reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
(Python)
from itertools import count, islice
from gmpy2 import digits
from sympy import totient
def A082897_gen(startvalue=3): # generator of terms >= startvalue
for n in count((k:=max(startvalue, 3))+1-(k&1), 2):
t = digits(n, 3)
if t.count('0') == len(t)-1:
yield n
else:
m, s = n, 1
while (m:=totient(m))>1:
s += m
if s == n:
yield n
A082897_list = list(islice(A082897_gen(), 20)) # Chai Wah Wu, Mar 24 2023
approved
editing
reviewed
approved
proposed
reviewed
editing
proposed
M. V. Subbarao, On a Function connected with phi(n), The Mathematics Student, Vol. 23 (1955), pp. 178-179.
These numbers were first studied in 1939 by the Spanish mathematician Laureano Pérez-Cacho Villaverde (1900-1957). The term "perfect totient number" was coined by Venkataraman (1975). - Amiram Eldar, Mar 10 2021
Jovele G. Belmonte, <a href="https://animorepository.dlsu.edu.ph/etd_masteral/3449/">On perfect totient numbers</a>, Masteral Thesis, De La Salle University, 2006.
Li-Xia Dai and Yong-Gao Chen, <a href="https://caod.oriprobe.com/articles/13427719/A_note_on_perfect_totient_numbers
Tuukka Hyvärinen, <a href="https://trepo.tuni.fi/handle/10024/97744">Täydelliset totienttiluvut</a> (in Finnish), Master's thesis, Tampere University, 2015; <a href="https://core.ac.uk/download/pdf/250138377.pdf">alternative link</a>.
Florian Luca, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL9/Luca/luca66.html">On the Distribution of Perfect Totients</a>, Journal of Integer Sequences, Vol. 9 (2006), Article 06.4.4.
Hans Sieburg and Michael Kentgens, <a href="https://www.researchgate.net/publication/258424386_On_Phi-perfect_numbers">On Phi-perfect numbers</a>, in: J. Akiyama et al. (eds.), Number Theory and Combinatorics, Japan 1984, World Scientific, 1985, pp. 245-254.
Wikipedia, <a href="https://en.wikipedia.org/wiki/Perfect_totient_number">Perfect totient number</a>.
Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section B41, pp. 147-150.
József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 3, pp. 240-242.
D. L. Silverman, Problem 1040, J. Recr. Math., Vol. 14 (1982); Solution by R. I. Hess, ibid., Vol. 15 (1983).
T. Venkataraman, Perfect totient number, The Mathematics Student, Vol. 43 (1975), p. 178.
Douglas E. Iannucci, Deng Moujie and Graeme L. Cohen, <a href="https://www.cs.uwaterloo.ca/journals/JIS/VOL6/Cohen2/cohen50.html">On Perfect Totient Numbers</a>, J. Journal of Integer Sequences, Vol. 6 (2003), #Article 03.4.5.
D. Deng Moujie, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Deng/deng1.html">A Note On Perfect Totient Numbers</a>, JIS Journal of Integer Sequences, Vol. 12 (2009) #, Article 09.6.2.