AU2002325370A1 - Passive moving object detection system and method using signals transmitted by a mobile telephone station - Google Patents
Passive moving object detection system and method using signals transmitted by a mobile telephone stationInfo
- Publication number
- AU2002325370A1 AU2002325370A1 AU2002325370A AU2002325370A AU2002325370A1 AU 2002325370 A1 AU2002325370 A1 AU 2002325370A1 AU 2002325370 A AU2002325370 A AU 2002325370A AU 2002325370 A AU2002325370 A AU 2002325370A AU 2002325370 A1 AU2002325370 A1 AU 2002325370A1
- Authority
- AU
- Australia
- Prior art keywords
- signal
- antenna
- base station
- mobile telephone
- speed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Description
PASSIVE MOVING OBJECT DETECTION SYSTEM AND METHOD USING SIGNALS TRANSMITTED BY A MOBILE TELEPHONE STATION
This invention relates to a system and method for object detection, in particular for detecting moving objects. 5 There are many situations in which it is desirable to detect moving objects and to provide position and/or speed information about those objects, for example, to detect aircraft, monitor traffic flow or to detect vehicles exceeding the speed limit. Active radar systems are often used for these purposes, however this requires RF transmissions. Use of RF transmissions has some disadvantages. The transmissions can be detected by
10 simple receivers, which gives away the presence of the sensor (e.g. car radar detectors used by speeding motorists). Also, there are many legal restrictions on the transmission of radio frequencies, which may differ from one country to another, so a system suitable for use in one country may be illegal in another.
Passive systems using television transmitters have been proposed, however these
15 have certain disadvantages. Although they use high power transmitters, the objects being detected are often far away and the received signal power may be weak.
In accordance with the present invention, a passive object detection system comprises first and second antennas; and processing means; wherein the first antenna is adapted to receive a signal transmitted by a mobile telephone base station; wherein the
20 second antenna is adapted to receive the signal transmitted by a mobile telephone base station after it has been reflected off an object and wherein the processing means compares the signal received from the mobile telephone base station with the signal reflected from the object and derives speed or position information relating to the object therefrom.
25 In accordance with a second aspect of the present invention a passive method of detecting an object comprises receiving a first signal transmitted by a mobile phone base station, receiving a second signal comprising the first signal from the mobile phone base station after it has been reflected off an object; and comparing the first and second signal to derive data relating to position or speed of movement of the object.
30 The present invention covers a passive electronic system which makes use of the radio emissions from mobile phone base stations and in particular the reflection of those radio waves from objects, such as cars, people and animals, to detect the location and, if moving, the velocities of those objects. No transmissions from the system are required
and the detection system can be carried from place to place and used in conjunction with an existing mobile phone base station nearby. It is particularly beneficial to police forces enforcing speed limits, that the vehicle cannot detect the existence of the sensor. The proliferation of mobile phone bases stations in towns and on main roads gives good coverage, in the areas required.
An example of a passive object detection system and method according to the present invention will now be described with reference to the accompanying drawings in which: -
Figure 1 is a plan view of a prior art system; Figure 2 is a schematic diagram of one example of a passive object detection system according to the invention;
Figure 3 is a plan view illustrating operation of the system of Fig. 2 Figure 4 illustrates a sensor of the system of Fig. 2 in more detail; Figure 5 illustrates alternative arrangements for the sensor of Fig. 2; and Figure 6 is a flow diagram illustrating an algorithm for use in the system of
Fig. 2.
Fig. 1 shows in plan view how a prior art system for detecting objects, in this case using a television transmitter, operates. A tv transmitter 20 emits a signal which travels a distance R\ and is reflected off an object 21. The reflected signal travels a distance R2 and is received at a receiver 22. The power PR of the signal received at the receiver 22 can be calculated from the equation:
(4π)3 R!2 R2 2
where PT is is the transmitted power
G] is the gain of the first antenna G2 is the gain of the second antenna σ is the radar cross section of the object of interest λ is the wavelength of the transmitted signal
R] is the distance between the transmitter and the object R2 is the distance between the receiver and the object
In the prior art system using a tv transmitter, when the object is moving away from the transmitter the distances Rj and R increase at a similar rate, so one can assume that the received power PR is proportional to 1/R , i.e. as the object moves away there is a fast and significant reduction in received power. Figure 2 illustrates how a passive object detection system 1 according to the present invention is used in conjunction with radio waves transmitted by a mobile phone base station 2 and reflected off an object 3. In this example, the object in question is a vehicle, but other objects could be sensed equally well. The object may be moving or stationary. The system comprises a first antenna 4 which points directly at the base station 2 and detects radio waves 5 which have travelled along the shortest path. A second antenna 6 points in the direction of the object of interest and detects radio waves 7 reflected off that object 3. The antennas may be of any suitable type, such as Yagi or phased arrays. A processor 8 analyses the signals received by the first and second antennas 4, 6 and compares the phase and frequencies of these two received signals. This is illustrated in more detail in Fig. 4. The processor also measures the time delay between the two received signals. The signals may then be displayed or stored.
A display device 9 takes the output of the processor and displays the information derived about frequency difference and time delay between the two signals. The display may convert the information into distance off and speed of the object, if it is moving. A recording mechanism may also be provided. Such a system would be particularly useful in monitoring traffic flow.
The advantages of the present invention can be seen from Fig. 3 which is a plan view of the system in operation. As in the prior art, there is a receiver 22, however the present invention does not rely on a single transmitter. Instead, it takes advantage of the proliferation of mobile phone transmitter aerials 23. This has the effect that instead of the object moving out of range of the transmitter and so increasing the distance Ri, when the object moves out of range of one transmitter, it comes into range for another, so that the distance
remains subtantially constant whilst R2 changes. From this, PR can be taken to be proportional to 1 R2, thereby significantly increasing the received power. By using transmitters further away from the receiver, the range of the device is increased over prior art systems because the target is always close to a transmitter, despite mobile phone transmitters operating at higher frequency and lower power than tv transmitters.
Fig. 4 illustrates the signal processing in more detail. The signal received by each antenna 4, 6 is amplified in respective pre-amplifiers 10, 11, then converted to a digital signal by analogue to digital converters (ADC's) 12, 13. In practice the received signals would probably be mixed down to a lower frequency before being sampled by the ADC, for example as shown in Fig. 3.
The output signals from the ADC's 12, 13 are fed into the processor 8, which may be a digital signal processor or some hardware implementation of the algorithm such as an FPGA, EPLD, ASIC or similar. The processor is set up to run an algorithm as illustrated in the flow diagram of Fig. 6. This algorithm has two separate functions. Firstly, the algorithm will determine the delay difference between the two signals, and secondly it will determine any Doppler shift due to motion of the target.
To determine the time delay the algorithm performs a cross correlation of the signal from the first antenna with the signal from the second antenna. The Doppler effect is then used to determine the speed of the target. To do this the results from successive cross correlations are stored, and the change in relative phase between the signal from antenna 1 and antenna 2 at the delay (or delays) of interest is calculated by means of a DFT (Discrete Fourier Transform) or FFT (Fast Fourier Transform), or similar algorithm. The "delays of interest" may include all possible delays calculated by the cross correlation.
Claims (6)
1. A passive object detection system, the system comprising first and second antennas; and processing means; wherein the first antenna is adapted to receive a signal transmitted by a mobile telephone base station; wherein the second antenna is adapted to receive the signal transmitted by a mobile telephone base station after it has been reflected off an object and wherein the processing means compares the signal received from the mobile telephone base station with the signal reflected from the object and derives speed or position information relating to the object therefrom.
2. A system according to claim 1, wherein the object is a moving object.
3. A system according to claim 1 or claim 2, wherein an accurate speed of the object derived.
4. A passive method of detecting an object, the method comprising receiving a first signal transmitted by a mobile phone base station, receiving a second signal comprising the first signal from the mobile phone base station after it has been reflected off an object; and comparing the first and second signals to derive data relating to position or speed of movement of the object.
5. A method according to claim 4, the method further comprising determining a time delay between receiving the first and second signals, by performing a cross correlation of the signal from the first antenna with the signal from the second antenna; . determine the speed of the target using the Dopplar effect; storing results from successive cross correlations, calculating the change in relative phase between the signal from the first antenna and the second antenna at the delay of interest .
6. A method according to claim 5, wherein the change in relative phase is calculated by means of a Discrete Fourier Transform (DFT); Fast Fourier Transform(FFT); or similar algorithm.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0118707A GB0118707D0 (en) | 2001-08-01 | 2001-08-01 | Object detection system and method |
GB0118707.9 | 2001-08-01 | ||
GB0202412A GB2378336B (en) | 2001-08-01 | 2002-02-04 | Object detection system and method |
GB0202412.3 | 2002-02-04 | ||
PCT/EP2002/008334 WO2003012473A1 (en) | 2001-08-01 | 2002-07-25 | Passive moving object detection system and method using signals transmitted by a mobile telephone station |
Publications (2)
Publication Number | Publication Date |
---|---|
AU2002325370A1 true AU2002325370A1 (en) | 2003-05-29 |
AU2002325370B2 AU2002325370B2 (en) | 2007-06-07 |
Family
ID=26246384
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AU2002325370A Ceased AU2002325370B2 (en) | 2001-08-01 | 2002-07-25 | Passive moving object detection system and method using signals transmitted by a mobile telephone station |
Country Status (9)
Country | Link |
---|---|
US (1) | US6930638B2 (en) |
EP (1) | EP1412772A1 (en) |
JP (1) | JP2004537730A (en) |
KR (1) | KR100744624B1 (en) |
CN (1) | CN100380136C (en) |
AU (1) | AU2002325370B2 (en) |
BR (1) | BR0211605A (en) |
CA (1) | CA2451916C (en) |
WO (1) | WO2003012473A1 (en) |
Families Citing this family (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6885340B2 (en) * | 2000-02-29 | 2005-04-26 | Rannoch Corporation | Correlation of flight track data with other data sources |
US7739167B2 (en) * | 1999-03-05 | 2010-06-15 | Era Systems Corporation | Automated management of airport revenues |
US7908077B2 (en) | 2003-06-10 | 2011-03-15 | Itt Manufacturing Enterprises, Inc. | Land use compatibility planning software |
US7423590B2 (en) | 1999-03-05 | 2008-09-09 | Era Systems Corporation | Method and apparatus for improving ADS-B security |
US7375683B2 (en) * | 1999-03-05 | 2008-05-20 | Era Systems Corporation | Use of geo-stationary satellites to augment wide— area multilateration synchronization |
US7477193B2 (en) * | 1999-03-05 | 2009-01-13 | Era Systems Corporation | Method and system for elliptical-based surveillance |
US7782256B2 (en) | 1999-03-05 | 2010-08-24 | Era Systems Corporation | Enhanced passive coherent location techniques to track and identify UAVs, UCAVs, MAVs, and other objects |
US7889133B2 (en) | 1999-03-05 | 2011-02-15 | Itt Manufacturing Enterprises, Inc. | Multilateration enhancements for noise and operations management |
US7437250B2 (en) * | 1999-03-05 | 2008-10-14 | Era Systems Corporation | Airport pavement management system |
US7495612B2 (en) | 1999-03-05 | 2009-02-24 | Era Systems Corporation | Method and apparatus to improve ADS-B security |
US8446321B2 (en) | 1999-03-05 | 2013-05-21 | Omnipol A.S. | Deployable intelligence and tracking system for homeland security and search and rescue |
US7777675B2 (en) | 1999-03-05 | 2010-08-17 | Era Systems Corporation | Deployable passive broadband aircraft tracking |
US7667647B2 (en) | 1999-03-05 | 2010-02-23 | Era Systems Corporation | Extension of aircraft tracking and positive identification from movement areas into non-movement areas |
US7429950B2 (en) * | 1999-03-05 | 2008-09-30 | Era Systems Corporation | Method and apparatus to extend ADS performance metrics |
US7570214B2 (en) | 1999-03-05 | 2009-08-04 | Era Systems, Inc. | Method and apparatus for ADS-B validation, active and passive multilateration, and elliptical surviellance |
US8203486B1 (en) | 1999-03-05 | 2012-06-19 | Omnipol A.S. | Transmitter independent techniques to extend the performance of passive coherent location |
US8190162B2 (en) * | 2003-09-15 | 2012-05-29 | Broadcom Corporation | Radar detection circuit for a WLAN transceiver |
US7701382B2 (en) * | 2003-09-15 | 2010-04-20 | Broadcom Corporation | Radar detection circuit for a WLAN transceiver |
GB2416211B (en) | 2004-07-16 | 2006-09-20 | Roke Manor Research | Autonomous reconnaissance sonde,and method for deployment thereof |
FR2882442B1 (en) * | 2005-02-18 | 2007-04-20 | Thales Sa | METHOD FOR THE DETECTION IN BI-STATIC MODE BY PASSIVE EXPLOITATION OF NON-COOPERATIVE RADIO EMISSIONS |
US7965227B2 (en) | 2006-05-08 | 2011-06-21 | Era Systems, Inc. | Aircraft tracking using low cost tagging as a discriminator |
US8315233B2 (en) | 2006-07-07 | 2012-11-20 | Skyhook Wireless, Inc. | System and method of gathering WLAN packet samples to improve position estimates of WLAN positioning device |
US7890060B2 (en) * | 2006-10-11 | 2011-02-15 | Nokia Corporation | Enhanced location based service for positioning intersecting objects in the measured radio coverage |
TWI475847B (en) * | 2008-04-16 | 2015-03-01 | Koninkl Philips Electronics Nv | Passive radar for presence and motion detection |
US8417441B2 (en) * | 2008-07-18 | 2013-04-09 | Sensys Networks, Inc. | Method and apparatus generating and/or using estimates of arterial vehicular movement |
US8442502B2 (en) * | 2010-03-02 | 2013-05-14 | Empire Technology Development, Llc | Tracking an object in augmented reality |
CN101866008B (en) * | 2010-06-08 | 2012-10-10 | 北京航空航天大学 | Correlator of reflection signal receiver under multi-satellite navigation |
US8610041B1 (en) * | 2011-05-23 | 2013-12-17 | Lockheed Martin Corporation | Missile tracking by GPS reflections |
CN103891369B (en) * | 2011-10-19 | 2019-03-29 | 瑞典爱立信有限公司 | Movement detector means |
CN104067141B (en) * | 2011-11-21 | 2016-08-24 | 大陆-特韦斯贸易合伙股份公司及两合公司 | For the object in road traffic is carried out, based on signal of communication, method and apparatus and the application of this device that position determines |
KR20140103983A (en) | 2011-11-21 | 2014-08-27 | 콘티넨탈 테베스 아게 운트 코. 오하게 | Method and device for the position determination of objects by means of communication signals, and use of the device |
US8510200B2 (en) | 2011-12-02 | 2013-08-13 | Spireon, Inc. | Geospatial data based assessment of driver behavior |
US10169822B2 (en) | 2011-12-02 | 2019-01-01 | Spireon, Inc. | Insurance rate optimization through driver behavior monitoring |
US9779379B2 (en) | 2012-11-05 | 2017-10-03 | Spireon, Inc. | Container verification through an electrical receptacle and plug associated with a container and a transport vehicle of an intermodal freight transport system |
WO2014134551A1 (en) | 2013-02-28 | 2014-09-04 | Naztec, Inc. | Wireless vehicle detector aggregator and interface to controller and associated methods |
US9779449B2 (en) | 2013-08-30 | 2017-10-03 | Spireon, Inc. | Veracity determination through comparison of a geospatial location of a vehicle with a provided data |
TWI470257B (en) * | 2013-10-07 | 2015-01-21 | Univ Nat Chiao Tung | Method and electronic device for angle estimation verification |
RU2563872C2 (en) * | 2013-11-19 | 2015-09-27 | Открытое Акционерное Общество "НПП" КАНТ" | Diversity radar with third-party illumination of gsm cellular communication networks |
US20150186991A1 (en) | 2013-12-31 | 2015-07-02 | David M. Meyer | Creditor alert when a vehicle enters an impound lot |
US9807569B2 (en) * | 2014-02-17 | 2017-10-31 | Ubiqomm, Inc | Location based services provided via unmanned aerial vehicles (UAVs) |
CN105491658A (en) * | 2014-09-18 | 2016-04-13 | 杭州华为数字技术有限公司 | Terminal device positioning method, device and system |
US9551788B2 (en) | 2015-03-24 | 2017-01-24 | Jim Epler | Fleet pan to provide measurement and location of a stored transport item while maximizing space in an interior cavity of a trailer |
RU2589018C1 (en) * | 2015-08-14 | 2016-07-10 | Оао "Нпп" Кант" | Radar station on basis of gsm cellular communication networks with device for generating directional illumination |
WO2018058374A1 (en) * | 2016-09-28 | 2018-04-05 | 华为技术有限公司 | Environment sensing method and base station |
RU2645154C1 (en) * | 2016-11-15 | 2018-02-16 | Акционерное общество "Федеральный научно-производственный центр "Нижегородский научно-исследовательский институт радиотехники" | Method of network information processing in automated system of processing and exchange of radar information |
US11340343B2 (en) * | 2017-03-23 | 2022-05-24 | Dolphin Measurement Systems, Llc | Apparatus and methods for thickness and velocity measurement of flat moving materials using high frequency radar technologies |
IL254452B (en) * | 2017-09-12 | 2019-12-31 | Senstation Tech Ltd | A method and system for detection of a target by a passive radar system exploiting multichannel-per-carrier illuminator sources |
US11299219B2 (en) | 2018-08-20 | 2022-04-12 | Spireon, Inc. | Distributed volumetric cargo sensor system |
US11475680B2 (en) | 2018-12-12 | 2022-10-18 | Spireon, Inc. | Cargo sensor system implemented using neural network |
DE102020209515A1 (en) | 2020-07-29 | 2022-02-03 | Volkswagen Aktiengesellschaft | Method and system to support a predictive driving strategy |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3943514A (en) * | 1970-11-23 | 1976-03-09 | The United States Of America As Represented By The Secretary Of The Navy | Dual base line interferometer antenna |
US5604503A (en) * | 1995-03-27 | 1997-02-18 | Lockheed Martin Corporation | Multipath and co-channel signal preprocessor |
FR2776438B1 (en) * | 1996-04-30 | 2000-05-05 | Dassault Electronique | MOBILE DETECTION SYSTEM USING DIGITAL TELEVISION BROADCASTING OF A NETWORK OF TERRESTRIAL TRANSMITTERS |
US6011515A (en) | 1996-10-08 | 2000-01-04 | The Johns Hopkins University | System for measuring average speed and traffic volume on a roadway |
US6243587B1 (en) * | 1997-12-10 | 2001-06-05 | Ericsson Inc. | Method and system for determining position of a mobile transmitter |
US6232922B1 (en) | 1998-05-12 | 2001-05-15 | Mcintosh John C. | Passive three dimensional track of non-cooperative targets through opportunistic use of global positioning system (GPS) and GLONASS signals |
KR100364582B1 (en) * | 2000-04-28 | 2002-12-16 | 주식회사 네트웍코리아 | System tracking and watching multi moving object |
CA2426568C (en) | 2000-10-20 | 2010-05-11 | Lockheed Martin Corporation | Civil aviation passive coherent location system and method |
US6549165B2 (en) * | 2001-01-19 | 2003-04-15 | Agence Spatiale Europeenne | Ocean altimetry interferometric method and device using GNSS signals |
US6580392B2 (en) * | 2001-09-07 | 2003-06-17 | Lockheed Martin Corporation | Digital beamforming for passive detection of target using reflected jamming echoes |
-
2002
- 2002-07-25 US US10/485,371 patent/US6930638B2/en not_active Expired - Fee Related
- 2002-07-25 BR BR0211605-7A patent/BR0211605A/en not_active IP Right Cessation
- 2002-07-25 AU AU2002325370A patent/AU2002325370B2/en not_active Ceased
- 2002-07-25 CN CNB028150902A patent/CN100380136C/en not_active Expired - Fee Related
- 2002-07-25 KR KR1020047001511A patent/KR100744624B1/en not_active IP Right Cessation
- 2002-07-25 JP JP2003517610A patent/JP2004537730A/en active Pending
- 2002-07-25 WO PCT/EP2002/008334 patent/WO2003012473A1/en active IP Right Grant
- 2002-07-25 CA CA2451916A patent/CA2451916C/en not_active Expired - Fee Related
- 2002-07-25 EP EP02758397A patent/EP1412772A1/en not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2451916C (en) | Object detection system and method | |
AU2002325370A1 (en) | Passive moving object detection system and method using signals transmitted by a mobile telephone station | |
US7663537B2 (en) | Target detecting apparatus using electronically agile radar | |
US7864102B2 (en) | Vehicular traffic surveillance doppler radar system | |
Moreira et al. | A new MTI-SAR approach using the reflectivity displacement method | |
US9140783B2 (en) | Radar device | |
EP1326090A2 (en) | Security system | |
US20140062762A1 (en) | Radar device and target height calculation method | |
KR102177912B1 (en) | Vehicle identification | |
EP1031851A2 (en) | Radar Apparatus | |
JPH07234275A (en) | Short-distance microwave detection for radar system utilizing frequency-modulated continuous wave and stepwise frequency | |
WO2008055338A1 (en) | Monopulse traffic sensor and method | |
Baczyk et al. | Traffic density monitoring using passive radars | |
JP2013083540A (en) | On-vehicle radar device and control method of on-vehicle radar device | |
JP3608001B2 (en) | Passive radar device | |
WO2021122603A1 (en) | Method for seat occupancy detection | |
GB2378336A (en) | Object speed or location determination using direct and reflected signals received from a mobile phone base station | |
US20220214440A1 (en) | Electronic device, method for controlling electronic device, and program | |
US20220221567A1 (en) | Electronic device, method for controlling electronic device, and program | |
CN116008933A (en) | Echo power compensation method, compensation device, radar and storage medium | |
JP3018825B2 (en) | Radar equipment | |
Zaumseil et al. | Radar-based near field environment perception using back projection algorithm | |
JPH06102348A (en) | Radar device |