login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A189232
Triangle read by rows: Number of crossing set partitions of {1,2,...,n} into k blocks.
2
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 5, 5, 0, 0, 0, 16, 40, 15, 0, 0, 0, 42, 196, 175, 35, 0, 0, 0, 99, 770, 1211, 560, 70, 0, 0, 0, 219, 2689, 6594, 5187, 1470, 126, 0, 0, 0, 466, 8790, 31585, 37233, 17535, 3360, 210, 0, 0
OFFSET
1,12
REFERENCES
R. P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge University Press, 1999 (Exericses 6.19)
FORMULA
T(n,k) = S2(n,k) - C(n,k-1)*C(n,k)/n; S2(n,k) Stirling numbers of the second kind, C(n,k) binomial coefficients.
EXAMPLE
There are 10 crossing set partitions of {1,2,3,4,5}.
T(5,2) = card{13|245, 14|235, 24|135, 25|134, 35|124} = 5.
T(5,3) = card{1|35|24, 2|14|35, 3|14|25, 4|13|25, 5|13|24} = 5.
[1] 0
[2] 0, 0
[3] 0, 0, 0
[4] 0, 1, 0, 0
[5] 0, 5, 5, 0, 0
[6] 0, 16, 40, 15, 0, 0
[7] 0, 42, 196, 175, 35, 0, 0
[8] 0, 99, 770, 1211, 560, 70, 0, 0
MAPLE
A189232 := (n, k) -> combinat[stirling2](n, k) - binomial(n, k-1)*binomial(n, k)/n:
for n from 1 to 9 do seq(A189232(n, k), k = 1..n) od;
MATHEMATICA
T[n_, k_] := StirlingS2[n, k] - Binomial[n, k-1] Binomial[n, k]/n;
Table[T[n, k], {n, 1, 10}, {k, 1, n}] (* Jean-François Alcover, Jun 24 2019 *)
CROSSREFS
Row sums A016098, A001263.
Sequence in context: A371264 A065937 A197738 * A247667 A115144 A200506
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Apr 28 2011
STATUS
approved