login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A325505
Heinz number of the set of Heinz numbers of all strict integer partitions of n.
7
2, 3, 5, 143, 493, 62651, 26718511, 22017033127, 44220524211551, 52289759420183033963, 546407750301194131199484983, 8362548333129019658779663581495109, 1828111016191440393570169991636207115709029581, 1059934964500839879758659437301868941873808925011368355891
OFFSET
0,1
COMMENTS
The Heinz number of a set or sequence (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
Also Heinz numbers of rows of A246867 (squarefree numbers arranged by sum of prime indices A056239).
FORMULA
a(n) = Product_{i = 1..A000009(n)} prime(A246867(n,i)).
A001221(a(n)) = A001222(a(n)) = A000009(n).
A056239(a(n)) = A147655(n).
A003963(a(n)) = A325506(n).
EXAMPLE
The strict integer partitions of 5 are {(5), (4,1), (3,2)}, with Heinz numbers {11,14,15}, with Heinz number prime(11)*prime(14)*prime(15) = 62651, so a(6) = 62651.
The sequence of terms together with their prime indices begins:
2: {1}
3: {2}
5: {3}
143: {5,6}
493: {7,10}
62651: {11,14,15}
26718511: {13,21,22,30}
22017033127: {17,26,33,35,42}
44220524211551: {19,34,39,55,66,70}
52289759420183033963: {23,38,51,65,77,78,105,110}
546407750301194131199484983: {29,46,57,85,91,102,130,154,165,210}
MATHEMATICA
Table[Times@@Prime/@(Times@@Prime/@#&/@Select[IntegerPartitions[n], UnsameQ@@#&]), {n, 7}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 07 2019
STATUS
approved