login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060465
Value of x of the solution to x^3 + y^3 + z^3 = A060464(n) (numbers not 4 or 5 mod 9) with smallest |z| and smallest |y|, 0 <= |x| <= |y| <= |z|.
5
0, 0, 0, 1, -1, 0, 0, 0, 1, -2, 7, -1, -511, 1, -1, 0, 1, -11, -2901096694, -1, 0, 0, 0, 1, -283059965, -2736111468807040, -1, 0, 1, 0, 1, 117367, 12602123297335631, 2, -5, 2, -2, 6, -23, 602, 23961292454, -1, -7, 1, -11, 1, -1, 0, 2, 0, 0, 0, 1, 2, 11, -1, 7, 1
OFFSET
0,10
COMMENTS
Indexed by A060464.
Only primitive solutions where gcd(x,y,z) does not divide n are considered.
From the solution A060464(24) = 30 = -283059965^3 - 2218888517^3 + 2220422932^3 (smallest possible magnitudes according to A. Bogomolny), one has a(24) = -283059965. A solution to A060464(25) = 33 remains to be found. Other values for larger n can be found in the first column of the table on Hisanori Mishima's web page. - M. F. Hasler, Nov 10 2015
In 2019 Brooker found a solution for n = 33 (see A332201 and references there) and later in the same year for n = 42, using the collaborative "Charity Engine". It would be nice to have information on how far it is established that these solutions are the smallest possible. - M. F. Hasler, Feb 24 2020
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, 3rd ed., Springer, New York, 2004, Section D5, 231-234.
LINKS
D. J. Bernstein, Three cubes
A. Bogomolny, Finicky Diophantine Equations on cut-the-knot.org, accessed Nov. 10, 2015.
B. Conn, L. Vaserstein, On sums of three integral cubes, Contemp. Math 166 (1994) MR1284068
V. L. Gardiner, R. B. Lazarus, P. R. Stein, Solutions of the diophantine equation x^3+y^3=z^3-d, Math. Comp. 18 (1964) 408-413.
J. C. P. Miller, M. F. C. Woollett, Solutions of the Diophantine Equation x^3+y^3+z^3=k, J. Lond. Math. Soc. 30 (1) (1955) 101-110.
Hisanori Mishima, About n=x^3+y^3+z^3
EXAMPLE
For n = 16 the smallest solution is 16 = (-511)^3 + (-1609)^3 + 1626^3, which gives the term -511.
42 = 12602123297335631^3 + 80435758145817515^3 + (-80538738812075974)^3 was found by Andrew Booker and Andrew Sutherland.
74 = 66229832190556^3 + 283450105697727^3 + (-284650292555885)^3 was found by Sander Huisman.
MATHEMATICA
(* this program is not convenient for hard cases *) nmax = 29; xmin[_] = 0; xmax[_] = 20; xmin[16] = 500; xmax[16] = 600; xmin[24] = 2901096600; xmax[24] = 2901096700; r[n_, x_] := Reduce[0 <= Abs[x] <= Abs[y] <= Abs[z] && n == x^3 + y^3 + z^3, {y, z}, Integers]; r[n_ /; IntegerQ[n^(1/3)]] := {0, 0, n^(1/3)}; mySort = Sort[#1, Which[Abs[#1[[3]]] <= Abs[#2[[3]]], True, Abs[#1[[3]]] == Abs[#2[[3]]], If[Abs[#1[[2]]] <= Abs[#2[[2]]], True, False], True, False] & ] & ; rep := {x_, y_, z_} /; (x + y == 0 && x > 0) :> {-x, -y, z}; r[n_] := Reap[Do[ sp = r[n, x] /. C[1] -> 1; If[sp =!= False, xyz = {x, y, z} /. {ToRules[sp]} /. rep; If[GCD @@ Flatten[{n, xyz}] == 1, Sow[xyz]]]; sn = r[n, -x] /. C[1] -> 1; If[sn =!= False, xyz = {-x, y, z} /. {ToRules[sn]} /. rep; If[GCD @@ Flatten[{n, xyz}] == 1, Sow[xyz]]], {x, xmin[n], xmax[n]}]][[2, 1]] // Flatten[#, 1] & // mySort // First; A060464 = Select[Range[0, nmax], Mod[#, 9] != 4 && Mod[#, 9] != 5 &]; A060465 = Table[xyz = r[n]; Print[ " n = ", n, " {x, y, z} = ", xyz]; xyz[[1]], {n, A060464}] (* Jean-François Alcover, Jul 10 2012 *)
CROSSREFS
KEYWORD
sign,nice,hard
AUTHOR
N. J. A. Sloane, Apr 10 2001
EXTENSIONS
Edited and a(24) added by M. F. Hasler, Nov 10 2015
a(25) from Tim Browning and further terms added by Charlie Neder, Mar 09 2019
More terms from Jinyuan Wang, Feb 13 2020
STATUS
approved