login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000514
Eulerian numbers (Euler's triangle: column k=6 of A008292, column k=5 of A173018)
(Formerly M5379 N2336)
8
1, 120, 4293, 88234, 1310354, 15724248, 162512286, 1505621508, 12843262863, 102776998928, 782115518299, 5717291972382, 40457344748072, 278794377854832, 1879708669896492, 12446388300682056, 81180715002105741
OFFSET
6,2
COMMENTS
There are 2 versions of Euler's triangle:
* A008292 Classic version of Euler's triangle used by Comtet (1974).
* A173018 Version of Euler's triangle used by Graham, Knuth and Patashnik in Concrete Math. (1990).
Euler's triangle rows and columns indexing conventions:
* A008292 The rows and columns of the Eulerian triangle are both indexed starting from 1. (Classic version: used in the classic books by Riordan and Comtet.)
* A173018 The rows and columns of the Eulerian triangle are both indexed starting from 0. (Graham et al.)
REFERENCES
L. Comtet, "Permutations by Number of Rises; Eulerian Numbers." §6.5 in Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel, pp. 51 and 240-246, 1974.
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 243.
F. N. David and D. E. Barton, Combinatorial Chance. Hafner, NY, 1962, p. 151.
F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 260.
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 215.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
L. Carlitz et al., Permutations and sequences with repetitions by number of increases, J. Combin. Theory, 1 (1966), 350-374.
Index entries for linear recurrences with constant coefficients, signature (56, -1470, 24052, -275135, 2339340, -15343384, 79518296, -330867999, 1116881584, -3077867318, 6944399940, -12825741073, 19327952588, -23608674132, 23125043824, -17872240112, 10637255232, -4697205696, 1447365888, -277447680, 24883200).
FORMULA
a(n) = 6^(n+6-1) + Sum_{i=1..6-1} ((-1)^i/i!)*(6-i)^(n+6-1)*Product_{j=1..i} (n+6+1-j). - Randall L Rathbun, Jan 23 2002
E.g.f.: (1/120)*(120*exp(6*x) - 120*(1+5*x)*exp(5*x) + 480*x*(1+2*x)*exp(4*x) - 540*x^2*(1+x)*exp(3*x) + 80*x^3*(2+x)*exp(2*x) - x^4*(5+x)*exp(x)). - Wenjin Woan, Oct 25 2007 (Corrected by G. C. Greubel, Oct 24 2017)
For the general formula for the o.g.f. and e.g.f. see A123125. - Wolfdieter Lang, Apr 03 2017
MATHEMATICA
k = 6; Table[k^(n + k - 1) + Sum[(-1)^i/i!*(k - i)^(n + k - 1) * Product[n + k + 1 - j, {j, 1, i}], {i, 1, k - 1}], {n, 1, 17}] (* Michael De Vlieger, Aug 04 2015, after PARI *)
PROG
(PARI) A000514(n)=6^(n+6-1)+sum(i=1, 6-1, (-1)^i/i!*(6-i)^(n+6-1)*prod(j=1, i, n+6+1-j))
(PARI) x='x+O('x^50); Vec(serlaplace((1/120)*(120*exp(6*x) - 120*(1+5*x)*exp(5*x) + 480*x*(1+2*x)*exp(4*x) -540*x^2*(1+x)*exp(3*x) +80*x^3*(2+x)*exp(2*x) - x^4*(5+x)*exp(x)))) \\ G. C. Greubel, Oct 24 2017
CROSSREFS
Cf. A008292 (classic version of Euler's triangle used by Comtet (1974)).
Cf. A173018 (version of Euler's triangle used by Graham, Knuth and Patashnik in Concrete Math. (1990)).
Cf. A123125 (row reversed version of A173018).
Cf. A000012, A000460, A000498, A000505 (columns for smaller k).
Sequence in context: A222003 A139389 A166596 * A179060 A342073 A055360
KEYWORD
nonn,easy
EXTENSIONS
More terms from Christian G. Bower, May 12 2000
STATUS
approved