login
A002209
Denominators of coefficients for numerical integration.
(Formerly M2015 N0796)
22
1, 2, 12, 8, 720, 288, 60480, 17280, 3628800, 89600, 95800320, 17418240, 2615348736000, 402361344000, 4483454976000, 98402304, 32011868528640000, 342372925440000, 51090942171709440000, 5377993912811520000, 33720021833328230400000
OFFSET
0,2
COMMENTS
a(n) is the denominator of the "reverse" multiple zeta value zeta_n^R(0,0,...,0) for n > 0. - Jonathan Sondow, Nov 29 2006
The numerators are given in A002208.
REFERENCES
Charles Jordan, Calculus of Finite Differences, Chelsea 1965, p. 529.
N. E. Nørlund, Vorlesungen über Differenzenrechnung, Springer-Verlag, Berlin, 1924.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
S. Akiyama and Y. Tanigawa, Multiple zeta values at non-positive integers, Ramanujan J. 5 (2001), 327-351.
Guodong Liu, Some computational formulas for Norlund numbers, Fib. Quart., 45 (2007), 133-137.
A. N. Lowan and H. Salzer, Table of coefficients in numerical integration formulas, J. Math. Phys., 22 (1943), 49-50.
A. N. Lowan and H. Salzer, Table of coefficients in numerical integration formulas, J. Math. Phys. Mass. Inst. Tech. 22 (1943), 49-50.[Annotated scanned copy]
FORMULA
G.f. of A002208(n)/a(n): -x/((1-x)*log(1-x)).
a(n) = denominator(v(n)), where v(n) = 1 - Sum_{i=0..n-1} v(i)/(n-i+1), v(0)=1. - Vladimir Kruchinin, Aug 28 2013
a(n) = denominator(((-1)^n/n!)*Sum_{k=0..n} Stirling1(n+1,k+1)/(k+1)). - Vladimir Kruchinin, Oct 12 2016
EXAMPLE
1, 1/2, 5/12, 3/8, 251/720, 95/288, 19087/60480, 5257/17280, 1070017/3628800, 25713/89600, 26842253/95800320, 4777223/17418240, 703604254357/2615348736000, 106364763817/402361344000, ... = A002208/A002209.
MATHEMATICA
a[0] = 1; a[n_] := (-1)^n*Sum[(-1)^(k+1)*BernoulliB[k]*StirlingS1[n, k]/k, {k, 1, n}]/(n-1)!; Table[a[n], {n, 0, 20}] // Denominator (* Jean-François Alcover, Sep 27 2012, after Rudi Huysmans's formula for A002208 *)
Denominator[CoefficientList[Series[-x/((1-x)Log[1-x]), {x, 0, 20}], x]] (* Harvey P. Dale, Feb 01 2013 *)
PROG
(Maxima)
a(n):=denom(((-1)^(n)*sum(stirling1(n+1, k+1)/(k+1), k, 0, n))/(n)!); /* Vladimir Kruchinin, Oct 12 2016 */
(Python)
from math import factorial
from fractions import Fraction
from sympy.functions.combinatorial.numbers import stirling
def A002209(n): return (sum(Fraction(stirling(n+1, k+1, kind=1, signed=True), k+1) for k in range(n+1))/factorial(n)).denominator # Chai Wah Wu, Jul 09 2023
CROSSREFS
KEYWORD
nonn,frac,easy,nice
STATUS
approved