login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249983
Number of length 3+1 0..2*n arrays with the sum of the absolute values of adjacent differences equal to 3*n.
1
20, 88, 208, 426, 728, 1178, 1744, 2508, 3420, 4580, 5920, 7558, 9408, 11606, 14048, 16888, 20004, 23568, 27440, 31810, 36520, 41778, 47408, 53636, 60268, 67548, 75264, 83678, 92560, 102190, 112320, 123248, 134708, 147016, 159888, 173658, 188024
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6).
Empirical for n mod 2 = 0: a(n) = (41/12)*n^3 + (43/4)*n^2 + (53/6)*n.
Empirical for n mod 2 = 1: a(n) = (41/12)*n^3 + (43/4)*n^2 + (79/12)*n - (3/4).
Empirical g.f.: 2*x*(10 + 24*x + 6*x^2 + x^3) / ((1 - x)^4*(1 + x)^2). - Colin Barker, Nov 10 2018
EXAMPLE
Some solutions for n=6:
..9...11....5...12....2....4....5...11....4....7....0....0...11....8...12....4
..1....1...11....4....0...11....0...10....2....0....8....1....1...12....4...12
..2....4....2...10...10....6...10....2...10....1...10...10....0....0....3....7
.11....9....5....6....4....0....7...11....2...11....2....2....7....2...12...12
CROSSREFS
Row 3 of A249982.
Sequence in context: A219824 A339343 A306987 * A234258 A213839 A264302
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 10 2014
STATUS
approved