AU2002326816A1 - Methods of sterilizing biological materials containing non-aqueous solvents - Google Patents
Methods of sterilizing biological materials containing non-aqueous solventsInfo
- Publication number
- AU2002326816A1 AU2002326816A1 AU2002326816A AU2002326816A AU2002326816A1 AU 2002326816 A1 AU2002326816 A1 AU 2002326816A1 AU 2002326816 A AU2002326816 A AU 2002326816A AU 2002326816 A AU2002326816 A AU 2002326816A AU 2002326816 A1 AU2002326816 A1 AU 2002326816A1
- Authority
- AU
- Australia
- Prior art keywords
- biological material
- radiation
- aqueous solvent
- acid
- residual solvent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Description
METHODS OF STERILIZING BIOLOGICAL MATERIALS CONTAINING
NON-AQUEOUS SOLVENTS
BACKGROUND OF THE INVENTION
Field of the Invention
The present invention relates to methods for sterilizing biological materials to reduce the level of one or more active biological contaminants or pathogens therein, such as viruses, bacteria (including inter- and intracellular bacteria, such as mycoplasmas, ureaplasmas, nanobacteria, chlamydia, rickettsias), yeasts, molds, fungi, prions or similar agents responsible, alone or in combination, for TSEs and/or single or multicellular parasites. The present invention particularly relates to methods of sterilizing biological materials containing one or more non-aqueous solvents with irradiation.
Background of the Related Art
Many biological materials that are prepared for human, veterinary, diagnostic and/or experimental use may contain unwanted and potentially dangerous biological contaminants or pathogens, such as viruses, bacteria (including inter- and intracellular bacteria, such as mycoplasmas, ureaplasmas, nanobacteria, chlamydia, rickettsias), yeasts, molds, fungi, prions or similar agents responsible, alone or in combination, for
TSEs and/or single or multicellular parasites. Consequently, it is of utmost importance that any biological contaminant or pathogen in the biological material be inactivated before the product is used. This is especially critical when the material is to be administered directly to a patient, for example in blood transfusions, blood factor replacement therapy, organ transplants and other forms of human therapy corrected or treated by intravenous, intramuscular or other forms of injection or introduction. This is also critical for the various biological materials that are prepared in media or via culture of cells or recombinant cells which contain various types of plasma and/or plasma derivatives or other biologic materials and which may be subject to mycoplasma, prion, bacterial, viral and other biological contaminants or pathogens.
Most procedures for producing biological materials have involved methods that screen or test the biological materials for one or more particular biological contaminants or pathogens rather than removal or inactivation of the contaminant(s) or pathogen(s) from the material. Materials that test positive for a biological contaminant or pathogen are merely not used. Examples of screening procedures include the testing for a particular virus in human blood from blood donors. Such procedures, however, are not always reliable and are not able to detect the presence of certain viruses, particularly in very low numbers. This reduces the value or certainty of the test in view of the consequences associated with a false negative result. False negative results can be life threatening in certain cases, for example in the case of Acquired Immune Deficiency
Syndrome (AIDS). Furthermore, in some instances it can take weeks, if not months, to determine whether or not the material is contaminated. Moreover, to date, there is no reliable test or assay for identifying prions within a biological material that is suitable for screening out potential donors or infected material. This serves to heighten the need for an effective means of destroying prions within a biological material, while still retaining the desired activity of that material. Therefore, it would be desirable to apply techniques that would kill or inactivate contaminants or pathogens during and/or after manufacturing the biological material.
The importance of these techniques is apparent regardless of the source of the biological material. All living cells and multi-cellular organisms can be infected with viruses and other pathogens. Thus the products of unicellular natural or recombinant organisms or tissues carry a risk of pathogen contamination. In addition to the risk that the producing cells or cell cultures may be infected, the processing of these and other biological materials creates opportunities for environmental contamination. The risks of infection are more apparent for multicellular natural and recombinant organisms, such as transgenic animals. Interestingly, even products from species as different from humans as transgenic plants carry risks, both due to processing contamination as described above, and from environmental contamination in the growing facilities, which may be contaminated by pathogens from the environment or infected organisms that co- inhabit the facility along with the desired plants. For example, a crop of transgenic corn grown out of doors, could be expected to be exposed to rodents such as mice during the growing season. Mice can harbour serious human pathogens such as the frequently fatal
Hanta virus. Since these animals would be undetectable in the growing crop, viruses
shed by the animals could be carried into the transgenic material at harvest. Indeed, such rodents are notoriously difficult to control, and may gain access to a crop during sowing, growth, harvest or storage. Likewise, contamination from overflying or perching birds has to potential to transmit such serious pathogens as the causative agent for psittacosis. Thus any biological material, regardless of its source, may harbour serious pathogens that must be removed or inactivated prior to the administration of the material to a reicipient.
In conducting experiments to determine the ability of technologies to inactivate viruses, the actual viruses of concern are seldom utilized. This is a result of safety concerns for the workers conducting the tests, and the difficulty and expense associated with the containment facilities and waste disposal. In their place, model viruses of the same family and class are used. In general, it is acknowledged that the most difficult viruses to inactivate are those with an outer shell made up of proteins, and that among these, the most difficult to inactivate are those of the smallest size. This has been shown to be true for gamma irradiation and most other forms of radiation as these viruses' diminutive size is associated with a small genome. The magnitude of direct effects of radiation upon a molecule are directly proportional to the size of the molecule, that is the larger the target molecule, the greater the effect. As a corollary, it has been shown for gamma-irradiation that the smaller the viral genome, the higher the radiation dose required to inactive it.
Among the viruses of concern for both human and animal-derived biological materials, the smallest, and thus most difficult to inactivate, belong to the family of Parvoviruses and the slightly larger protein-coated Hepatitis virus. In humans, the Parvovirus B19, and Hepatitis A are the agents of concern. In porcine-derived materials, the smallest corresponding virus is Porcine Parvovirus. Since this virus is harmless to humans, it is frequently chosen as a model virus for the human B19 Parvovirus. The demonstration of inactivation of this model parvovirus is considered adequate proof that the method employed will kill human B19 virus and Hepatitis A, and by extension, that it will also kill the larger and less hardy viruses such as HIV, CMV, Hepatitis B and C and others.
More recent efforts have focussed on methods to remove or inactivate contaminants in the products. Such methods include heat treating, filtration and the addition of chemical inactivants or sensitizers to the product.
According to current standards of the U.S. Food and Drug Administration, heat treatment of biological materials may require heating to approximately 60°C for a minimum of 10 hours, which can be damaging to sensitive biological materials. Indeed, heat inactivation can destroy 50% or more of the biological activity of certain biological materials.
Filtration involves filtering the product in order to physically remove contaminants. Unfortunately, this method may also remove products that have a high molecular weight. Further, in certain cases, small viruses may not be removed by the filter. The procedure of chemical sensitization involves the addition of noxious agents which bind to the DNA/RNA of the virus and which are activated either by UV or other radiation. This radiation produces reactive intermediates and/or free radicals which bind to the DNA/RNA of the virus, break the chemical bonds in the backbone of the DNA/RNA, and/or cross-link or complex it in such a way that the virus can no longer replicate. This procedure requires that unbound sensitizer is washed from products since the sensitizers are toxic, if not mutagenic or carcinogenic, and cannot be administered to a patient.
Irradiating a product with gamma radiation is another method of sterilizing a product. Gamma radiation is effective in destroying viruses and bacteria when given in high total doses (Keathly et al, "Is There Life After Irradiation? Part 2," BioPharm
My- August, 1993, and Leitman, Use of Blood Cell Irradiation in the Prevention of Post Transfusion Graft-vs-HostDisease," Transfusion Science 70:219-239 (1989)). The published literature in this area, however, teaches that gamma radiation can be damaging to radiation sensitive products, such as blood, blood products, protein and protein-containing products. In particular, it has been shown that high radiation doses are injurious to red cells, platelets and granulocytes (Leitman). U.S. Patent No. 4,620,908 discloses that protein products must be frozen prior to irradiation in order to maintain the viability of the protein product. This patent concludes that "[i]f the gamma irradiation were applied while the protein material was at, for example, ambient temperature, the material would be also completely destroyed, that is the activity of the material would be rendered so low as to be virtually ineffective". Unfortunately, many sensitive biological materials, such as monoclonal antibodies (Mab), may lose viability
and activity if subjected to freezing for irradiation purposes and then thawing prior to administration to a patient.
In view of the difficulties discussed above, there remains a need for methods of sterilizing biological materials that are effective for reducing the level of active biological contaminants or pathogens without an adverse effect on the material.
The above references are incorporated by reference herein where appropriate for appropriate teachings of additional or alternative details, features and/or technical background.
SUMMARY OF THE INVENTION
[1] An object of the invention is to solve at least the above problems and/or disadvantages and to provide at least the advantages described hereinafter.
[2] Accordingly, it is an object of the present invention to provide methods of sterilizing biological materials by reducing the level of active biological contaminants or pathogens without adversely effecting the material. Other objects, features and advantages of the present invention will be set forth in the detailed description of prefened embodiments that follows, and in part will be apparent from the description or may be learned by practice of the invention. These objects and advantages of the invention will be realized and attained by the compositions and methods particularly pointed out in the written description and claims hereof.
[3] In accordance with these and other objects, a first embodiment of the present invention is directed to a method for sterilizing a biological material that is sensitive to radiation and contains a non-aqueous solvent comprising irradiating the biological material with radiation for a time effective to sterilize the material at a rate effective to sterilize the material and to protect the material from radiation.
[4] Another embodiment of the present invention is directed to a method for sterilizing a biological material that is sensitive to radiation and contains a non-aqueous solvent comprising: (i) adding to a biological material at least one stabilizer in an amount effective to protect the biological material from radiation; and (ii) irradiating the biological material with radiation at an effective rate for a time effective to sterilize the material.
[5] Another embodiment of the present invention is directed to a method for sterilizing a biological material that is sensitive to radiation and contains a non-aqueous solvent comprising: (i) reducing the residual solvent content of a biological material to a level effective to protect the biological material from radiation; and (ii) irradiating the biological material with radiation at an effective rate for a time effective to sterilize the biological material.
[6] Another embodiment of the present invention is directed to a method for sterilizing a biological material that is sensitive to radiation and contains a non-aqueous solvent comprising: (i) reducing the temperature of a biological material to a level effective to protect the biological material from radiation; and (ii) irradiating the biological material with radiation at an effective rate for a time effective to sterilize the biological material.
[7] Another embodiment of the present invention is directed to a method for sterilizing a biological material that is sensitive to radiation and contains a non-aqueous solvent comprising: (i) applying to the biological material a stabilizing process selected from the group consisting of: (a) reducing the residual solvent content of a biological material, (b) adding to the biological material at least one stabilizer, and (c) reducing the temperature of the biological material; and (ii) irradiating the biological material with radiation at an effective rate for a time effective to sterilize the biological material, wherein the stabilizing process and the rate of irradiation are together effective to protect the biological material from radiation.
[8] Another embodiment of the present invention is directed to a method for sterilizing a biological material that is sensitive to radiation and contains a non-aqueous solvent comprising: (i) applying to the biological material at least two stabilizing processes selected from the group consisting of: (a) reducing the residual solvent content of a biological material, (b) adding to the biological material at least one stabilizer, and (c) reducing the temperature of the biological material; and (ii) inadiating the biological material with radiation at an effective rate for a time effective to sterilize the biological material, wherein the stabilizing processes may be performed in any order and are together effective to protect the biological material from radiation.
[9] The invention also provides a composition comprising a biological material and a non-aqueous solvent in an amount effective to preserve the preparation for its intended use following sterilization with radiation.
[10] The invention also provides a composition comprising at least one biological material, a least one non-aqueous solvent and at least one stabilizer, wherein the non-aqueous solvent and stabilizer are together present in an amount effective to preserve the material for its intended use following sterilization with radiation.
[11] Additional advantages, objects, and features of the mvention will be set forth in part in the description which follows and in part will become apparent to those having ordinary skill in the art upon examination of the following or may be learned from practice of the invention. The objects and advantages of the invention may be realized and attained as particularly pointed out in the appended claims.
BRIEF DESCRIPTION OF THE DRAWINGS [12] The invention will be described in detail with reference to the following drawings in which like reference numerals refer to like elements wherein:
[13] Figure 1 is a graph showing the effect of gamma radiation on dried urokinase suspended in polypropylene glycol (PPG) 400 or phosphate buffered saline (PBS). [14] Figure 2 is a graph showing the activity of immobilized anti-insulin monoclonal antibody after irradiation in the presence of various forms of polypropylene glycol.
[15] Figure 3 is a graph showing the effect of gamma radiation on trypsin suspended in polypropylene glycol at varying levels of residual solvent (water) content. [16] Figures 4(a) - 4(d) show the effects of porcine heart valves gamma irradiated in the presence of polypropylene glycol 400 (PPG400) and, optionally, a scavenger.
[17] Figures 5(a) - 5(e) show the effects of gamma irradiation on porcine heart valve cusps in the presence of 50% DMSO and, optionally, a stabilizer, and in the presence of polypropylene glycol 400 (PPG400).
[18] Figures 6(a) - 6(e) show the effects of gamma irradiation on frozen porcine AN heart valves soaked in various solvents and irradiated to a total dose of 30 kGy at 1.584 kGy/hr at -20°C.
[19] Figures 7(a) - 7(h) show the effects of gamma inadiation on frozen porcine AN heart valves soaked in various solvents and irradiated to a total dose of 45 kGy at approximately 6 kGy/hr at -70°C
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
. Definitions
[20] Unless defined otherwise, all technical and scientific terms used herein are intended to have the same meaning as is commonly understood by one of ordinary skill in the relevant art.
[21] As used herein, the singular forms "a," "an," and "the" include the plural reference unless the context clearly dictates otherwise.
[22] As used herein, the term "sterilize" is intended to mean a reduction in the level of at least one active biological contaminant or pathogen found in the biological ' material being treated accordmg to the present invention.
[23] As used herein, the term "biological material" is intended to mean any substance derived or obtained from a living organism. Illustrative examples of biological materials include, but are not limited to, the following: cells; tissues; blood or blood components; proteins, including recombinant and transgenic proteins, and proteinaceous materials; enzymes, including digestive enzymes, such as trypsin, chymotrypsin, alpha-galactosidase and iduronodate-2-sulfatase; immunoglobulins, including mono and polyimmunoglobulins; botanicals; food and the like. Prefened examples of biological materials include, but are not limited to, the following: ligaments; tendons; nerves; bone, including demineralized bone matrix, grafts, joints, femurs, femoral heads, etc.; teeth; skin grafts; bone marrow, including bone manow cell suspensions, whole or processed; heart valves; cartilage; corneas; arteries and veins; organs, including organs for transplantation, such as hearts, livers, lungs, kidneys, intestines, pancreas, limbs and digits; lipids; carbohydrates; collagen, including native, afϊbrillar, atelomeric, soluble and insoluble, recombinant and transgenic, both native
sequence and modified; chitin and its derivatives, including NO-carboxy chitosan (NOCC); stem cells, islet of Langerhans cells and other cells for transplantation, including genetically altered cells; red blood cells; white blood cells, including monocytes; and platelets. [24] As used herein, the term "non-aqueous solvent" is intended to mean any liquid other than water in which a biological material may be dissolved or suspended and includes both inorganic solvents and, more preferably, organic solvents. Illustrative examples of suitable non-aqueous solvents include, but are not limited to, the following: alkanes and cycloalkanes, such as pentane, 2-methylbutane (isopentane), heptane, hexane, cyclopentane and cyclohexane; alcohols, such as methanol, ethanol, 2- methoxyethanol, isopropanol, n-butanol, t-butyl alcohol, butanediol, propanediol and octanol; esters, such as ethyl acetate, 2-methoxyethyl acetate, butyl acetate and benzyl benzoate; aromatics, such as benzene, toluene, pyridine, xylene; ethers, such as diethyl ether, 2-ethoxyethyl ether, ethylene glycol dimethyl ether and methyl t-butyl ether; aldehydes, such as formaldehyde and glutaraldehyde; ketones, such as acetone and 3- pentanone (diethyl ketone); glycols, including both monomeric glycols, such as ethylene glycol and propylene glycol, and polymeric glycols, such as polyethylene glycol (PEG) and polypropylene glycol (PPG), e.g., PPG 400, PPG 1200 and PPG 2000; acids and acid anhydrides, such as formic acid, acetic acid, trifluoroacetic acid, phosphoric acid and acetic anhydride; oils, such as cottonseed oil, peanut oil, culture media, polyethylene glycol, poppyseed oil, safflower oil, sesame oil, soybean oil and vegetable oil; amines and amides, such as piperidine, N,N-dimethylacetamide and N,N- deimethylformamide; dimethylsulfoxide (DMSO); nitriles, such as benzonitrile and acetonitrile; hydrazine; detergents, such as polyoxyethylenesorbitan monolaurate (Tween 20) and monooleate (Tween 80), Triton and sodium dodecyl sulfate; carbon disulfide; halogenated solvents, such as dichloromethane, chloroform, carbon tetrachloride, 1,2-dichlorobenzene, 1, 2-dichloroethane, tetrachloroethylene and 1- chlorobutane; furans, such as tetrahydrofuran; oxanes, such as 1,4-dioxane; and glycerin/glycerol. Other prefened non-aqueous solvents include formamide; solutol; mannitol; probucol and isopropyl myristate. Particularly prefened examples of suitable non-aqueous solvents include non-aqueous solvents which also function as stabilizers, such as ethanol and acetone.
[25] As used herein, the term "biological contaminant or pathogen" is intended to mean a biological contaminant or pathogen that, upon direct or indirect contact with a biological material, may have a deleterious effect on the biological material or upon a recipient thereof. Such other biological contaminants or pathogens include the various viruses, bacteria (including inter- and intracellular bacteria, such as mycoplasmas, ureaplasmas, nanobacteria, chlamydia, rickettsias), yeasts, molds, fungi, prions or similar agents responsible, alone or in combination, for TSEs and/or single or multicellular parasites known to those of skill in the art to generally be found in or infect biological materials. Examples of other biological contaminants or pathogens include, but are not limited to, the following: viruses, such as human immunodeficiency viruses and other retroviruses, herpes viruses, filoviruses, circoviruses, paramyxoviruses, cytomegaloviruses, hepatitis viruses (including hepatitis A, B and C and variants thereof), pox viruses, toga viruses, Ebstein-Ban viruses and parvoviruses; bacteria, such as Escherichia, Bacillus, Campylobacter, Streptococcus and Staphalococcus; nanobacteria; parasites, such as Trypanosoma and malarial parasites, including
Plasmodium species; yeasts; molds; fungi; mycoplasmas and ureaplasmas; chlamydia; rickettsias, such as Coxiella burnetti; and prions and similar agents responsible, alone or in combination, for one or more of the disease states known as transmissible spongiform encephalopathies (TSEs) in mammals, such as scrapie, transmissible mink encephalopathy, chronic wasting disease (generally observed in mule deer and elk), feline spongiform encephalopathy, bovine spongiform encephalopathy (mad cow disease), Creutzfeld-Jakob disease (including variant CJD), Fatal Familial Insomnia, Gerstmann-Straeussler-Scheinker syndrome, kuru and Alpers syndrome. As used herein, the term "active biological contaminant or pathogen" is intended to mean a biological contaminant or pathogen that is capable of causing a deleterious effect, either alone or in combination with another factor, such as a second biological contaminant or pathogen or a native protein (wild-type or mutant) or antibody, in the biological material and/or a recipient thereof.
[26] As used herein, the term "blood components" is intended to mean one or more of the components that may be separated from whole blood and include, but are not limited to, the following: cellular blood components, such as red blood cells, white blood cells and platelets; blood proteins, such as blood clotting factors, enzymes, albumin, plasminogen, fibrinogen and immunoglobulins; and liquid blood components,
such as plasma, plasma protein fraction (PPF), cryoprecipitate, plasma fractions and plasma-containing compositions.
[27] As used herein, the term "cellular blood component" is intended to mean one or more of the components of whole blood that comprises cells, such as red blood cells, white blood cells, stem cells and platelets.
[28] As used herein, the term "blood protein" is intended to mean one or more of the proteins that are normally found in whole blood. Illustrative examples of blood proteins found in mammals, including humans, include, but are not limited to, the following: coagulation proteins, both vitamin K-dependent, such as Factor VII and Factor IX, and non-vitamin K-dependent, such as Factor VIII and von Willebrands factor; albumin; lipoproteins, including high density lipoproteins and low density lipoproteins; complement proteins; globulins, such as immunoglobulins IgA, IgM, IgG and IgE; and the like. A prefened group of blood proteins includes Factor I (fibrinogen), Factor II (prothrombin), Factor III (tissue factor), Factor V (proaccelerin), Factor VI (accelerin), Factor VII (proconvertin, serum prothrombin conversion), Factor
VIII (antihemophiliac factor A), Factor IX (antihemophiliac factor B), Factor X (Stuart- Prower factor), Factor XI (plasma thromboplastin antecedent), Factor XII (Hageman factor), Factor XIII (protransglutamidase), von Willebrands factor (vWF), Factor la, Factor Ila, Factor Ilia, Factor Va, Factor Via, Factor Vila, Factor Villa, Factor IXa, Factor Xa, Factor XIa, Factor Xlla and Factor Xllla. Another prefened group of blood proteins includes proteins found inside red blood cells, such as hemoglobin and various growth factors, and derivatives of these proteins. Yet another prefened group of blood proteins include proteins found in commercially available plasma protein fraction products, such as Plasma-Plex® (Centeon/Aventis Behring), Protenate® (Baxter Laboratories), Plasmanate® (Bayer Biological) and Plasmatein® (Alpha Therapeutic) .
[29] As used herein, the term "liquid blood component" is intended to mean one or more of the fluid, non-cellular components of whole blood, such as plasma (the fluid, non-cellular portion of the whole blood of humans or animals as found prior to coagulation) and serum (the fluid, non-cellular portion of the whole blood of humans or animals as found after coagulation).
[30] As used herein, the term "a biologically compatible solution" is intended to mean a solution to which a biological material may be exposed, such as by being
suspended or dissolved therein, and remain viable, i.e., retain its essential biological and physiological characteristics.
[31] As used herein, the term "a biologically compatible buffered solution" is intended to mean a biologically compatible solution having a pH and osmotic properties (e.g., tonicity, osmolality and/or oncotic pressure) suitable for maintaining the integrity of the material(s) therein. Suitable biologically compatible buffered solutions typically have a pH between 4 and 8.5 and are isotonic or only moderately hypotonic or hypertonic. Biologically compatible buffered solutions are known and readily available to those of skill in the art. [32] As used herein, the term "stabilizer" is intended to mean a compound or material that reduces damage to the biological material being inadiated to a level that is insufficient to preclude the safe and effective use of the material. Illustrative examples of stabilizers include, but are not limited to, the following: antioxidants; free radical scavengers, including spin traps, such as tert-butyl-nitrosobutane ( NB), α-phenyl-tert- butylnifrone (PBN), 5, 5-dimethylpynoline-N-oxide (DMPO), tert-butylnitiosobenzene
(BNB), α-(4-pyridyl-l-oxide)-N-tert-butylnitrone (4-POBN) and 3, 5-dibromo-4- nitroso-benzenesulphonic acid (DBNBS); combination stabilizers, i.e., stabilizers which are effective at quenching both Type I and Type II photodynamic reactions; and ligands, such as heparin, that stabilize the molecules to which they bind. Prefened examples of stabilizers include, but are not limited to, the following: ethanol; acetone; fatty acids, including 6,8-dimercapto-octanoic acid (lipoic acid) and its derivatives and analogues (alpha, beta, dihydro, bisno and tetranor lipoic acid), thioctic acid, 6,8-dimercapto- octanoic acid, dihydrolopoate (DL-6,8-dithioloctanoic acid methyl ester), lipoamide, bisonor methyl ester and tatranor-dihydrolipoic acid, furan fatty acids, oleic and linoleic and palmitic acids and their salts and derivatives; flavonoids, phenylpropanoids, and flavenols, such as quercetin, rutin and its derivatives, apigenin, aminoflavone, catechin, hesperidin and, naringin; carotenes, including beta-carotene; Co-QlO; xanthophylls; polyhydric alcohols, such as glycerol, mannitol; sugars, such as xylose, glucose, ribose, mannose, fructose and trehalose; amino acids and derivatives thereof, such as histidine, N-acetylcysteine (NAC), glutamic acid, tryptophan, sodium caprylate, N-acetyl tryptophan and methionine; azides, such as sodium azide; enzymes, such as Superoxide Dismutase (SOD) and Catalase; uric acid and its derivatives, such as 1,3-dimethyluric acid and dimethylthiourea; allopurinol; thiols, such as glutathione and reduced
glutathione and cysteine; trace elements, such as selenium; vitamins, such as vitamin A, vitamin C (including its derivatives and salts such as sodium ascorbate and palmitoyl ascorbic acid) and vitamin E (and its derivatives and salts such as tocopherol acetate and alpha-tocotrienol); chromanol-alpha-C6; 6-hydroxy-2,5,7,8-tetramethylchroma-2 carboxylic acid (Trolox) and derivatives; extraneous proteins, such as gelatin and albumin; tris-3 -methyl- l-phenyl-2-pyrazolin-5 -one (MCI-186); citiolone; puercetin; chrysin; dimethyl sulfoxide (DMSO); piperazine diethanesulfonic acid (PIPES); imidazole; methoxypsoralen (MOPS); l,2-dithiane-4,5-diol; reducing substances, such as butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT); cholesterol; probucol; indole derivatives; thimerosal; lazaroid and tirilazad mesylate; proanthenols; proanthocyanidins; ammonium sulfate; Pegorgotein (PEG-SOD); N-tert-butyl-alpha- phenylnitxone (PBN); 4-hydroxy-2,2,6,6-tetramethylpiperidin-l-oxyl (Tempol); mixtures of ascorbate, urate and Trolox C (Asc/urate/Trolox C); proteins and peptides, such as glycylglycine and carnosine, in which each amino acid may be in its D or L form; diosmin; pupurogalin; gallic acid and its derivatives including but not limited to propyl gallate, sodium formaldehyde sulfoxylate and silymarin. Additional prefened stabilizer stabilizers include: propylene glycol; butanediol; formamide; solutol; DMEM; propyl gallate; citrate; propanediol; isopropyl myristate; coumaric acid; PVP and mixtures thereof. Particularly prefened examples include single stabilizers or combinations of stabilizers that are effective at quenching both Type I and Type II photodynamic reactions and volatile stabilizers, which can be applied as a gas and/or easily removed by evaporation, low pressure and similar methods. Such individual or combinations of stabilizers are refened to herein as "combination stabilizers".
[33] As used herein, the term "residual solvent content" is intended to mean the amount or proportion of freely-available liquid in the biological material. Freely- available liquid means the liquid, such as water or an organic solvent (e.g., ethanol, isopropanol, acetone, polyethylene glycol, etc.), present in the biological material being sterilized that is not bound to or complexed with one or more of the non-liquid components of the material. Freely-available liquid includes intracellular water. The residual solvent contents related as water referenced herein refer to levels determined by the FDA approved, modified Karl Fischer method (Meyer and Boyd, Analytical Chem., 57:215-219, 1959; May, et al, J. Biol. Standardization, 70:249-259, 1982; Centers for Biologies Evaluation and Research, FDA, Docket No. 89D-0140, 83-93; 1990) or by
near infrared spectroscopy. Quantitation of the residual levels of other solvents may be determined by means well known in the art, depending upon which solvent is employed. The proportion of residual solvent to solute may also be considered to be a reflection of the concentration of the solute within the solvent. When so considered, the greater the concentration of the solute, the lower the amount of residual solvent.
[34] As used herein, the term "sensitizer" is intended to mean a substance that selectively targets viral, bacterial, prion and/or parasitic contaminants, rendering them more sensitive to inactivation by radiation, therefore permitting the use of a lower rate or dose of radiation and/or a shorter time of inadiation than in the absence of the sensitizer. Illustrative examples of suitable sensitizers include, but are not limited to, the following: psoralen and its derivatives and analogs (including 3-carboethoxy psoralens); inactines and their derivatives and analogs; angelicins, khellins and coumarins which contain a halogen substituent and a water solubilization moiety, such as quaternary ammonium ion or phosphonium ion; nucleic acid binding compounds; brominated hematoporphyrin; phthalocyanines; purpurins; porphorins; halogenated or metal atom-substituted derivatives of dihematoporphyrin esters, hematoporphyrin derivatives, benzoporphyrin derivatives, hydrodibenzoporphyrin dimaleimade, hydrodibenzoporphyrin, dicyano disulfone, tetracarbethoxy hydrodibenzoporphyrin, and tetracarbethoxy hydrodibenzoporphyrin dipropionamide; doxorubicin and daunomycin, which may be modified with halogens or metal atoms; netropsin; BD peptide, S2 peptide; S-303 (ALE compound); dyes, such as hypericin, methylene blue, eosin, fiuoresceins (and their derivatives), flavins, merocyanine 540; photoactive compounds, such as bergapten; and SE peptide. In addition, atoms which bind to prions, and thereby increase their sensitivity to inactivation by radiation, may also be used. An illustrative example of such an atom would be the Copper ion, which binds to the prior protein and, with a Z number higher than the other atoms in the protein, increases the probability that the prion protein will absorb energy during inadiation, particularly gamma inadiation.
[35] As used herein, the term "proteinaceous material" is intended to mean any material derived or obtained from a living organism that comprises at least one protein or peptide. A proteinaceous material may be a naturally occurring material, either in its native state or following processing/purification and/or derivatization, or an artificially produced material, produced by chemical synthesis or recombitiant/transgenic technology and, optionally, process/purified and/or 'derivatized. Illustrative examples of
proteinaceous materials include, but are not limited to, the following: proteins and peptides produced from cell culture; milk and other dairy products; ascites; hormones; growth factors; materials, including pharmaceuticals, extracted or isolated from animal tissue, such as heparin and insulin, or plant matter; plasma, including fresh, frozen and freeze-dried, and plasma protein fraction; fϊbrinogen and derivatives thereof, fibrin, fibrin I, fibrin II, soluble fibrin and fibrin monomer, and/or fibrin sealant products; whole blood; protein C; protein S; alpha-1 anti-trypsin (alpha-1 protease inhibitor); butyl-cholinesterase; anticoagulants, such as coumarin drugs (warfarin); streptokinase; tissue plasminogen activator (tPA); erythropoietin (EPO); urokinase; neupogen; anti- thrombin-3; alpha-glucosidase; (fetal) bovine serum/horse serum; meat; immunoglobulins, including anti-sera, monoclonal antibodies, polyclonal antibodies and genetically engineered or produced antibodies; albumin; alpha-globulins; beta-globulins; gamma-globulins; coagulation proteins; complement proteins; and interferons.
[36] As used herein, the term "radiation" is intended to mean radiation of sufficient energy to sterilize at least some component of the inadiated biological material. Types of radiation include, but are not limited to, the following: (i) corpuscular (streams of subatomic particles such as neutrons, electrons, and/or protons); (ii) electromagnetic (originating in a varying electromagnetic field, such as radio waves, visible (both mono and polychromatic) and invisible light, infrared, ultraviolet radiation, x-radiation, and gamma rays and mixtures thereof); and (iii) sound and pressure waves.
Such radiation is often described as either ionizing (capable of producing ions in inadiated materials) radiation, such as gamma rays, and non-ionizing radiation, such as visible light. The sources of such radiation may vary and, in general, the selection of a specific source of radiation is not critical provided that sufficient radiation is given in an appropriate time and at an appropriate rate to effect sterilization. In practice, gamma radiation is usually produced by isotopes of Cobalt or Cesium, while UV and X-rays are produced by machines that emit UV and X-radiation, respectively, and electrons are often used to sterilize materials in a method known as "E-beam" inadiation that involves their production via a machine. Visible light, both mono- and polychromatic, is produced by machines and may, in practice, be combined with invisible light, such as infrared and UV, that is produced by the same machine or a different machine.
[37] As used herein, the term "to protect" is intended to mean to reduce any damage to the biological material being inadiated, that would otherwise result from the
inadiation of that material, to a level that is insufficient to preclude the safe and effective use of the material following inadiation. In other words, a substance or process "protects" a biological material from radiation if the presence of that substance or carrying out that process results in less damage to the material from inadiation than in the absence of that substance or process. Thus, biological material may be used safely and effectively after inadiation in the presence of a substance or following performance of a process that "protects" the material, but could not be used safely and effectively after inadiation under identical conditions but in the absence of that substance or the performance of that process. [38] As used herein, an "acceptable level" of damage may vary depending upon certain features of the particular method(s) of the present invention being employed, such as the nature and characteristics of the particular biological material and/or non- aqueous solvent(s) being used, and/or the intended use of the biological material being inadiated, and can be determined empirically by ' one skilled in the art. An "unacceptable level" of damage would therefore be a level of damage that would preclude the safe and effective use of the biological material being sterilized. The particular level of damage in a given biological material may be determined using any of the methods and techniques known to one skilled in the art.
B. Particularly Preferred Embodiments
[39] A first prefened embodiment of the present invention is directed to a method for sterilizing a biological material that is sensitive to radiation and contains a non-aqueous solvent comprising inadiating the biological material with radiation for a time effective to sterilize the material at a rate effective to sterilize the material and to protect the material from radiation.
[40] Another prefened embodiment of the present invention is directed to a method for sterilizing a biological material that is sensitive to radiation and contains a non-aqueous solvent comprising: (i) adding to a biological material at least one stabilizer in an amount effective to protect the biological material from radiation; and
(ii) inadiating the biological material with radiation at an effective rate for a time effective to sterilize the material.
[41] Another prefened embodiment of the present invention is directed to a method for sterilizing a biological material that is sensitive to radiation and contains a non-aqueous solvent comprising: (i) reducing the residual solvent content of a biological material to a level effective to protect the biological material from radiation; and (ii) inadiating the biological material with radiation at an effective rate for a time effective to sterilize the biological material.
[42] Another prefened embodiment of the present invention is directed to a method for sterilizing a biological material that is sensitive to radiation and contains a non-aqueous solvent comprising: (i) reducing the temperature of a biological material to a level effective to protect the biological material from radiation; and (ii) inadiating the biological material with radiation at an effective rate for a time effective to sterilize the biological material.
[43] Another prefened embodiment of the present invention is directed to a method for sterilizing a biological material that is sensitive to radiation and contains a non-aqueous solvent comprising: (i) applying to the biological material a stabilizing process selected from the group consisting of: (a) reducing the residual solvent content of a biological material, (b) adding to the biological material at least one stabilizer, and (c) reducing the temperature of the biological material; and (ii) inadiating the biological material with radiation at an effective rate for a time effective to sterilize the biological material, wherein the stabilizing process and the rate of inadiation are together effective to protect the biological material from radiation.
[44] Another prefened embodiment of the present invention is directed to a method for sterilizing a biological material that is sensitive to radiation and contains a non-aqueous solvent comprising: (i) applying to the biological material at least two stabilizing processes selected from the group consisting of: (a) reducing the residual solvent content of a biological material, (b) adding to the biological material at least one stabilizer, and (c) reducing the temperature of the biological material; and (ii) inadiating the biological material with radiation at an effective rate for a time effective to sterilize the biological material, wherein the stabilizing processes may be performed in any order and are together effective to protect the biological material from radiation.
[45] Another prefened embodiment of the present mvention is directed to a composition comprising a biological material and a non-aqueous solvent in an amount
effective to preserve the preparation during sterilization with radiation, such that it remains suitable nad effective for its intended use.
[46] Another prefened embodiment of the present mvention is directed to a composition comprising at least one biological material, a least one non-aqueous solvent and at least one stabilizer, wherein the non-aqueous solvent and stabilizer are together present in an amount effective to preserve the material for its intended use following sterilization with radiation.
[47] The non-aqueous solvent is preferably a non-aqueous solvent that is not prone to the formation of free-radicals upon inadiation, and more preferably a non- aqueous solvent that is not prone to the formation of free-radicals upon inadiation and that has little or no dissolved oxygen or other gas(es) that is (are) prone to the formation of free-radicals upon inadiation. Volatile non-aqueous solvents are particularly prefened, even more particularly prefened are non-aqueous solvents that are stabilizers, such as ethanol and acetone. [48] According to certain embodiments of the present invention, the biological material may contain a mixture of water and a non-aqueous solvent, such as ethanol and/or acetone. In such embodiments, the non-aqueous solvent(s) is preferably a non- aqueous solvent that is not prone to the formation of free-radicals upon inadiation, and most preferably a non-aqueous solvent that is not prone to the formation of free-radicals upon inadiation and that has little or no dissolved oxygen or other gas(es) that is (are) prone to the formation of free-radicals upon inadiation. Volatile non-aqueous solvents are particularly prefened, even more particularly prefened are non-aqueous solvents that are stabilizers, such as ethanol and acetone.
[49] According to certain methods of the present invention, a stabilizer is added prior to inadiation of the biological material which contains a non-aqueous solvent with radiation. This stabilizer is preferably added to the biological material which contains a non-aqueous solvent in an amount that is effective to protect the biological material from the radiation. Alternatively, the stabilizer is added to the biological material which contains a non-aqueous solvent in an amount that, together with the non-aqueous solvent, is effective to protect the biological material from the radiation. Suitable amounts of stabilizer may vary depending upon certain features of the particular method(s) of the present invention being employed, such as the particular stabilizer
being used and/or the nature and characteristics of the particular biological material which contains a non-aqueous solvent being inadiated and/or its intended use, and can be determined empirically by one skilled in the art.
[50] According to certain methods of the present invention, the residual solvent content of the biological material which contains a non-aqueous solvent is reduced prior to inadiation of the biological material with radiation. The residual solvent content is preferably reduced to a level that is effective to protect the biological material from the radiation. Suitable levels of residual solvent content may vary depending upon certain features of the particular method(s) of the present invention being employed, such as the nature and characteristics of the particular biological material which contains a non- aqueous solvent being inadiated and/or its intended use, and can be determined empirically by one skilled in the art. There may be biological materials for which it is desirable to maintain the residual solvent content to within a particular range, rather than a specific value. [51] According to certain embodiments of the present mvention, when the biological material which contains a non-aqueous solvent also contains water, the residual solvent (water) content of a biological material may be reduced by dissolving or suspending the biological material which contains a non-aqueous solvent in a non- aqueous solvent that is capable of dissolving water. When the biological material is in liquid phase, the same result may also be achieved by the dilution of the residual solvent
(water) by the addition of liquid non-aqueous solvent. Preferably, such a second non- aqueous solvent is not prone to the formation of free-radicals upon inadiation and has little or no dissolved oxygen or other gas(es) that is (are) prone to the formation of free- radicals upon inadiation. [52] When the biological material which contains a non-aqueous solvent is in a liquid phase, reducing the residual solvent content may be accomplished by any of a number of means, such as by increasing the solute concentration. In this manner, the concentration of protein in the biological material which contains a non-aqueous solvent dissolved within the solvent may be increased to generally at least about 0.5%, typically at least about 1%, usually at least about 5%, preferably at least about 10%, more preferably at least about 15%, even more preferably at least about 20%, still even more preferably at least about 25%, and most preferably at least about 50%.
[53] In certain embodiments of the present invention, the residual solvent content of a particular biological material which contains a non-aqueous solvent may be found to lie within a range, rather than at a specific point. Such a range for the prefened residual solvent content of a particular biological material which contains a non-aqueous solvent may be determined empirically by one skilled in the art.
[54] While not wishing to be bound by any theory of operability, it is believed that the reduction in residual solvent content reduces the degrees of freedom of the biological material which contains a non-aqueous solvent, reduces the number of targets for free radical generation and may restrict the solubility of these free radicals. Similar results might therefore be achieved by lowering the temperature of the biological material which contains a non-aqueous solvent below its eutectic point or below its freezing point, or by vitrification to likewise reduce the degrees of freedom of the biological material. These results may permit the use of a higher rate and/or dose of radiation than might otherwise be acceptable. Thus, the methods described herein may be performed at any temperature that doesn't result in unacceptable damage to the biological material which contains a non-aqueous solvent, i.e., damage that would preclude the safe and effective use of the biological material. Preferably, the methods described herein are performed at ambient temperature or below ambient temperature, such as below the eutectic point or freezing point of the biological material which contains a non-aqueous solvent being inadiated.
[55] The residual solvent content of the biological material which contains a non-aqueous solvent may be reduced by any of the methods and techniques known to those skilled in the art for reducing solvent from a biological material which contains a non-aqueous solvent without producing an unacceptable level of damage to the biological material. Such methods include, but are not limited to, addition of solute, evaporation, concentration, centrifugal concentration, vitrification and spray-drying.
[56] A particularly prefened method for reducing the residual solvent content of a biological material which contains a non-aqueous solvent is lyophilization.
[57] Another particularly prefened method for reducing the residual solvent content of a biological material which contains a non-aqueous solvent is the addition of solute.
[58] Another particularly prefened method for reducing the residual solvent content of a biological material which contains a non-aqueous solvent is spray-drying.
[59] Another particularly prefened method for reducing the residual solvent content of a biological material which contains a non-aqueous solvent is vitrification, which may be accomplished by any of the methods and techniques known to those skilled in the art, including the addition of solute and or additional solutes, such as sucrose, to raise the eutectic point of the biological material which contains a non- aqueous solvent, followed by a gradual application of reduced pressure to the biological material which contains a non-aqueous solvent in order to remove the residual solvent. The resulting glassy material will then have a reduced residual solvent content.
[60] According to certain methods of the present invention, the biological material which contains a non-aqueous solvent to be sterilized may be immobilized upon a solid surface by any means known and available to one skilled in the art. For example, the biological material which contains a non-aqueous solvent to be sterilized may be present as a coating or surface on a biological or non-biological substrate.
[61] The radiation employed in the methods of the present invention may be any radiation effective for the sterilization of the biological material which contains a non-aqueous solvent being treated. The radiation may be corpuscular, including E-beam radiation. Preferably the radiation is electromagnetic radiation, including x-rays, infrared, visible light, UN light and mixtures of various wavelengths of electromagnetic radiation. A particularly preferred form of radiation is gamma radiation.
[62] According to the methods of the present invention, the biological material which contains a non-aqueous solvent is inadiated with the radiation at a rate effective for the sterilization of the biological material, while not producing an unacceptable level of damage to that material. Suitable rates of inadiation may vary depending upon certain features of the methods of the present invention being employed, such as the nature and characteristics of the particular biological material, which may contain a non- aqueous solvent, being inadiated, the particular form of radiation involved and/or the particular biological contaminants or pathogens being inactivated. Suitable rates of inadiation can be determined empirically by one skilled in the art. Preferably, the rate of inadiation is constant for the duration of the sterilization procedure. When this is
impractical or otherwise not desired, a variable or discontinuous inadiation may be utilized.
[63] According to the methods of the present invention, the rate of inadiation may be optimized to produce the most advantageous combination of product recovery and time required to complete the operation. Both low (<3 kGy/hour) and high (>3 kGy/hour) rates may be utilized in the methods described herein to achieve such results. The rate of inadiation is preferably selected to optimize the recovery of the biological material which contains a non-aqueous solvent while still sterilizing the biological material which contains a non-aqueous solvent. Although reducing the rate of inadiation may serve to decrease damage to the biological material which contains a non-aqueous solvent, it will also result in longer inadiation times being required to achieve a particular desired total dose. A higher dose rate may therefore be prefened in certain circumstances, such as to minimize logistical issues and costs, and may be possible when used in accordance with the methods described herein for protecting a biological material which contains a non-aqueous solvent from inadiation.
[64] According to a particularly prefened embodiment of the present invention, the rate of inadiation is not more than about 3.0 kGy/hour, more preferably between about 0.1 kGy/hr and 3.0 kGy/hr, even more preferably between about 0.25 kGy/hr and
2.0 kGy/hour, still even more preferably between about 0.5 kGy/hr and 1.5 kGy/hr and most preferably between about 0.5 kGy/hr and 1.0 kGy/hr.
[65] According to another particularly prefened embodiment of the present invention, the rate of inadiation is at least about 3.0 kGy/hr, more preferably at least about 6 kGy/hr, even more preferably at least about 16 kGy/hr, and even more preferably at least about 30 kGy/hr and most preferably at least about 45 kGy/hr or greater.
[66] According to the methods of the present invention, the biological material which contains a non-aqueous solvent to be sterilized is irradiated with the radiation for a time effective for the sterilization of the biological material. Combined with inadiation rate, the appropriate inadiation time results in the appropriate dose of inadiation being applied to the biological material which contains a non-aqueous solvent. Suitable irradiation times may vary depending upon the particular form and rate of radiation involved and/or the nature and characteristics of the particular biological
material which contains a non-aqueous solvent being inadiated. Suitable inadiation times can be determined empirically by one skilled in the art.
[67] According to the methods of the present invention, the biological material which contains a non-aqueous solvent to be sterilized is inadiated with radiation up to a total dose effective for the sterilization of the biological material, while not producing an unacceptable level of damage to that material. Suitable total doses of radiation may vary depending upon certain features of the methods of the present invention being employed, such as the nature and characteristics of the particular biological material which contains a non-aqueous solvent being inadiated, the particular form of radiation involved and/or the particular biological contaminants or pathogens being inactivated. Suitable total doses of radiation can be determined empirically by one skilled in the art. Preferably, the total dose of radiation is at least 25 kGy, more preferably at least 45 kGy, even more preferably at least 75 kGy, and still more preferably at least 100 kGy or greater, such as 150 kGy or 200 kGy or greater.
[68] The particular geometry of the biological material which contains a non- aqueous solvent being irradiated, such as the thickness and distance from the source of radiation, may be determined empirically by one skilled in the art. A prefened embodiment is a geometry that provides for an even rate of inadiation throughout the preparation. A particularly prefened embodiment is a geometry that results in a short path length for the radiation through the preparation, thus minimizing the differences in radiation dose between the front and back of the preparation. This may be further minimized in some prefened geometries, particularly those wherein the preparation has a constant radius about its axis that is peφendicular to the radiation source, by the utilization of a means of rotating the preparation about said axis.
[69] Similarly, according to certain methods of the present invention, an effective package for containing the preparation during inadiation is one which combines stability under the influence of inadiation, and which minimizes the interactions between the package and the radiation. Prefened packages maintain a seal against the external environment before, during and post-inadiation, and are not reactive with the preparation within, nor do they produce chemicals that may interact with the preparation within. Particularly prefened examples include but are not limited to containers that comprise glasses stable when inadiated, stoppered with stoppers made of rubber that is relatively stable during radiation and liberates a minimal amount of
compounds from within, and sealed with metal crimp seals of aluminum or other suitable materials with relatively low Z numbers. Suitable materials can be determined by measuring their physical performance, and the amount and type of reactive leachable compounds post-inadiation and by examining other characteristics known to be important to the containment of biological materials empirically by one skilled in the art.
[70] According to certain methods of the present invention, an effective amount of at least one sensitizing compound may optionally be added to the biological material which contains a non-aqueous solvent prior to inadiation, for example to enhance the effect of the inadiation on the biological contaminant(s) or pathogen(s) therein, while employing the methods described herein to minimize the deleterious effects of inadiation upon the biological material. Suitable sensitizers are known to those skilled in the art, and include psoralens and their derivatives and inactines and their derivatives.
[71] According to the methods of the present invention, the inadiation of the biological material which contains a non-aqueous solvent may occur at any temperature that is not deleterious to the biological material being sterilized. According to one prefened embodiment, the biological material which contains a non-aqueous solvent is inadiated at ambient temperature. According to an alternate prefened embodiment, the biological material which contains a non-aqueous solvent is irradiated at reduced temperature, i.e., a temperature below ambient temperature, such as 0°C, -20 °C, -40°C, -
60°C, -78°C or -196°C. According to this embodiment of the present invention, the biological material which contains a non-aqueous solvent is preferably inadiated at or below the freezing or eutectic point of the biological material. According to another alternate prefened embodiment, the biological material which contains a non-aqueous solvent is inadiated at elevated temperature, i.e., a temperature above ambient temperature, such as 37°C, 60°C, 72°C or 80°C. While not wishing to be bound by any theory, the use of elevated temperature may enhance the effect of inadiation on the biological contaminant(s) or pathogen(s) and therefore allow the use of a lower total dose of radiation. [72] Most preferably, the inadiation of the biological material which contains a non-aqueous solvent occurs at a temperature that protects the preparation from radiation. Suitable temperatures can be determined empirically by one skilled in the art.
[73] In certain embodiments of the present invention, the temperature at which inadiation is performed may be found to lie within a range, rather than at a specific point. Such a range for the prefened temperature for the inadiation of a particular biological material which contains a non-aqueous solvent may be determined
5 empirically by one skilled in the art.
[74] According to the methods of the present invention, the inadiation of the biological material which contains a non-aqueous solvent may occur at any pressure which is not deleterious to the biological material which contains a non-aqueous solvent being sterilized. According to one prefened embodiment, the biological material which
.0 contains a non-aqueous solvent is inadiated at elevated pressure. More preferably, the biological material which contains a non-aqueous solvent is irradiated at elevated pressure due to the application of sound waves or the use of a volatile. While not wishing to be bound by any theory, the use of elevated pressure may enhance the effect of inadiation on the biological contaminant(s) or pathogen(s) and/or enhance the
.5 protection afforded by one or more stabilizers, and therefore allow the use of a lower total dose of radiation. Suitable pressures can be determined empirically by one skilled in the art.
[75] Generally, according to the methods of the present invention, the pH of the biological material which contains a non-aqueous solvent undergoing sterilization is >0 about 7. In some embodiments of the present invention, however, the biological material which contains a non-aqueous solvent may have a pH of less than 7, preferably less than or equal to 6, more preferably less than or equal to 5, even more preferably less than or equal to 4, and most preferably less than or equal to 3. In alternative embodiments of the present invention, the biological material which contains a non- 25 aqueous solvent may have a pH of greater than 7, preferably greater than or equal to 8, more preferably greater than or equal to 9, even more preferably greater than or equal to 10, and most preferably greater than or equal to 11. According to certain embodiments of the present invention, the pH of the preparation undergoing sterilization is at or near the isoelectric point of one of the components of the biological material. Suitable pH 30 levels can be determined empirically by one skilled in the art.
[76] Similarly, according to the methods of the present mvention, the inadiation of the biological material which contains a non-aqueous solvent may occur under any atmosphere that is not deleterious to the biological material being treated.
According to one prefened embodiment, the biological material which contains a non- aqueous solvent is held in a low oxygen atmosphere or an inert atmosphere. When an inert atmosphere is employed, the atmosphere is preferably composed of a noble gas, such as helium or argon, more preferably a higher molecular weight noble gas, and most preferably argon. According to another prefened embodiment, the biological material which contains a non-aqueous solvent is held under vacuum while being inadiated. According to a particularly prefened embodiment of the present invention, a biological material which contains a non-aqueous solvent (lyophilized, liquid or frozen) is stored under vacuum or an inert atmosphere (preferably a noble gas, such as helium or argon, more preferably a higher molecular weight noble gas, and most preferably argon) prior to inadiation. According to an alternative prefened embodiment of the present invention, a liquid biological material which contains a non-aqueous solvent is held under low pressure, to decrease the amount of gas, particularly oxygen, dissolved in the liquid, prior to inadiation, either with or without a prior step of solvent reduction, such as lyophilization. Such degassing may be performed using any of the methods known to one skilled in the art.
[77] In another preferred embodiment, where the biological material which contains a non-aqueous solvent contains oxygen or other gases dissolved within or associated with it, the amount of these gases within or associated with the preparation may be reduced by any of the methods and techniques known and available to those skilled in the art, such as the controlled reduction of pressure within a container (rigid or flexible) holding the preparation to be treated or by placing the preparation in a container of approximately equal volume.
[78] In certain embodiments of the present invention, when the biological material which contains a non-aqueous solvent to be treated is a tissue, at least one stabilizer is introduced according to any of the methods and techniques known and available to one skilled in the art, including soaking the tissue in a solution containing the stabilizer(s), preferably under pressure, at elevated temperature and/or in the presence of a penetration enhancer, such as dimethylsulfoxide. Other methods of introducing at least one stabilizer into a tissue include, but are not limited to, applying a gas containing the stabilizer(s), preferably under pressure and/or at elevated temperature, injection of the stabilizer(s) or a solution containing the stabilizer(s) directly into the tissue, placing the tissue under reduced pressure and then introducing a
gas or solution containing the stabilizer(s) and combinations of two or more of these methods. One or more sensitizers may also be introduced into a tissue according to such methods.
[79] It will be appreciated that the combination of one or more of the features described herein may be employed to further minimize undesirable effects upon the biological material which contains a non-aqueous solvent caused by irradiation, while maintaining adequate effectiveness of the inadiation process on the biological contaminant(s) or pathogen(s). For example, in addition to the use of a stabilizer, a particular biological material which contains a non-aqueous solvent may also be lyophilized, held at a reduced temperature and kept under vacuum prior to inadiation to further minimize undesirable effects.
[80] The sensitivity of a particular biological contaminant or pathogen to radiation is commonly calculated by determining the dose necessary to inactivate or kill all but 37% of the agent in a sample, which is known as the D 7 value. The desirable components of a biological material may also be considered to have a D37 value equal to the dose of radiation required to eliminate all but 37% of their desirable biological and physiological characteristics.
[81] In accordance with certain prefened methods of the present invention, the sterilization of a biological material which contains a non-aqueous solvent is conducted under conditions that result in a decrease in the D3 value of the biological contaminant or pathogen without a concomitant decrease in the D 7 value of the biological material. In accordance with other prefened methods of the present invention, the sterilization of a biological material which contains a non-aqueous solvent is conducted under conditions that result in an increase in the D37 value of the material. In accordance with the most prefened methods of the present invention, the sterilization of a biological material which contains a non-aqueous solvent is conducted under conditions that result in a decrease in the D37 value of the biological contaminant or pathogen and a concomitant increase in the D3 value of the biological material.
Examples
The following examples are illustrative, but not limiting, of the present invention. Other suitable modifications and adaptations are of the variety normally encountered by
those skilled in the art and are fully within the spirit and scope of the present invention. Unless otherwise noted, all inadiation was accomplished using a 60Co source.
Example 1
In this experiment, the effect of gamma radiation on dried urokinase suspended in polypropylene glycol (PPG) 400 or phosphate buffered saline (PBS) was determined.
Method
Six 1.5 ml polypropylene microfuge tubes containing urokinase and PPG400 (tubes 2 and 5), PBS (tubes 3 and 6) or dry urokinase alone (tubes 1 and 4) were prepared as indicated in the table below. Tubes 4-6 were gamma inadiated at 45 kGy (1.9 kGy/hr) at 4°C. Tubes 1-3 were controls (4°C).
After inadiation, the samples were centrifuged at room temperature for 5 minutes at 14k RPM. PPG400 solvent was removed from tubes 2 and 5 and 120 μl PBS were added to those two tubes. 128 μl and 135 μl PBS were added to tubes 1 and 4, respectively (urokinase concentration of 40,000 IU/ml). All samples were then diluted 50-fold with PBS and absorbance at 280 nm was determined. 50 μl of each diluted sample were then added to a 96-well microtiter plate, followed by 50 μl of 3 mM substrate in 2X assay buffer. The plates were incubated at 37°C with shaking and absoφtion read at both 405 and 620 nm every 20 minutes beginning 5 minutes after substrate addition. The absoφtion at 630 nm (background) was subtracted from the value at 405 nm to obtain a conected absoφtion value. The final concentration of urokinase was 1000 IU/ml.
Materials
Urokinase - Sigma cat. # U-5004, lot 29H1054; 2.5 mg = 4000 IU Urokinase. PPG400 - Fluka cat. # 81350.
Substrate - urokinase substrate 1, colormetric - Calbiochem. cat. # 672157, lot 5 B23901 , 5 mg vials, final concentration 1.5 mM.
2X Assay Buffer - 100 mM Tris (pH 8.8), 100 mM NaCl, 0.2% PEG8000.
Results
.0 Urokinase suspended in PPG400 and then gamma inadiated to a total dose of 45 kGy maintained the same percent activity as gamma inadiated dry powder urokinase (80%)). In contrast, urokinase suspended in PBS subjected to the same gamma inadiation maintained only 6% activity. The results of this experiment are presented in Figure 1.
L5 Example 2
In this experiment, the activity (as shown by the ability to bind antigen) of immobilized anti-insulin monoclonal antibody was determined after inadiation in the presence of various forms of polypropylene glycol (molecular weights of 400, 1200 and 20 2000).
Method
In two 96-well microtiter plates (falcon plates - ProBind polystyrene cat. # 353915), the wells were washed four times with full volume PBS (pH 7.4). Once the 5 two plates were prepared as described above, they were coated with 100 μl/well of freshly prepared 2 μg/ml anti-insulin in coating buffer and left overnight at 4°C. The plates were then washed briefly three times with PBS (pH 7.4) and 100 μl of PPG400, PPG1200 or PPG2000 were added to specific wells. Each solution was prepared in a 11, i.e., 2-fold, dilution series with PBS. Both plates were covered tightly with a cap 0 mat (Greiner cap mat cat. # 381070 (USA Scientific)) and inadiated at either 0 kGy/hr or 45 kGy (1.92 kGy/hr), both at 4°C.
Following inadiation, approximately 380 μl full volume blocking buffer were then added to all wells and the plates were incubated for two hours at 37°C. The plates were washed four times with TBST and 100 μl of 50 ng/ml biotin-labelled insulin in
binding buffer were added to each well. The plates were covered with a plate sealer (Dynatech acetate plate sealers) and incubated at 37°C with shaking (LabLine Titer Plate Shaker set at 3) for 1.5 hours. The plates were washed four times with TBST and 100 μl of 0.5 μg/ml phosphatase-labelled streptavidin in binding buffer were added to each well. The plates were covered with a plate sealer and incubated at 37°C for one hour with shaking. The plates were then washed four times with TBST and 100 μl of 1 mg/ml phosphatase substrate in DEA buffer were added to each well and the plates were incubated at 37°C with shaking. Absoφtion was read at both 405 and 620 nm at 5 minute intervals as needed. The absoφtion at 630 nm (background) was subtracted from the value at 405 nm to obtain a conected absoφtion value.
Materials
Blocking buffer - 2% BSA/PBS (pH 7.4).
TBST - Tris Buffered Saline (pH 7.4) with 0.05% Tween 20.
Biotin-Labelled Insulin - from bovine pancreas - Sigma 1-2258 lot 110H8065, 5 mg insulin, 1.2 mol. FITC per mol. insulin, reconstituted in 5 ml sterile water at 1.0 mg/ml stored at 4°C.
Binding Buffer - 0.25% BSA/PBS (pH 7.4).
Phosphatase-Labelled Streptavidin - KPL cat. # 15-30-00; 0.5 mg/ml in 50% glycerol/H2O (stock diluted 1:1000). DEA Buffer - per 1 L - 97 ml diethanolamine (Sigma D-8885), 0.1 g
MgCl2.6H2O, 0.02% sodium azide, stored at 4°C.
Phosphatase Substrate - p-nitrophenyl phosphate - Sigma 104-105, 5 mg/tablet. The phosphatase substrate was prepared fresh as a 1 mg/ml solution in phosphatase substrate buffer, i.e., DEA buffer. The solution is light sensitive so it had to be stored in the dark until ready to dispense.
Monoclonal IgGl anti-Human Insulin - Biodesign Int. cat. # E86102M, lot 8J2877.
Coating Buffer - carbonate/bicarbonate (pH 9.4). Polypropylene glycol P400 - Fluka cat. # 81350.
Polypropylene glycol P1200 - Fluka cat. # 81370. Polypropylene glycol P2000 - Fluka cat. # 81380.
Results
Irradiated samples containing PPG exhibited approximately 50-63% of binding activity of uninadiated control. In contrast, inadiated samples containing PBS exhibited no binding activity. The results are presented in Figure 2.
Example 3
In this experiment, liquid thrombin containing 50% glycerol and spiked with porcine parvovirus (PPV) was inadiated to varying total doses of radiation.
Method
1. Add 100 μl 100% glycerol, 20 μl thrombin (100 U/ml thrombin) spiked with 50 μl PPV and optionally 20 μl (200 mM) sodium ascorbate as a stabilizer (adjusted to a total volume of 1 ml with H2O) to Wheaton 3 ml tubes (in duplicate), and inadiate to a total dose of 10, 30 or 45 kGy at 1.8 kGy/hr at 4°C.
2. Label and seed 96-well cell culture plates to allow at least 4 well per dilution (seeding to be done one day before inoculation). Add 200 μl of cell suspension per well at a concentration of 4 x 104/ml. The same cell culture medium is used for cell growth and maintenance after virus inoculation.
3. Perform virus inoculation when the cells sheets are 70-90% confluent. In this experiment 800 ul PK-13 growth media was added to 200 ul samples first. 4. Make appropriate dilution (1:5) of samples with PK-13 growth media, then filter sterilize each sample using low-protein-binding disc filters.
5. Add 50 μl of the pre-diluted sample to column 1 of a 96-well plate. In column 1 mix the medium and the sample together by pipetting up and down 4-5 times. With fresh tips transfer the necessary amount (50 μl) to the next column and repeat the mixing process. Empty all the liquid out of the tips and using the same set of tips, transfer the sample to the next column. Repeat this process in each column until column 12 is reached. When the sample in column 12 is mixed, empty the liquid out of the tips, withdraw the sample amount and dispose of this extra liquid in a waste bottle. This gives you 12 samples dilutions.
6. Return plates to the incubator at 37°C. 7. Observe microscopically and record the cytopathic effect in inoculated cultures on day 4-5 and day 7. The TCID50 is calculated from CPE reading according to the method of Karber.
8. Positive controls were done by adding 50 μl PPV infecting stock, and negative controls were done by adding 50 μl PK-13 growth media followed by serial 1:5 dilutions.
Materials
Wheaton tubes - glass serum vials, Wheaton # 223684, lot # 1154132-02.
Thrombin - bovine origin, 5000 US Units (5000 U/ml stock).
Sodium Ascorbate - Aldrich Chem. Co. cat. # 26,855-0 (Milw, Wl 53201). Porcine Parvovirus (PPV) - ATCC # VR-742; PPV infecting stock was prepared by PEG8000 preparation wherein 1/5 volume of PEG8000 (20% in 2.5 M NaCl) was added to PPV and incubated at refrigerated temperatures for 24 hours after which, PPV was pelleted by 15,000 φm for 45 minutes in a Beckman SW-28 rotor, and resuspended in 1/10 volume of PEG buffer. PPV titer of porcine parvovirus was determined by TCID50 and was about 9.0 log/ml (032301 stock). PPV spike ratio was 1:4 (50 μl PPV stock mixed with 150 μl protein solution) into liquid thrombin.
PEG Buffer - 0.1 M NaCl, 0.01 M Tris (pH 7.4), 1 mM EDTA.
Siliconized stoppers were used in the experiment obtained from American Stemli (Princeton, N.J.), 6720GC rubber formulation, lot # G009/7202. Cells - PK-13 (ATCC # CRL-6489), passage # 14. Cells are maintained in PK-13 growth medium (Dulbecco's modified Eagle medium supplemented with 10% FBS and 1 X pencillin/streptomycin/L-glutamine) .
Results
Sample TCID50 Titer per 0.05 ml Log Reduction
0 kGy/+ 200 mM sodium ascorbate 6.29
0 kGy/no stabilier 6.375
10 kGy/+ 200 mM sodium ascorbate 4.97 1.32
10 kGy/no stabilizer 2.97 3.405
30 kGy/+ 200 mM sodium ascorbate 3.05 3.24
30 kGy/no stabilizer 2.35 4.025
45 kGy/+ 200 mM sodium ascorbate 3.05 3.24
45 kGy/no stabilizer 3.05 3.325
With a 10 kGy total dose , there was a 1.32 log and a 3.405 log reduction in PPV levels in the presence and absence of sodium ascorbate, respectively. Similarly, with a 30 kGy total dose, there was a 3.24 log and a 4.025 log reduction in PPV levels in the presence or absence, respectively, of sodium ascorbate. With a 45 kGy total dose, there was a 3.24 log and a 3.325 log reduction in PPV levels with or without ascorbate, respectively. This experiment demonstrates that inactivation of even small non- enveloped viruses is effective in the presence of a non-aqueous solvent both with and without an effective stabilizer.
Example 4
In this experiment, trypsin suspended in polypropylene glycol 400 was subjected to gamma inadiation at varying levels of residual solvent (water) content.
Method
Trypsin was suspended in polypropylene glycol 400 at a concentration of about 20,000 U/ml and divided into multiple samples. A fixed amount of water (0%, 1%, 2.4%, 4.8%, 7%, 9%, 10%, 20%, 33%) was added to each sample; a 100% water sample was also prepared which contained no PPG 400.
Samples were inadiated to a total dose of 45 kGy at a rate of 1.9 kGy/hr and a temperature of 4°C. Following inadiation, each sample was centrifuged to pellet the undissolved trypsin. The PPG/water soluble fraction was removed and the pellets resuspended in water alone for activity testing. Assay conditions: 5 U/well trypsin (50 U/ml) + BAPNA substrate (0.5 mg/ml) was serially diluted 3-fold down a 96-well plate. The assay was set up in two 96-well plates and absoφtion read at both 405 and 620 nm at 5 and 20 minutes. The absoφtion at 630 nm (background) was subtracted from the value at 405 nm to obtain a conected absoφtion value. The change in this value over time between 5 and 15 minutes of reaction time was plotted and Vmax and Km determined in Sigma Plot using the hyperbolic rectangular equation).
Results
The inadiated samples containing a mixture of polypropylene glycol (PPG 400) and water (up to 33% water) retained about 80% of the activity of an uninadiated trypsin control and activity equal to that of a dry (lyophilized) trypsin control inadiated under identical conditions. No activity was detected in the 100% water sample inadiated to 45 kGy. The results of this experiment are shown graphically in Figure 3.
Example 5
In this experiment, porcine heart valves were gamma inadiated in the presence of polypropylene glycol 400 (PPG400) and, optionally, a scavenger, to a total dose of 30 kGy (1.584 kGy/hr at -20°C).
Materials:
Tissue - Porcine Pulmonary Valve (PV) Heart valves were harvested prior to use and stored.
Tissue Preparation Reagents -
Polypropylene Glycol 400. Fluka, cat# 81350 lot# 386716/1 Trolox C. Aldrich, cat# 23,881-3 lot# 02507TS Coumaric Acid. Sigma, cat# C-9008 lot# 49H3600 n-Propyl Gallate. Sigma, cat# P-3130 lot# 117H0526 α-Lipoic Acid. CalBiochem, cat# 437692 lot# B34484 Dulbecco's PBS. Gibco BRL cat# 14190-144 lot# 1095027 2.0 ml Screw Cap tubes. VWR Scientific Products, cat# 20170-221 lot# 0359 Tissue Hvdrolvsis Reagents - Nerl H2O. NERL Diagnostics cat# 9800-5 lot# 03055151
Acetone. EM Science cat# AX0125-5, lot# 37059711 6 N constant boiling HCl. Pierce cat# 24309, lot# BA42184 Int-Pyd (Acetylated Pyridinoline )HPLC Internal Standard. Metra Biosystems Inc. cat# 8006, lot# 9H142 expiration 2/2002 Store @ <-20°C Hydrochloric Acid. VWR Scientific cat#VW3110-3, lot#n/a
Heptafluorobutyric Acid (HFBA) Sigma cat# H-7133, lot# 20K3482
FW 214.0 store at 2-8°C SP-Sephadex C-25 resin. Pharmacia cat# 17-0230-01, lot# 247249 (was charged with NaCl as per manufacturer suggestion) Hvdrolvsis vials - 10 mm x 100 mm vacuum hydrolysis tubes. Pierce cat# 29560, lot
#BB627281 Heating module - Pierce, Reacti-therm. Model # 18870, S/N 1125000320176 Savant - Savant Speed Vac System:
1. Speed Vac Model SC110, model # SC110-120, serial # SC110-SD171002-1H a. Refrigerated Vapor Trap Model RVT100, model # RVT100-120V, serial # RVT100-58010538-1B b. Vacuum pump, VP 100 Two Stage Pump Model VP100, serial # 93024 Column - Phenomenex, Luna 5 μ C18(2) 100 A, 4.6 x 250 mm. Part # 00G-4252-E0, S/N# 68740-25, B/N# 5291-29
HPLC System: Shimadzu System Controller SCL- 10 A
Shimadzu Automatic Sample Injector SIL-10A (50 μl loop) Shimadzu Spectrofluorometric Detector RF-10A Shimadzu Pumps LC-10AD Software - Class-VP version 4.1
Low-binding tubes - MiniSoφ 100 xl 5 Nunc-Immunotube. Batch # 042950, cat# 468608
Methods:
A. Preparation of stabilizer solutions: Trolox C:
MW = 250; therefore, want 250 mg/ml for 1M or 125 mg/ml for 0.5 M actual weight = 250.9 mg
250 ÷ 125 mg/ml = 2.0 ml Not soluble; therefore an additional 2 ml of PPG was added. After water bath sonication and time, Trolox C is soluble at 125 mM.
Coumaric Acid:
MW = 164; therefore, 164 mg/ml for 1 M actual weight = 164.8 mg 164.8 mg ÷ 164 mg/ml = 1.0 ml Water bath sonicated for approximately 15 minutes - not 100 % soluble. An additional 1 ml PPG was added and further water bath sonicated.
n-Propyl Gallate:
MW = 212.2; therefore, 212 mg/ml for 1M or 106 mg/ml for 0.5 M actual weight = 211.9 mg 211.9 mg ÷ 106 mg/ml = 2.0 ml
Soluble after a 20-30 minute water bath sonication.
1 M α-Lipoic Acid:
MW = 206; therefore, 206 mg/ml actual weight = 412 mg
412 mg ÷ 206 mg/ml = 2.0 ml Very soluble after 10 minute water bath sonication.
Final Stocks of Scavengers: 125 mM Trolox C - 4 ml
1 M Lipoic Acid - 2 ml
0.5 M Coumaric acid - 2 ml
0.5 M n-Propyl Gallate - 2 ml
B. Treatment of valves prior to gamma-inadiation.
1. PV heart valves were thawed on wet ice.
2. Cusps were dissected out from each valve and pooled into 50 ml conical tubes containing cold Dulbecco's PBS.
3. Cusps were washed in PBS at 4°C for approximately 1.5 hrs; changing PBS during that time a total of 6x.
4. 2 cusps were placed in each 2 ml screw cap tubes.
5. 1.2 ml of the following were added to two tubes (for 0 and 30 kGy): 5 PPG
125 mM Trolox C in PPG
SCb stabilizer mixture - comprising of 1.5 ml 125 M Trolox C, 300 μl 1 M Lipoic Acid, 600 μl 0.5 M Coumaric Acid and 600 μl 0.5 M n-Propyl Gallate. (Final 0 concentrations: 62.5 mM, 100 mM, 100 mM and 100 mM respectively.)
6. Tubes were incubated at 4°C, with rocking.
7. Stabilizer solutions and cusps were transfened into 2 ml glass vials for gamma- inadiation.
8. All vials were frozen on dry ice.
15 9. Control samples were kept in-house at -20°C.
C. Gamma-irradiation of tissue.
Samples were inadiated at a rate of 1.584 kGy/hr at -20°C to a total dose of 30 kGy. 20
P. Processing tissue for Hydrolysis/Extraction.
1. Since PPG is viscous, PBS was added to allow for easier transfer of material.
2. Each pair of cusps (2 per condition) were placed into a 50 ml Falcon tube filled with cold PBS and incubated on ice - inverting tubes periodically.
25 3. After one hour PBS was decanted from the tubes containing cusps in PPG/0 and 30 and replenished with fresh cold PBS. For the PPG samples containing Trolox C or stabilizer cocktail, fresh 50 ml Falcon tubes filled with cold PBS were set-up and the cusps transfened.
4. An additional 3 washes were done.
>0 5. One cusp was transfened into a 2 ml Eppendorf tube filled with cold PBS for extraction. The other cusp was set-up for hydrolysis.
E. Hvdrolvsis of tissue. Hydrolysis of tissue: »5 1. Each cusp was washed 6x with acetone in an Eppendorf tube (approximately
1.5 ml/wash).
2. Each cusp was subjected to SpeedVac (with no heat) for approximately 15 minutes or until dry.
3. Samples were weighed, transfened to hydrolysis vials and 6 N HCl added at a volume of 20 mg tissue/ml HCl:
Sample ID Drv Weight m ul 6 N HCl
1. PPG/0 6.49 325
2. PPG/30 7.26 363
3. PPG T/0 5.80 290
4. PPG T/30 8.20 410
5. PPG SCb/0 6.41 321
6. PPG SCb/30 8.60 430
4. Samples were hydrolyzed at 110 °C for approximately 23 hours.
5. Hydrolysates were transfened into Eppendorf tubes and centrifuged @ 12,000 φm for 5 min. 6. Supernatent was then transfened into a clean Eppendorf.
7. 50 μl of hydrolysate was diluted in 8ml Nerl H2O (diluting HCl to approximately 38 mM).
8. Spiked in 200 μl of 2x int-pyd. Mixed by inversion. (For 1600 μl 2x int- pyd:160 μl 20x int-pyd + 1440 μl Nerl H20.) 9. Samples were loaded onto SP-Sephadex C25 column (approximately 1 x 1 cm packed bed volume) that had been equilibrated in water. (Column was pre-charged with NaCl)
10. Loaded flow through once again over column.
11. Washed with 20 ml 150 mM HCl. 12. Eluted crosslinks with 5 ml 2 N HCl into a low binding tube.
13. Dried entire sample in Savant.
F. Analysis of hydrolysates. Set-up the following: Sample μl μ! H?Q ul HFBA
1. PPG/0 kGy 18 180 2
2. PPG/30 kGy 59 139 2
3. PPG T/O kGy 67 171 2
4. PPG T/30 kGy 64 134 2 5. PPG SCb/O kGy 10 188 2
6. PPG SCb/30 kGy 32 166 2
Results:
The HPLC results are shown in Figures 4A-4C. In the presence of PPG 400, the results were nearly identical whether the heart valve had been irradiated or not. The addition of a single stabilizer (trolox C) or a stabilizer mixture produced even more effective results. The gel analysis, shown in Figure 4D, confirmed the effectiveness of the protection provided by these conditions.
Example 6
In this experiment, the effects of gamma inadiation were determined on porcine heart valve cusps in the presence of 50% DMSO and, optionally, a stabilizer, and in the presence of polypropylene glycol 400 (PPG400). Preparation of tissue for inadiation:
1. 5 vials of PV and 3 vials of atrial valves (AV) were thawed on ice.
2. Thaw media was removed and valves rinsed in beaker filled with PBS. 3. Transfened each valve to 50 ml conical containing PBS. Washed by inversion and removed.
4.Repeated wash 3 x. 5.Dissected out the 3 cusps (valves).
6. Stored in PBS in 2 ml screw top Eppendorf Vials (Eppendorfs) and kept on ice.
Preparation of stabilizers:
All stabilizers were prepared so that the final concentration of DMSO is 50 %.
1 M Ascorbate in 50 % DMSO: Aldrich cat# 26,855-0 lot# 10801 HU
200 mg dissolved in 300 μl H2O. Add 500 μl DMSO. The volumn was adjusted to 1 ml with H2O Final pH is » 8.0
1 M Coumaric Acid: Sigma cat# C-9008 lot# 49H3600. MW 164.2
Dissolve 34.7 mg in 106 μl DMSO, pH = » 3.0 138 μl H2O was added. Sample crashed out. Coumaric went back into solution once pH was adjusted to 7.5 with 1 N NaOH.
1 M n-Propyl Gallate:
Sigma cat# P-3130 lot# 117H0526. MW 212.2 Dissolve 58.2 mg in 138 μl DMSO. Add 138 μl H2O. Final pH is 6.5 or slightly lower.
Stabilizer Mixture:
1.0 ml 500 mM Ascorbate 500 μl 1 M Coumaric Acid 300 μl 1 M n-propyl gallate 1.2 ml 50 % DMSO
3.0 ml Method:
1.6 ml of a solution (stabilizer mixture or PPG400) was added to each sample and then the sample was incubated at 4°C for 2.5 days. Valves and 1 ml of the solution in which they were incubated were then transfened into 2 ml inadiation vials. Each sample was inadiated with gamma inadiation at a rate of 1.723 kGy/hr at 3.6°C to a total dose of
25 kGy.
Hydrolysis of tissue: 1. Washed each cusp 6x with acetone in a 2 ml Eppendorf Vial.
2. After final acetone wash, dried sample in Savant (without heat) for approximately 10-15 minutes or until dry.
3. Weighed the samples, transfened them to hydrolysis vials and then added 6 N HCl at a volume of 20 mg tissue/ml HCl:
Sample ID Drv Weight (mg) μl 6 N HCl
1. PBS/0 kGy 11.4 570
2. PBS /25kGy 6.0 300
3. DMSO/OkGy 6.42 321
4. DMSO/25kGy 8.14 407
5. DMSO/SC-a/0 kGy 8.7 435
6. DMSO/SC-a/25kGy 8.15 408
7. PPG/OkGy 13.09 655
8. PPG/25kGy 10.88 544 5. Samples were hydrolyzed at 110 °C for approximately 23 hours.
6. Hydrolysates were transfened into eppendorf vials and centrifuged at 12,000 φm for 5 min.
7. Supernatent was transferred into a clean eppendorf vial.
8. 50 μl hydrolysate was diluted in 8ml Nerl H2O (diluting HCl to approximately 37 mM).
9. Spiked in 200 μl of 2x int-pyd. Mixed by inversion. (For 2000 μl 2x int-pyd: 200 μl 20x int-pyd + 1.8 ml Nerl H2O.) 10. Samples were loaded onto SP-Sephadex C25 column (approximately lxl cm packed bed volume) that had been equilibrated in water. (Column was pre-charged with NaCl)
11. Loaded flow through once again over column.
12. Washed with 20 ml 150 mM HCl. 13. Eluted crosslinks with 5 ml 2 N HCl into a low binding tube. 50 ml 2 N HCl:
8.6 ml concentrated HCl adjusted to a volume of 50 ml with Nerl H2O. 14. Dried entire sample in Savant.
Guanidine HCl Extraction and DEAE-Sepharose Purification of Proteoglycans: 4M Guan idine HCl Extraction :
1. Removed all three cusps from gamma inadiation vial and transfened to separate 50ml conical tube.
2. Washed cusps five times with 50ml dPBS (at 4°C over approx. 5hours) and determined wet weight of one cusp after damping on Kimwipe. 3. Transfened one cusp from each group to 1.5ml microfuge tube and added appropriate volume of 4M guanidine HCl/150mM sodium acetate buffer pH 5.8 with 2μg/ml protease inhibitors (aprotinin, leupeptin, pepstatin A) to have volume to tissue ratio of 15 (see Methods in Enzymology Vol. 144 p.321 - for optimal yield use ratio of 15 to 20). 4. Diced cusps into small pieces with scissors.
5. Nutated at 4°C for ~48hours.
6. Centrifuged at 16,500 RPM on Hermle Z-252M, 4°C X lOmin.
7. Collected guanidine soluble fraction and dialyze against PBS in 10K MWCO Slide-A-Lyzer overnight against 5 L PBS (3 slide-a-lyzers with one 5L and 5 slide-a- lyzers in another 5L) to remove guanidine.
8. Changed PBS and dialyzed for additional 9 hours at 4°C with stirring.
9. Collected the dialysate and store at 4°C.
10. Centrifuged at 16,500 RPM on Hermle Z-252M, 4°C X 5min
11. Removed PBS soluble fraction for DEAE-Sepharose chromatography.
DEAE-Sepharose Chromatography
1. Increase the NaCl concentration of 500μl of PBS soluble guanidine extract to 300mM NaCl (Assumed PBS soluble fractions were already at ~150mM NaCl, so added 15μl 5M NaCl stock to each 500ul sample). 2. Equilibrated ~lml of packed DEAE-Sepharose (previously washed with 1M
NaCl/PB pH 7.2) into 300mM NaCl/PB pH 7.2 (Note: To make 300mM NaCl PB pH7.2 - added 3ml of 5M NaCl stock to 100ml PBS).
3. Added 200ul of l:μl slurry of resin to 515uL of GuHCl extracts (both at 300mM NaCl). 4. Nutated at ambient temperature for ~ one hour.
5. Centrifuged gently to pellet resin.
6. Removed "unbound" sample and stored at -20°C.
7. Washed resin 5 times with ~1.5ml of 300mM NaCl/PBS pH7.2.
8. After last wash, removed all extra buffer using a lOOul Hamilton syringe. 9. Eluted at ambient temperature with three lOOμl volumes of 1M NaCl/PB pH
7.2. Stored at -20°C.
SDS -PAGE:
5-20% gradient gels for analysis of PBS soluble Guanidine HCl extracts and DEAE-Sepharose chromatography.
1. Gel#l : GuHCl extracts/ PBS soluble fractions- Toluidine blue and then Coomassie blue stained.
2. Gel#2: DEAE-Sepharose Eluant Fraction#l - Toluidine Blue stained then Coomassie Blue stained.
Quantification of Collagen Crosslinks by HPLC:
1. Prepare 100-200 ul lx solution in 1% heptafluorobutyric acid (HFBA).
2. Inject 50 ul on C 18 HPLC column equilibrated with mobile phase. 3. SpectiOfiuorometer is set for excitation at 295nm and emission at 395nm.
4. Calculate the integrated fluorescence of Internal-Pyridinoline (Int-Pyd) per 1 ul of lx solution of Int-Pyd.
Results:
The HPLC results are shown in Figures 5A-D. The major peak represents the Internal-Pyridinoline (int-Pyd) peak. Inadiation in an aqueous environment (PBS) produced pronounced decreases in the smaller peaks (Figure 5A). Reduction of the water content by the addition of a non-aqueous solvent (PPG 400) produced a nearly superimposable curve (Figure 5B). DMSO was less effective (Figure 5C), while DMSO plus a mixture of stabilizers (Figure 5D) was more effective at preserving the major peak although some minor peaks increased somewhat. The area under the pyd peak for each sample was calculated as shown in the table below. These results confirm the above conclusions and show that the amino acid crosslinks (pyd) found in mature collagen are effectively conserved in the samples containing PPG and DMSO with a scavenger mixture. Gel analysis is shown in Figure 5E and reflects the major conclusions from the HPLC analysis, with significant loss of bands seen in PBS and retention of the major bands in the presence of non-aqueous solvents.
Example 7 In this experiment, frozen porcine AV heart valves soaked in various solvents were gamma inadiated to a total dose of 30 kGy at 1.584 kGy/hr at -20°C. Materials:
1. Porcine heart valve cusps were obtained and stored at -80°C in a cryopreservative solution (Containing Fetal calf serum, Penicillin-Streptomycin, Ml 99 media, and approximately 20% DMSO).
2. Dulbecco's Phosphate Buffered Saline: Gibco BRL cat#14190-144 lot 1095027
3. 2 ml screw cap vials: NWR cat# 20170-221 lot #0359
4. 2 ml glass vials: Wheaton cat# 223583 lot#370000-01
5. 13 mm stoppers: Stelmi 6720GC lot#G006/5511
6. DMSO: JT Baker cat# 9224-01 lot# H406307. Sodium ascorbate: Aldrich cat# 26,855-0 lot 10801HU; prepared as a 2M stock in Nerl water.
8. Fetal calf serum
9. Penicillin-Streptomycin
10. Ml 99 media
11. DMSO Methods: Cryopreservative Procedure:
Preparation of Solutions:
Freeze Medium:
Fetal calf serum (FCS) (10%) = 50 ml Penicillin-Streptomycin = 2.5 ml M199 = QS 500 ml
2M DMSO
DMSO = 15.62 g
Freeze Medium = QS 100 ml
3M DMSO
DMSO = 23.44 g
Freeze Medium = QS 100 ml
1. Place dissected heart valves (with a small amount of conduit/muscle attached) into glass freezing tubes (label with pencil).
2 Add 2 ml of freeze medium. 3 At 21 °C, add 1 ml 2M DMSO solution. 4 At 5 minutes, add 1 ml 2M DMSO solution. 5 At 30 minutes, add 4 ml 3M DMSO solution. 6 At 45 minutesand 4°C, place freezing tubes on ice. 7 At 50 minutes and -7.2 °C, seed bath.
At 55 minutes and -7.2°C, nucleate.
At 70 minutes, cool to -40°C at l°C/minute. Remove from bath and place in canister of LN2, and store in cryogenic storage vessel.
Procedure for Irradiation of Heart Valves:
1. Thawed AV heart valve cusps on wet ice.
2. Pooled cusps into 50 ml tubes.
3. Washed cusps with ~50ml dPBS at 4°C while nutating. Changed PBS 5x over the course of 5 hrs.
4. Transfened cusps into 2 ml screw cap tubes (2 cusps/tube). 5. Added 1.0 ml of the following to two of each of two tubes: dPBS, 50% DMSO and 50%> DMSO with 200 mM sodium ascorbate (2M sodium ascorbate stock was diluted as follows: 400μl (2M) + 1.6 ml water + 2ml 100% DMSO).
6. Incubated tubes at 4°C with nutating for ~46 hours.
7. Transfened solutions and cusps to glass 2 ml vials, stoppered and capped. 8. All vials were frozen on dry ice.
10. Frozen samples were then inadiated at -20°C at a rate of 1.584 kGy/hr to a total dose of 30 kGy.
Results: The results of the HPLC analysis are shown in Figures 6A-6D. Inadiation in an aqueous environment (PBS) produced decreases in the smaller peaks (Figure 6A). Reduction of the water content by the addition of a non-aqueous solvent (20% DMSO) reproduced these peaks more faithfully (Figure 6B). Increasing the DMSO concentration to 50% was slightly more effective (Figure 6C), while DMSO plus a mixture of stabilizers (Figure 6D) was very effective at preserving both the major and minor peaks
(the additional new peaks are due to the stabilizers themselves). Gel analysis is shown in Figure 6E and reflects the major conclusions from the HPLC analysis, with significant loss of bands seen in PBS and retention of the major bands in the presence of non- aqueous solvents with and without stabilizers.
Example 8
In this experiment, frozen porcine AV heart valves soaked in various solvents were gamma inadiated to a total dose of 45 kGy at approximately 6 kGy/hr at -70°C. Materials: 1. Porcine heart valve cusps were obtained and stored at -80°C in a cryopreservative solution (Same solution as that in Example 7).
2. 2. Dulbecco's Phosphate Buffered Saline: Gibco BRL cat#14190-144 lot 1095027
3. 2 ml screw cap vials: VWR cat# 20170-221 lot #0359 4. 2 ml glass vials: Wheaton cat# 223583 lot#370000-01
5. 13 mm stoppers: Stelmi 6720GC lot#G006/5511
6. DMSO: JT Baker cat# 9224-01 lot# H40630
7. Sodium ascorbate: Aldrich cat# 26,855-0 lot 10801HU; prepared as a 2M stock in Nerl water.
8. Polypropylene glycol 400 (PPG400): Fluka cat#81350 lot#386716/l
Methods:
Cryopreservative Procedure is the same as that shown in Example 7.
1. Thawed AV heart valve cusps on wet ice. Dissected out cusps and washed the pooled cusps 6x with cold PBS.
2. Dried each cusp and transfened cusps into 2 ml screw cap tubes (2 cusps/tube). 3. Added 1.2 ml of the following to two of each of two tubes: dPBS, dPBS with
200 mM sodium ascorbate, PPG400, PPG400 for rehydration, 50% DMSO and 50% DMSO with 200 mM sodium ascorbate (2M sodium ascorbate stock was diluted as follows: 400μl (2M) + 1.6 ml water + 2ml 100% DMSO).
4. Incubated tubes at 4°C with nutating for -46 hours. 5. Replaced all solutions with fresh (with the following exception: for one
PPG400 set, PPG400 was removed, the cusp washed with PBS+200 mM ascorbate, which was then removed and replaced with fresh PBS+200 mM ascorbate).
6. Incubated tubes at 4°C with nutating for -46 hours.
7. Changed the solution on the PPG400 dehyd./PBS+ascorbate rehydration cusps prepared in step 5).
8. Incubated tubes at 4°C with nutating for -6 hours.
9. Transfened solutions and cusps to glass 2 ml vials, stoppered and capped.
10. All vials were frozen on dry ice.
11. Frozen samples were then inadiated at -70°C at a rate of 6 kGy/hr to a total dose of 45 kGy.
Results:
The results of the HPLC analysis are shown in Figures 7A-7F. Irradiation in an aqueous environment (PBS) resulted in changes in the minor peaks and a right shift in the major peak. The inclusion of various non-aqueous solvents, reduction in residual water, and the addition of stabilt2;ers produced profiles that more closely matched those of the corresponding controls. The gel analysis is shown in Figures 7G-7H and shows a significant loss of bands in PBS, while the other groups demonstrated a. significant retention of these lost bands. When comparing the results from Example 8 to the results from Examples 5, 6, and
7, it becomes apparent that lowering the temperature for the gamma irradiation usually results in a decrease in the amount of modification or damage to the collagen crosslinks. One illustration of this temperature dependence is the sample containing 50% DMSO and
ascorbate, in which the additional peaks are markedly decreased as the temperature is lowered from -20°C to -80°C.
Example 9 In this experiment, the effects of gamma irradiation on the mechanical integrity of human femur irradiated to a total dose of 25 kGy or 50 kGy in the presence or absence of a stabilizer mixture (100 mM trehalose, 150 mM mannitol, 3.1 M DMSO, 2.2 M butanediol and 3.1 M formamide) were investigated. Materials:
Formamide (EM Science #4650, lot 3631B33); density = 1.13 g/mL 2,3 Butanediol (Aldrich #B8,490-4, lot K023119BO); density = 0.995 g/mL Trehalose (Sigma T-9531, lot 61K7026); 0.5 M stock in water Mannitol (Sigma M-8429, lot 106H00842); 0.5 M stock in water Dimethyl Sulfoxide (JT Baker #9224-01)
Wheaton 5 mL serum vials (Wheaton #223685, lot 1165122-01)
Stoppers (Stelmi, C14046720GC 6 TP, lot G005/3768)
Human Femur obtained from the Comprehensive Tissue Centre via RadTag
Diamond Band Saw Model #80 (Marmed Inc., Cleveland, OH) with Heavy Duty Diamond Blade (Marmed, #75H)
3% Hydrogen Peroxide purchased from local drug store Neutron Products irradiator.
Procedure: 1. Remaining soft tissue and periosteum was scraped from the bone using a razor blade.
2. Femur was cut into —2cm segments.
3. Segments were rinsed for 2 h in warm deionized water with stirring.
4. Segments were treated with 3% hydrogen peroxide for 0.5 h with stirring. Segments were rinsed with several water changes. Segments were rinsed overnight in water at 4°C with stirring. Femur segments were cut into 5 mm x 5 mm x 1 cm blocks. Femur blocks were kept in water until placed into scavenger solution.
9. Femur blocks were randomly drawn and placed into one of the following groups: a. no stabilizer mixture/not irradiated b. no stabilizer mixture/irradiated to 25 kGy
c. no stabilizer mixture/irradiated to 50 kGy d. with stabilizer mixture/not irradiated e. with stabilizer mixture/irradiated to 25 kGy f. with stabilizer mixture/irradiated to 50 kGy Samples were irradiated at a dose rate of about 2.5 kGy/h at — 72°C to a total dose of about
25 kGy or 50 kGy.
10. The group containing the stabilizer mixture was placed in 5 mL of stabilizer mixture and the untreated group was placed in 5 mL of 3.1 M DMSO.
11. Samples were agitated for 24 h at 4°C. 12. Samples were placed in vials for irradiation and quick frozen in a dry ice- ethanol bath.
13. Samples were kept at -80°C until irradiated.
14. Following irradiation, samples were stored at -80°C until mechanical testing was performed. Samples were tested in a three-pointing bending test.
Results: Pretreatment of bone with the stabilizer mixture resulted in significant recovery of the bending stress. Irradiating at low temperature alone showed significant improvement in recovering bending stress as compared to all the other treatments tested. The results shown below were calculated based on the average bending stress compared to controls: a. no stabilizer mixture/irradiated to 25 kGy: 9% decrease c. no stabilizer mixture/irradiated to 50 kGy : 26% decrease e. with stabilizer mixture/irradiated to 25 kGy: 5% decrease f. with stabilizer mixture/irradiated to 50 kGy: 14% decrease
Example 10
Purpose: To determine the mechanical integrity of bone that was treated or left untreated with polypropylene glycol, then a stabilizer mixture (200 μM TroloxC, 100 mM coumaric acid, 100 mM lipoic acid, 100 mM propyl gallate), followed by freeze drying, and finally, irradiated to either 25 kGy or 50 kGy.
Materials:
Coumaric acid (Sigma C-4400, lot 51K3660) stock of 0.5 M in ethanol Propyl gallate (Sigma P-3130, lot 60K0877) stock of 0.5 M in ethanol α-Lipoic acid (Calbiochem 437692, lot B34484) stock of 0.5 M in ethanol TroloxC (Aldrich 23,881-3, lot 02507TS) stock of 2 mM in DPBS DPBS (Sigma D-8662, lot 70K2343) Polypropylene glycol P400 (Fluka #81350, lot 386716) Wheaton 5 mL serum vials (Wheaton #223685, lot 1165122-01) Stoppers (Stelmi, C14046720GC 6 TP, lot G005/3768) VirTis Genesis 25EL Freeze Drier with analysis by Maestro Software Human Femur obtained from the Comprehensive Tissue Centre via RadTag Diamond Band Saw Model #80 (Marmed Inc., Cleveland, OH) with Heavy Duty Diamond Blade (Marmed, #75H)
3% Hydrogen Peroxide purchased from local drug store Neutron Products irradiator. Procedure:
1. Remaining soft tissue and periosteum were scraped from the bone using a razor blade.
2. Femur was cut into about 2cm segments.
3. Segments were rinsed for 2 houts in warm deionized water with stirring.
4. Segments were treated with 3% hydrogen peroxide for 0.5 h with stirring.
5. Segments were rinsed with several water changes.
6. Segments were rinsed overnight in water at 4°C with stirring.
7. Femur segments were cut into 5 mm x 5 mm x 1 cm blocks.
8. Blocks were kept in water until placed into stabilizer mixture.
9. Bone blocks were randomly drawn and placed into one of the following six groups (- CK indicates the samples were not treated with the stabilizer mixture, +CK indicates that the samples were treated with the stabilizer mixture and the radiation dose was as indicated): a. -CK/O kGy b. -CK/25 kGy c. -CK/50 kGy d. +CK/0 kGy
e. +CK/25 kGy f. +CK/50 kGy
10. All samples were incubated in PPG over night at 4°C.
11. The samples were removed and dabbed with a Kimwipe to remove the excess PPG.
12. 4 mL of stabilizer mixture were added to those samples designated +CK, while the untreated — CK were left untreated.
13. +CK samples were agitated overnight at 4°C while the -CK samples were placed at 4°C for the same duration. 14. Samples were placed in irradiation vials and subjected to freeze drying.
15. Following freeze drying, samples were kept at 4°C until irradiated.
16. Following irradiation, samples were stored at 4°C until mechanical testing was performed.
Samples were tested using a three-point bending test Results:
The three-point bending test results demonstrated that the addition of the stabilizer mixture provided better recovery of the bending stress following irradiation as compared to the samples that were not pretreated. The results shown below were calculated based on the average bending stress compared to controls: +CK/25 = 10% decrease in bending stress
+CK/50 = 30% decrease in bending stress
-CK/25 = 42% decrease in bending stress
-CK/50 = 22% decrease in bending stress
Example 11
In this experiment, the effects of gamma irradiation on human bone samples in the presence of ascorbate (200 mM) or a stabilizer mixture (2.2 M butanediol, 3.1 M DMSO, 3.1
M formamide, 150 mM mannitol and 100 mM trehalose) were investigated. Treated and untreated samples were either not irradiated or irradiated to a total dose of about 50kGy. Guanidine and pepsin extracts were examined.
Method: 1. Human bone pieces were treated with either 200 mM ascorbate or a stabilizer mixture (2.2 M butanediol, 3.1 M DMSO, 3.1 M formamide, 150 mM mannitol and 100 mM trehalose) overnight at 4°C.
2. Pieces were submerged in liquid nitrogen and pulverized with a hammer.
3. Pulvierized samples were placed in eppendorf tubes (10-40 mg/tube).
4. Guanidine and pepsin extractions were carried out. Results were analyzed by SDS-PAGE.
Results:
Accrording to SDS-PAGE analysis, the samples treated with the stabilizer mixture showed improved results over the samples treated with ascrobate.
Example 12
Purpose: The protective effects of various stabilizer mixtures on human bone irradiated to
50kGy was examined.
Materials:
1. 5 mm x 5 mm x 30 mm cortical bone beams (human femur obtained from Comprehensive Tissue Centre via RadTag Technologies).
2. Stabilizer Mixtures: a. CK2-f:
• 150 mM mannitol (Sigma M-8429, lot 106H00842)
• 100 mM trehalose (Sigma T=9531, lot 61K7026)
• 2.2 M butanediol (Aldrich #B8,490-4, lot K023119BO)
• 3.1 M DMSO (JT Baker #9224-01) b. CKl-fd:
• 100 mM coumaric acid (Sigma C-4400, lot 51K3660); stock in 0.5 M ethanol
• 100 mM lipoic acid (Calbiochem #437692, lot B34484); stock in 0.5 M ethanol
• 100 mM propyl gallate (Sigma P-3130, lot 60K0877); stock in 0.5 M ethanol
• 200 μM TroloxC (Aldrich #23,881-3, lot 02507TS); stock of 2 mM in PBS
3. Polypropylene glycol P400 (Fluka #81350, lot 386716)
4. 30 mL serum vial (Wheaton)
5. Stoppers (Stelmi #C1404 6720GC 6 TP; lot G005/3768) Procedure:
1. 10 cortical bone beams were soaked in 50 mL of polypropylene glycol (PPG) P400 for 2
h at 37°C with shaking. 2. The beams were removed from the PPG, blotted lightly with a Kimwipe to remove excess PPG, and then soaked in 50 mL of CKl-fd overnight (-16 h) at 4°C with agitation. 3. 12 bone beams were placed in 50 mL of CK2-f and soaked overnight (-16 h) at 4°C with agitation. An additional 10 bone beams were placed in deionized water and soaked overnight as described for the other bone pieces.
4. The next morning the pieces were removed and placed in 30 mL vials for irradiation.
5. The vials were placed kept at -80°C until irradiation. 6. The samples were irradiated on dry ice at a dose rate of about 4.7kGy/h to a total dose of about 50kGy. 7. The bones were evaluated for mechanical strength using the 3-point bend test. Results:
The bending test analysis showed that the irradiated samples treated with CK2-f and CKl-fd exhibited improved results (86% and 85% of corresponding control, respectively) compared to the irradiated sample not treated with a stabilizer mixture (73% of corresponding control).
Example 13 Purpose: The protective effects of various stabilizer mixtures on bone irradiated to about
50kGy were investigated. Materials:
1. 3 mm x 3 mm x 25 mm cortical bone beams (human femur obtained from Comprehensive Tissue Centre via RadTag Technologies). 2. Stabilizer Mixtures: a. CK2-f:
• 150 mM mannitol (Sigma M-8429, lot 106H00842)
• 100 mM trehalose (Sigma T=9531, lot 61K7026)
• 2.2 M butanediol (Aldrich #B8,490-4, lot K023119BO) • 3.1 M DMSO (JT Baker #9224-01) b. 10-DM:
• 10% DMSO, USP (Spectrum #D1258, lot RP0915)
• 150 mM mannitol, USP (Spectrum #MAl 65, lot RM0418) 3. Polypropylene glycol P400 (Fluka #81350, lot 386716)
4. 30 mL serum vials (Wheaton)
5. Stoppers (Stel i #C1404 6720GC 6 TP; lot G005/3768) Procedure:
1. 12 cortical bone beams were used for each treatment — 6 for irradiated samples and six for unirradiated controls.
2. The bone beams were placed in 5 ml conical vials and treated with one of the following liquids: a. 3 ml water; b. 3 ml CK2-f; or c. 3 ml 10-DM.
3. The samples were sonicated at 4°C for about twenty minutes.
4. Following sonication, the bone was soaked at room temperature with agitation for about 2 hours and 40 minutes.
5. Following soaking, the bones were removed from the liquid, placed in vials for irradiation and stored at about -80°C.
6. The samples were irradiated on dry ice at a dose rate of about 2.6kGy/h to a total dose of about 55kGy to 60kGy.
7. The samples were evaluated for mechanical strength using a 3-point bending test. Results:
The bending test analysis showed that the irradiated samples treated with CK2-f exhibited 82% of the corresponding control strength and samples treated with 10-DM exhibited 73% of the corresponding control strength.
Example 14
Purpose: The protective effects of a stabilizer mixture on porcine ACL samples irradiated to 50 kGy were investigated.
Materials:
1. Porcine ACL: RadTag Technologies, Inc. 2. Stabilizer Mixture:
3.1 M DMSO;
2.2 M, 2,3-butanediol; 150 mM mannitol; and 100 mM trehalose.
Procedure:
1. Porcine ACL's (10) were stored at -80C and thawed for —30 minutes in 37°C water bath;
2. Each ACL was placed in a separate 50ml conical tube;
3. The samples were washed 4 times with 50ml PBS for —5 minutes per wash while shaking;
4. The samples were washed 1 time with water (50ml each) for 5 min. while shaking;
5. Each ligament was cut into about 4-5 smaller pieces (about 3mm diameter);
6. The samples were placed in a 2ml vials (1/vial);
7. 1 ml of the stabilizer mixture or water was added to each vial;
8. Rubber stoppers and caps were placed on the vials;
9. The samples were shaken at 4°C overnight;
10. The samples were irradiated to a total dose of about 50kGy.
11. The samples were analyzed by SDS-PAGE.
Results: According to SDS-PAGE, the samples treated with the stabilizer mixture exhibited improved properties over the untreated controls.
Example 15
Purpose: The protective effects of various stabilizer mixtures on bovine tibias irradiated to 50kGy were investigated.
Materials:
• Bovine tibias obtained from the slaughterhouse (Mt. Airy Meat Locker) milled to 3mm x 3mm x 42mm sections Butanediol (Aldrich B8, 490-4, lot KD23119B0) • Propylene glycol (Sigma, P-4347, lot 111K1658)
DMSO, USP (Spectrum, D1258, lot RE0754) Mannitol, USP (Spectrum, MA 165, lot RE1020) Trehalose (Sigma, T-9531, lot 062K7302) Gallic acid (Sigma G-7384, lot 111K0103) • Sodium Ascorbate, USP (Spectrum SI 349, lot RM0398)
Branson 2710 Water Bath Sonicator 30mL serum vial (Kimble Glass 62121D-30) 20mm Stoppers (Stelmi C1404 672GC 6 TP, lot G005/3758)
• Stabilizer Mixtures: FI (BDGT):
2.2M butanediol 3.1M DMSO lOOmM gallic acid 50mM trehalose
F2 (ABMT):
200mM ascorbate 2.2M butanediol 150mM mannitol 50mM trehalose
F3 (ABDM):
200 mM ascorbate 1.66M butanediol 0.33M DMSO 125mM mannitol
F4 (BGMT):
2.2M butanediol 50mM gallic acid 150mM mannitol 50mM trehalose
F5 (BDG):
2.2M butanediol 3.1M DMSO lOOmM gallic acid
F6 (AMPT):
200mM ascorbate 150mM mannitol 2.2M propylene glycol 50mM trehalose Procedure:
1. Milled cortical bone pieces were placed in a large beaker and mixed.
2. Ten (10) bone pieces were selected randomly and placed in a 50 mL conical.
3. The stabilizer mixtures above were added to the 40 mL mark on the conical.
4. The conicals were placed in floats and then placed in a water bath sonicator.
■ Water in the bath was prechilled to 4°C
■ Water in the bath was exchanged for ice-chilled water approximately every 15 minutes for 4 hours.
5. Following sonication, the conicals were placed in racks and agitated gently at 4°C for 24 h.
6. The bone pieces were removed from the conicals, excess stabilizer ixdxture was removed and the samples were placed in a 25 mL serum vial for irradiation.
7. The vials were stoppered, capped, and stored in -80°C until irradiated.
8. Samples were irradiated on dry ice to a total dose of 50kGy.
9. Mechanical strength was tested by a three-point bending test.
Results:
The three-point bending test analysis gave the following results for mechanical strength of irradiated samples (relative to average unirradiated control): o BDGT: 75% o ABMT: 66% o ABDM: 60% o BGMT: 68% o BDG: 59% o AMPT: 61% o No stabilizers: 56%
Experiment 16
Purpose: The protective effects of various stabilize mixtures on porcine ACL collagen following gamma irradiation to 50 kGy at dry ice temperature were investigated.
Materials:
• Porcine ACLs (harvested on 06.25.02) obtained from RadTag Technologies.
• Saline [0.9% NaCl (VWR #VW6430-5, lot 41240202)]
• Propylene glycol (Sigma P-4347, lot 111K1658)
• Dimethyl sulfoxide, USP (Spectrum D 1258, lot RE0754)
• Mannitol, USP (Spectrum MA165, lot RE1020)
• Trehalose (Sigma T-9531 , lot 062K7302)
• DMEM (Quality Biological 112-103-101, lot 710850)
• Probucol (Sigma P-9672, lot 128H0695)
• Trolox (Aldrich 23,881-3, lot 02507TS)
• 1M stock of Propyl gallate (Sigma P-3130, lot 60K0877) made in 200 proof ethanol (Aldrich E702-3, lot 01213740)
• 3 mL serum vials (Wheaton #223684)
• Stelmi stoppers (#C1503 6720GC 6 DT) Procedure:
1. Seven porcine ACLs were thawed and rinsed 5 times in PBS. 2. An entire ACL was soaked in one of the following solutions for 4 h at 40°C and then overnight (about 15 hours) at 4°C: a. Saline; b. 2.2 M propylene glycol, 3.1 M DMSO, 150 mM mannitol and 100 mM trehalose, brought to volume with saline; c. 2.2 M propylene glycol, 3.1 M DMSO, 150 mM mannitol, 100 mM trehalose, 1% solutol, brought to volume with saline; d. DMEM; e. DMEM, 2.2 M propylene glycol, 150 mM mannitol; f. DMEM, 50 μM probucol, 2% DMSO; or g. DMEM, 50 mM trolox, 100 mM propyl gallate;
3. ACLs were removed from the solutions. Changes in the properties of the tendons were observed and are noted below (letter in this section corresponds to the solution indicated by the same letter in 2 above).
4. ACLs were bisected in half and the ends trimmed to fit in a 3 mL vial (one half designated 0 kGy control, and the other half designated 50 kGy). Samples were stored in at -
80° until packaged for irradiation.
5. Samples were irradiated on dry ice to a total dose of about 50kGy. Results:
Irradiated samples treated with stabilizer mixtures d, e, and f exhibited improved results over other stabilizer mixtures.
Example 17
Purpose: The protective effects of various stabilizer mixtures on bovine tibias irradiated to
about 50kGy were investigated. Materials:
• Bovine tibias obtained from the slaughterhouse (Mt. Airy Meat Locker), washed and milled to 3mm x 3mm x 42mm sections
Butanediol (Aldrich B8, 490-4, lot K023119B0)
Propylene glycol (Sigma, P-4347, lot 111K1658)
DMSO, USP (Spectrum, D1258, lot RE0754)
Mannitol, USP (Spectrum, MA 165, lot RE1020)
Trehalose (Sigma, T-9531, lot 062K7302) • Gallic acid (Sigma G-7384, lot 111K0103)
Sodium Ascorbate, USP (Spectrum S1349, lot RM0398)
Branson 2710 Water Bath Sonicator
30mL serum vial (Kimble Glass 62121D-30)
20mm Stoppers (Stelmi C1404 672GC 6 TP, lot G005/3758) • Sodium citrate dihydrate (Mallinkrodt #0754, lot 0754T51H28) in water
Stabilizer Mixtures: a. FI (BDGT)
2.2 M butanediol
3.1 M DMSO 100 mM gallic acid
50 mM trehalose b. F4 (BGMT)
2.2 M butanediol 50 mM gallic acid 150 mM mannitol
50 mM trehalose c. F4-ρrop (GMPT)
50 mM gallic acid 150 mM mannitool 2.2 M propylene glycol
50 mM trehalose d. F4+pH (BGMTc)
2.2 M butanediol
50 mM gallic acid 150 mM mannitol 50 mM trehalose 200 mM sodium citrate e. CK2 (BDMT)
2.2 M butanediol 3.1 M DMSO 150 mM mannitol 100 mM trehalose Procedure:
1. Milled cortical bone pieces were placed in a large beaker and mixed.
2. Six (6) pieces were then selected randomly and placed in a 50 mL conical for treatment one of the stabilizer mixtures above.
3. The stabilizer mixture was added to the 40 mL mark on the conical. 4. The conicals were placed in floats and then placed in a water bath sonicator.
■ Water in the bath was prechilled to 4°C
■ Water in the bath was exchanged for ice-chilled water approximately every 15 minutes for 4 hours.
5. Following sonications, the conicals were placed in racks and agitated gently at 4°C for 24 h.
6. The bone pieces were removed from the conical, excess cocktail removed and the 6 pieces were placed in a 25 mL serum vial for irradiation. •
7. The vials were stoppered, capped, and stored at -80°C until irradiated.
8. Samples were irradiated on dry ice to a total dose of about 50kGy. 9. Mechanical strength was measured by a three point bending test.
Results:
The three-point bending test analysis gave the following results for mechanical strength of irradiated samples (relative to average unirradiated control): o no stabilizer mixture: 62% o CK2: 78% o FI: 77% o F4: 67% o F4 + pH: 71% o F4-prop: 62%
Example 18
Purpose: The protective effects of various stabiUzer mixtures on bovine tibias irradiated to
50kGy were investigated.
Materials:
■ Bovine tibias were obtained from the slaughterhouse (Mt. Airy Meat Locker), washed and miUed to 3 mm x 3 mm x 42 mm sections DMSO (Spectrum D1258, lot RE0754) Trehalose (Sigma T-9531, lot 062K7302); 0.5 M stock in water ■ GaUic acid (Sigma G-7384, lot 111K0103)
Butanediol (Aldrich B8,490-4, lot K023119B0)
Propylene glycol (Sigma P-4347, lot 111K1658)
Sodium citrate dihydrate (MalUnkrodt 0754, lot 0754T51H28); 2 M stock in water
VirTis Genesis 25 EL Freeze Drier with Maestro Software o 08.16.02-08.19.02 freeze dry 1 — Ten Bone cycle
■ StabiUzer Mixtures: a. BDGT: 2.2 M butanediol
3.1 M DMSO 100 mM galUc acid 50 mM trehalose b. BDGT+C: 2.2 M butanediol
3.1 M DMSO 100 mM gallic acid 50 mM trehalose 200 mM citrate c. PDGT: 2.2 M propylene glycol
3.1 M DMSO 100 mM galUc acid 50 mM trehalose d. PDGT+C: 2.2 M propylene glycol
3.1 M DMSO 100 mM gaUic acid 50 mM trehalose 200 mM citrate
GalUc acid was by mild heating prior to adding organics. Procedure:
1. Six pieces of randomly chosen bone were placed in a 50 mL conical. The bone was weighed and then a stabiUzer mixture or water was added to the 40 mL mark and the weight recorded. Two samples were made for each condition (1 set to be frozen and the other set for freeze drying) as foUows:
2. Placed the 50 mL conicals containing the bone in the sonicator, and changed the sonication bath water every 15 minutes with ice-chiUed water for a total sonication time of 4 h.
3. Following sonication, the samples were placed in a Styrofoam box for 24 h at 4°C. The samples were then either placed in 30 mL serum vials and frozen at -80°C or placed on glass plates and put into the freeze drier.
4. After freeze drying, the bones were placed in 30 mL serum vials, capped, and stored at - 80°C
5. The samples were irradiated to a total dose of about 50kGy
6. The samples were analyzed by a three point bending test. Results:
For freeze-dried samples irradiated to 50kGy, samples treated with BDGT and BGDT+C exhibited an average increase in mechanical strength of about 1.6 times compared to the sample not treated with a stabiUzer mixture. The addition of citrate did not impact mechanical strength.
[82] Having now fully described this invention, it will be understood to those of ordinary skill in the art that the methods of the present invention can be canied out with a wide and equivalent range of conditions, formulations and other parameters without departing from the scope of the invention or any embodiments thereof. [83] All patents and publications cited herein are hereby fully incoφorated by reference in their entirety. The citation of any publication is for its disclosure prior to the filing date and should not be construed as an admission that such publication is prior art or that the present invention is not entitled to antedate such publication by virtue of prior invention. [84] The foregoing embodiments and advantages are merely exemplary and are not to be construed as limiting the present mvention. The present teaching can be readily applied to other types of apparatuses. The description of the present invention is intended to be illustrative, and not to limit the scope of the claims. Many alternatives, modifications, and variations will be apparent to those skilled in the art.
Claims (90)
1. A method for steriUzing a biological material which contains a non-aqueous solvent and that is sensitive to radiation, said method comprising irradiating said biological material with radiation for a time effective to steriUze said biological material at a rate effective to steriUze said biological material and to protect said biological material from said radiation.
2. A method for steriUzing a biological material which contains a non-aqueous solvent and that is sensitive to radiation, said method comprising: (i) adding to said biological material at least one stabilizer in an amount effective to protect said biological material from said radiation; and
(U) irradiating said biological material with a suitable radiation at an effective rate for a time effective to steriUze said biological material.
3. A method for steriUzing a biological material which contains a non-aqueous solvent and that is sensitive to radiation, said method comprising:
(i) reducing the residual solvent content of said biological material to a level effective to protect said biological material from said radiation; and
(U) irradiating said biological material with a suitable radiation at an effective rate for a time effective to steriUze said biological material.
4. A method for steriUzing a biological material which contains a non-aqueous solvent and that is sensitive to radiation, said method comprising:
(i) reducing the temperature of said biological material to a level effective to protect said biological material from said radiation; and
(ii) irradiating said biological material with a suitable radiation at an effective rate for a time effective to steriUze said biological material.
5. A method for steriUzing a biological material which contains a non-aqueous solvent and that is sensitive to radiation, said method comprising:
(i) applying to said biological material at least one stabilizing process selected from the group consisting of
(a) reducing the residual solvent content of said biological material,
(b) reducing the temperature of said biological material, and (c) adding at least one stabiUzer to said biological material; and
(U) irradiating said biological material with a suitable radiation at an effective rate for a time effective to sterilize said biological material, wherein said at least one stabiUzing process and the rate of irradiation are together effective to protect said biological material from said radiation.
6. A method for steriUzing a biological material which contains a non-aqueous solvent and that is sensitive to radiation, said method comprising:
(i) applying to said biological material at least two stabiUzing processes selected from the group consisting of
(a) reducing the residual solvent content of said biological material,
(b) reducing the temperature of said biological material, and
(c) adding at least one stabiUzer to said biological material; and
(U) irradiating said biological material with a suitable radiation at an effective rate for a time effective to sterilize said biological material, wherein said at least two stabiUzing processes are together effective to protect said biological material from said radiation and further wherein said at least two stabiUzing processes may be performed in any order.
7. The method according to claim 1, 2, 3, 4, 5 or 6, wherein said non-aqueous solvent is an organic solvent.
8. The method according to claim 1, 2, 3, 4, 5 or 6, wherein said effective rate is not more than about 3.0 kGy/hour.
9. The method according to claim 1, 2, 3, 4, 5 or 6, wherein said effective rate is not more than about 2.0 kGy/hr. /
10. The method according to claim 1, 2, 3, 4, 5 or 6, wherein said effective rate is not more than about 1.0 kGy/hr.
11. The'method according to claim 1, 2, 3, 4, 5 or 6, wherein said effective rate is not more than about 0.3 kGy/hr.
12. The method according to claim 2, 3, 4, 5 or 6, wherein said effective rate is more than about 3.0 kGy/hour.
13. The method according to claim 2, 3, 4, 5 or 6, wherein said effective rate is at least about 6.0 kGy/hour.
14. The method according to claim 2, 3, 4, 5 or 6, wherein said effective rate is at least about 18.0 kGy/hour.
15. The method according to claim 2, 3, 4, 5 or 6, wherein said effective rate is at least about 30.0 kGy/hour.
16. The method according to claim 2, 3, 4, 5 or 6, wherein said effective rate is at least about 45 kGy/hour.
17. The method according to claim 1, 2, 3, 4, 5 or 6, wherein said biological material which contains a non-aqueous solvent is maintained in a low oxygen atmosphere.
18. The method according to claim 1, 2, 3, 4, 5 or 6, wherein said biological material which contains a non-aqueous solvent is maintained in an atmosphere comprising at least one noble gas or nitrogen.
19. The method according to claim 18, wherein said noble gas is argon.
20. The method according to claim 1, 2, 3, 4, 5 or 6, wherein said biological material which contains a non-aqueous solvent is maintained in a vacuum.
21. The method according to claim 3, 5 or 6, wherein said residual solvent content is reduced by a method selected from the group consisting of lyophiUzation, drying, concentration, addition of solute, evaporation, chemical extraction, spray-ckying and vitrification.
22. The method according to claim 3, 5 or 6, wherein said residual solvent content is less than about 15%.
23. The method according to claim 3, 5 or 6, wherein said residual solvent content is less than about 10%.
24. The method according to claim 3, 5 or 6, wherein said residual solvent content is less than about 3%.
25. The method according to claim 3, 5 or 6, wherein said residual solvent content is less than about 2%.
26. The method accordmg to claim 3, 5 or 6, wherein said residual solvent content is less than about 1%.
27. The method according to claim 3, 5 or 6, wherein said residual solvent content is less than about 0.5%.
28. The method according to claim 3, 5 or 6, wherein said residual solvent content is less than about 0.08%.
29. The method according to claim 1, 2, 3, 4, 5 or 6, wherein at least one sensitizer is added to said biological material which contains a non-aqueous solvent prior to said step of irradiating said biological material.
30. The method according to claim 1, 2, 3, 4, 5 or 6, wherein said biological material which contains a non-aqueous solvent contains at least one biological contaminant or pathogen selected from the group consisting of viruses, bacteria, yeasts, molds, fungi, parasites and prions or similar agents responsible, alone or in combination, for TSEs.
31. The method according to claim 2, 5 or 6, wherein said at least one stabiUzer is an antioxidant.
32. The method according to claim 2, 5 or 6, wherein said at least one stabiUzer is a free radical scavenger.
33. The method according to claim 2, 5 or 6, wherein said at least one stabiUzer is a combination stabiUzer.
34. The method according to claim 2, 5 or 6, wherein said at least one stabiUzer is a Ugand.
35. The method according to claim 37, wherein said Ugand is heparin.
36. The method according to claim 2, 5 or 6, wherein said at least one stabiUzer reduces damage due to reactive oxygen species.
37. The method according to claim 2, 5 or 6, wherein said at least one stabiUzer is selected from the group consisting of: ascorbic acid or a salt or ester thereof; glutathione; 6- hydroxy-2,5,7,8-tetramethylchroman-2-carboxyUc acid; uric acid or a salt or ester thereof; methionine; histidine; N-acetyl cysteine; α-Upoic acid; sodium formaldehyde sulfoxylate; galUc acid or a derivative thereof; n-propyl gaUate, coumaric acid, and mixtures of two or more thereof.
38. The method according to claim 37, wherein said mixtures of two or more stabiUzers are selected from the group consisting of: mixtures of ascorbic acid, or a salt or ester thereof, and uric acid, or a salt or ester thereof; mixtures of ascorbic acid, or a salt or ester thereof, and 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxyUc acid; mixtures of ascorbic acid, or a salt or ester thereof, uric acid, or a salt or ester thereof, and 6-hydroxy- 2,5,7,8-tetramethylchroman-2-carboxyUc acid; mixtures of uric acid, or a salt or ester thereof; α-Upoic acid; sodium formaldehyde sulfoxylate; galUc acid or a derivative thereof; n-propyl gallate, coumaric acid and 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxyUc acid; and mixtures of ethanol and acetone.
39. The method according to claim 2, 5 or 6, wherein said at least one stabiUzer is a dipeptide stabiUzer.
40. The method according to claim 39, wherein said dipeptide stabiUzer is selected from the group consisting of glycyl-glycine (Gly-Gly), carnosine and anserine.
41. The method according to claim 1, 2, 3, 4, 5 or 6, wherein said radiation is corpuscular radiation or electromagnetic radiation, or a mixture thereof.
42. The method according to claim 41, wherein said electromagnetic radiation is selected from the group consisting of radio waves, microwaves, visible and invisible Ught, ultraviolet Ught, x-ray radiation, gamma radiation and combinations thereof.
43. The method according to claim 1, 2, 3, 4, 5 or 6, wherein said radiation is gamma radiation.
44. The method according to claim 1, 2, 3, 4, 5 or 6, wherein said radiation is E- beam radiation.
45. The method according to claim 1, 2, 3, 4, 5 or 6, wherein said radiation is visible Ught.
46. The method according to claim 1, 2, 3, 4, 5 or 6, wherein said radiation is ultraviolet Ught.
47. The method according to claim 1, 2, 3, 4, 5 or 6, wherein said radiation is x- ray radiation.
48. The method according to claim 1, 2, 3, 4, 5 or 6, wherein said radiation is polychromatic visible Ught.
49. The method according to claim 1, 2, 3, 4, 5 or 6, wherein said radiation is infrared.
50. The method according to claim 1, 2, 3, 4, 5 or 6, wherein said radiation is a combination of one or more wavelengths of visible and ultraviolet Ught.
51. The method according to claim 1, 2, 3, 5 or 6, wherein said irradiation is conducted at ambient temperature.
52. The method according to clakxt 1, 2, 3, 4, 5 or 6, wherein said irradiation is conducted at a temperature below ambient temperature.
53. The method according to claim 1, 2, 3, 4, 5 or 6, wherein said irradiation is conducted below the freezing point of said biological material which contains a non-aqueous solvent.
54. The method according to claim 1, 2, 3, 4, 5 or 6, wherein said irradiation is conducted below the eutectic point of said biological material which contains a non-aqueous solvent.
55. The method according to claim 1, 2, 3, 5 or 6, wherein said irradiation is conducted at a temperature above ambient temperature.
56. A composition comprising at least one biological material which contains a non-aqueous solvent and at least one stabiUzer in an amount effective to preserve said biological material for its intended use foUowing steriUzation with radiation.
57. A composition comprising at least one biological material which contains a non-aqueous solvent, wherein the residual solvent content of said biological material is at a level effective to preserve said biological material for its intended use foUowing steriUzation with radiation.
58. The composition of claim 57, wherein said residual solvent content is less than about 15%.
59. The composition of claim 57, wherein said residual solvent content is less than about 10%.
60. The composition of claim 57, wherein said residual solvent content is less than about 5%.
61. The composition of claim 57, wherein said residual solvent content is less than about 2%.
62. The composition of claim 57, wherein said residual solvent content is less than about 1%.
63. The composition of claim 57, wherein said residual solvent content is less than about 0.5%.
64. The composition of claim 57, wherein said residual solvent content is less than about 0.08%.
65. The composition of claim 56 or 57, wherein said biological material which contains a non-aqueous solvent is glassy or vitrified.
66. The composition of claim 56 or 57, wherein the total protein concentration of said biological material which contains a non-aqueous solvent is at least about 0.5%.
67. The composition of claim 56 or 57, wherein the total protein concentration of said biological material which contains a non-aqueous solvent is at least about 1%.
68. The composition of claim 56 or 57, wherein the total protein concentration of said biological material which contains a non-aqueous solvent is at least about 5%.
69. The composition of claim 56 or 57, wherein the total protein concentration of said biological material which contains a non-aqueous solvent is at least about 10%.
70. The composition of claim 56 or 57, wherein the total protein concentration of said biological material which contains a non-aqueous solvent is at least about 15%.
71. The composition of claim 56 or 57, wherein the total protein concentration of said biological material which contains a non-aqueous solvent is at least about 20%.
72. The composition of claim 56 or 57, wherein the total protein concentration of said biological material which contains a non-aqueous solvent is at least about 25%.
73. The composition of claim 56 or 57, wherein the total protein concentration of said biological material which contains a non-aqueous solvent is at least about 50%.
74. The method according to claim 1, 2, 3, 4, 5 or 6, wherein said non-aqueous solvent is selected from the group consisting of glycerol, DMSO, ethanol, acetone and PPG.
75. The method according to claim 74, wherein said PPG is PPG 400, PPG 1200 or PPG 2000.
76. The method according to claim 3, 5 or 6, wherein said residual solvent content is about 0%.
77. The method according to claim 3, 5 or 6, wherein said residual solvent content is about 1%.
78. The method according to claim 3, 5 or 6, wherein said residual solvent content is about 2.4%.
79. The method according to claim 3, 5 or 6, wherein said residual solvent content is about 4.8%.
80. The method according to claim 3, 5 or 6, wherein said residual solvent content is about 7%.
81. The method according to claim 3, 5 or 6, wherein said residual solvent content is about 9%.
82. The method according to claim 3, 5 or 6, wherein said residual solvent content is Oabout 10%.
83. The method according to clakn 3, 5 or 6, wherein said residual solvent content is about 20%.
84. The method according to claim 3, 5 or 6, wherein said residual solvent content is about 33%.
85. The method according to claim 3, 5 or 6, wherein said residual solvent content is less than about 33%.
86. The composition of claim 56, wherein said at least one stabiUzer is selected from the group consisting of: ascorbic acid or a salt or ester thereof; glutathione; 6-hydroxy- 2,5,7,8-tetramethylchroman-2-carboxyUc acid; uric acid or a salt or ester thereof; methionine; histidine; N-acetyl cysteine; α-Upoic acid; sodium formaldehyde sulfoxylate; galUc acid or a derivative thereof; n-propyl gaUate, coumaric acid, and mixtures of two or more thereof.
87. The composition of claim 86, wherein said mixtures of two or more stabiUzers are selected from the group consisting of: mixtures of ascorbic acid, or a salt or ester thereof, and uric acid, or a salt or ester thereof; mixtures of ascorbic acid, or a salt or ester thereof, and 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxyUc acid; mixtures of ascorbic acid, or a salt or ester thereof, uric acid, or a salt or ester thereof, and 6-hydroxy- 2,5,7,8-tetramethylchroman-2-carboxyUc acid; mixtures of uric acid, or a salt or ester thereof; α-Upoic acid; sodium formaldehyde sulfoxylate; galUc acid or a derivative thereof; n-propyl gaUate, coumaric acid and 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxyUc acid; and mixtures of ethanol and acetone.
88. A method for prophylaxis or treatment of an infection or disease in a mammal comprising administering to a mammal in need thereof an effective amount of a biological material made according to a mediod of one of claims 1-6.
89. The method according to claim 1, 2, 3, 4, 5 or 6, wherein said biological material is selected from the group consisting of urokinase, immunoglobuUn, thrombin, trypsin, albumin, purified protein factor and tissue.
90. The method according to claim 89, wherein said tissue is selected from the group consisting of heart valves and demineraUzed bone matrix.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/960,703 | 2001-09-24 | ||
US09/960,703 US20030095890A1 (en) | 2001-09-24 | 2001-09-24 | Methods for sterilizing biological materials containing non-aqueous solvents |
PCT/US2002/028134 WO2003026703A1 (en) | 2001-09-24 | 2002-09-24 | Methods of sterilizing biological materials containing non-aqueous solvents |
Publications (2)
Publication Number | Publication Date |
---|---|
AU2002326816A1 true AU2002326816A1 (en) | 2003-06-26 |
AU2002326816B2 AU2002326816B2 (en) | 2008-02-21 |
Family
ID=25503506
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2002326816A Ceased AU2002326816B2 (en) | 2001-09-24 | 2002-09-24 | Methods of sterilizing biological materials containing non-aqueous solvents |
Country Status (13)
Country | Link |
---|---|
US (2) | US20030095890A1 (en) |
EP (1) | EP1438077A4 (en) |
JP (1) | JP4213587B2 (en) |
KR (1) | KR100909068B1 (en) |
CN (1) | CN1585651A (en) |
AU (1) | AU2002326816B2 (en) |
CA (1) | CA2460644A1 (en) |
EA (1) | EA200400473A1 (en) |
IL (1) | IL160840A0 (en) |
MX (1) | MXPA04002720A (en) |
PL (1) | PL368308A1 (en) |
WO (1) | WO2003026703A1 (en) |
ZA (1) | ZA200401975B (en) |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030031584A1 (en) * | 2001-08-10 | 2003-02-13 | Wilson Burgess | Methods for sterilizing biological materials using dipeptide stabilizers |
US7252799B2 (en) * | 2001-08-31 | 2007-08-07 | Clearant, Inc. | Methods for sterilizing preparations containing albumin |
US20110091353A1 (en) * | 2001-09-24 | 2011-04-21 | Wilson Burgess | Methods for Sterilizing Tissue |
US20030185702A1 (en) * | 2002-02-01 | 2003-10-02 | Wilson Burgess | Methods for sterilizing tissue |
US20030180181A1 (en) * | 2002-02-01 | 2003-09-25 | Teri Greib | Methods for sterilizing tissue |
FR2870458B1 (en) * | 2004-05-24 | 2008-10-03 | Centre Nat Rech Scient Cnrse | PRODUCTS AND METHOD FOR DECONTAMINATION OF PRIONS |
JP5096148B2 (en) * | 2004-06-07 | 2012-12-12 | コア・ダイナミクス・リミテッド | Method for disinfecting biological samples |
JP2006289071A (en) * | 2005-03-18 | 2006-10-26 | Toray Ind Inc | Sterilization method for compound |
US20060270571A1 (en) * | 2005-05-26 | 2006-11-30 | Burke Peter A | Deactivation of mineral encapsulated nanobacteria |
US20070134814A1 (en) * | 2005-12-09 | 2007-06-14 | Kajander E O | Methods and compositions for the detection of calcifying nano-particles, identification and quantification of associated proteins thereon, and correlation to disease |
US8580192B2 (en) | 2006-10-31 | 2013-11-12 | Ethicon, Inc. | Sterilization of polymeric materials |
US20090081785A1 (en) | 2007-09-24 | 2009-03-26 | Hememics Biotechnologies, Inc. | Desiccated Biologics And Methods Of Preparing The Same |
CN101366954B (en) * | 2008-09-19 | 2013-03-20 | 乐普(北京)医疗器械股份有限公司 | Biocidal treatment method for biological coating medical device |
US20100086576A1 (en) * | 2008-10-06 | 2010-04-08 | Myntti Matthew F | Antimicrobial composition and methods of making and using same |
CN102781226B (en) * | 2009-12-07 | 2015-05-20 | 朱伟星 | Standardization of tissue specimen preservation by ultrasound and temperature control |
US9943075B2 (en) | 2010-02-17 | 2018-04-17 | Hememics Biotechnologies, Inc. | Preservation solutions for biologics and methods related thereto |
US8966868B2 (en) * | 2011-05-09 | 2015-03-03 | Abbott Cardiovascular Systems Inc. | Methods of stabilizing molecular weight of polymer stents after sterilization |
WO2012154953A2 (en) | 2011-05-10 | 2012-11-15 | Microbial Defense Systems, Llc | Antimicrobial solid and methods of making and using same |
DE102011051692A1 (en) * | 2011-07-08 | 2013-01-10 | Peter Brehm Chirurgie-Mechanik e.K. | Process for the sterilization of functionalized, coated surfaces containing nucleotides and / or nucleotide derivatives |
WO2013098294A1 (en) * | 2011-12-27 | 2013-07-04 | L'université Catholique De Louvain | Method for measuring nitric oxide in blood |
CN104487099B (en) * | 2012-05-09 | 2017-06-20 | 艾科罗姆共同股份公司 | The production of aseptic active pharmaceutical ingredient |
CN103446601A (en) * | 2012-05-31 | 2013-12-18 | 通用电气公司 | Sterilization method for glucose oxidase-containing membrane and corresponding biosensor |
CN103446600B (en) | 2012-05-31 | 2020-05-22 | 通用电气公司 | Method for sterilizing a membrane containing glucose oxidase and corresponding biosensor |
RU2662929C2 (en) | 2013-03-08 | 2018-07-31 | Джензим Корпорейшн | Integrated continuous manufacturing of therapeutic protein drug substances |
TWI709569B (en) | 2014-01-17 | 2020-11-11 | 美商健臻公司 | Sterile chromatography resin and use thereof in manufacturing processes |
TWI671312B (en) | 2014-01-17 | 2019-09-11 | 美商健臻公司 | Sterile chromatography and manufacturing processes |
CN105916561B (en) * | 2014-01-17 | 2020-07-14 | 瑞普利根公司 | Sterilization chromatographic column |
PT3148699T (en) * | 2014-05-23 | 2018-10-29 | 4I S R L | Closed circuit sterile device and method of collection, transport and processing in total sterile chain |
CN104587505B (en) * | 2015-02-02 | 2017-05-31 | 江苏省农业科学院 | Method to matrix Quick disinfection in situ |
GB201505347D0 (en) * | 2015-03-27 | 2015-05-13 | Salupont Consulting Ltd | Sterilisation of s-nitrosothiols |
KR102675620B1 (en) * | 2016-03-21 | 2024-06-14 | 시므라이즈 아게 | drugs |
WO2020046602A1 (en) | 2018-08-31 | 2020-03-05 | Genzyme Corporation | Sterile chromatography resin and use thereof in manufacturing processes |
US20220323621A1 (en) * | 2021-04-09 | 2022-10-13 | Hyalo Technologies, LLC | Method of sterilization of biologics |
WO2023200689A1 (en) * | 2022-04-11 | 2023-10-19 | Epirus, Inc. | Systems and methods for neutralizing matter |
Family Cites Families (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US23195A (en) * | 1859-03-08 | John l | ||
USRE23195E (en) | 1950-02-07 | Preserving | ||
DE280466C (en) | ||||
US2832689A (en) * | 1952-01-24 | 1958-04-29 | Research Corp | Preservation of organic materials by irradiation |
US2920969A (en) * | 1954-08-25 | 1960-01-12 | Gen Electric | Method and means for irradiating foods |
US2962380A (en) * | 1956-10-08 | 1960-11-29 | Research Corp | Radiation sterilization of fluid food products |
US3620944A (en) * | 1967-09-09 | 1971-11-16 | Osaka Prefecture | Process of purifying water by irradiating it |
US3743480A (en) * | 1971-04-09 | 1973-07-03 | Allied Chem | Sterilization of biological fluids |
US3779706A (en) * | 1971-10-04 | 1973-12-18 | Energy Sciences Inc | Process for bulk sterilization, minimizing chemical and physical damage |
US3962038A (en) * | 1972-03-09 | 1976-06-08 | Director Of National Food Research Institute | Preparation of water-insoluble enzymes |
US4136094A (en) * | 1977-08-31 | 1979-01-23 | The Regents Of The University Of Minnesota | Preparation of intravenous human and animal gamma globulins and isolation of albumin |
US4282863A (en) * | 1978-07-20 | 1981-08-11 | Beigler Myron A | Methods of preparing and using intravenous nutrient compositions |
US4336247A (en) * | 1978-09-05 | 1982-06-22 | Eriksen Arthur E | Body system nutrient material |
IL58541A (en) * | 1978-11-01 | 1982-02-28 | Nordisk Insulinlab | Antihemophilic factor preparation from human blood plasma and a process for producing it |
US4330626A (en) * | 1980-03-19 | 1982-05-18 | The Enzyme Center, Inc. | Method of preparing high-activity, low-bacteria, urease enzyme |
DE3033932C2 (en) * | 1980-09-10 | 1984-05-24 | Biotest-Serum-Institut Gmbh, 6000 Frankfurt | Process for the cold sterilization of preparations containing blood coagulation factor VIII |
JPS57103649A (en) * | 1980-12-18 | 1982-06-28 | Asahi Chemical Ind | Sterilized gamma-globulin fixing column |
US4472840A (en) * | 1981-09-21 | 1984-09-25 | Jefferies Steven R | Method of inducing osseous formation by implanting bone graft material |
US4963356A (en) * | 1982-10-13 | 1990-10-16 | Minnesota Mining And Manufacturing Company | Stable antigenic extracts methods |
US4727027A (en) * | 1983-05-02 | 1988-02-23 | Diamond Scientific Co. | Photochemical decontamination treatment of whole blood or blood components |
US4620908A (en) * | 1983-10-03 | 1986-11-04 | Biocell Laboratories, Inc. | Method for destroying microbial contamination in protein materials |
JPH0687062B2 (en) * | 1985-05-10 | 1994-11-02 | 株式会社京都医科学研究所 | How to prevent glycolysis in blood |
SU1321420A1 (en) | 1985-06-19 | 1987-07-07 | Московский научно-исследовательский институт микрохирургии глаза | Method of collagen coating for ophthalmological use |
US4784850A (en) * | 1985-09-04 | 1988-11-15 | Mutzarei Maabarot | Process for preparing antibodies against E. Coli K-99 antigen from bovine milk |
US5185371A (en) * | 1986-03-10 | 1993-02-09 | University Of Southern California | Method for disinfecting red blood cells |
US4894253A (en) * | 1986-08-12 | 1990-01-16 | University Of Cincinnati | Method for production of coated electrode |
US4798611A (en) * | 1986-10-14 | 1989-01-17 | Hancock Jaffe Laboratories | Enhancement of xenogeneic tissue |
JPH0611290B2 (en) * | 1986-11-05 | 1994-02-16 | 住友ベークライト株式会社 | Γ-ray sterilization method for polyvinyl alcohol gel |
US4865602A (en) * | 1986-11-06 | 1989-09-12 | Collagen Corporation | Gamma irradiation of collagen/mineral mixtures |
DE3640513A1 (en) | 1986-11-27 | 1988-06-09 | Biotest Pharma Gmbh | METHOD FOR THE PRODUCTION OF A VIRUS-SAFE, STORAGE-STABLE AND INTRAVENOES COMPATIBLE IMMUNGLOBULIN-G-PRAEPARATES |
US5000951A (en) * | 1987-03-09 | 1991-03-19 | Diamond Scientific Company | Multivalent canine distemper virus vaccine |
DE3730533A1 (en) * | 1987-09-11 | 1989-03-30 | Biotest Pharma Gmbh | METHOD FOR STERILIZING PLASMA OR PLASMA FACTIONS |
PT88591B (en) | 1987-09-28 | 1992-11-30 | Beecham Inc | A method for the preparation of a pharmaceutical composition substantially free of virus or bacteria |
ATE87214T1 (en) * | 1987-09-30 | 1993-04-15 | Mucos Emulsions Gmbh | USE OF CATABOLIC ENZYMES IN THE MANUFACTURE OF A MEDICATION FOR COMBATING ACQUIRED IMMUNE DEFICIENCY (AIDS) AND ITS PRE-STATES (LAS, ARC). |
US4994237A (en) * | 1987-10-02 | 1991-02-19 | The Beth Israel Hospital Association | Microwave preservation of bioprostheses |
US4887866A (en) * | 1987-11-12 | 1989-12-19 | Dexta Corporation | Adjustable armrest |
GB8807187D0 (en) | 1988-03-25 | 1988-04-27 | Harrison J F | Improvements in/relating to inactivation of infectious agents |
DE3817603A1 (en) | 1988-05-24 | 1989-11-30 | Michael Stieglitz | Extracorporeal hyperthermia device |
US4931361A (en) * | 1988-11-18 | 1990-06-05 | California Institute Of Technology | Cryoprotective reagents in freeze-drying membranes |
US5643464A (en) * | 1988-11-21 | 1997-07-01 | Collagen Corporation | Process for preparing a sterile, dry crosslinking agent |
US5044091B1 (en) * | 1989-04-18 | 1997-12-30 | Sankyo Co | Method of preparing a freeze-dried formulation of a drug |
US5283034A (en) * | 1989-06-29 | 1994-02-01 | Applied Immune Sciences, Inc. | Stabilization of sterilized surfaces for research and medical use |
US5226065A (en) * | 1989-10-13 | 1993-07-06 | Stericycle, Inc. | Device for disinfecting medical materials |
US5418130A (en) * | 1990-04-16 | 1995-05-23 | Cryopharm Corporation | Method of inactivation of viral and bacterial blood contaminants |
US6187572B1 (en) * | 1990-04-16 | 2001-02-13 | Baxter International Inc. | Method of inactivation of viral and bacterial blood contaminants |
JP3373201B2 (en) | 1990-04-16 | 2003-02-04 | バクスター インターナショナル インコーポレーテッド | Inactivation method of blood contaminants of viruses and bacteria |
DE4012398A1 (en) * | 1990-04-19 | 1991-10-24 | Waelischmiller Hans Dipl Ing F | RADIATION DEVICE |
US5658722A (en) * | 1990-05-15 | 1997-08-19 | New York Blood Center, Inc. | Process for the sterilization of biological compositions using UVA1 irradiation |
US5981163A (en) * | 1990-05-15 | 1999-11-09 | New York Blood Center, Inc. | Process for the sterilization of biological compositions using irradiation and quenchers of type I and type II photodynamic reactions |
US5712086A (en) * | 1990-05-15 | 1998-01-27 | New York Blood Center, Inc. | Process for transfusing cell containing fractions sterilized with radiation and a quencher of type I and type II photodynamic reactions |
US5360605A (en) * | 1990-09-04 | 1994-11-01 | Edward Shanbrom | Preservation of blood, tissues and biological fluids |
US5336616A (en) * | 1990-09-12 | 1994-08-09 | Lifecell Corporation | Method for processing and preserving collagen-based tissues for transplantation |
JPH0898688A (en) | 1991-02-25 | 1996-04-16 | Takeda Chem Ind Ltd | Stabilization of bromelain solution |
US5618662A (en) * | 1992-03-02 | 1997-04-08 | Cerus Corporation | Intravenous administration of psoralen |
US5641518A (en) | 1992-11-13 | 1997-06-24 | Purdue Research Foundation | Method of repairing bone tissue |
US5362442A (en) * | 1993-07-22 | 1994-11-08 | 2920913 Canada Inc. | Method for sterilizing products with gamma radiation |
US5460962A (en) * | 1994-01-04 | 1995-10-24 | Organogenesis Inc. | Peracetic acid sterilization of collagen or collagenous tissue |
US6203755B1 (en) * | 1994-03-04 | 2001-03-20 | St. Jude Medical, Inc. | Electron beam sterilization of biological tissues |
EP0804734B1 (en) * | 1994-05-13 | 2005-05-04 | Miltenyi Biotec GmbH | Sterile and pyrogen-free columns coupled to protein for binding and removal of substances from blood |
SE9401986D0 (en) * | 1994-06-08 | 1994-06-08 | Pharmacia Ab | New process for sterilization and articles sterilized thereby |
US5510122A (en) * | 1994-09-28 | 1996-04-23 | The Research Foundation Of State University Of New York | Preparation and use of whole saliva |
US5603894A (en) * | 1994-10-31 | 1997-02-18 | Abbott Laboratories | Method of sterilizing a pharmaceutical composition |
US5548066A (en) * | 1994-12-02 | 1996-08-20 | Central Biomedia, Inc. | Failure of passive transfer immune serum and method of making same |
US6485723B1 (en) * | 1995-02-10 | 2002-11-26 | Purdue Research Foundation | Enhanced submucosal tissue graft constructs |
US5637451A (en) * | 1995-03-29 | 1997-06-10 | New York Blood Center, Inc. | Photodynamic treatment of red blood cells with phthalocyanines and red light at higher light fluence rates is protective of red blood cells |
EP0820301B1 (en) | 1995-04-07 | 2002-07-24 | Purdue Research Foundation | Tissue graft for urinary bladder reconstruction |
US5837313A (en) * | 1995-04-19 | 1998-11-17 | Schneider (Usa) Inc | Drug release stent coating process |
JP3799626B2 (en) * | 1995-04-25 | 2006-07-19 | 有限会社ナイセム | Cardiovascular repair material and method for producing the same |
US6235508B1 (en) * | 1995-06-07 | 2001-05-22 | Baxter International Inc. | Method of inactivation of viral and bacterial blood contaminants |
US5674292A (en) * | 1995-06-07 | 1997-10-07 | Stryker Corporation | Terminally sterilized osteogenic devices and preparation thereof |
US6049025A (en) * | 1995-09-15 | 2000-04-11 | Stone; Kevin R. | Articular cartilage xenografts |
US5691152A (en) * | 1995-11-09 | 1997-11-25 | E. R. Squibb & Sons, Inc. | Stable avidin composition |
US5730933A (en) * | 1996-04-16 | 1998-03-24 | Depuy Orthopaedics, Inc. | Radiation sterilization of biologically active compounds |
US6060233A (en) * | 1996-06-14 | 2000-05-09 | Biostore New Zealand, Ltd | Methods for the lyophilization of platelets, platelet membranes or erythrocytes |
US5945128A (en) * | 1996-09-04 | 1999-08-31 | Romano Deghenghi | Process to manufacture implants containing bioactive peptides |
US5985565A (en) * | 1996-10-09 | 1999-11-16 | Temple University-Of The Commonwealth System Of Higher Education | Chronic fatigue syndrome diagnosis |
US6190855B1 (en) * | 1996-10-28 | 2001-02-20 | Baxter International Inc. | Systems and methods for removing viral agents from blood |
US6696270B2 (en) * | 1996-12-10 | 2004-02-24 | Purdue Research Foundation | Gastric submucosal tissue as a novel diagnostic tool |
CA2274902C (en) * | 1996-12-10 | 2011-02-01 | Purdue Research Foundation | Submucosa extracts |
WO1998025546A1 (en) * | 1996-12-10 | 1998-06-18 | Cook Biotech, Inc. | Tubular grafts from purified submucosa |
US5856172A (en) * | 1997-01-03 | 1999-01-05 | Quality Technologies, Llc | Preservation of microorganisms in a vial with a cap comprising an immobilized desiccant |
EP0986405B1 (en) * | 1997-02-10 | 2003-05-02 | Biomedical Design, Inc. | Method of sterilization |
US6383810B2 (en) * | 1997-02-14 | 2002-05-07 | Invitrogen Corporation | Dry powder cells and cell culture reagents and methods of production thereof |
CA2217437A1 (en) * | 1997-04-25 | 1998-10-25 | Mohamed Ressouany | Biodegradable caseinate films and process for their production by irradiation |
US5958669A (en) * | 1997-05-02 | 1999-09-28 | St. Jude Medical, Inc. | Apparatus and method for crosslinking to fix tissue or crosslink molecules to tissue |
US6197207B1 (en) * | 1997-05-21 | 2001-03-06 | Baxter International Inc. | Method of reducing the possibility of transmission of spongiform encephalopathy diseases by blood products |
US6010719A (en) * | 1997-09-16 | 2000-01-04 | Universiteit Gent | Freeze-dried disintegrating tablets |
DE69835367T2 (en) * | 1997-10-29 | 2007-08-02 | Genzyme Corp., Framingham | GENE THERAPY FOR GAUCHER DISEASE |
DE19751284A1 (en) | 1997-11-19 | 1999-05-27 | Leo Prof Dr Gotzen | Fixation element |
US6000044A (en) | 1997-11-26 | 1999-12-07 | Digital Equipment Corporation | Apparatus for randomly sampling instructions in a processor pipeline |
US6383732B1 (en) * | 1999-02-11 | 2002-05-07 | Crosscart, Inc. | Method of preparing xenograft heart valves |
US6157028A (en) * | 1998-05-28 | 2000-12-05 | Jrh Biosciences, Inc. | Method for dose mapping to ensure proper amounts of gamma irradiation |
US20030068815A1 (en) * | 1999-02-11 | 2003-04-10 | Stone Kevin R. | Sterilized xenograft tissue |
US6214221B1 (en) * | 1999-02-22 | 2001-04-10 | Henry B. Kopf | Method and apparatus for purification of biological substances |
US6258821B1 (en) * | 1999-04-26 | 2001-07-10 | Medimmune Oncology, Inc. | Compositions comprising trimetrexate and methods of their synthesis and use |
US6312931B1 (en) * | 2000-02-11 | 2001-11-06 | Purepulse Technologies, Inc. | Protecting molecules in biologically derived compositions while treating with high intensity broad-spectrum pulsed light |
WO2001070279A1 (en) * | 2000-03-23 | 2001-09-27 | Clearant, Inc. | Methods for sterilizing biological materials |
EP1392181B1 (en) * | 2001-06-08 | 2014-10-15 | Morris Innovative Research, Inc. | Method and apparatus for sealing access |
US7252799B2 (en) * | 2001-08-31 | 2007-08-07 | Clearant, Inc. | Methods for sterilizing preparations containing albumin |
-
2001
- 2001-09-24 US US09/960,703 patent/US20030095890A1/en not_active Abandoned
-
2002
- 2002-09-24 JP JP2003530337A patent/JP4213587B2/en not_active Expired - Fee Related
- 2002-09-24 WO PCT/US2002/028134 patent/WO2003026703A1/en active Application Filing
- 2002-09-24 IL IL16084002A patent/IL160840A0/en unknown
- 2002-09-24 CA CA002460644A patent/CA2460644A1/en not_active Abandoned
- 2002-09-24 KR KR1020047004290A patent/KR100909068B1/en not_active IP Right Cessation
- 2002-09-24 EA EA200400473A patent/EA200400473A1/en unknown
- 2002-09-24 MX MXPA04002720A patent/MXPA04002720A/en active IP Right Grant
- 2002-09-24 CN CNA028208617A patent/CN1585651A/en active Pending
- 2002-09-24 EP EP02761560A patent/EP1438077A4/en not_active Withdrawn
- 2002-09-24 PL PL02368308A patent/PL368308A1/en unknown
- 2002-09-24 AU AU2002326816A patent/AU2002326816B2/en not_active Ceased
-
2004
- 2004-03-11 ZA ZA200401975A patent/ZA200401975B/en unknown
-
2008
- 2008-11-03 US US12/264,106 patent/US7848487B2/en not_active Expired - Fee Related
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2002326816B2 (en) | Methods of sterilizing biological materials containing non-aqueous solvents | |
AU2002326816A1 (en) | Methods of sterilizing biological materials containing non-aqueous solvents | |
US6682695B2 (en) | Methods for sterilizing biological materials by multiple rates | |
US6946098B2 (en) | Methods for sterilizing biological materials | |
US7252799B2 (en) | Methods for sterilizing preparations containing albumin | |
US6908591B2 (en) | Methods for sterilizing biological materials by irradiation over a temperature gradient | |
US20030124023A1 (en) | Method of sterilizing heart valves | |
US20030064000A1 (en) | Methods of sterilizing biological mixtures using stabilizer mixtures | |
US20030012687A1 (en) | Methods of sterilizing biological materials | |
US20080080998A1 (en) | Methods for sterilizing tissue | |
US20030059338A1 (en) | Methods for sterilizing biological materials using flavonoid/flavonol stabilizers | |
AU2001259031A1 (en) | Methods for sterilizing biological materials | |
JP2003527210A (en) | Methods for sterilizing biomaterials | |
US20060182652A1 (en) | Methods for sterilizing biological materials using dipeptide stabilizers | |
US20030180181A1 (en) | Methods for sterilizing tissue | |
US20090214382A1 (en) | Methods of sterilizing biological mixtures using alpha-keto acids | |
WO2003086480A1 (en) | Methods for sterilizing biological materials | |
US20110091353A1 (en) | Methods for Sterilizing Tissue | |
US20060140815A1 (en) | Methods for sterilizing biological materials |