Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Nov 10 2018 05:46:34
%S 20,88,208,426,728,1178,1744,2508,3420,4580,5920,7558,9408,11606,
%T 14048,16888,20004,23568,27440,31810,36520,41778,47408,53636,60268,
%U 67548,75264,83678,92560,102190,112320,123248,134708,147016,159888,173658,188024
%N Number of length 3+1 0..2*n arrays with the sum of the absolute values of adjacent differences equal to 3*n.
%H R. H. Hardin, <a href="/A249983/b249983.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6).
%F Empirical for n mod 2 = 0: a(n) = (41/12)*n^3 + (43/4)*n^2 + (53/6)*n.
%F Empirical for n mod 2 = 1: a(n) = (41/12)*n^3 + (43/4)*n^2 + (79/12)*n - (3/4).
%F Empirical g.f.: 2*x*(10 + 24*x + 6*x^2 + x^3) / ((1 - x)^4*(1 + x)^2). - _Colin Barker_, Nov 10 2018
%e Some solutions for n=6:
%e ..9...11....5...12....2....4....5...11....4....7....0....0...11....8...12....4
%e ..1....1...11....4....0...11....0...10....2....0....8....1....1...12....4...12
%e ..2....4....2...10...10....6...10....2...10....1...10...10....0....0....3....7
%e .11....9....5....6....4....0....7...11....2...11....2....2....7....2...12...12
%Y Row 3 of A249982.
%K nonn
%O 1,1
%A _R. H. Hardin_, Nov 10 2014