login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A169714
The function W_5(2n) (see Borwein et al. reference for definition).
8
1, 5, 45, 545, 7885, 127905, 2241225, 41467725, 798562125, 15855173825, 322466645545, 6687295253325, 140927922498025, 3010302779775725, 65046639827565525, 1419565970145097545, 31249959913055650125, 693192670456484513025
OFFSET
0,2
COMMENTS
Row sums of the fourth power of A008459. - Peter Bala, Mar 05 2013
LINKS
J. M. Borwein, A short walk can be beautiful, 2015.
Jonathan M. Borwein, Dirk Nuyens, Armin Straub and James Wan, Random Walk Integrals, 2010.
Jonathan M. Borwein and Armin Straub, Mahler measures, short walks and log-sine integrals (2012)
Armin Straub, Arithmetic aspects of random walks and methods in definite integration, Ph. D. Dissertation, School Of Science And Engineering, Tulane University, 2012. - From N. J. A. Sloane, Dec 16 2012
FORMULA
Sum_{n>=0} a(n)*x^n/n!^2 = (Sum_{n>=0} x^n/n!^2)^5 = BesselI(0, 2*sqrt(x))^5. - Peter Bala, Mar 05 2013
D-finite with recurrence: n^4*a(n) = (35*n^4 - 70*n^3 + 63*n^2 - 28*n + 5)*a(n-1) - (n-1)^2*(259*n^2 - 518*n + 285)*a(n-2) + 225*(n-2)^2*(n-1)^2*a(n-3). - Vaclav Kotesovec, Mar 09 2014
a(n) ~ 5^(2*n+5/2) / (16 * Pi^2 * n^2). - Vaclav Kotesovec, Mar 09 2014
MAPLE
A169714 := proc(n)
W(5, 2*n) ;
end proc: # with W() from A169715, R. J. Mathar, Mar 27 2012
MATHEMATICA
a[n_] := SeriesCoefficient[BesselI[0, 2*Sqrt[x]]^5, {x, 0, n}]*n!^2; Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Dec 30 2013, after Peter Bala *)
max = 17; Total /@ MatrixPower[Table[Binomial[n, k]^2, {n, 0, max}, {k, 0, max}], 4] (* Jean-François Alcover, Mar 24 2015, after Peter Bala *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 17 2010
STATUS
approved