editing
approved
editing
approved
Least prime p such that n = p + q - r for some prime primes q > p and some prime r with q > p.
(PARI) a(n)=if(n%2 && !isprime(n), 3, 2) \\ Charles R Greathouse IV, Apr 29 2016
proposed
editing
editing
proposed
allocated Least prime such that n = p + q - r for Clark Kimberlingsome prime q > p and some prime r.
3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 3, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2
1,1
p = 3 when n is an odd nonprime and p = 2 otherwise, so that 3 appears in positions given by A014076.
Clark Kimberling, <a href="/A270003/b270003.txt">Table of n, a(n) for n = 1..10000</a>
n p q r
1 3 5 7
2 2 3 3
3 2 3 2
4 2 5 3
5 2 5 2
6 2 7 3
7 2 7 2
t = Join[{{1, {3, 5, 7}}, {2, {2, 3, 3}}}, Table[If[PrimeQ[n], {n, {2, n, 2}}, p = If[EvenQ[2 + NextPrime[n, 1] - n], 3, 2]; NestWhile[# + 1 &, 1, ! PrimeQ[r = (p + (q = NextPrime[n, #])) - n] &]; {n, {p, q, r}}], {n, 3, 300}]];
Map[#[[2]][[1]] &, t] (* p, A270003 *)
Map[#[[2]][[2]] &, t] (* q, A270753 *)
Map[#[[2]][[3]] &, t] (* r, A271353 *)
(* Peter J. C. Moses, Apr 26 2016 *)
allocated
nonn,easy
Clark Kimberling, Apr 26 2016
approved
editing
allocated for Clark Kimberling
allocated
approved