AT516448B1 - Method for the topography-dependent minimization of the energy demand of vehicles with electric drive or hybrid drive through model-based optimization - Google Patents
Method for the topography-dependent minimization of the energy demand of vehicles with electric drive or hybrid drive through model-based optimization Download PDFInfo
- Publication number
- AT516448B1 AT516448B1 ATA50448/2015A AT504482015A AT516448B1 AT 516448 B1 AT516448 B1 AT 516448B1 AT 504482015 A AT504482015 A AT 504482015A AT 516448 B1 AT516448 B1 AT 516448B1
- Authority
- AT
- Austria
- Prior art keywords
- model
- vehicles
- topography
- minimization
- dependent
- Prior art date
Links
- 238000005457 optimization Methods 0.000 title claims abstract description 18
- 238000000034 method Methods 0.000 title claims abstract description 15
- 238000012876 topography Methods 0.000 title claims abstract description 12
- 230000001419 dependent effect Effects 0.000 title claims abstract description 10
- 238000004088 simulation Methods 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 3
- 239000000725 suspension Substances 0.000 claims description 3
- 101001093748 Homo sapiens Phosphatidylinositol N-acetylglucosaminyltransferase subunit P Proteins 0.000 claims description 2
- 238000004146 energy storage Methods 0.000 claims description 2
- 230000009286 beneficial effect Effects 0.000 claims 1
- 230000003213 activating effect Effects 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005381 potential energy Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
- B60W30/18009—Propelling the vehicle related to particular drive situations
- B60W30/18109—Braking
- B60W30/18127—Regenerative braking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/20—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
- B60L15/2045—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L3/00—Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
- B60L3/0023—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
- B60L3/0046—Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/12—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/04—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
- B60W10/08—Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/24—Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
- B60W10/26—Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/30—Conjoint control of vehicle sub-units of different type or different function including control of auxiliary equipment, e.g. air-conditioning compressors or oil pumps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W20/00—Control systems specially adapted for hybrid vehicles
- B60W20/10—Controlling the power contribution of each of the prime movers to meet required power demand
- B60W20/13—Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
- B60W20/14—Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion in conjunction with braking regeneration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/0097—Predicting future conditions
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
- G01C21/34—Route searching; Route guidance
- G01C21/3453—Special cost functions, i.e. other than distance or default speed limit of road segments
- G01C21/3469—Fuel consumption; Energy use; Emission aspects
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/72—Electric energy management in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/16—Information or communication technologies improving the operation of electric vehicles
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Automation & Control Theory (AREA)
- Power Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Combustion & Propulsion (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Human Computer Interaction (AREA)
- Aviation & Aerospace Engineering (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
Abstract
Die Erfindung betrifft ein Verfahren zur topographieabhängigen Minimierung des Energiebedarfs von Fahrzeugen mit elektrischem Antrieb oder Hybridantrieb durch modellbasierte prädiktive Optimierung. Die Optimierung mittels dynamischer Programmierung wird über Nebenbedingungen angepasst, wenn über topgraphische Daten und technische und verordnete Geschwindigkeitsgrenzen auf der vorausliegenden Strecke hinaus zusätzliche Informationen von Ampeln etc. bekannt werden. Dabei wird bei der Berechnung die in den Energiespeicher einspeicherbare Energie und eine Näherung für die aktuelle Fahrzeugmasse genutzt, wobei dazu vorteilhafterweise Sensoren benutzt werden.The invention relates to a method for the topography-dependent minimization of the energy requirement of vehicles with an electric drive or a hybrid drive by means of model-based predictive optimization. The optimization by means of dynamic programming is adapted via secondary conditions if additional information from traffic lights etc. becomes known beyond topographic data and technical and prescribed speed limits on the route ahead. The energy that can be stored in the energy store and an approximation for the current vehicle mass are used in the calculation, sensors being advantageously used for this purpose.
Description
[0001] Die Erfindung betrifft ein Verfahren zur topographieabhängigen Minimierung des Energiebedarfs von Fahrzeugen mit elektrischem Antrieb oder Hybridantrieb durch modellbasierte Optimierung. The invention relates to a method for the topography-dependent minimization of the energy requirement of vehicles with electric drive or hybrid drive by model-based optimization.
[0002] Stand der Technik sind Verfahren die den seitens der Verbrennungskraftmaschine VKM bereit zu stellenden Energieanteil optimieren, und dabei auch die Fahrbarkeit berücksichtigen. The prior art are methods that optimize the amount of energy to be provided by the internal combustion engine VKM, while also taking drivability into account.
[0003] WO 2013167149 A1 beschreibt in allgemeiner Form ein GPS-Daten gesteuertes Energiemanagement für ein Hybrid-Elektrisches Fahrzeug welches den Energiespeicher leert, bevor eine Rekuperation auf einer Bergabstrecke stattfindet. US 2013296102 A1 beschreibt eine Methode um zusätzliche elektrische Lasten zu aktivieren um Rekuperationsenergie sinnvoll nutzen zu können. WO 2013167149 A1 describes in general form a GPS data-controlled energy management for a hybrid-electric vehicle which empties the energy store before recuperation takes place on a downhill stretch. US 2013296102 A1 describes a method for activating additional electrical loads in order to be able to use recuperation energy sensibly.
[0004] DE69828585 beschreibt die Nutzung von Gewichtssensoren in Sitzen, DE69931535 gleiches für die Nutzlastbestimmung in Anhängern. DE69828585 describes the use of weight sensors in seats, DE69931535 the same for determining the payload in trailers.
[0005] Aufgabe der vorliegenden Erfindung ist eine Minimierung der mechanischen Netto-Antriebsarbeit für eine finite vorausliegende Strecke, abhängig von deren Topographie, wobei auch die aktuelle Masse des Fahrzeuges inkl. Nutzlast einfließen soll. Der Nettobetrag der Energie wird über eine Bilanzierung mit der auf Gefällestrecken rekuperierbaren Energie bestimmt. Zusätzlich sind Geschwindigkeitsgrenzen vorgegeben. Technisches Ziel des Verfahrens ist die Auswahl einer Betriebstaktik des Fahrzeuges in Hinblick auf die Translation, die zu einem dem Minimum nahekommendem Endenergiebedarf führt. Der Zielerfüllungsgrad der gewählten Betriebstaktik wird durch eine Simulation der longitudinalen Fahrzeugbewegung im Vorhinein überprüft, wobei Wirkungsgrade für die Umwandlung von mechanischer Verzögerungsenergie in elektrische Energie und wieder zurück in Antriebsenergie vorteilhafterweise abhängig von Leistung und Drehzahl aus einer Tabelle entnommen werden, wobei bei handgeschalteten Getrieben die Gangwahl aus historischen Daten welche über die Benutzung des Fahrzeuges ermittelt wurden, abgeleitet wird. Die Betriebstaktik wird über eine Simulation mit varlierendem Muster für die Geschwindigkeitsgrenzen durchgeführt, hier werden Verläufe mit Sprungfunktionen, Rampen etc. genutzt. Neben der Variation der grundsätzlichen Form der Verläufe wird auch die Charakteristik variiert, wie die Punkte mit Wechsel der Geschwindigkeit, oder Steilheit der Rampe. Über eine Variation der Charakteristika dieser Geschwindigkeitsverläufe in einer Monte Carlo Variation wird die dem Optimum nahekommende Lösung bestimmt. The object of the present invention is to minimize the mechanical net drive work for a finite route ahead, depending on its topography, with the current mass of the vehicle including the payload also being taken into account. The net amount of energy is determined by balancing the energy that can be recovered on inclines. In addition, speed limits are specified. The technical aim of the method is to select an operating strategy for the vehicle with regard to translation, which leads to a final energy requirement that comes close to the minimum. The degree of target fulfillment of the selected operating tactics is checked in advance by simulating the longitudinal vehicle movement, with the efficiency for the conversion of mechanical deceleration energy into electrical energy and back again into drive energy, advantageously depending on power and speed, from a table, with the gear selection for manual transmissions is derived from historical data that was determined about the use of the vehicle. The operating tactics are carried out via a simulation with a varying pattern for the speed limits, here processes with jump functions, ramps, etc. are used. In addition to varying the basic shape of the course, the characteristics are also varied, such as the points with changing speed or steepness of the ramp. The solution that comes close to the optimum is determined by varying the characteristics of these speed curves in a Monte Carlo variation.
[0006] Die Simulation benutzt den Verlauf der Höhe der Fahrbahn, Geschwindigkeitsgrenzen zusammen mit der Masse des Fahrzeuges, die vorteilhafterweise über eine Messvorrichtung erfasst wird. Für Nfz kann auch der Druck in der Luftfederung zur Bestimmung der Gewichtskraft genutzt werden, aber es können auch Sitzsensoren genutzt werden um über den Besetzungsgrad die schwere Gesamtmasse abschätzen zu können. The simulation uses the course of the height of the roadway, speed limits together with the mass of the vehicle, which is advantageously detected by a measuring device. For commercial vehicles, the pressure in the air suspension can also be used to determine the weight force, but seat sensors can also be used to estimate the total weight based on the occupancy rate.
[0007] Die Zielgeschwindigkeit wird ebenso wie die maximale Geschwindigkeit die sich aus der (amtliche verordneten) Geschwindigkeitsbegrenzung ergibt, vorgegeben. Die Zielgeschwindigkeit ist eine FahreriInnenvorwahl. Die verlorenen Verluste bei der Überschreitung der Zielgeschwindigkeit nehmen zu, aber auch die Rekuperation der Bremsenergie ist mit Verlusten behaftet. The target speed, like the maximum speed resulting from the (officially prescribed) speed limit, is specified. The target speed is a driver preselection. The losses lost when the target speed is exceeded increase, but the recuperation of braking energy is also subject to losses.
[0008] Die Betriebstaktik ergibt sich aus den örtlichen Gegebenheiten. Bei einem hohen Geschwindigkeitslimit kann trotz hohem Ladezustand im Energiespeicher Energie über die Speicherung in kinetischer Energie zurückgewonnen werden. Für die Optimierung wird beispielsweise ein Geschwindigkeitsverlauf mit einem Sprung auf die Maximalgeschwindigkeit und wieder auf die Zielgeschwindigkeit vorgegeben. In der Optimierung über einen Monte-Carlo-Ansatz werden die Übergänge zwischen den Geschwindigkeiten verschoben. Ebenso wird die Geschwindigkeitsvorgabe für die Reststrecke gesenkt, weil über die Geschwindigkeitserhöhung bis zur Senkung der Geschwindigkeitsvorgabe, Zeit gespart wurde. The operating tactics result from the local conditions. In the case of a high speed limit, energy can be recovered by storing it in kinetic energy despite the high state of charge in the energy storage device. For example, a speed profile with a jump to the maximum speed and back to the target speed is specified for the optimization. In the optimization using a Monte Carlo approach, the transitions between the speeds are shifted. The speed setting for the remaining distance is also reduced because time was saved by increasing the speed until the speed setting was reduced.
[0009] Mit den Daten der Sitzsensoren 1 kann auch die Steuerung der Heizung und KlimatisieThe data from the seat sensors 1 can also be used to control the heating and air conditioning
rung vorgenommen werden. Vorteilhafterweise kann auch eine Arbeitsperiode der elektrisch betriebenen Kühlung vorgezogen oder bei Batterie-elektrischen Fahrzeugen auch eine elektrische Beheizung vorgezogen werden um den eine höhere Rekuperation von potentieller Energie zu ermöglichen. Vorteilhafterweise wird die thermische Energie welche bei der Rekuperation anfällt und nicht in den Energiespeicher eingespeichert werden kann in einem Latentspeicher zwischengespeichert. tion can be made. Advantageously, a working period of the electrically operated cooling can also be brought forward or, in the case of battery-electric vehicles, electrical heating can also be brought forward in order to enable a higher recuperation of potential energy. The thermal energy which occurs during recuperation and which cannot be stored in the energy store is advantageously temporarily stored in a latent store.
[0010] Die Erfindung wird anhand von Ausführungsbeispielen und Varianten gemäß den Zeichnungen näher erläutert: The invention is explained in more detail using exemplary embodiments and variants according to the drawings:
[0011] Fig. 1 zeigt beispielhaft die Systemarchitektur. Mindestens ein vorzugsweise drahtlose abfragbarer Sitzsensor 1, und wenn vorhanden Druckluftsensoren der Federung 2 und Radar/Lidar 3 werden vom Datenkonzentrator 4 einer taktischen Steuerung 6 des Antriebs zugeführt, welche die topographischen Daten vorzugsweise vom Navigationssystem bezieht. 1 shows the system architecture by way of example. At least one preferably wireless queryable seat sensor 1 and, if available, compressed air sensors of the suspension 2 and radar / lidar 3 are fed from the data concentrator 4 to a tactical controller 6 of the drive, which preferably receives the topographical data from the navigation system.
[0012] Fig. 2 zeigt verschiedene Muster für vorgegebenen Geschwindigkeitsverläufe, welche seitens der MC-Simulation genutzt werden können. Fig. 2 shows different patterns for predetermined speed curves, which can be used by the MC simulation.
[0013] Fig. 3 zeigt den Ablauf der MC-Simulation. Die Vorgabe für die Zielgeschwindigkeit 10, wird unter Berücksichtigung der über Sensoren ermittelten oder elektronisch als Datum vorliegenden Eingangsgrößen für unterschiedliche Geschwindigkeitsschablonen 15 berechnet und die energieeffizienteste Lösung 16 ausgesucht und in den Tempomaten 17 eingespeist. 3 shows the sequence of the MC simulation. The specification for the target speed 10 is calculated for different speed templates 15, taking into account the input variables determined by sensors or electronically available as a date, and the most energy-efficient solution 16 is selected and fed into the cruise control 17.
[0014] Fig. 4 zeigt ein Ergebnis einer Simulation einer Fahrt durch eine Senke, wobei eine beispielhafte Geschwindigkeitsrampe vorgegeben wurde und die Geschwindigkeit nach Wiedererreichen der Zielgeschwindigkeit wegen der vorherigen höheren Geschwindigkeit gesenkt wurde. Die obere Grenzkurve für die Geschwindigkeit kann durch folgende Nebenbedingungen direkt oder indirekt beeinflusst werden. 4 shows a result of a simulation of a journey through a depression, with an exemplary speed ramp being specified and the speed being reduced after the target speed has been reached again because of the previous higher speed. The upper limit curve for the speed can be influenced directly or indirectly by the following constraints.
- Mittels LIDAR oder RADAR bestimmte Fahrkurve vorausfahrender Fahrzeuge limitiert - Amtlich verordnete Geschwindigkeitsbeschränkung erkannt - Using LIDAR or RADAR, the driving curve of vehicles ahead is limited - Officially decreed speed limit recognized
- Über DSRC erhaltene Schaltzeiten von Ampeln und Punkten mit Verzögerung wie Mautstationen - Switching times of traffic lights and points with a delay, such as toll stations, obtained via DSRC
- Technisch bedingte Maximalgeschwindigkeit in Kurven für das Fahrzeug ermittelt [0015] Diese Nebenbedingungen bei der Optimierung schränken den Lösungsraum ein. Technically determined maximum speed in curves for the vehicle [0015] These secondary conditions in the optimization limit the solution space.
[0016] Bei Überschreiten eines Grenzwertes für den Schlupf an den Antriebsrädern wird die Rekuperation verringert. Die Rekuperation kann so lange aufrechterhalten werden, solange der Energiespeicher noch nicht vollgeladen ist wobei nutzbringende elektrisch versorgte Vorrichtungen aktiviert werden können, wobei Kühlung und Heizung vorteilhafterweise einen Wärmespeicher besitzen When a limit value for the slip on the drive wheels is exceeded, the recuperation is reduced. The recuperation can be maintained as long as the energy store is not yet fully charged, whereby useful electrically powered devices can be activated, with cooling and heating advantageously having a heat store
[0017] Fig. 5 zeigt Ergebnisse für unterschiedliche Start und Endpositionen für die Geschwindigkeitsrampe. Während der beste Startpunkt relativ konstant bleibt, schwankt der Endpunkt des hohen Geschwindigkeitslimits stark, sinkend gegen das Minimum. 5 shows results for different start and end positions for the speed ramp. While the best starting point remains relatively constant, the end point of the high speed limit fluctuates strongly, decreasing towards the minimum.
Claims (7)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
ATA50448/2015A AT516448B1 (en) | 2014-06-11 | 2015-06-02 | Method for the topography-dependent minimization of the energy demand of vehicles with electric drive or hybrid drive through model-based optimization |
ATA50970/2017A AT521325A2 (en) | 2014-06-11 | 2017-11-22 | Method and device for the lateral control of automatically moving vehicles |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT504052014 | 2014-06-11 | ||
ATA50448/2015A AT516448B1 (en) | 2014-06-11 | 2015-06-02 | Method for the topography-dependent minimization of the energy demand of vehicles with electric drive or hybrid drive through model-based optimization |
Publications (2)
Publication Number | Publication Date |
---|---|
AT516448A1 AT516448A1 (en) | 2016-05-15 |
AT516448B1 true AT516448B1 (en) | 2021-04-15 |
Family
ID=55907731
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ATA50448/2015A AT516448B1 (en) | 2014-06-11 | 2015-06-02 | Method for the topography-dependent minimization of the energy demand of vehicles with electric drive or hybrid drive through model-based optimization |
ATA50970/2017A AT521325A2 (en) | 2014-06-11 | 2017-11-22 | Method and device for the lateral control of automatically moving vehicles |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ATA50970/2017A AT521325A2 (en) | 2014-06-11 | 2017-11-22 | Method and device for the lateral control of automatically moving vehicles |
Country Status (1)
Country | Link |
---|---|
AT (2) | AT516448B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113147413B (en) * | 2021-05-20 | 2022-09-20 | 武汉理工大学 | Method, device and system for recovering energy of in-wheel motor differential steering vehicle |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050274553A1 (en) * | 2004-06-09 | 2005-12-15 | Salman Mutasim A | Predictive energy management system for hybrid electric vehicles |
US20130296102A1 (en) * | 2012-05-04 | 2013-11-07 | Ford Global Technologies, Llc | Methods and systems for extending regenerative braking |
WO2013167149A1 (en) * | 2012-05-08 | 2013-11-14 | Volvo Lastvagnar Ab | Energy management system and fuel saving method for a hybrid electric vehicle |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050027553A1 (en) * | 2003-06-19 | 2005-02-03 | Samet Vanessa J. | Semi-custom furniture design system and apparatus |
-
2015
- 2015-06-02 AT ATA50448/2015A patent/AT516448B1/en not_active IP Right Cessation
-
2017
- 2017-11-22 AT ATA50970/2017A patent/AT521325A2/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050274553A1 (en) * | 2004-06-09 | 2005-12-15 | Salman Mutasim A | Predictive energy management system for hybrid electric vehicles |
US20130296102A1 (en) * | 2012-05-04 | 2013-11-07 | Ford Global Technologies, Llc | Methods and systems for extending regenerative braking |
WO2013167149A1 (en) * | 2012-05-08 | 2013-11-14 | Volvo Lastvagnar Ab | Energy management system and fuel saving method for a hybrid electric vehicle |
Also Published As
Publication number | Publication date |
---|---|
AT516448A1 (en) | 2016-05-15 |
AT521325A2 (en) | 2019-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102015223733B4 (en) | System and method for controlling a hybrid vehicle | |
DE102014116703A1 (en) | Method and apparatus for controlling regenerative braking of a vehicle | |
DE102012216115A1 (en) | A vehicle and method for estimating a range for the vehicle | |
DE102013217274B4 (en) | Drive control method for a hybrid vehicle | |
DE102016102822A1 (en) | Battery state shutdown threshold based on the predicted operation | |
EP3266645A1 (en) | Method for operating an electrically driven or electrically drivable vehicle and vehicle | |
DE102013111440A1 (en) | Delayed purely electrical operation of a hybrid vehicle | |
DE102013207530A1 (en) | NUTZBREMSUNGSSTEUERUNG FOR REDUCING DRIVE VELOCITY VIBRATIONS | |
DE102012224170A1 (en) | Device and method for driving control of a vehicle under free-running conditions | |
EP3250431A1 (en) | Method and system for operating a motor vehicle | |
WO2010031678A1 (en) | Method for setting a motor drive unit in a motor vehicle | |
DE112017004027T5 (en) | AUTONOMOUS DRIVING WITH DYNAMIC SKIP FIRE | |
DE112013004514T5 (en) | Detection and use of free energy | |
DE102014008380A1 (en) | Method for the predictive control and / or regulation of a drive train of a vehicle | |
DE102012011996B4 (en) | Method and device for optimizing operation of a vehicle and vehicle itself | |
DE102015226614A1 (en) | Method for operating a motor vehicle, control unit for a drive system and a drive system | |
DE102011017260A1 (en) | Method for determining deceleration strategy of vehicle with electric drive during deceleration process, involves braking vehicle on predetermined section of speed to another reduced speed | |
WO2016041661A1 (en) | Control device and method for the predictive, consumption-optimised operation of a hybrid vehicle | |
DE102020128815A1 (en) | SYSTEM AND PROCEDURE FOR ROUTE-BASED OPTIMIZATION FOR BATTERY ELECTRIC VEHICLES | |
WO2018091196A1 (en) | Method, computer-readable medium, system, and vehicle comprising said system for supporting energy-efficient deceleration of the vehicle | |
DE102008000576A1 (en) | Method and device for operating a vehicle with hybrid drive | |
DE102009036047A1 (en) | Method for controlling hybrid drive of e.g. motor vehicle, involves determining orientation data of road traveled by vehicle, and controlling drive with respect to determined data, where data is determined by direct or indirect measurement | |
AT516448B1 (en) | Method for the topography-dependent minimization of the energy demand of vehicles with electric drive or hybrid drive through model-based optimization | |
EP2917083B1 (en) | Vehicle control | |
EP2371647B1 (en) | Control of an energy recovery system on a motor vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM01 | Lapse because of not paying annual fees |
Effective date: 20210602 |