login
A014127
Mirimanoff primes: primes p such that p^2 divides 3^(p-1) - 1.
44
OFFSET
1,1
COMMENTS
Dorais and Klyve proved that there are no further terms up to 9.7*10^14.
These primes are so named after the celebrated result of Mirimanoff in 1910 (see below) that for a failure of the first case of Fermat's Last Theorem, the exponent p must satisfy the criterion stated in the definition. Lerch (see below) showed that these primes also divide the numerator of the harmonic number H(floor(p/3)). This is analogous to the fact that Wieferich primes (A001220) divide the numerator of the harmonic number H((p-1)/2). - John Blythe Dobson, Mar 02 2014, Apr 09 2015
The prime 1006003 was apparently discovered by K. E. Kloss (cf. Kloss, 1965) according to various sources. - Felix Fröhlich, Dec 08 2020
If there is no term other than 11 and 1006003, then the only solution (a, w, x, y, z) to the diophantine equation a^w + a^x = 3^y + 3^z is (5, 1, 1, 2, 3) (cf. Scott, Styer, 2006, Lemma 12). - Felix Fröhlich, Dec 10 2020
Named after the Russian mathematician Dmitry Semionovitch Mirimanoff (1861-1945). - Amiram Eldar, Jun 10 2021
REFERENCES
Paulo Ribenboim, 13 Lectures on Fermat's Last Theorem, Springer, 1979, pp. 23, 152-153.
Alf van der Poorten, Notes on Fermat's Last Theorem, Wiley, 1996, p. 21.
LINKS
Amir Akbary and Sahar Siavashi, The Largest Known Wieferich Numbers, INTEGERS, 18(2018), A3. See Table 1 p. 5.
Chris K. Caldwell, Fermat Quotient, The Prime Glossary.
John Blythe Dobson, On the special harmonic numbers H_floor(p/9) and H_floor(p/18) modulo p, arXiv:2302.02027 [math.NT], 2023.
François G. Dorais and Dominic Klyve, A Wieferich prime search up to  p < 6.7*10^15, J. Integer Seq., Vol. 14 (2011), Article 11.9.2, 1-14.
Wilfrid Keller and Jörg Richstein, Solutions of the congruence a^(p-1) == 1 (mod p^r), Math. Comp., Vol. 74, No. 250 (2005), pp. 927-936.
K. E. Kloss, Some Number-Theoretic Calculations, Journal of Research of the National Bureau of Standards - B. Mathematics and Mathematical Physics, Vol. 69B, No. 4 (Oct.-Dec. 1965), pp. 335-336.
Mathias Lerch, Zur Theorie des Fermatschen Quotienten (a^(p-1) - 1)/p == q(a), Mathematische Annalen, Vol. 60 (1905), pp. 471-490.
D. Mirimanoff, Sur le dernier théorème de Fermat, C. R. Acad. Sci. Paris, Vol. 150 (1910), pp. 204-206. Revised as Sur le dernier théorème de Fermat, Journal für die reine und angewandte Mathematik, Vol. 139 (1911), pp. 309-324.
Planet Math, Wieferich Primes.
Reese Scott and Robert Styer, On the generalized Pillai equation +-a^x +-b^y = c, Journal of Number Theory, Vol. 118, No. 2 (2006), pp. 236-265.
MATHEMATICA
Select[Prime[Range[1000000]], PowerMod[3, # - 1, #^2] == 1 &] (* Robert Price, May 17 2019 *)
PROG
(PARI)
N=10^9; default(primelimit, N);
forprime(n=2, N, if(Mod(3, n^2)^(n-1)==1, print1(n, ", ")));
\\ Joerg Arndt, May 01 2013
(Python)
from sympy import prime
from gmpy2 import powmod
A014127_list = [p for p in (prime(n) for n in range(1, 10**7)) if powmod(3, p-1, p*p) == 1] # Chai Wah Wu, Dec 03 2014
CROSSREFS
Sequences "primes p such that p^2 divides X^(p-1)-1": A001220 (X=2), A123692 (X=5), A212583 (X=6), A123693 (X=7), A045616 (X=10), A111027 (X=12), A128667 (X=13), A234810 (X=14), A242741 (X=15), A128668 (X=17), A244260 (X=18), A090968 (X=19), A242982 (X=20), A298951 (X=22), A128669 (X=23), A306255 (X=26), A306256 (X=30).
Sequence in context: A253632 A112854 A211238 * A049192 A156670 A116061
KEYWORD
nonn,hard,bref,more
EXTENSIONS
Edited by Max Alekseyev, Oct 20 2010
Updated by Max Alekseyev, Jan 29 2012
STATUS
approved