login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A064861
Triangle of Sulanke numbers: T(n,k) = T(n,k-1) + a(n-1,k) for n+k even and a(n,k) = a(n,k-1) + 2*a(n-1,k) for n+k odd.
8
1, 1, 2, 1, 3, 2, 1, 5, 8, 4, 1, 6, 13, 12, 4, 1, 8, 25, 38, 28, 8, 1, 9, 33, 63, 66, 36, 8, 1, 11, 51, 129, 192, 168, 80, 16, 1, 12, 62, 180, 321, 360, 248, 96, 16, 1, 14, 86, 304, 681, 1002, 968, 592, 208, 32, 1, 15, 100, 390, 985, 1683, 1970, 1560, 800, 240, 32, 1, 17
OFFSET
0,3
COMMENTS
When A064861 is regarded as a triangle read by rows, this is [1,0,-1,0,0,0,0,0,0,...] DELTA [2,-1,-1,0,0,0,0,0,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Dec 14 2008
LINKS
Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
Milan Janjic and B. Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013. - From N. J. A. Sloane, Feb 13 2013
Milan Janjic and B. Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014) # 14.3.5.
C. de Jesús Pita Ruiz Velasco, Convolution and Sulanke Numbers, JIS 13 (2010) 10.1.8.
R. A. Sulanke, Problem 10894, Amer. Math. Monthly 108, (2001), p. 770.
FORMULA
G.f.: Sum_{m>=0} Sum_{n>=0} a_{m, n}*t^m*s^n = A(t,s) = (1+2*t+s)/(1-2*t^2-s^2-3*s*t).
EXAMPLE
Table begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
2, 3, 5, 6, 8, 9, 11, ...
2, 8, 13, 25, 33, 51, ...
4, 12, 38, 63, 129, ...
4, 28, 66, 192, ...
MAPLE
A064861 := proc(n, k) option remember; if n = 1 then 1; elif k = 0 then 0; else procname(n, k-1)+(3/2-1/2*(-1)^(n+k))*procname(n-1, k); fi; end;
seq(seq(A064861(i, j-i), i=1..j-1), j=1..19);
MATHEMATICA
max = 12; se = Series[(1 + 2*x + y*x)/(1 - 2*x^2 - y^2*x^2 - 3*y*x^2), {x, 0, max}, {y, 0, max}]; cc = CoefficientList[se, {x, y}]; Flatten[ Table[ cc[[n, k]], {n, 1, max}, {k, n, 1, -1}]] (* Jean-François Alcover, Oct 21 2011, after g.f. *)
PROG
(PARI) a(n, m)=if(n<0 || m<0, 0, polcoeff(polcoeff((1+2*x+y*x)/(1-2*x^2-y^2*x^2-3*y*x^2)+O(x^(n+m+1)), n+m), m))
(Haskell)
a064861 n k = a064861_tabl !! n !! k
a064861_row n = a064861_tabl !! n
a064861_tabl = map fst $ iterate f ([1], 2) where
f (xs, z) = (zipWith (+) ([0] ++ map (* z) xs) (xs ++ [0]), 3 - z)
-- Reinhard Zumkeller, May 01 2014
CROSSREFS
Cf. central Delannoy numbers a(n,n) = A001850(n), Delannoy numbers (same main diagonal): a(n,n) = A008288(n,n), a(n-1,n)=A002003(n), a(n,n+1)=A002002(n), a(n,1)=A058582(n), apparently a(n,n+2)=A050151(n).
Sequence in context: A061260 A152097 A119442 * A305299 A308701 A191528
KEYWORD
nonn,tabl,nice
AUTHOR
Barbara Haas Margolius (b.margolius(AT)csuohio.edu), Oct 10 2001
STATUS
approved