login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052753
Expansion of e.g.f.: log(1-x)^4.
4
0, 0, 0, 0, 24, 240, 2040, 17640, 162456, 1614816, 17368320, 201828000, 2526193824, 33936357312, 487530074304, 7463742249600, 121367896891776, 2089865973021696, 37999535417459712, 727710096185266176, 14642785817771802624, 308902349883623731200, 6818239581643475251200
OFFSET
0,5
COMMENTS
Previous name was: A simple grammar.
LINKS
FORMULA
E.g.f.: log(-1/(-1+x))^4.
Recurrence: {a(1)=0, a(0)=0, a(2)=0, (1+4*n+6*n^2+4*n^3+n^4)*a(n+1) + (-4*n^3-15-18*n^2-28*n)*a(n+2) + (6*n^2+24*n+25)*a(n+3) + (-4*n-10)*a(n+4)+a(n+5), a(3)=0, a(4)=24}.
a(n) ~ (n-1)! * 2*log(n)*(2*log(n)^2 + 6*gamma*log(n) - Pi^2 + 6*gamma^2), where gamma is Euler-Mascheroni constant (A001620). - Vaclav Kotesovec, Sep 30 2013
a(n) = 24*A000454(n) = 4!*(-1)^n*Stirling1(n,4). - Andrew Howroyd, Jul 27 2020
MAPLE
spec := [S, {B=Cycle(Z), S=Prod(B, B, B, B)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
CoefficientList[Series[(Log[1-x])^4, {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 30 2013 *)
PROG
(PARI) x='x+O('x^30); concat(vector(4), Vec(serlaplace((log(1-x))^4))) \\ G. C. Greubel, Aug 30 2018
(PARI) a(n) = {4!*stirling(n, 4, 1)*(-1)^n} \\ Andrew Howroyd, Jul 27 2020
CROSSREFS
Column k=4 of A225479.
Sequence in context: A353775 A268966 A014340 * A353358 A353119 A052520
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
New name using e.g.f., Vaclav Kotesovec, Sep 30 2013
STATUS
approved