login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052750
a(n) = (2*n + 1)^(n - 1).
18
1, 1, 5, 49, 729, 14641, 371293, 11390625, 410338673, 16983563041, 794280046581, 41426511213649, 2384185791015625, 150094635296999121, 10260628712958602189, 756943935220796320321, 59938945498865420543457
OFFSET
0,3
COMMENTS
a(n+1) is the number of labeled incomplete ternary trees on n vertices in which each left child has a larger label than its parent. - Brian Drake, Jul 28 2008
Put a(0) = 1. For n > 0, let x(n,k) = 2*cos((2*k-1)*Pi/(2*n+1)), k=1..n. Define the recurrences S(n;0,x(n,k)) = 1, S(n;1,x(n,k)) = x(n,k), S(n;r,x(n,k)) = x(n,k)*S(n;r-1,x(n,k)) - S(n;r-2,x(n,k)), r > 1 an integer, k=1..n. CONJECTURE: For n > 0, a(n) = Product_{k=1..n} (Sum_{m=0..n-1} S(n;2*m,x(n,k))^2). - L. Edson Jeffery, Sep 11 2013
From Wolfdieter Lang, Dec 16 2013: (Start)
Discriminants of the first difference of Chebyshev S-polynomials.
The coefficient table for the first difference polynomials P(n, x) = S(n, x) - S(n-1, x), n >= 0, S(-1, x) = 0, with the Chebyshev S polynomials (see A049310), is given in A130777.
For the discriminant of a polynomial in terms of the square of a determinant of a Vandermonde matrix build from the zeros of the polynomial see, e.g., A127670.
For the proof that D(n) := discriminant(P(n,x)) = (2*n + 1)^(n - 1), n >= 1, use the formula given e.g., in the Rivlin reference, p. 218, Theorem 5.13, eq. (5.3), namely D(n) = (-1)^(n*(n-1)/2)*Product_{j=1..n} P'(n, x(n,j)), with the zeros x(n,j) = -2*cos(2*Pi*j/(2*n+1)) of P(n, x) (see A130777). P'(n, x(n,j)) = (2*n+1)*P(n-1, x(n,j))/(2*sin(Pi*j/(2*n+1))*2*cos(Pi*j/(2*n+1)))^2. P(n-1, x(n,j)) = (-1)^(n+j)*2*cos(Pi*j/(2*n+1)). Product_{j=1..n} 2*sin(Pi*j/(2*n+1)) = 2*n+1 (see the Oct 10 2013 formula in A005408. Product_{j=1..n} 2*cos(Pi*j/(2*n+1)) = 1, because S(2*n, 0) = (-1)^n.
(End)
a(n) is the number of labeled 2-trees with n+2 vertices, rooted at a given edge. - Nikos Apostolakis, Nov 30 2018
a(n) is also the number of 2-trees with n labeled triangles and with a distinguished oriented edge. - Nikos Apostolakis, Dec 14 2018
REFERENCES
L. W. Beineke, and J. W. Moon, Several proofs of the number of labelled 2-dimensional trees, In "Proof Techniques in Graph Theory" (F. Harary editor). Academic Press, New York, 1969, pp. 11-20.
Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.
LINKS
T. Fowler, I. Gessel, G. Labelle, and P. Leroux, The specification of 2-trees, Adv. Appl. Math. 28 (2) (2002) 145-168, eq. (9).
Henri Muehle and Philippe Nadeau, A Poset Structure on the Alternating Group Generated by 3-Cycles, arXiv:1803.00540 [math.CO], 2018.
J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014.
FORMULA
E.g.f.: exp(-1/2*W(-2*x)), where W is Lambert's W function.
E.g.f. satisfies: A(x) = sqrt(1 + 2*Sum_{n>=1} x^(2*n-1)/(2*n-1)! * A(x)^(4*n-1)). - Paul D. Hanna, Sep 07 2012
E.g.f. satisfies: A(x) = 1/A(-x*A(x)^4). - Paul D. Hanna, Sep 07 2012
a(n) = discriminant of P(n,x) = S(n,x) - S(n-1,x), n >= 1, with the Chebyshev S polynomials from A049310. For the proof see the comment above. a(n) is also the discriminant of S(n,x) + S(n-1,x) = (-1)^n*(S(n,-x) - S(n-1,-x)). - Wolfdieter Lang, Dec 16 2013
From Peter Bala, Dec 19 2013: (Start)
The e.g.f. A(x) = 1 + x + 5*x^2/2! + 49*x^3/3! + 729*x^4/4! + ... satisfies:
1) A(x*exp(-2*x)) = exp(x) = 1/A(-x*exp(2*x));
2) A^2(x) = 1/x*series reversion(x*exp(-2*x));
3) A(x^2) = 1/x*series reversion(x*exp(-x^2));
4) A(x) = exp(x*A(x)^2). (End)
E.g.f.: sqrt(-LambertW(-2*x)/(2*x)). - Vaclav Kotesovec, Dec 07 2014
Related to A001705 by Sum_{n >= 1} a(n)*x^n/n! = series reversion( 1/(1 + x)^2*log(1 + x) ) = series reversion(x - 5*x^2/2! + 26*x^3/3! - 154*x^4/4! + ...). Cf. A000272, A052752, A052774, A052782. - Peter Bala, Jun 15 2016
From Peter Bala, Dec 13 2022: (Start)
The e.g.f. A(x) = 1/x * series reversion of x^2/T(x), where the tree function T(x) = Sum_{n >= 1} n^(n-1)*x^n/n!. See A000169.
For c in C, A(x)^c = 1 + Sum_{n >= 1} c*(2*n + c)^(n-1)*x^n/n!.
First derivative A'(x) = A(x)^3/(1 - 2*x*A(x)^2).
Series reversion of (1 - A(-z)) = -log(1 - z)/(1 - z)^2 is the e.g.f. of A001705.
1/z * series reversion of z/A(z) = 1 + z + 7*z^2/2! + (10^2)*z^3/3! + (13^3)*z^4/4! + ... is the e.g.f. of A052752.
1/z * series reversion of z/A(z^2) = 1 + z^2 + 9*z^4/2! + (13^2)*z^6/3! + (17^3)*z^8/4! + ... = Sum_{n >= 0} A052774(n)*z^(2*n)/n!.
1/z * series reversion of z/A(z^3) = 1 + z^3 + 11*z^6/2! + (16^2)*z^9/3! + (21^3)*z^12/4! + ... = Sum_{n >= 0} A052782(n)*z^(3*n)/n!.
1/z * series reversion of z/A(z)^2 = A(2*z) = 2*Sum_{n >= 0} (4*n + 2)^(n-1)*z^n/n!.
1/z * series reversion of z/A(z)^k = k*Sum_{n >= 0} ((k+2)*n + k)^(n-1)*z^n/n!. (End)
EXAMPLE
Discriminant: n=4: P(4, x) = 1 + 2*x - 3*x^2 - x^3 + x^4 with the zeros x[1] = -2*cos((2/9)*Pi), x[2] = -2*cos((4/9)*Pi), x[3] = 1, x[4] = 2*cos((1/9)*Pi). D(4) = (Det(Vandermonde(4,[x[1],x[2],x[3],x[4]]))^2 = 729 = a(4). - Wolfdieter Lang, Dec 16 2013
MAPLE
spec := [S, {B=Prod(Z, S, S), S=Set(B)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
max = 16; (Series[Exp[-1/2*ProductLog[-2*x]], {x, 0, max}] // CoefficientList[#, x] & ) * Range[0, max]! (* Jean-François Alcover, Jun 20 2013 *)
PROG
(PARI) a(n)=(2*n+1)^(n-1) \\ Charles R Greathouse IV, Nov 20 2011
(PARI) {a(n)=local(A=1+x); for(i=1, 21, A=sqrt(1+2*sum(n=1, 21, x^(2*n-1)/(2*n-1)!*A^(4*n-1))+x*O(x^n))); n!*polcoeff(A, n)} \\ Paul D. Hanna, Sep 07 2012
(Magma) [(2*n+1)^(n-1) : n in [0..20]]; // Wesley Ivan Hurt, Jan 20 2017
(Python) for n in range(0, 20): print((2*n + 1)**(n - 1), end=', ') # Stefano Spezia, Dec 01 2018
(GAP) List([0..20], n->(2*n+1)^(n-1)); # Muniru A Asiru, Dec 05 2018
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
Better description from Vladeta Jovovic, Sep 02 2003
STATUS
approved