reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
CoefficientList[ Series[(1 + 2x + 2x^2)/(1 + x + 5x^2 - x^3 + x^4), {x, 0, 33}], x] (* or *)LinearRecurrence[{-1, -5, 1, -1}, {1, 1, -4, 0}, 33] (* _Robert G. Wilson v_, Dec 27 2017 *)
LinearRecurrence[{-1, -5, 1, -1}, {1, 1, -4, 0}, 33] (* Robert G. Wilson v, Dec 27 2017 *)
CoefficientList[ Series[(1 + 2x + 2x^2)/(1 + x + 5x^2 - x^3 + x^4), {x, 0, 33}], x] (* or *)LinearRecurrence[{-1, -5, 1, -1}, {1, 1, -4, 0}, 33] (* Robert G. Wilson v, Dec 27 2017 *)
proposed
editing
editing
proposed
Colin Barker, <a href="/A199933/b199933.txt">Table of n, a(n) for n = 0..1000</a>
From Colin Barker, Dec 27 2017: (Start)
G.f.: (1 + 2*x + 2*x^2) / (1 + x + 5*x^2 - x^3 + x^4).
a(n) = -a(n-1) - 5*a(n-2) + a(n-3) - a(n-4) for n>3.
(End)
(PARI) Vec((1 + 2*x + 2*x^2) / (1 + x + 5*x^2 - x^3 + x^4) + O(x^40)) \\ Colin Barker, Dec 27 2017
approved
editing
proposed
approved
editing
proposed
<a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (-1,-5,1,-1).
proposed
editing