A reverse transcription polymerase chain reaction (RT-PCR) procedure is described for the detecti... more A reverse transcription polymerase chain reaction (RT-PCR) procedure is described for the detection of marine caliciviruses including vesicular exanthema of swine virus (VESV), San Miguel sea lion virus (SMSV), bovine Tillamook virus (BCV Bos-1) and caliciviruses (CV) isolated from dolphin (Cetacean CV), gorilla (Primate CV) and rattlesnake (Reptile CV) using primers (1F and 1R) designed from the capsid-coding region of
The nucleotide sequence of a swine vesicular disease virus (SVDV) strain that is pathogenic for p... more The nucleotide sequence of a swine vesicular disease virus (SVDV) strain that is pathogenic for pigs has been determined and compared with that of a non-pathogenic strain of SVDV, as well as a number of other enteroviruses. It shows only 98 base changes in comparison with a non-pathog~c strain of SVDV (Inoue et al., 1989, I. Gen. Virol. 70, 919-934). Fourteen of these nucleotide differences between the pathogenic and the non-pathogenic SVDV strains occur in the 5' non-coding region which, by analogy with the other picornaviruses, has been implicated in the efficiency with which the RNA is employed as mRNA. Additional differences found throughout the coding regions are largely conservative in nature. A number of residues are discussed as candidates for determinants of pathogenicity. This sequence has been submitted to the PIR database and has accession number A30061. Swine vesicular disease virus; Nucleotide sequence Intmhction Swine vesicular disease virus was first recognised in Italy during 1966 (Nardelli et al., 1968). The causative agent, swine vesicular disease virus (SVDV), is an enterovirus and a member of the Picornaviridae. As with other picomaviruses, the
The complete genome of a foot-and-mouth disease (FMD) type A virus isolated from cattle in Saudi ... more The complete genome of a foot-and-mouth disease (FMD) type A virus isolated from cattle in Saudi Arabia in 2015 is described here. This virus belongs to an FMD virus lineage named genotype VII, which is normally endemic on the Indian subcontinent.
The genome sequences of three duck hepatitis virus type 1 (DHV-1) strains were determined. Compar... more The genome sequences of three duck hepatitis virus type 1 (DHV-1) strains were determined. Comparative sequence analyses showed that they possessed a typical picornavirus genome organization apart from the unique possession of three in-tandem 2A genes. The 2A1 protein of DHV-1 is an aphthovirus-like 2A protein; the 2A2 protein is not related to any known picornavirus protein; the 2A3 protein is a human parechovirus-like 2A protein. Several other features were found to be unique to the DHV-1 genome when compared with other picornaviruses: (i) the 3' UTR of DHV-1 was composed of 314 nt, the largest among the picornaviruses; (ii) pair-wise amino acid sequence identities between polyprotein of DHV-1 and other picornaviruses are all less than 30%. The pair-wise amino acid sequence identities in the 3D region of DHV-1 with LV and HPeV-1 is only 38.6 and 36.6%, respectively, and less than 30% with all other picornaviruses; (iii) the DHV-1 capsid polypeptide VP0 is not proteolytically cleaved into VP4 and VP2; and (iv) phylogenetic and evolutionary analysis of DHV-1 reveals a new picornavirus clade. It is therefore proposed that DHV-1 should be assigned to a new genus in the Picornaviridae.
This article lists the changes to virus taxonomy approved and ratified by the International Commi... more This article lists the changes to virus taxonomy approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in April 2016. Changes to virus taxonomy (the Universal Scheme of Virus Classification of the International Committee on Taxonomy of Viruses [ICTV]) now take place annually and are the result of a multi-stage process. In accordance with the ICTV Statutes (https://www.ictvonline.org/statutes.asp), proposals submitted to the ICTV Executive Committee (EC) undergo a review process that involves input from the ICTV Study Groups (SGs) and Subcommittees (SCs), other interested virologists, and the EC. After final approval by the EC, proposals are then presented for ratification to the full ICTV membership by publication on an ICTV web site
Seneca Valley virus 1 (SVV-1) has been associated with vesicular disease in swine, with clinical ... more Seneca Valley virus 1 (SVV-1) has been associated with vesicular disease in swine, with clinical signs indistinguishable from those of other notifiable vesicular diseases such as foot-and-mouth disease. Rapid and accurate detection of SVV-1 is central to confirm the disease causing agent, and to initiate the implementation of control processes. The development of rapid, cost-effective diagnostic assays that can be used at the point of sample collection has been identified as a gap in preparedness for the control of SVV-1. This study describes the development and bench validation of two reverse transcription loop-mediated amplification (RT-LAMP) assays targeting the 5′-untranslated region (5′-UTR) and the VP3-1 region for the detection of SVV-1 that may be performed at the point of sample collection. Both assays were able to demonstrate amplification of all neat samples diluted 1/100 in negative pig epithelium tissue suspension within 8 min, when RNA was extracted prior to the RT-LAMP assay, and no amplification was observed for the other viruses tested. Simple sample preparation methods using lyophilized reagents were investigated, to negate the requirement for RNA extraction. Only a small delay in the time to amplification was observed for these lyophilized reagents, with a time from sample receipt to amplification achieved within 12 min. Although diagnostic validation is recommended, these RT-LAMP assays are highly sensitive and specific, with the potential to be a useful tool in the rapid diagnosis of SVV-1 in the field. K E Y W O R D S point-of-care diagnostics, rapid detection, reverse transcription loop-mediated isothermal amplification, Seneca Valley virus-1 1 | INTRODUCTION Seneca Valley virus 1 (SVV-1) is the only known virus belonging to the species Senecavirus A, genus Senecavirus, within the family Picornaviridae (Knowles et al., 2012). It is a non-enveloped, singlestranded, positive-sense RNA virus recently associated with vesicular disease in swine in Brazil, the USA,
The sequence diversity of viral populations within individual hosts is the starting 24 material f... more The sequence diversity of viral populations within individual hosts is the starting 24 material for selection and subsequent evolution of RNA viruses such as foot-and-mouth 25 disease virus (FMDV). Using next-generation sequencing (NGS) performed on a Genome 26 Analyzer platform (Illumina), this study compared the viral populations within two 27 bovine epithelial samples (foot lesions) from a single animal with the Inoculum used to 28 initiate experimental infection. Genomic sequences were determined in duplicate 29 sequencing runs, and the consensus sequence determined by NGS, for the Inoculum, 30 was identical to that previously determined using the Sanger method. However, NGS 31 reveals the fine polymorphic sub-structure of the viral population, from nucleotide 32 variants present at just below 50% frequency to those present at fractions of 1%. Some 33 of the higher frequency polymorphisms identified encoded changes within codons 34 associated with heparan sulphate binding and were present in both feet lesions 35 revealing intermediate stages in the evolution of a tissue-culture adapted virus 36 replicating within a mammalian host. We identified 2,622, 1,434 and 1,703 37 polymorphisms in the Inoculum, and in the two foot lesions respectively: most of the 38 substitutions occurred only in a small fraction of the population and represent the 39 progeny from recent cellular replication prior to onset of any selective pressures. We 40 estimated an upper limit for the genome-wide mutation rate of the virus within a cell to 41 be 7.8 x 10-4 per nt. The greater depth of detection, achieved by NGS, demonstrates that 42 this method is a powerful and valuable tool for the dissection of FMDV populations 43 within-hosts. 44
Revue Scientifique Et Technique De L Office International Des Epizooties, Apr 1, 2016
Foot and mouth disease virus (FMDV) is an animal pathogen of global economic significance. Identi... more Foot and mouth disease virus (FMDV) is an animal pathogen of global economic significance. Identifying the sources of outbreaks plays an important role in disease control; however, this can be confounded by the ease with which FMDV can spread via movement of infected livestock and animal products, aerosols or fomites, e.g. contaminated persons and objects. As sequencing technologies have advanced, this review highlights the uses of viral genomic data in helping to understand the global distribution and transboundary movements of FMDV, and the role that these approaches have played in control and surveillance programmes. The recent application of next-generation sequencing platforms to address important epidemiological and evolutionary challenges is discussed with particular reference to the advent of 'omics' technologies.
Enteroviruses (EVs) and rhinoviruses (RVs) are significant pathogens of humans and are the subjec... more Enteroviruses (EVs) and rhinoviruses (RVs) are significant pathogens of humans and are the subject of intensive clinical and epidemiological research and public health measures, notably in the eradication of poliovirus and in the investigation and control of emerging pathogenic EV types worldwide. EVs and RVs are highly diverse in their antigenic properties, tissue tropism, disease associations and evolutionary relationships, but the latter often conflict with previously developed biologically defined terms, such as “coxsackieviruses”, “polioviruses” and “echoviruses”, which were used before their genetic interrelationships were understood. This has created widespread formatting problems and inconsistencies in the nomenclature for EV and RV types and species in the literature and public databases. As members of the International Committee for Taxonomy of Viruses (ICTV) Picornaviridae Study Group, we describe the correct use of taxon names for these viruses and have produced a series...
In recent years, foot-and-mouth disease virus (FMDV) serotype O, topotype Middle East-South Asia ... more In recent years, foot-and-mouth disease virus (FMDV) serotype O, topotype Middle East-South Asia (ME-SA), lineage Ind-2001d has spread from the Indian subcontinent to the Middle East, North Africa, and Southeast Asia. In the current report, we describe the first detection of this lineage in Vietnam in May, 2015 in Đắk Nông province. Three subsequent outbreaks caused by genetically related viruses occurred between May-October, 2015 after which the virus was not detected in clinical outbreaks for at least 15 subsequent months. The observed outbreaks affected (in chronological order): cattle in Đắk Nông province, pigs in Đắk Lắk province and Đắk Nông province, and cattle in Ninh Thuận province. The clinical syndromes associated with these outbreaks were consistent with typical FMD in the affected species. Overall attack rate on affected premises was 0.85 in pigs and 0.93 in cattle over the course of the outbreak. Amongst 378 pigs at risk on affected premises, 85 pigs died during the ou...
The deletion of residues 93-102 in non-structure protein 3A of foot-and-mouth disease virus (FMDV... more The deletion of residues 93-102 in non-structure protein 3A of foot-and-mouth disease virus (FMDV) is associated with the inability of FMDV to grow in bovine cells and attenuated virulence in cattle.Whereas, a previously reported FMDV strain O/HKN/21/70 harboring 93-102 deletion in 3A protein grew equally well in bovine and swine cells. This suggests that changes inFMDV genome sequence, in addition to 93-102 deletion in 3A, may also affectthe viral growth phenotype in bovine cellsduring infection and replication.However, it is nuclear that changes in which region (inside or outside of 3A region) influences FMDV growth phenotype in bovine cells.In this study, to determine the region in FMDV genomeaffecting viral growth phenotype in bovine cells, we constructed chimeric FMDVs, rvGZSB-HKN3A and rvHN-HKN3A, by introducing the 3A coding region of O/HKN/21/70 into the context of O/SEA/Mya-98 strain O/GZSB/2011 and O Cathay topotype strain O/HN/CHA/93, respectively, since O/GZSB/2011 conta...
The family Picornaviridae comprises small non-enveloped viruses with RNA genomes of 6.7 to 10.1 k... more The family Picornaviridae comprises small non-enveloped viruses with RNA genomes of 6.7 to 10.1 kb, and contains >30 genera and >75 species. Most of the known picornaviruses infect mammals and birds, but some have also been detected in reptiles, amphibians and fish. Many picornaviruses are important human and veterinary pathogens and may cause diseases of the central nervous system, heart, liver, skin, gastrointestinal tract or upper respiratory tract. Most picornaviruses are transmitted by the faecal-oral or respiratory routes. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Picornaviridae, which is available at www.ictv.global/report/picornaviridae.
The current measures to control foot-and-mouth disease (FMD) include vaccination, movement contro... more The current measures to control foot-and-mouth disease (FMD) include vaccination, movement control and slaughter of infected or susceptible animals. One of the difficulties in controlling FMD by vaccination arises due to the substantial diversity found among the seven serotypes of FMD virus (FMDV) and the strains within these serotypes. Therefore, vaccination using a single vaccine strain may not fully cross-protect against all strains within that serotype, and therefore selection of appropriate vaccines requires serological comparison of the field virus and potential vaccine viruses using relationship coefficients (r 1 values). Limitations of this approach are that antigenic relationships among field viruses are not addressed, as comparisons are only with potential vaccine virus. Furthermore, inherent variation among vaccine sera may impair reproducibility of one-way relationship scores. Here, we used antigenic cartography to quantify and visualize the antigenic relationships among FMD serotype A viruses, aiming to improve the understanding of FMDV antigenic evolution and the scope and reliability of vaccine matching. Our results suggest that predicting antigenic difference using genetic sequence alone or by geographical location is not currently reliable. We found co-circulating lineages in one region that were genetically similar but antigenically distinct. Nevertheless, by comparing antigenic distances measured from the antigenic maps with the full capsid (P1) sequence, we identified a specific amino acid substitution associated with an antigenic mismatch among field viruses and a commonly used prototype vaccine strain, A22/IRQ/24/64.
A reverse transcription polymerase chain reaction (RT-PCR) procedure is described for the detecti... more A reverse transcription polymerase chain reaction (RT-PCR) procedure is described for the detection of marine caliciviruses including vesicular exanthema of swine virus (VESV), San Miguel sea lion virus (SMSV), bovine Tillamook virus (BCV Bos-1) and caliciviruses (CV) isolated from dolphin (Cetacean CV), gorilla (Primate CV) and rattlesnake (Reptile CV) using primers (1F and 1R) designed from the capsid-coding region of
The nucleotide sequence of a swine vesicular disease virus (SVDV) strain that is pathogenic for p... more The nucleotide sequence of a swine vesicular disease virus (SVDV) strain that is pathogenic for pigs has been determined and compared with that of a non-pathogenic strain of SVDV, as well as a number of other enteroviruses. It shows only 98 base changes in comparison with a non-pathog~c strain of SVDV (Inoue et al., 1989, I. Gen. Virol. 70, 919-934). Fourteen of these nucleotide differences between the pathogenic and the non-pathogenic SVDV strains occur in the 5' non-coding region which, by analogy with the other picornaviruses, has been implicated in the efficiency with which the RNA is employed as mRNA. Additional differences found throughout the coding regions are largely conservative in nature. A number of residues are discussed as candidates for determinants of pathogenicity. This sequence has been submitted to the PIR database and has accession number A30061. Swine vesicular disease virus; Nucleotide sequence Intmhction Swine vesicular disease virus was first recognised in Italy during 1966 (Nardelli et al., 1968). The causative agent, swine vesicular disease virus (SVDV), is an enterovirus and a member of the Picornaviridae. As with other picomaviruses, the
The complete genome of a foot-and-mouth disease (FMD) type A virus isolated from cattle in Saudi ... more The complete genome of a foot-and-mouth disease (FMD) type A virus isolated from cattle in Saudi Arabia in 2015 is described here. This virus belongs to an FMD virus lineage named genotype VII, which is normally endemic on the Indian subcontinent.
The genome sequences of three duck hepatitis virus type 1 (DHV-1) strains were determined. Compar... more The genome sequences of three duck hepatitis virus type 1 (DHV-1) strains were determined. Comparative sequence analyses showed that they possessed a typical picornavirus genome organization apart from the unique possession of three in-tandem 2A genes. The 2A1 protein of DHV-1 is an aphthovirus-like 2A protein; the 2A2 protein is not related to any known picornavirus protein; the 2A3 protein is a human parechovirus-like 2A protein. Several other features were found to be unique to the DHV-1 genome when compared with other picornaviruses: (i) the 3' UTR of DHV-1 was composed of 314 nt, the largest among the picornaviruses; (ii) pair-wise amino acid sequence identities between polyprotein of DHV-1 and other picornaviruses are all less than 30%. The pair-wise amino acid sequence identities in the 3D region of DHV-1 with LV and HPeV-1 is only 38.6 and 36.6%, respectively, and less than 30% with all other picornaviruses; (iii) the DHV-1 capsid polypeptide VP0 is not proteolytically cleaved into VP4 and VP2; and (iv) phylogenetic and evolutionary analysis of DHV-1 reveals a new picornavirus clade. It is therefore proposed that DHV-1 should be assigned to a new genus in the Picornaviridae.
This article lists the changes to virus taxonomy approved and ratified by the International Commi... more This article lists the changes to virus taxonomy approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in April 2016. Changes to virus taxonomy (the Universal Scheme of Virus Classification of the International Committee on Taxonomy of Viruses [ICTV]) now take place annually and are the result of a multi-stage process. In accordance with the ICTV Statutes (https://www.ictvonline.org/statutes.asp), proposals submitted to the ICTV Executive Committee (EC) undergo a review process that involves input from the ICTV Study Groups (SGs) and Subcommittees (SCs), other interested virologists, and the EC. After final approval by the EC, proposals are then presented for ratification to the full ICTV membership by publication on an ICTV web site
Seneca Valley virus 1 (SVV-1) has been associated with vesicular disease in swine, with clinical ... more Seneca Valley virus 1 (SVV-1) has been associated with vesicular disease in swine, with clinical signs indistinguishable from those of other notifiable vesicular diseases such as foot-and-mouth disease. Rapid and accurate detection of SVV-1 is central to confirm the disease causing agent, and to initiate the implementation of control processes. The development of rapid, cost-effective diagnostic assays that can be used at the point of sample collection has been identified as a gap in preparedness for the control of SVV-1. This study describes the development and bench validation of two reverse transcription loop-mediated amplification (RT-LAMP) assays targeting the 5′-untranslated region (5′-UTR) and the VP3-1 region for the detection of SVV-1 that may be performed at the point of sample collection. Both assays were able to demonstrate amplification of all neat samples diluted 1/100 in negative pig epithelium tissue suspension within 8 min, when RNA was extracted prior to the RT-LAMP assay, and no amplification was observed for the other viruses tested. Simple sample preparation methods using lyophilized reagents were investigated, to negate the requirement for RNA extraction. Only a small delay in the time to amplification was observed for these lyophilized reagents, with a time from sample receipt to amplification achieved within 12 min. Although diagnostic validation is recommended, these RT-LAMP assays are highly sensitive and specific, with the potential to be a useful tool in the rapid diagnosis of SVV-1 in the field. K E Y W O R D S point-of-care diagnostics, rapid detection, reverse transcription loop-mediated isothermal amplification, Seneca Valley virus-1 1 | INTRODUCTION Seneca Valley virus 1 (SVV-1) is the only known virus belonging to the species Senecavirus A, genus Senecavirus, within the family Picornaviridae (Knowles et al., 2012). It is a non-enveloped, singlestranded, positive-sense RNA virus recently associated with vesicular disease in swine in Brazil, the USA,
The sequence diversity of viral populations within individual hosts is the starting 24 material f... more The sequence diversity of viral populations within individual hosts is the starting 24 material for selection and subsequent evolution of RNA viruses such as foot-and-mouth 25 disease virus (FMDV). Using next-generation sequencing (NGS) performed on a Genome 26 Analyzer platform (Illumina), this study compared the viral populations within two 27 bovine epithelial samples (foot lesions) from a single animal with the Inoculum used to 28 initiate experimental infection. Genomic sequences were determined in duplicate 29 sequencing runs, and the consensus sequence determined by NGS, for the Inoculum, 30 was identical to that previously determined using the Sanger method. However, NGS 31 reveals the fine polymorphic sub-structure of the viral population, from nucleotide 32 variants present at just below 50% frequency to those present at fractions of 1%. Some 33 of the higher frequency polymorphisms identified encoded changes within codons 34 associated with heparan sulphate binding and were present in both feet lesions 35 revealing intermediate stages in the evolution of a tissue-culture adapted virus 36 replicating within a mammalian host. We identified 2,622, 1,434 and 1,703 37 polymorphisms in the Inoculum, and in the two foot lesions respectively: most of the 38 substitutions occurred only in a small fraction of the population and represent the 39 progeny from recent cellular replication prior to onset of any selective pressures. We 40 estimated an upper limit for the genome-wide mutation rate of the virus within a cell to 41 be 7.8 x 10-4 per nt. The greater depth of detection, achieved by NGS, demonstrates that 42 this method is a powerful and valuable tool for the dissection of FMDV populations 43 within-hosts. 44
Revue Scientifique Et Technique De L Office International Des Epizooties, Apr 1, 2016
Foot and mouth disease virus (FMDV) is an animal pathogen of global economic significance. Identi... more Foot and mouth disease virus (FMDV) is an animal pathogen of global economic significance. Identifying the sources of outbreaks plays an important role in disease control; however, this can be confounded by the ease with which FMDV can spread via movement of infected livestock and animal products, aerosols or fomites, e.g. contaminated persons and objects. As sequencing technologies have advanced, this review highlights the uses of viral genomic data in helping to understand the global distribution and transboundary movements of FMDV, and the role that these approaches have played in control and surveillance programmes. The recent application of next-generation sequencing platforms to address important epidemiological and evolutionary challenges is discussed with particular reference to the advent of 'omics' technologies.
Enteroviruses (EVs) and rhinoviruses (RVs) are significant pathogens of humans and are the subjec... more Enteroviruses (EVs) and rhinoviruses (RVs) are significant pathogens of humans and are the subject of intensive clinical and epidemiological research and public health measures, notably in the eradication of poliovirus and in the investigation and control of emerging pathogenic EV types worldwide. EVs and RVs are highly diverse in their antigenic properties, tissue tropism, disease associations and evolutionary relationships, but the latter often conflict with previously developed biologically defined terms, such as “coxsackieviruses”, “polioviruses” and “echoviruses”, which were used before their genetic interrelationships were understood. This has created widespread formatting problems and inconsistencies in the nomenclature for EV and RV types and species in the literature and public databases. As members of the International Committee for Taxonomy of Viruses (ICTV) Picornaviridae Study Group, we describe the correct use of taxon names for these viruses and have produced a series...
In recent years, foot-and-mouth disease virus (FMDV) serotype O, topotype Middle East-South Asia ... more In recent years, foot-and-mouth disease virus (FMDV) serotype O, topotype Middle East-South Asia (ME-SA), lineage Ind-2001d has spread from the Indian subcontinent to the Middle East, North Africa, and Southeast Asia. In the current report, we describe the first detection of this lineage in Vietnam in May, 2015 in Đắk Nông province. Three subsequent outbreaks caused by genetically related viruses occurred between May-October, 2015 after which the virus was not detected in clinical outbreaks for at least 15 subsequent months. The observed outbreaks affected (in chronological order): cattle in Đắk Nông province, pigs in Đắk Lắk province and Đắk Nông province, and cattle in Ninh Thuận province. The clinical syndromes associated with these outbreaks were consistent with typical FMD in the affected species. Overall attack rate on affected premises was 0.85 in pigs and 0.93 in cattle over the course of the outbreak. Amongst 378 pigs at risk on affected premises, 85 pigs died during the ou...
The deletion of residues 93-102 in non-structure protein 3A of foot-and-mouth disease virus (FMDV... more The deletion of residues 93-102 in non-structure protein 3A of foot-and-mouth disease virus (FMDV) is associated with the inability of FMDV to grow in bovine cells and attenuated virulence in cattle.Whereas, a previously reported FMDV strain O/HKN/21/70 harboring 93-102 deletion in 3A protein grew equally well in bovine and swine cells. This suggests that changes inFMDV genome sequence, in addition to 93-102 deletion in 3A, may also affectthe viral growth phenotype in bovine cellsduring infection and replication.However, it is nuclear that changes in which region (inside or outside of 3A region) influences FMDV growth phenotype in bovine cells.In this study, to determine the region in FMDV genomeaffecting viral growth phenotype in bovine cells, we constructed chimeric FMDVs, rvGZSB-HKN3A and rvHN-HKN3A, by introducing the 3A coding region of O/HKN/21/70 into the context of O/SEA/Mya-98 strain O/GZSB/2011 and O Cathay topotype strain O/HN/CHA/93, respectively, since O/GZSB/2011 conta...
The family Picornaviridae comprises small non-enveloped viruses with RNA genomes of 6.7 to 10.1 k... more The family Picornaviridae comprises small non-enveloped viruses with RNA genomes of 6.7 to 10.1 kb, and contains >30 genera and >75 species. Most of the known picornaviruses infect mammals and birds, but some have also been detected in reptiles, amphibians and fish. Many picornaviruses are important human and veterinary pathogens and may cause diseases of the central nervous system, heart, liver, skin, gastrointestinal tract or upper respiratory tract. Most picornaviruses are transmitted by the faecal-oral or respiratory routes. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the Picornaviridae, which is available at www.ictv.global/report/picornaviridae.
The current measures to control foot-and-mouth disease (FMD) include vaccination, movement contro... more The current measures to control foot-and-mouth disease (FMD) include vaccination, movement control and slaughter of infected or susceptible animals. One of the difficulties in controlling FMD by vaccination arises due to the substantial diversity found among the seven serotypes of FMD virus (FMDV) and the strains within these serotypes. Therefore, vaccination using a single vaccine strain may not fully cross-protect against all strains within that serotype, and therefore selection of appropriate vaccines requires serological comparison of the field virus and potential vaccine viruses using relationship coefficients (r 1 values). Limitations of this approach are that antigenic relationships among field viruses are not addressed, as comparisons are only with potential vaccine virus. Furthermore, inherent variation among vaccine sera may impair reproducibility of one-way relationship scores. Here, we used antigenic cartography to quantify and visualize the antigenic relationships among FMD serotype A viruses, aiming to improve the understanding of FMDV antigenic evolution and the scope and reliability of vaccine matching. Our results suggest that predicting antigenic difference using genetic sequence alone or by geographical location is not currently reliable. We found co-circulating lineages in one region that were genetically similar but antigenically distinct. Nevertheless, by comparing antigenic distances measured from the antigenic maps with the full capsid (P1) sequence, we identified a specific amino acid substitution associated with an antigenic mismatch among field viruses and a commonly used prototype vaccine strain, A22/IRQ/24/64.
Uploads
Papers by Nick Knowles