar memory device sufficient for storing software programs, to WO 96/32066 PCTUS96/05123 11 manipulate imaging data generated by ultrasonic scanner 13 and positioning data generated by needle support system 15. As will of course be understood, system 12 includes one or more additional cards for processing data received from ultrasonic transducer 13 and needle support system 15, the implementation details of which employ routine application of ultrasound signal acquisition principles, and which therefore form no part of the present invention.
Referring now to FIG. 2, an illustrative embodiment of needle support system 15 is described.
Needle support system 15 includes anchor bar support block assemblies 26 and 27, Y-axis track 28, Yaxis linear encoder 29, support plate assembly 30, Zaxis track 31, Z-axis linear encoder 32, and needle support block assembly 33.
Anchor block 25 is dimensioned to fit with close tolerances into grooves 34 provided in the lateral sides of tissue support table 14. Positioning holes 35 are provided in the grooved portion of tissue support table 14 so that locking pegs (not shown) can be extended through holes 35 and into holes 36 of anchor block 25, thus positively locking anchor block (and thus needle support system 15) into known relation with tissue support table 14.
The combination of groove 34 and anchor block provides a high degree of rigidity to the overall y needle support system, while provision of grooves 34 on each side of tissue support table 14 enables the clinician to obtain access to the tissue from either the left or right side. In addition, ultrasonic scanner 13 and tissue support table 14 may be adjustably mounted, for example, to a block that is in turn pivotally connected to support members 16, so as to enable the entire biopsy system to be rotated WO 96/32066 PCTUS96/05123 12 relative to the biological tissue, thus offering additional areas of access to the tissue.
Support block assemblies 26 and 27 rigidly fasten Y-axis track 28 to anchor block 25, and thus tissue support table 14. Y-axis linear encoder 29 comprises, for example, an incremental binary counter, and is slidably movable along the length of Y-axis track 28. In a preferred embodiment, the Y-axis track has disposed within it a printed circuit board arrangement of parallel, spaced-apart copper strips, while Y-axis linear encoder 29 includes a head that senses the static capacitance of the copper strips as the encoder is manually slid along Y-axis track 28, and circuitry for interpolating between adjacent copper strips. As Y-axis linear encoder 29 is moved along track 28, it outputs a signal corresponding to its displacement from a preset reference point, preferably, a hard stop at a distal-most position from the patient's chest wall. The signal output by linear encoder 29 is provided to computer 20 via connecting V cable 21, which connects to encoder 29 through jack 21a.
Support plate assembly 30 rigidly connects Zaxis linear encoder 32 to Y-axis linear encoder 29. Zaxis track 31 is slidably engaged in linear encoder 32, so that linear encoder 32 generates a signal corresponding to the displacement of Z-axis track relative to linear encoder 32 when track 32 is raised and lowered. The signal output by linear encoder 32 is provided to computer 20 via connecting cable 21, which connects to encoder 32 through jack 21b. Linear encocdier 32 may use, for example, either the upper surface of tissue support table 14, or the lower surface of ultrasonic scanner 13, as its reference point. Linear encoders 29 and 32 preferably have a displacement accuracy of about plus/minus 0.05 mm, and WO 96/32066 PCT/US96/05123 13 can be reset via switches on encoders 29 and 32, or via software control.
Linear encoder 29 includes means, not shown, for locking the encoder in position along Y-axis track 28, while linear encoder 32 includes means (not shown) for locking Z-axis track 31 in position in encoder 32.
Linear encoders 29 and 32, and mating tracks 28 and 31, are available from Sylvac Crissier, Switzerland, and distributed in the United States by Fowler Company, Inc., Chicago, Illinois, as Part Nos. 54-050-035 (for Y-axis encoder 29) and 54-050-000 (for Z-axis encoder 32).
In addition, as will of course be understood by persons of skill in the art, linear encoders 29 and 32 may also comprise suitably designed rotary encoders, for example, as are used in computer mice and videogame joysticks, or other suitable displacement sensing components, such as linear variable displacement transducers or linear potentiometers.
Needle support assembly 33 comprises a biopsy needle holder that holds the biopsy needle securely during initial positioning and insertion, but detachably releases biopsy needle to allow free-hand movement of the biopsy needle once it has been inserted into a patient's tissue.
In the illustrative embodiment of FIG. 2, needle support assembly includes upper block 33a and lower block 33b. Needle support member is detachably coupled to the upper end of Z-axis track 31, for example, by a slot (not shown) in the lower surface of lower block 33b. Upper block 33a includes semicircular channel 33c in its lower surface while lower block 33b includes semi-circular channel 33c in its upper surface. The channels in upper block 33a and lower block 33b mate when the two pieces are positioned 1T77 WO 96/32066 PCT[US96/05123 14 together, thus forming a bore through which biopsy needle 19 may be slidably disposed.
Upper block 33a and lower block 33b preferably also have mating projections and concavities, for example, in the illustrative embodiment of FIG. 2, block-like projection 33e and corresponding indentation 33f. Bore 33g aligns across upper block 33a and lower block 33b when the two blocks are mated together, to permit pin 33d to be slidably disposed in bore 33g. In this manner, upper block 33a and lower block 33b may be rigidly fastened together by pin 33d to carry biopsy needle 19 during initial positioning and insertion of biopsy needle 19. When inserted in the bore formed by channels 33c, the biopsy needle has a trajectory aligned with the bore.
Once the needle is inserted in the patient, pin 33d may be removed from bore 33g, permitting removal of upper block 33a and movement of lower block 33b out of the clinician's way. This arrangement permits the clinician to thus remove the biopsy needle from needle support assembly 33 and manipulate it manually, while observing movement of the needle tip via display 23. Accordingly, needle support assembly 33 permits the biopsy needle to be initially positioned with the accuracy of a stereotactic biopsy system, while providing the flexibility and maneuverability of free-hand ultrasound techniques.
An alternative illustrative embodiment of needle support assembly 331 is described with respect to FIGS. 3A-3B. As shown in FIG. 3A, needle support assembly 33' comprises a block 37 having a V-shaped channel formed in elements 37a and 37b, and integrally formed locking arm 38. Locking arm 38 includes ridge 38a disposed to engage biopsy needle 19 when in a closed position. Locking arm also includes latch WO 96/32066 PCTIS96/05123 15 portion 38 including serrations 38c that interengage serrations 37c on block 37.
Locking arm 38 is dimensioned so that it fits with close tolerances between elements 37a and 37b, thereby enabling ridge 38a to engage biopsy needles having a wide range of diameters. As illustrated in FIGS. 3B and 3C, needle support block 33' may include slot 37d disposed therein for coupling the support to Z-axis track 31. Locking arm 38 securely engages biopsy needle 19 within the V-shaped channel formed in elements 37a and 37b for image-guided positioning of biopsy needle 19 relative to the patient's tissue, but permits the biopsy needle to be readily released from needle support assembly 33' by lifting locking arm 38 up and away from block 37.
Needle support assemblies 33 and 33' are preferably comprised of sturdy, lightweight materials that are capable of being sterilized. For example, needle support assemblies 33 and 33' may comprise machined aluminum that can be repeatedly sterilized, or injection-molded plastic elements that are disposed of after a single use. Needle support assembly 33' is preferably integrally molded from a suitable plastic, such as, polyethylene.
Referring now to FIG. 4, an alternative embodiment of the biopsy system of FIGS. 1-3 is described, in which elements similar to those of the system of FIGS. 1-3 are indicated by reference numerals increased by 100, biopsy needle support system 115.
The biopsy system of FIG. 4 differs from that of FIGS. 1-3 in that tissue support table 114 comprises a grid-like structure having a multiplicity of apertures 114' and needle support system 115 is disposed beneath tissue support table 114. As will be apparent from FIG. 4, the arrangement of the system of r7 WO 96/32066 PCT/US96/05123 16 FIG. 4 permits biopsy of the tissue to be performed through the lower surface of the breast, thus reducing the prominence of scarring associated with needle punctures. It is also to be understood that the multiplicity of apertures 114' extends over the entire area of tissue support table 114 used to support the patient's tissue (indicated in FIG. 4 by dots).
In preferred embodiment of the system of FIG.
4, tissue support table 114 has a thickness of about 0.5 inch (12.7 mm) and is formed of a suitable rigid plastic, metal alloy, or combination thereof. Tissue support table 114 includes a multiplicity of square apertures about 1.5 inches (38 mm) on a side, at a spacing sufficient to enable access to most of the underside of the patient's tissue with a minimum of repositioning.
L y With reference to the directional axes shown in FIGS. 1 and 2, needle support system 115 of FIG. 4 lies in the X-Y plane, and comprises Y-axis track 128, Y-axis linear encoder 129, X-axis track 131, X-axis linear encoder 132, and needle support assembly 133.
X-axis track 131 is mounted to tissue support table 114 by support block assemblies 126, with Y-axis linear encoder 132 slidably engaged thereon. Y-axis track 128 is slidably engaged in Y-axis linear encoder 129, which is in turn coupled to X-axis linear encoder as described above with respect to FIG. 2. Y-axis track 128 carries needle support assembly 133 that engages biopsy needle 119.
Needle support system 115 is connected to computer-based display system 12 via cable 121. Except for the different physical arrangement of the components of the system of FIG. 4 as just described, the description provided hereinabove with respect to the system of FIGS. 1-3 otherwise applies to the system of FIG. 4.
12 _1 YI WO 96/32066 PCTiUS96/05123 17 Operation of the system of FIGS. 1-4 is now described with reference to FIGS. 5-7. Referring now to FIG. 5, a mass of biological tissue 100, specifically a human breast, is shown as it would appear when compressed between the upper surface of tissue support table 14 and the lower surface of ultrasonic scanner 13 (for clarity, ultrasonic scanner 13 and tissue support table 14 are not depicted in FIG.
It will of course be understood that tissue 100 remains connected to the patient. Tissue 100 contains within it region 101 corresponding to a suspected lesion.
FIG. 5 illustrates the reference axes :referred in the following description. In particular, the Y-axis is the direction extending perpendicularly from the patient's chest wall (plane 110), the z-axis direction is elevational, and the x-axis direction extends in a parallel manner along the patient's chest wall. Projected needle trajectory 40 contacts the skin of tissue 100 at location 41 and intersects region 101 of the suspected lesion.
In operation, a patient's tissue mass is compressed between a lower compression surface of ultrasonic scanner 13 and the upper surface of tissue support table 14, thereby taking on the shape of tissue mass 100 of FIG. 5. A gel pad may be used to distribute the compressive loading over the tissue mass, to ease the patient's discomfort, and to improve coupling of the ultrasonic scanner to the tissue mass.
30 The clinician may then conduct a tnorough ultrasound examination of the tissue by operating ultrasonic scanner 13 to generate a series of twodimensional slices in the Y-Z or X-Z planes. These slices may then be digitally manipulated to provide a holographic image on display 23 of the interior
B
i WO96/32066 PCT[US96/05123 18 features of the tissue mass, or to provide a view of any desired plane through the tissue.
When a biopsy is indicated, the clinician couples a fresh needle support assembly 33 or 33' to Zaxis track 31 and engages the biopsy needle with the needle support assembly. The clinician then selects a viewplane for viewing on display 23, such as an elevation view in the Y-Z plane) through tissue 100, as shown in FIG. 6. As the biopsy needle is manually moved by the clinician in the Y-Z plane adjacent to tissue 100, encoders 29 and 32 of needle support system 15 output a signal that is processed by computer 20 and projected on the ultrasound image of the selected viewplane as, for example, cross-hair It will of course be understood that the dimensions of needle support assembly are well controlled so that parallax between the location of the biopsy needle and the location of encoders 29 and 32 is properly taken into account.
By manually moving biopsy needle 19 adjacent to tissue 100, needle support system 15 provides computer 20 with corresponding coordinates that enable the clinician to align cross-hair 45 with region 101 of the suspected lesion (shown in FIG. 6 by dotted arrow moving cross hair 45 to dotted cross-hair Once cross-hair 45 is aligned with region 101, the clinician may select additional views through tissue 100 to assess the trajectory of the biopsy needle. For example, the clinician may choose a plan view in the X-Z plane) through tissue 100, as shown in FIG. 7, to indicate the trajectory of biopsy needle 19. In a plan view such as that of FIG. 7, the biopsy needle is preferably projected onto the ultrasound image as line 46, rather than a cross-hair.
Biopsy system 10 further provides for continually updating the ultrasound image of the entire WO 96/32066 PCTUS96/05123 19 tissue mass 100, or of a selected portion thereof, by operating ultrasonic scanner 13 to continually generate images of the tissue interior. Thus, for example, when the clinician has aligned the biopsy needle with region 101, he or she may lock needle support system against further movement in the Y-Z plane, and issue appropriate commands to the ultrasonic scanner to scan only that portion of tissue 100 in the vicinity of the biopsy needle trajectory, for example, within dotted lines 47 shown in FIG. 7.
The clinician then extends biopsy needle 19 into tissue 100 by sliding the needle in the Xdirection through the needle support assembly to enter the patient's tissue. If the plan view of the ultrasound image is displayed, as shown in FIG. 7, the clinician may then monitor the progress of the biopsy needle as it penetrates the tissue mass.
After the clinician has obtained a sample of region 101 along line 46 of the trajectory of biopsy needle 19, he or she may then remove pin 33d to release biopsy needle 19 from needle support assembly 33 or locking arm 38 of needle support assembly 33'. The clinician may then manipulate the biopsy needle to collect additional samples of region 101 under ultrasound image guidance, without having to create additional puncture wounds in the skin of tissue 100.
Operation of the system of FIG. 4 is similar to that described above, except that needle support system 115 is manipulated in an X-Y plane located beneath the patient's breast. Once the clinician has obtained a complete ultrasound image of the interior features of the tissue 100, a view in the X-Y plane is selected, which view would appear similar to that of FIG. 6. As needle support system 115 is manipulated, corresponding cross-hair 45 moves about on the displayed ultrasound view plane, as depicted in FIG. 6.
"19 j
A$
I
WO 96/32066 PCT/US96/05123 20 Biopsy needle may then be inserted through the nearest aperture 114' in tissue support table 114 to perform the biopsy. Similar to the system of FIGS.
1-3, progression of the biopsy needle as it is inserted in tissue 100 can be obtained by subsequent imaging using ultrasonic scanner 13. In particular, images generated in the Y-Z plane using the system of FIG. 4 will have an appearance similar to that of shown in FIG. 7.
As described above, biopsy system 10 of the present invention provides significant benefits over previously known systems and techniques. Unlike freehand ultrasound techniques, the present invention provides precise initial positioning of the biopsy needle, so that the clinician has a high degree of confidence that the proposed trajectory of the biopsy needle will intersect the region of interest, thus reducing the number of needle insertions/withdrawals and the risk of seeding malignant cells along multiple needle tracks.
Moreover, the present invention provides continuous monitoring of the biopsy needle over the entire extent of the needle track, as opposed freehand techniques that display only the portion of the needle that comes within the ultrasound scan. For example, free-hand ultrasound techniques provide no information about the biopsy needle trajectory until the needle has already punctured the skin; by contrast, the present invention enables prediction of the needle trajectory before it is even inserted.
Biopsy system 10 of the present invention likewise provides significant advantages over stereotactic X-ray systems. For example, the biopsy system of the present invention eliminates the use of hazardous ionizing radiation attendant with use of Xrays, eliminates the need for calculating coordinates it WO 96/32066 PCT[US96/05123 21 for needle placement, provides real-time monitoring of the actual needle trajectory without the need for follow-up imaging, and enables the clinician to sample multiple areas within a target region through a single puncture wound. Moreover, the system of the present invention is less complex than stereotactic X-ray systems, and proportionately less expensive to build, use and maintain.
It will further be understood that the biopsy system of the present invention may be used with other ultrasonic scanning apparatus, for example, in conjunction with the sonomammography apparatus described in the above-mentioned U.S. patent 5,479,927.
For example, to use the biopsy system 15 of the present invention in an X-ray system including an ultrasonic scanner as described in that patent, needle support system 15 may be anchored to a dummy X-ray film cassette. The dummy X-ray film cassette is installed in the film holder/diffraction grid assembly of the Xray system (often called a "Bucky"), to permit combined use of the ultrasonic scanner and biopsy needle support system as described hereinabove.
Referring now to FIGS. 8 and 9, further features are described which are suitable for use in the biopsy system of the present invention. Referring to FIG. 8, a cross-section of ultrasonic scanner 50 is shown which is essentially similar in design to the ultrasonic scanner 13 described above and in the abovementioned U.S. Patent 5,479,927. Ultrasonic scanner differs from the above-described embodiments in that transducer 51 is not coupled to compression plate 52 directly, but is instead canted at an angle e away from the compression plate. In addition, both compression plate 52 and front panel 53 are constructed of a rigid sonolucent material.
WO 96/32066 PCTUS96/05123 22 Proper acoustic coupling between transducer 51 and compression plate 52 is obtained in ultrasonic scanner 50 by filling it with water 54 or another suitable acoustically transmissive medium. This arrangement is expected to enable ultrasonic scanner to provide imaging not only of tissue disposed directly below the scanner, but also to provide imaging of tissue located near, or within, the patient's chest wall.
FIG. 9 provides an alternative embodiment of an ultrasonic scanner designed to provide enhanced imaging. In particular, ultrasonic scanner 60 of FIG.
9 is similar in design to ultrasonic scanner 13 described hereinabove, except that ultrasonic transducer 61 and compression plate 62 are canted at an angle 8' to the horizontal. Since transducer 61 and compression plate 62 are both angled, transducer 61 may be acoustically coupled to compression plate 62 using coupling means described in the above-mentioned U.S.
Patent 5,479,927. The inclined angle of compression plate 62 is also expected to enable ultrasonic imaging of internal features located near, or extending within, the patient's chest wall.
While preferred illustrative embodiments of the present invention are described above, it will be obvious to one skilled in the art that various changes and modifications may be made therein without departing from the invention and it is intended that the appended claims cover all such changes and modifications which fall within the true spirit and scope of the invention.
I
Claims (24)
1. Apparatus for positioning a tip of a biopsy device for insertion into a selected region of a tissue mass, the apparatus for use in a system including display means, the apparatus comprising: an ultrasonic scanner that provides an image of the tissue mass, the image of the tissue mass, including the selected region, displayed on the display means; a support for holding a tip of a biopsy device with a trajectory; means, other than the ultrasonic scanner, coupled to the support for generating a signal corresponding to a current location of the tip of the biopsy device, prior to insertion into the tissue mass, the signal being displayed on the display means by a symbol representative of the current location of the tip of the biopsy device relative to the selected region, wherein aligning the symbol with the selected region corresponds to moving the support to position at which the trajectory of the tip of the biopsy device will intersect the selected region.
2. The apparatus as defined in claim 1 wherein the support comprises first and second support tracks disposed in orthogonal relation to one another.
3. The apparatus as defined in claim 1 wherein the means for generating a signal cmiprises at least one encoder. AM-,NP,-o I~I e processor, and a hard disk drive, or similar memory device sufficient for storing software programs, to ii s U *a2 APR 1997 24
4. The apparatus as defined in claim 1 wherein the ultrasonic scanner provides real-time imaging of the tissue mass. The apparatus as defined in claim 4 wherein the ultrasonic scanner provides imaging of the tip of the biopsy device after the tip of the biopsy device has been inserted into the tissue mass.
6. The apparatus as defined in claim 1 wherein the support releasably holds the biopsy device, 3 so that the biopsy device may be released from the support after insertion of the tip of the biopsy device into the tissue mass to enable free-hand manipulation of the biopsy device. I:
7. The apparatus as defined in claim 1 wherein the ultrasonic scanner forms a first compression surface, the apparatus further comprising a tissue support table forming a second compression surface, the tissue mass immobilized between the first and second compression surfaces.
8. The apparatus as defined in claim 2 t further comprising a tissue support table, the first support track removably anchored to the tissue support table.
9. The apparatus as defined in claim 2 further comprising a dummy X-ray film cassette, the first support track anchored to the dummy X-ray film cassette. .ir~~Eri~1C StCS~f c-TyjUS /O 2 3 iU 2 APR 199 1 25 The apparatus as defined in claim 1 wherein the ultrasonic scanner comprises an ultrasonic transducer and a compression plate having an edge, the ultrasonic transducer disposed at an angle relative to the compression plate so that the ultrasonic transducer provides imaging of regions of the tissue mass located near, or extending beyond, the edge of the compression plate.
11. The apparatus as defined in claim 1 wherein the ultrasonic scanner comprises an ultrasonic transducer and a compression plate having an edge, the ultrasonic transducer and the compression plate disposed at an angle relative to a horizontal plane so that the ultrasonic transducer provides imaging of regions of the tissue mass located near, or extending beyond, the edge of the compression plate.
12. The apparatus as defined in claim 1 wherein the display means displays images of the tissue mass from a selected one of a plurality of orthogonal views.
13. Apparatus for positioning a tip of a biopsy device for insertion into a selected region of a tissue mass, the apparatus for use in a system including display means and an ultrasonic scanner that provides an image of the tissue mass, the apparatus comprising: a support for holding a tip of a biopsy device with a trajectory; :iy.0w3 1r L- ?GPTS 9 6 05 1 2 3 IiUA APR 1997 26 means, other than the ultrasonic scanner, coupled to the support for generating a signal corresponding to a current location of the tip of the biopsy device, prior to insertion into the tissue mass, the display means displaying the image of the tissue mass including the selected region and a symbol representative of the current location of the tip of the biopsy device relative to the selected region, so that aligning the symbol with the selected region corresponds to moving the support to position at which 1 the trajectory of the tip of the biopsy device will intersect the selected region.
14. The apparatus as defined in claim 13 wherein the support comprises first and second support tracks disposed in orthogonal relation to one another. The apparatus as defined in claim 13 wherein the means for generating a signal comprises at least one encoder.
16. A system including the apparatus as defined in claim 13, wherein the ultrasonic scanner provides real-time imaging of the tissue mass.
17. The system as defined in claim 16 wherein the ultrasonic scanner provides imaging of the tip of the biopsy device after the tip of the biopsy device has been inserted into the tissue mass. AM:S LMLE, To A'NT 0 12 Z, PAPR 1997 27
18. The apparatus as defined in claim 13 wherein the support releasably holds the biopsy device, so that the biopsy device may be released from the support after insertion of the tip of the biopsy device into the tissue mass to enable free-hand manipulation of the biopsy device.
19. A system including the apparatus as defined in claim 13, wherein the ultrasonic scanner forms a first compression surface, the system further comprising a tissue support table forming a second compression surface, the tissue mass immobilized between the first and second compression surfaces. The apparatus as defined in claim 14 further comprising a tissue support table, the first support track removably anchored to the tissue support table.
21. The apparatus as defined in claim 14 further comprising a dummy X-ray film cassette, the first support track anchored to the dummy X-ray film cassette.
22. A system including the apparatus as defined in claim 13, wherein the ultrasonic scanner comprises an ultrasonic transducer and a compression plate having an edge, the ultrasonic transducer disposed at an angle relative to the compression plate so that the ultrasonic transducer provides imaging of regions of the tissue mass located near, or extending beyond, the edge of the compression plate. -28-
23. A system including the apparatus as defined in claim 13, wherein the ultrasonic scanner comprises an ultrasonic transducer and a compression plate having an edge, the ultrasonic transducer and the compression plate disposed at an angle relative to a horizontal plane, so that the ultrasonic transducer provides imaging of regions of the tissue mass located near, or extending beyond, the edge of the compression plate.
24. A system including the apparatus as defined in claim 13, wherein the display means displays images of the tissue mass from a selected one of a plurality of orthogonal views. A method of positioning a tip of a biopsy device to have a predetermined trajectory into a selected region of a tissue mass, the method comprising steps of: immobilizing the tissue mass; generating an ultrasonic image of the tissue mass including the selected region; displaying the ultrasonic image of the tissue mass including the selected region; providing a support for holding a tip of a biopsy device with a trajectory; generating a signal, other than with the ultrasonic image, corresponding to a current location of the tip of the biopsy device, prior to insertion of the tip of the biopsy device into the tissue mass; displaying a symbol representative of the current location of the tip of the biopsy device UiP /32 APR 1997 29 relative to the selected region, responsive to the signal; and moving the support to a location at which the symbol is aligned with the selected region, so that the trajectory of the tip of the biopsy device will intersect the selected region.
26. The method as defined in claim further comprising a step of providing a real-time ultrasonic image of the tissue mass.
27. The method as defined in claim 26 further comprising steps of: inserting the tip of the biopsy device into the tissue mass while providing a real-time ultrasonic image of the tissue mass and the tip of the biopsy device; displaying the ultrasonic image of the tissue mass and the tip of the biopsy device; and guiding insertion of the tip of the biopsy device into the tissue mass responsive to the displayed image.
28. The method as defined in claim further comprising steps of: releasing the biopsy device from the support after insertion of the tip of the biopsy device into the tissue mass; and manipulating the biopsy device free-hand to alter the trajectory of the tip of the biopsy device within the tissue mass. IF 2Ius Z A4PR 1997 30
29. The method of claim 25 wherein the step of displaying the ultrasonic image of the tissue mass comprises displaying an elevation view of the tissue mass. The method of claim 27 wherein the step of displaying an ultrasonic image of the tissue mass and the tip of the biopsy device comprises displaying a plan view of the tissue mass and tip of the biopsy device. "j A
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/421,381 US5660185A (en) | 1995-04-13 | 1995-04-13 | Image-guided biopsy apparatus with enhanced imaging and methods |
US421381 | 1995-04-13 | ||
PCT/US1996/005123 WO1996032066A1 (en) | 1995-04-13 | 1996-04-12 | Image-guided biopsy apparatus with enhanced imaging and methods |
Publications (2)
Publication Number | Publication Date |
---|---|
AU5390996A AU5390996A (en) | 1996-10-30 |
AU694865B2 true AU694865B2 (en) | 1998-07-30 |
Family
ID=23670287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU53909/96A Ceased AU694865B2 (en) | 1995-04-13 | 1996-04-12 | Image-guided biopsy apparatus with enhanced imaging and methods |
Country Status (5)
Country | Link |
---|---|
US (1) | US5660185A (en) |
EP (1) | EP0825833A4 (en) |
JP (2) | JP3705816B2 (en) |
AU (1) | AU694865B2 (en) |
WO (1) | WO1996032066A1 (en) |
Families Citing this family (143)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5983123A (en) | 1993-10-29 | 1999-11-09 | United States Surgical Corporation | Methods and apparatus for performing ultrasound and enhanced X-ray imaging |
ATE191136T1 (en) | 1993-10-29 | 2000-04-15 | United States Surgical Corp | DEVICE FOR COMBINED ULTRASONIC IMAGING AND X-RAY IMAGING |
CA2199864C (en) * | 1994-09-16 | 2006-06-20 | Seth A. Foerster | Methods and devices for defining and marking tissue |
US5833627A (en) | 1995-04-13 | 1998-11-10 | United States Surgical Corporation | Image-guided biopsy apparatus and methods of use |
US6256529B1 (en) * | 1995-07-26 | 2001-07-03 | Burdette Medical Systems, Inc. | Virtual reality 3D visualization for surgical procedures |
US5851180A (en) * | 1996-07-12 | 1998-12-22 | United States Surgical Corporation | Traction-inducing compression assembly for enhanced tissue imaging |
US5820552A (en) | 1996-07-12 | 1998-10-13 | United States Surgical Corporation | Sonography and biopsy apparatus |
EP0925025A2 (en) * | 1996-08-15 | 1999-06-30 | Life Imaging Systems Inc. | System and process for performing percutaneous biopsy within the breast using three-dimensional ultrasonography |
US6459925B1 (en) | 1998-11-25 | 2002-10-01 | Fischer Imaging Corporation | User interface system for mammographic imager |
US5776062A (en) * | 1996-10-15 | 1998-07-07 | Fischer Imaging Corporation | Enhanced breast imaging/biopsy system employing targeted ultrasound |
EP0951242A1 (en) * | 1996-11-29 | 1999-10-27 | Life Imaging Systems Inc. | Apparatus for guiding medical instruments during ultrasonographic imaging |
AU5112898A (en) * | 1996-11-29 | 1998-06-22 | Life Imaging Systems Inc. | System, employing three-dimensional ultrasonographic imaging, for assisting in guiding and placing medical instruments |
US5810008A (en) * | 1996-12-03 | 1998-09-22 | Isg Technologies Inc. | Apparatus and method for visualizing ultrasonic images |
US6314310B1 (en) * | 1997-02-14 | 2001-11-06 | Biosense, Inc. | X-ray guided surgical location system with extended mapping volume |
AU6534098A (en) * | 1997-02-20 | 1998-09-09 | Johns Hopkins University, The | Friction transmission with axial loading and a radiolucent surgical needle driver |
US6270464B1 (en) * | 1998-06-22 | 2001-08-07 | Artemis Medical, Inc. | Biopsy localization method and device |
US20030135115A1 (en) * | 1997-11-24 | 2003-07-17 | Burdette Everette C. | Method and apparatus for spatial registration and mapping of a biopsy needle during a tissue biopsy |
CA2333583C (en) * | 1997-11-24 | 2005-11-08 | Everette C. Burdette | Real time brachytherapy spatial registration and visualization system |
DE69938898D1 (en) | 1998-04-07 | 2008-07-24 | Cytyc Corp | DEVICES FOR LOCATING LESIONS IN FIXED TISSUE |
US6298262B1 (en) | 1998-04-21 | 2001-10-02 | Neutar, Llc | Instrument guidance for stereotactic surgery |
US6529765B1 (en) | 1998-04-21 | 2003-03-04 | Neutar L.L.C. | Instrumented and actuated guidance fixture for sterotactic surgery |
US6546277B1 (en) | 1998-04-21 | 2003-04-08 | Neutar L.L.C. | Instrument guidance system for spinal and other surgery |
WO1999059477A1 (en) * | 1998-05-21 | 1999-11-25 | Walshe Christopher J | A tissue anchor system |
US6027457A (en) | 1998-06-18 | 2000-02-22 | United States Surgical Corporation | Apparatus and method for securing tissue during ultrasound examination and biopsy |
US6056692A (en) * | 1998-07-08 | 2000-05-02 | Schwartz; John Q. | Apparatus and method for locating and marking blood vessels |
US6351662B1 (en) | 1998-08-12 | 2002-02-26 | Neutar L.L.C. | Movable arm locator for stereotactic surgery |
US6282437B1 (en) | 1998-08-12 | 2001-08-28 | Neutar, Llc | Body-mounted sensing system for stereotactic surgery |
US7517348B2 (en) * | 1998-09-03 | 2009-04-14 | Rubicor Medical, Inc. | Devices and methods for performing procedures on a breast |
JP4443672B2 (en) * | 1998-10-14 | 2010-03-31 | 株式会社東芝 | Ultrasonic diagnostic equipment |
US6122542A (en) | 1998-11-25 | 2000-09-19 | Rubicor Medical, Inc. | Breast stabilization devices and imaging and interventional methods using the same |
US6574499B1 (en) * | 1998-11-25 | 2003-06-03 | Xdata Corporation | Mammography method and apparatus |
US6535756B1 (en) * | 2000-04-07 | 2003-03-18 | Surgical Navigation Technologies, Inc. | Trajectory storage apparatus and method for surgical navigation system |
US20030135102A1 (en) * | 2000-05-18 | 2003-07-17 | Burdette Everette C. | Method and system for registration and guidance of intravascular treatment |
US7494494B2 (en) * | 2000-08-30 | 2009-02-24 | Johns Hopkins University | Controllable motorized device for percutaneous needle placement in soft tissue target and methods and systems related thereto |
US7940966B2 (en) * | 2000-11-24 | 2011-05-10 | U-Systems, Inc. | Full-field breast image data processing and archiving |
US7556602B2 (en) * | 2000-11-24 | 2009-07-07 | U-Systems, Inc. | Breast cancer screening with adjunctive ultrasound mammography |
US7597663B2 (en) | 2000-11-24 | 2009-10-06 | U-Systems, Inc. | Adjunctive ultrasound processing and display for breast cancer screening |
US7615008B2 (en) * | 2000-11-24 | 2009-11-10 | U-Systems, Inc. | Processing and displaying breast ultrasound information |
US7103205B2 (en) * | 2000-11-24 | 2006-09-05 | U-Systems, Inc. | Breast cancer screening with ultrasound image overlays |
US6695786B2 (en) * | 2001-03-16 | 2004-02-24 | U-Systems, Inc. | Guide and position monitor for invasive medical instrument |
FR2823969B1 (en) * | 2001-04-30 | 2003-12-26 | Ge Med Sys Global Tech Co Llc | METHOD FOR TAKING TISSUE DURING X-RAY EXAMINATION AND IMPLEMENTING DEVICE |
US6733458B1 (en) | 2001-09-25 | 2004-05-11 | Acuson Corporation | Diagnostic medical ultrasound systems and methods using image based freehand needle guidance |
WO2003039370A1 (en) | 2001-11-05 | 2003-05-15 | Computerized Medical Systems, Inc. | Apparatus and method for registration, guidance, and targeting of external beam radiation therapy |
US6724856B2 (en) * | 2002-04-15 | 2004-04-20 | General Electric Company | Reprojection and backprojection methods and algorithms for implementation thereof |
US6882700B2 (en) * | 2002-04-15 | 2005-04-19 | General Electric Company | Tomosynthesis X-ray mammogram system and method with automatic drive system |
US7218766B2 (en) * | 2002-04-15 | 2007-05-15 | General Electric Company | Computer aided detection (CAD) for 3D digital mammography |
US7783089B2 (en) * | 2002-04-15 | 2010-08-24 | General Electric Company | Method and apparatus for providing mammographic image metrics to a clinician |
US6707878B2 (en) | 2002-04-15 | 2004-03-16 | General Electric Company | Generalized filtered back-projection reconstruction in digital tomosynthesis |
US20030194050A1 (en) * | 2002-04-15 | 2003-10-16 | General Electric Company | Multi modality X-ray and nuclear medicine mammography imaging system and method |
US6748047B2 (en) * | 2002-05-15 | 2004-06-08 | General Electric Company | Scatter correction method for non-stationary X-ray acquisitions |
US6780179B2 (en) * | 2002-05-22 | 2004-08-24 | Rubicor Medical, Inc. | Methods and systems for in situ tissue marking and orientation stabilization |
EP2272434A1 (en) | 2002-05-31 | 2011-01-12 | U-Systems, Inc. | Breast cancer screening with adjunctive ultra-sound mammography |
US7187800B2 (en) | 2002-08-02 | 2007-03-06 | Computerized Medical Systems, Inc. | Method and apparatus for image segmentation using Jensen-Shannon divergence and Jensen-Renyi divergence |
US7438692B2 (en) * | 2002-10-18 | 2008-10-21 | Mark Tsonton | Localization mechanism for an MRI compatible biopsy device |
US6912050B2 (en) * | 2003-02-03 | 2005-06-28 | Hach Company | Phase shift measurement for luminescent light |
DE20308606U1 (en) * | 2003-05-30 | 2004-10-14 | Siemens Ag | Device for holding at least one ultrasound head |
US6846289B2 (en) | 2003-06-06 | 2005-01-25 | Fischer Imaging Corporation | Integrated x-ray and ultrasound medical imaging system |
US20050159676A1 (en) * | 2003-08-13 | 2005-07-21 | Taylor James D. | Targeted biopsy delivery system |
US8123691B2 (en) * | 2003-08-19 | 2012-02-28 | Kabushiki Kaisha Toshiba | Ultrasonic diagnostic apparatus for fixedly displaying a puncture probe during 2D imaging |
US7313430B2 (en) * | 2003-08-28 | 2007-12-25 | Medtronic Navigation, Inc. | Method and apparatus for performing stereotactic surgery |
US20050089205A1 (en) * | 2003-10-23 | 2005-04-28 | Ajay Kapur | Systems and methods for viewing an abnormality in different kinds of images |
US7313259B2 (en) * | 2003-11-26 | 2007-12-25 | General Electric Company | Method, system and computer program product for multi-modality registration using virtual cursors |
WO2005122870A2 (en) | 2004-06-14 | 2005-12-29 | Pneumrx, Inc. | Lung access device |
JP2008503254A (en) | 2004-06-16 | 2008-02-07 | ヌームアールエックス・インコーポレーテッド | Intrabronchial lung volume reduction system |
US7766891B2 (en) | 2004-07-08 | 2010-08-03 | Pneumrx, Inc. | Lung device with sealing features |
CA2570261C (en) | 2004-07-08 | 2014-06-10 | Pneumrx, Inc. | Pleural effusion treatment device, method and material |
CA2587857C (en) | 2004-11-23 | 2017-10-10 | Pneumrx, Inc. | Steerable device for accessing a target site and methods |
US8795195B2 (en) * | 2004-11-29 | 2014-08-05 | Senorx, Inc. | Graphical user interface for tissue biopsy system |
DE102005039658B3 (en) * | 2005-08-22 | 2007-07-19 | Siemens Ag | Laser device for a mammography device |
US8852111B2 (en) * | 2005-09-02 | 2014-10-07 | Ultrasound Ventures, Llc | Ultrasound guidance system |
WO2007040172A1 (en) * | 2005-10-04 | 2007-04-12 | Hitachi Medical Corporation | Ultrasonic probe and ultrasonic diagnostic device employing same |
DE202007019497U1 (en) | 2006-02-15 | 2013-03-06 | Hologic, Inc. | Breast biopsy and needle localization using tomosynthesis systems |
US9402633B2 (en) | 2006-03-13 | 2016-08-02 | Pneumrx, Inc. | Torque alleviating intra-airway lung volume reduction compressive implant structures |
US8888800B2 (en) | 2006-03-13 | 2014-11-18 | Pneumrx, Inc. | Lung volume reduction devices, methods, and systems |
US8157837B2 (en) | 2006-03-13 | 2012-04-17 | Pneumrx, Inc. | Minimally invasive lung volume reduction device and method |
US7507210B2 (en) * | 2006-05-01 | 2009-03-24 | Ethicon Endo-Surgery, Inc. | Biopsy cannula adjustable depth stop |
US8568333B2 (en) * | 2006-05-01 | 2013-10-29 | Devicor Medical Products, Inc. | Grid and rotatable cube guide localization fixture for biopsy device |
US10561394B2 (en) * | 2006-05-02 | 2020-02-18 | U-Systems, Inc. | Ultrasound scanning and ultrasound-assisted biopsy |
US20070282221A1 (en) * | 2006-06-02 | 2007-12-06 | U-Systems, Inc. | Ultrasound assisted and x-ray assisted biopsy devices |
US8118743B2 (en) * | 2006-05-26 | 2012-02-21 | Ultrasound Ventures, Llc | Sterile cover |
US8496593B2 (en) * | 2006-05-26 | 2013-07-30 | Robert Park | Needle guide |
WO2008017051A2 (en) | 2006-08-02 | 2008-02-07 | Inneroptic Technology Inc. | System and method of providing real-time dynamic imagery of a medical procedure site using multiple modalities |
IL177550A0 (en) | 2006-08-17 | 2006-12-31 | Sialo Technology Israel Ltd | All-in-one optical microscopic handle |
EP2059174B1 (en) * | 2006-08-24 | 2011-03-16 | Ultrasound Ventures, Llc | Sterile cover and needle guide for an imaging device |
AU2007322982A1 (en) * | 2006-10-23 | 2008-05-29 | Hirdesh Sahni | An image guided whole body stereotactic needle placement device with falling arc |
US7985971B2 (en) * | 2007-02-16 | 2011-07-26 | Hong Kong Applied Science And Technology Research Institute Co. Ltd. | Method of producing thin semiconductor structures |
US10201324B2 (en) | 2007-05-04 | 2019-02-12 | Delphinus Medical Technologies, Inc. | Patient interface system |
JP2009136523A (en) * | 2007-12-07 | 2009-06-25 | Ge Medical Systems Global Technology Co Llc | Ultrasonic diagnosis apparatus, radiofrequency wave cautery treatment device, ultrasonic diagnosis and treatment system, and ultrasonic diagnosis and treatment apparatus |
WO2009094646A2 (en) | 2008-01-24 | 2009-07-30 | The University Of North Carolina At Chapel Hill | Methods, systems, and computer readable media for image guided ablation |
US8340379B2 (en) * | 2008-03-07 | 2012-12-25 | Inneroptic Technology, Inc. | Systems and methods for displaying guidance data based on updated deformable imaging data |
US8632605B2 (en) | 2008-09-12 | 2014-01-21 | Pneumrx, Inc. | Elongated lung volume reduction devices, methods, and systems |
US11464578B2 (en) | 2009-02-17 | 2022-10-11 | Inneroptic Technology, Inc. | Systems, methods, apparatuses, and computer-readable media for image management in image-guided medical procedures |
US8641621B2 (en) | 2009-02-17 | 2014-02-04 | Inneroptic Technology, Inc. | Systems, methods, apparatuses, and computer-readable media for image management in image-guided medical procedures |
US8554307B2 (en) | 2010-04-12 | 2013-10-08 | Inneroptic Technology, Inc. | Image annotation in image-guided medical procedures |
US8690776B2 (en) | 2009-02-17 | 2014-04-08 | Inneroptic Technology, Inc. | Systems, methods, apparatuses, and computer-readable media for image guided surgery |
KR101112659B1 (en) * | 2009-04-14 | 2012-02-16 | 삼성메디슨 주식회사 | Biopsy apparatus and ultrasonic diagnostic apparatus therewith |
KR101010597B1 (en) * | 2009-04-14 | 2011-01-24 | 주식회사 메디슨 | Ultrasonic diagnostic apparatus having separable biopsy apparatus |
KR20100116430A (en) * | 2009-04-22 | 2010-11-01 | 주식회사 메디슨 | Ultrasonic diagnostic apparatus |
EP2432422A4 (en) | 2009-05-18 | 2018-01-17 | PneumRx, Inc. | Cross-sectional modification during deployment of an elongate lung volume reduction device |
EP2445413B1 (en) * | 2009-06-23 | 2020-02-12 | Invivo Corporation | Variable angle guide holder for a biopsy guide plug |
JP5825753B2 (en) | 2009-11-17 | 2015-12-02 | 富士フイルム株式会社 | Biopsy equipment |
CN102869301B (en) | 2010-02-12 | 2016-06-29 | 戴尔菲纳斯医疗科技公司 | The method characterizing the tissue of patient |
CN102843959B (en) | 2010-02-12 | 2014-11-12 | 戴尔菲纳斯医疗科技公司 | Method of characterizing the pathological response of tissue to a treatmant plan |
US8758256B2 (en) | 2010-07-12 | 2014-06-24 | Best Medical International, Inc. | Apparatus for brachytherapy that uses a scanning probe for treatment of malignant tissue |
US9044216B2 (en) | 2010-07-12 | 2015-06-02 | Best Medical International, Inc. | Biopsy needle assembly |
US20120143083A1 (en) * | 2010-12-01 | 2012-06-07 | Andrew Kwai | Devices and methods for improving the usability of stereotactic imaging for performing a breast biopsy |
US20130267850A1 (en) | 2010-12-06 | 2013-10-10 | Michael Berman | System and method for ultrasonic examination of the breast |
WO2012172474A1 (en) | 2011-06-17 | 2012-12-20 | Koninklijke Philips Electronics N.V. | System and method for guided injection during endoscopic surgery |
BE1020228A3 (en) * | 2011-10-12 | 2013-06-04 | Mepy Benelux Bvba | A NEEDLE GUIDE AND METHOD FOR DETERMINING THE POSITION OF A NEEDLE MOSTLY IN A SUCH NEEDLE GUIDE FITTED TO AN IMAGE CONDITIONER. |
EP2782505B1 (en) | 2011-11-27 | 2020-04-22 | Hologic, Inc. | System and method for generating a 2d image using mammography and/or tomosynthesis image data |
DE202011109495U1 (en) * | 2011-12-27 | 2013-01-08 | Isys Medizintechnik Gmbh | needle guide |
US8670816B2 (en) | 2012-01-30 | 2014-03-11 | Inneroptic Technology, Inc. | Multiple medical device guidance |
WO2013173369A2 (en) * | 2012-05-14 | 2013-11-21 | Delphinus Medical Technologies, Inc. | System and method for performing an image-guided biopsy |
US9763641B2 (en) | 2012-08-30 | 2017-09-19 | Delphinus Medical Technologies, Inc. | Method and system for imaging a volume of tissue with tissue boundary detection |
US10123770B2 (en) | 2013-03-13 | 2018-11-13 | Delphinus Medical Technologies, Inc. | Patient support system |
US10314559B2 (en) | 2013-03-14 | 2019-06-11 | Inneroptic Technology, Inc. | Medical device guidance |
EP2967479B1 (en) | 2013-03-15 | 2018-01-31 | Hologic Inc. | Tomosynthesis-guided biopsy in prone |
US11364005B2 (en) * | 2013-10-24 | 2022-06-21 | Hologic, Inc. | System and method for navigating x-ray guided breast biopsy |
WO2015066280A1 (en) * | 2013-10-30 | 2015-05-07 | Brigham And Women's Hospital, Inc. | Ventriculostomy guidance device |
ES2878599T3 (en) | 2014-02-28 | 2021-11-19 | Hologic Inc | System and method to generate and visualize tomosynthesis image blocks |
US10143443B2 (en) | 2014-05-05 | 2018-12-04 | Delphinus Medical Technologies, Inc. | Method for representing tissue stiffness |
US10743837B2 (en) | 2014-08-04 | 2020-08-18 | Delphinus Medical Technologies, Inc. | Ultrasound waveform tomography method and system |
US10285667B2 (en) | 2014-08-05 | 2019-05-14 | Delphinus Medical Technologies, Inc. | Method for generating an enhanced image of a volume of tissue |
US10390838B1 (en) | 2014-08-20 | 2019-08-27 | Pneumrx, Inc. | Tuned strength chronic obstructive pulmonary disease treatment |
US9901406B2 (en) | 2014-10-02 | 2018-02-27 | Inneroptic Technology, Inc. | Affected region display associated with a medical device |
US10188467B2 (en) | 2014-12-12 | 2019-01-29 | Inneroptic Technology, Inc. | Surgical guidance intersection display |
US9949700B2 (en) | 2015-07-22 | 2018-04-24 | Inneroptic Technology, Inc. | Medical device approaches |
EP3355826A1 (en) | 2015-09-30 | 2018-08-08 | Devicor Medical Products, Inc. | Breast support compression pillow |
US9675319B1 (en) | 2016-02-17 | 2017-06-13 | Inneroptic Technology, Inc. | Loupe display |
US10786224B2 (en) | 2016-04-21 | 2020-09-29 | Covidien Lp | Biopsy devices and methods of use thereof |
US10278778B2 (en) | 2016-10-27 | 2019-05-07 | Inneroptic Technology, Inc. | Medical device navigation using a virtual 3D space |
US10827989B2 (en) | 2016-12-20 | 2020-11-10 | General Electric Company | System and method for imaging biopsy samples obtained from a patient |
DE102017104301A1 (en) * | 2017-03-01 | 2018-09-06 | Hubert Noras | Biopsy needle guide with two-stage fixation |
US11399790B2 (en) | 2017-03-30 | 2022-08-02 | Hologic, Inc. | System and method for hierarchical multi-level feature image synthesis and representation |
JP7169986B2 (en) | 2017-03-30 | 2022-11-11 | ホロジック, インコーポレイテッド | Systems and methods for synthesizing low-dimensional image data from high-dimensional image data using object grid augmentation |
JP7174710B2 (en) | 2017-03-30 | 2022-11-17 | ホロジック, インコーポレイテッド | Systems and Methods for Targeted Object Augmentation to Generate Synthetic Breast Tissue Images |
EP3641635A4 (en) | 2017-06-20 | 2021-04-07 | Hologic, Inc. | Dynamic self-learning medical image method and system |
US11259879B2 (en) | 2017-08-01 | 2022-03-01 | Inneroptic Technology, Inc. | Selective transparency to assist medical device navigation |
US11484365B2 (en) | 2018-01-23 | 2022-11-01 | Inneroptic Technology, Inc. | Medical image guidance |
US11331161B2 (en) | 2018-03-23 | 2022-05-17 | Covidien Lp | Surgical assemblies facilitating tissue marking and methods of use thereof |
US11517294B2 (en) | 2019-05-07 | 2022-12-06 | Covidien Lp | Biopsy devices and methods of use thereof |
US11426198B2 (en) | 2019-07-04 | 2022-08-30 | Aaron Fenster | Biopsy apparatus |
CN116439802B (en) * | 2023-05-12 | 2024-04-12 | 上海长征医院 | Palm type ultrasonic device and imaging method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4875478A (en) * | 1987-04-10 | 1989-10-24 | Chen Harry H | Portable compression grid & needle holder |
DE4111107A1 (en) * | 1990-04-06 | 1991-10-10 | Orion Yhtymae Oy | METHOD FOR A BIOPSY BY MEANS OF A THIN NEEDLE OR A TISSUE MARKING IN CONNECTION WITH THE MAMMOGRAPHY AND DEVICE FOR IMPLEMENTING THE METHOD |
US5158088A (en) * | 1990-11-14 | 1992-10-27 | Advanced Technology Laboratories, Inc. | Ultrasonic diagnostic systems for imaging medical instruments within the body |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3765403A (en) * | 1968-05-20 | 1973-10-16 | Holotron Corp | Ultrasonic imaging techniques and mammograph equipment |
DE2443558B2 (en) * | 1974-09-11 | 1979-01-04 | Siemens Ag, 1000 Berlin Und 8000 Muenchen | Device for puncturing internal organs and vessels |
US3971950A (en) * | 1975-04-14 | 1976-07-27 | Xerox Corporation | Independent compression and positioning device for use in mammography |
US3963933A (en) * | 1975-08-18 | 1976-06-15 | General Electric Company | Mammography fixture |
US4485819A (en) * | 1980-01-21 | 1984-12-04 | Wolfgang Igl | Mechanical accessory for commercially available compound apparatuses for echo mammography |
US4433690A (en) * | 1981-07-20 | 1984-02-28 | Siemens Ag | Compact ultrasound apparatus for medical examination |
WO1983002053A1 (en) * | 1981-12-14 | 1983-06-23 | Kossoff, George | Apparatus for ultrasonic examination of deformable objects |
US4434799A (en) * | 1982-03-02 | 1984-03-06 | Siemens Ag | Ultrasound apparatus for medical examinations |
DE3222053A1 (en) * | 1982-06-11 | 1983-12-15 | Siemens AG, 1000 Berlin und 8000 München | Apparatus for the ultrasonic examination of the female breast |
DE3227624A1 (en) * | 1982-07-23 | 1984-01-26 | Siemens AG, 1000 Berlin und 8000 München | Device for examining the female breast using ultrasound |
FR2533818B1 (en) * | 1982-10-05 | 1985-11-08 | Franceschi Claude | APPARATUS FOR ECHOTOMOGRAPHY OF EXTERNAL ORGANS, ESPECIALLY BREAST GLANDS |
JPS60163643A (en) * | 1984-02-07 | 1985-08-26 | テルモ株式会社 | Ultrasonic measuring method and apparatus |
DE3405537A1 (en) * | 1984-02-16 | 1985-08-22 | Lothar W. Dr.med. 2000 Hamburg Popp | Method for ultrasonic echo-pulse diagnosis and device for carrying out the method |
US4599738A (en) * | 1984-04-17 | 1986-07-08 | Patrick Panetta | Universal mammography compression system |
US4862893A (en) * | 1987-12-08 | 1989-09-05 | Intra-Sonix, Inc. | Ultrasonic transducer |
US4821727A (en) * | 1986-10-30 | 1989-04-18 | Elscint Ltd. | Mammographic biopsy needle holder system |
GB8709406D0 (en) * | 1987-04-21 | 1987-05-28 | Aberdeen University Of Univers | Examining body of living tissues |
DE3782167T2 (en) * | 1987-07-21 | 1993-02-18 | Hewlett Packard Gmbh | MEASURING VALUE TRANSMITTER. |
US5078142A (en) * | 1989-11-21 | 1992-01-07 | Fischer Imaging Corporation | Precision mammographic needle biopsy system |
DE4037387A1 (en) * | 1990-11-22 | 1992-05-27 | Kari Dr Richter | Object imaging display for ultrasonic sonic scanning computer tomograph - superimposes echoes of primary radiation into summation image |
US5113420A (en) * | 1990-12-24 | 1992-05-12 | Texaco Inc. | Method and apparatus for positioning a sample with repeatable accuracy |
US5474072A (en) * | 1993-10-29 | 1995-12-12 | Neovision Corporation | Methods and apparatus for performing sonomammography |
ATE191136T1 (en) * | 1993-10-29 | 2000-04-15 | United States Surgical Corp | DEVICE FOR COMBINED ULTRASONIC IMAGING AND X-RAY IMAGING |
IL107523A (en) * | 1993-11-07 | 2000-01-31 | Ultraguide Ltd | Articulated needle guide for ultrasound imaging and method of using same |
WO1996025882A1 (en) * | 1995-02-22 | 1996-08-29 | Groenningsaeter Aage | Method for ultrasound guidance during clinical procedures |
-
1995
- 1995-04-13 US US08/421,381 patent/US5660185A/en not_active Expired - Lifetime
-
1996
- 1996-04-12 WO PCT/US1996/005123 patent/WO1996032066A1/en not_active Application Discontinuation
- 1996-04-12 AU AU53909/96A patent/AU694865B2/en not_active Ceased
- 1996-04-12 EP EP96910826A patent/EP0825833A4/en not_active Withdrawn
- 1996-04-12 JP JP53123996A patent/JP3705816B2/en not_active Expired - Fee Related
-
2005
- 2005-03-14 JP JP2005072106A patent/JP2005237976A/en not_active Withdrawn
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4875478A (en) * | 1987-04-10 | 1989-10-24 | Chen Harry H | Portable compression grid & needle holder |
DE4111107A1 (en) * | 1990-04-06 | 1991-10-10 | Orion Yhtymae Oy | METHOD FOR A BIOPSY BY MEANS OF A THIN NEEDLE OR A TISSUE MARKING IN CONNECTION WITH THE MAMMOGRAPHY AND DEVICE FOR IMPLEMENTING THE METHOD |
US5158088A (en) * | 1990-11-14 | 1992-10-27 | Advanced Technology Laboratories, Inc. | Ultrasonic diagnostic systems for imaging medical instruments within the body |
Also Published As
Publication number | Publication date |
---|---|
WO1996032066A1 (en) | 1996-10-17 |
JP3705816B2 (en) | 2005-10-12 |
EP0825833A4 (en) | 1998-06-10 |
EP0825833A1 (en) | 1998-03-04 |
JPH11505446A (en) | 1999-05-21 |
US5660185A (en) | 1997-08-26 |
JP2005237976A (en) | 2005-09-08 |
AU5390996A (en) | 1996-10-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU694865B2 (en) | Image-guided biopsy apparatus with enhanced imaging and methods | |
EP0928160B1 (en) | Image-guided biopsy apparatus | |
EP0936889B1 (en) | Enhanced breast imaging/biopsy system employing targeted ultrasound | |
US6731966B1 (en) | Systems and methods for targeting a lesion | |
Matalon et al. | US guidance of interventional procedures. | |
US7496398B2 (en) | Spatially correlated x-ray and ultrasound mammographic imaging systems and method | |
EP0728446B1 (en) | Stereotaxy systems | |
DE69832425T2 (en) | System for performing surgery, biopsy, ablation of a tumor or other physical abnormality | |
EP1524011B1 (en) | Method and apparatus for determining the position of a surgical tool relative to a target volume inside an animal body | |
US6853856B2 (en) | Diagnostic imaging interventional apparatus | |
CN212521854U (en) | Medical instrument | |
EP1180963A1 (en) | Systems and methods for targeting a breast lesion | |
CA2217976C (en) | Image-guided biopsy apparatus with enhanced imaging and methods | |
GB2400176A (en) | Ultrasound probe with needle-guiding feature | |
MXPA00006601A (en) | Method and apparatus for removing tissue from a region of interest using stereotacticradiographic guidance |