login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A006330
Number of corners, or planar partitions of n with only one row and one column.
(Formerly M2553)
49
1, 1, 3, 6, 12, 21, 38, 63, 106, 170, 272, 422, 653, 986, 1482, 2191, 3218, 4666, 6726, 9592, 13602, 19122, 26733, 37102, 51232, 70292, 95989, 130356, 176246, 237120, 317724, 423840, 563266, 745562, 983384, 1292333, 1692790, 2209886, 2876132
OFFSET
0,3
COMMENTS
The first four terms a(0), a(1), a(2), a(3) agree with sequence A000219 for unrestricted planar partitions, since the restriction does not rule anything out. For a(4) there is just one planar partition which doesn't satisfy the restriction, four 1's arranged in a square. So A000219 has fifth term 13 and here we have 12.
a(n) + A001523(n) = A000712(n). - Michael Somos, Jul 22 2003
Number of unimodal compositions of n+1 where the maximal part appears once, see example. [Joerg Arndt, Jun 11 2013]
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 1, 1999; see page 77.
LINKS
G. E. Andrews, Euler's "De Partitio Numerorum", Bull. Amer. Math. Soc., 44 (No. 4, 2007), 561-573. See (5.6).
F. C. Auluck, On some new types of partitions associated with generalized Ferrers graphs, Proc. Cambridge Philos. Soc. 47, (1951), 679-686.
Shouvik Datta, M. R. Gaberdiel, W. Li, C. Peng, Twisted sectors from plane partitions, arXiv preprint arXiv:1606.07070 [hep-th], 2016. See Sect. 2.1.
G. Kreweras, Sur les extensions linéaires d'une famille particulière d'ordres partiels, Discrete Math., 27 (1979), 279-295.
G. Kreweras, Sur les extensions linéaires d'une famille particulière d'ordres partiels, Discrete Math., 27 (1979), 279-295. (Annotated scanned copy)
FORMULA
G.f.: 1+Sum_{k>0} x^k/(Product_{i=1..k} (1-x^i))^2.
G.f.: (Sum_{k>=0} (-1)^k * x^(k(k+1)/2)) / (Product_{k>0} 1 - x^k)^2. - Michael Somos, Jul 28 2003
Convolution product of A197870 and A000712. - Michael Somos, Feb 22 2015
a(n) ~ exp(2*Pi*sqrt(n/3)) / (8 * 3^(3/4) * n^(5/4)) [Auluck, 1951]. - Vaclav Kotesovec, Jun 22 2015
EXAMPLE
From Joerg Arndt, Jun 11 2013: (Start)
There are a(4)=12 unimodal compositions of 4+1=5 where the maximal part appears once:
01: [ 1 1 1 2 ]
02: [ 1 1 2 1 ]
03: [ 1 1 3 ]
04: [ 1 2 1 1 ]
05: [ 1 3 1 ]
06: [ 1 4 ]
07: [ 2 1 1 1 ]
08: [ 2 3 ]
09: [ 3 1 1 ]
10: [ 3 2 ]
11: [ 4 1 ]
12: [ 5 ]
(End)
G.f. = 1 + x + 3*x^2 + 6*x^3 + 12*x^4 + 21*x^5 + 38*x^6 + 63*x^7 + 106*x^8 + ...
MATHEMATICA
a[0] = 1; a[n_] := SeriesCoefficient[ Sum[x^k/Product[1 - x^i, {i, 1, k}]^2, {k, 1, n}] + 1, {x, 0, n}]; Array[a, 39, 0] (* Jean-François Alcover, Mar 13 2014 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( sum(k=1, n, x^k / prod(i=1, k, 1 - x^i, 1 + x*O(x^n))^2, 1), n))};
(PARI) {a(n) = if( n<0, 0, polcoeff( sum(k=0, (sqrtint(1 + 8*n) - 1)\2, (-1)^k * x^((k + k^2)/2)) / eta(x + x*O(x^n))^2, n))};
CROSSREFS
Column k=1 of A247255.
Row sums of A259100.
Sequence in context: A247662 A337462 A215005 * A293636 A087503 A092176
KEYWORD
nonn
EXTENSIONS
Edited and extended by Moshe Shmuel Newman, Jun 10 2003
STATUS
approved