login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325506
Product of Heinz numbers over all strict integer partitions of n.
9
1, 2, 3, 30, 70, 2310, 180180, 21441420, 6401795400, 200984366583000, 41615822944675980000, 10515527757483671302380000, 4919824049783476260137727416400000, 5158181210492841550866520676965246284000000, 29776760895364738730693151196801613158042403043600000000
OFFSET
0,2
COMMENTS
a(n) is the product of row n of A246867 (squarefree numbers arranged by sum of prime indices).
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
FORMULA
a(n) = Product_{i = 1..A000009(n)} A246867(n,i).
A001222(a(n)) = A015723(n).
A056239(a(n)) = A066189(n).
A003963(a(n)) = A325504(n).
a(n) = A003963(A325505(n)).
EXAMPLE
The strict integer partitions of 6 are {(6), (5,1), (4,2), (3,2,1)}, with Heinz numbers {13,22,21,30}, with product 13*22*21*30 = 180180, so a(6) = 180180.
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
3: {2}
30: {1,2,3}
70: {1,3,4}
2310: {1,2,3,4,5}
180180: {1,1,2,2,3,4,5,6}
21441420: {1,1,2,2,3,4,4,5,6,7}
6401795400: {1,1,1,2,2,3,3,4,5,5,6,7,8}
200984366583000: {1,1,1,2,2,2,3,3,3,4,4,5,5,6,6,7,8,9}
41615822944675980000: {1,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,5,5,6,6,7,7,8,9,10}
MATHEMATICA
Table[Times@@Prime/@(Join@@Select[IntegerPartitions[n], UnsameQ@@#&]), {n, 0, 15}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 07 2019
STATUS
approved