OFFSET
0,3
COMMENTS
a(n) is the number of ways to seat n people at an unspecified number of circular tables and then linearly order the nonempty tables. - Geoffrey Critzer, Mar 18 2009
The terms of this sequence for n >= 1 are the row sums of A008275^2, the unsigned version of A039814. - Peter Bala, Jul 22 2014
Signed sequence is the base for an Appell sequence of polynomials with the e.g.f. e^(x*t)/[log(1+t) + 1] = exp(P(.,x),t) that is the umbral compositional inverse for A238385, reverse of A111492, i.e., umbrally evaluated UP(n,P(.,t))= x^n = P(n,UP(.,t)) where UP(n,t) are the polynomials of A238385. Umbrally evaluated means letting (A(.,t))^n = A(n,t) after substituting A for the independent variable of the polynomial. - Tom Copeland, Nov 15 2014
a(n) is the number of unimodal rooted forests on n labeled nodes (i.e., those forests that avoid the patterns 213 and 312). - Kassie Archer, Aug 30 2018
Number of permutations of [n] where fixed points at index j are j-colored and all other points are unicolored. - Alois P. Heinz, Apr 24 2020
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..420
K. Anders and K. Archer, Rooted forests that avoid sets of permutations, arXiv:1607.03046 [math.CO], 2016-2017.
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 119.
W. S. Gray and M. Thitsa, System Interconnections and Combinatorial Integer Sequences, in: System Theory (SSST), 2013 45th Southeastern Symposium on, Date of Conference: 11-11 March 2013, Digital Object Identifier: 10.1109/SSST.2013.6524939.
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 122
Marin Knežević, Vedran Krčadinac, and Lucija Relić, Matrix products of binomial coefficients and unsigned Stirling numbers, arXiv:2012.15307 [math.CO], 2020.
A. Knopfmacher and J. N. Ridley, Reciprocal sums over partitions and compositions, SIAM J. Discrete Math. 6 (1993), no. 3, 388-399.
Chanchal Kumar and Amit Roy, Integer Sequences and Monomial Ideals, arXiv:2003.10098 [math.CO], 2020.
FORMULA
a(n) = Sum_{k=1..n} k! * s(n, k), s(n, k) = unsigned Stirling number of first kind; E.g.f. 1/(1+log(1-z)).
For n>0, a(n) is the permanent of the n X n matrix with entries a(i, i) = i and a(i, j) = 1 elsewhere. - Philippe Deléham, Dec 09 2003
a(n) = A052860(n)/n for n >= 1.
a(n) = n!*Sum_{k=0..n-1} a(k)/k!/(n-k) for n >= 1 with a(0)=1. - Paul D. Hanna, Jul 19 2006
E.g.f.: B(A(x)) where B(x) = 1/(1-x) and A(x) = log(1/(1-x)). - Geoffrey Critzer, Mar 18 2009
a(n) = D^n(1/(1-x)) evaluated at x = 0, where D is the operator exp(x)*d/dx. Cf. A006252. - Peter Bala, Nov 25 2011
E.g.f.: 1/(1+log(1-x)) = 1/(1 - x/(1 - x/(2 - x/(3 - 4*x/(4 - 4*x/(5 - 9*x/(6 - 9*x/(7 - 16*x/(8 - 16*x/(9 - ...)))))))))), a continued fraction. - Paul D. Hanna, Dec 31 2011
a(n) ~ n! * exp(n)/(exp(1)-1)^(n+1). - Vaclav Kotesovec, Jun 21 2013
MAPLE
a:= proc(n) a(n):= n!*`if`(n=0, 1, add(a(k)/(k!*(n-k)), k=0..n-1)) end:
seq(a(n), n=0..25); # Alois P. Heinz, Nov 06 2012
MATHEMATICA
Table[Sum[Abs[StirlingS1[n, k]] k!, {k, 0, n}], {n, 0, 20}] (* Geoffrey Critzer, Mar 18 2009 *)
PROG
(PARI) a(n)=n!*polcoeff(1/(1+log(1-x +x*O(x^n))), n) /* Paul D. Hanna, Jul 19 2006 */
(PARI) {a(n)=local(CF=1+x*O(x)); for(k=0, n-1, CF=1/((n-k)-((n-k+1)\2)^2*x*CF)); n!*polcoeff(1/(1-x*CF), n)} /* Paul D. Hanna, Jul 19 2006 */
(Sage)
def A007840_list(len):
f, R, C = 1, [1], [1]+[0]*len
for n in (1..len):
f *= n
for k in range(n, 0, -1):
C[k] = -C[k-1]*((k-1)/k if k>1 else 1)
C[0] = sum((-1)^k*C[k] for k in (1..n))
R.append(C[0]*f)
return R
print(A007840_list(20)) # Peter Luschny, Feb 21 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Extended June 1995
STATUS
approved