A New Panel Data Treatment for Heterogeneity in Time Trends
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Kneip, Alois & Sickles, Robin C. & Song, Wonho, 2012. "A New Panel Data Treatment For Heterogeneity In Time Trends," Econometric Theory, Cambridge University Press, vol. 28(3), pages 590-628, June.
References listed on IDEAS
- Han, Chirok & Orea, Luis & Schmidt, Peter, 2005.
"Estimation of a panel data model with parametric temporal variation in individual effects,"
Journal of Econometrics, Elsevier, vol. 126(2), pages 241-267, June.
- Han, Chirok & Orea, Luis & Schmidt, Peter, 2002. "Estimation of a Panel Data Model with Parametric Temporal Variation in Individual Effects," Efficiency Series Papers 2002/05, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
- Peter Schmidt & Chirok Han & Luis Orea, 2004. "Estimation of a Panel Data Model with Parametric Temporal Variation in Individual Effects," Econometric Society 2004 Far Eastern Meetings 519, Econometric Society.
- Forni, Mario & Lippi, Marco, 2001.
"The Generalized Dynamic Factor Model: Representation Theory,"
Econometric Theory, Cambridge University Press, vol. 17(6), pages 1113-1141, December.
- Lippi, Marco & Forni, Mario, 2000. "The Generalized Dynamic Factor Model: Representation Theory," CEPR Discussion Papers 2509, C.E.P.R. Discussion Papers.
- Jushan Bai & Serena Ng, 2002.
"Determining the Number of Factors in Approximate Factor Models,"
Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Econometric Society World Congress 2000 Contributed Papers 1504, Econometric Society.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Boston College Working Papers in Economics 440, Boston College Department of Economics.
- Park, B. U. & Sickles, R. C. & Simar, L., 1998.
"Stochastic panel frontiers: A semiparametric approach,"
Journal of Econometrics, Elsevier, vol. 84(2), pages 273-301, June.
- PARK, Byeong U. & SICKLES, Robin C. & SIMAR, Léopold, 1996. "Stochastic Panel Frontiers : A Semiparametric Approach," LIDAM Discussion Papers CORE 1996038, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- PARK, Beyong U. & SICKLES, Robin C. & SIMAR, Léopold, 1998. "Stochastic panel frontiers: A semiparametric approach," LIDAM Reprints CORE 1330, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Chang, Yoosoon, 2004.
"Bootstrap unit root tests in panels with cross-sectional dependency,"
Journal of Econometrics, Elsevier, vol. 120(2), pages 263-293, June.
- Yoosoon Chang, 2000. "Bootstrap Unit Root Tests in Panels with Cross-Sectional Dependency," Econometric Society World Congress 2000 Contributed Papers 1585, Econometric Society.
- Yoosoon Chang, 2000. "Bootstrap Unit Root Tests in Panels with Cross-Sectional Dependency," Cowles Foundation Discussion Papers 1251, Cowles Foundation for Research in Economics, Yale University.
- Chang, Yoosoon, 2002. "Bootstrap Unit Root Tests in Panels with Cross-Sectional Dependency," Working Papers 2000-01, Rice University, Department of Economics.
- Baltagi, Badi H. & Egger, Peter & Pfaffermayr, Michael, 2003. "A generalized design for bilateral trade flow models," Economics Letters, Elsevier, vol. 80(3), pages 391-397, September.
- Elizabeth C. Klee & Fabio M. Natalucci, 2005. "Profits and balance sheet developments at U.S. commercial banks in 2004," Federal Reserve Bulletin, Board of Governors of the Federal Reserve System (U.S.), vol. 91(Spr), pages 143-174.
- Allen N. Berger & Anil K. Kashyap & Joseph M. Scalise, 1995.
"The Transformation of the U.S. Banking Industry: What a Long, Strange Trips It's Been,"
Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 26(2), pages 55-218.
- Allen N. Berger & Anil K. Kashyap & Joseph Scalise, 1995. "The Transformation of the U.S. Banking Industry: What a Long, Strange Trip It's Been," Center for Financial Institutions Working Papers 96-06, Wharton School Center for Financial Institutions, University of Pennsylvania.
- Mario Forni & Lucrezia Reichlin, 1998.
"Let's Get Real: A Factor Analytical Approach to Disaggregated Business Cycle Dynamics,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 453-473.
- Mario Forni & Lucrezia Reichlin, 1998. "Let's get real: a factor analytical approach to disaggregated business cycle dynamics," ULB Institutional Repository 2013/10147, ULB -- Universite Libre de Bruxelles.
- Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
- Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
- Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000.
"The Generalized Dynamic-Factor Model: Identification And Estimation,"
The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
- Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 1999. "The Generalized Dynamic Factor Model: Identification and Estimation," CEPR Discussion Papers 2338, C.E.P.R. Discussion Papers.
- Mario Forni & Marc Hallin & Lucrezia Reichlin & Marco Lippi, 2000. "The generalised dynamic factor model: identification and estimation," ULB Institutional Repository 2013/10143, ULB -- Universite Libre de Bruxelles.
- Adams, Robert M & Berger, Allen N & Sickles, Robin C, 1999. "Semiparametric Approaches to Stochastic Panel Frontiers with Applications in the Banking Industry," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(3), pages 349-358, July.
- Schmidt, Peter & Sickles, Robin C, 1984. "Production Frontiers and Panel Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 367-374, October.
- Forni, Mario & Lippi, Marco, 1997. "Aggregation and the Microfoundations of Dynamic Macroeconomics," OUP Catalogue, Oxford University Press, number 9780198288008.
- Kneip A. & Utikal K. J, 2001. "Inference for Density Families Using Functional Principal Component Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 519-542, June.
- Ahn, Seung Chan & Hoon Lee, Young & Schmidt, Peter, 2001. "GMM estimation of linear panel data models with time-varying individual effects," Journal of Econometrics, Elsevier, vol. 101(2), pages 219-255, April.
- Baltagi, Badi H & Griffin, James M, 1988. "A General Index of Technical Change," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 20-41, February.
- Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
- Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
- Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Boivin, Jean & Ng, Serena, 2006.
"Are more data always better for factor analysis?,"
Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
- Jean Boivin & Serena Ng, 2003. "Are More Data Always Better for Factor Analysis?," NBER Working Papers 9829, National Bureau of Economic Research, Inc.
- Mario Forni & Luca Gambetti & Luca Sala, 2014.
"No News in Business Cycles,"
Economic Journal, Royal Economic Society, vol. 124(581), pages 1168-1191, December.
- Forni, Mario & Sala, Luca & Gambetti, Luca, 2011. "No News in Business Cycles," CEPR Discussion Papers 8274, C.E.P.R. Discussion Papers.
- Mario Forni & Luca Gambetti & Luca Sala, 2013. "No News in Business Cycles," Working Papers 491, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
- Mario Forni & Luca Gambetti & Luca Sala, 2011. "No News in Business Cycles," Working Papers 383, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
- Mario Forni & Luca Gambetti & Luca Sala, 2011. "No News in Business Cycles," UFAE and IAE Working Papers 862.11, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
- Mario Forni & Luca Gambetti & Luca Sala, 2011. "No news in business cycles," Center for Economic Research (RECent) 063, University of Modena and Reggio E., Dept. of Economics "Marco Biagi".
- Mario Forni & Luca Gambetti & Luca Sala, 2011. "No News in Business Cycles," Working Papers 535, Barcelona School of Economics.
- Simona Delle Chiaie & Laurent Ferrara & Domenico Giannone, 2022.
"Common factors of commodity prices,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 461-476, April.
- Delle Chiaie, Simona & Ferrara, Laurent & Giannone, Domenico, 2018. "Common factors of commodity prices," Research Bulletin, European Central Bank, vol. 51.
- S. Delle Chiaie & L. Ferrara & D. Giannone, 2017. "Common Factors of Commodity Prices," Working papers 645, Banque de France.
- Giannone, Domenico & Ferrara, Laurent & Delle Chiaie, Simona, 2018. "Common Factors of Commodity Prices," CEPR Discussion Papers 12767, C.E.P.R. Discussion Papers.
- Delle Chiaie, Simona & Ferrara, Laurent & Giannone, Domenico, 2017. "Common factors of commodity prices," Working Paper Series 2112, European Central Bank.
- Sickles, Robin C. & Song, Wonho & Zelenyuk, Valentin, 2018.
"Econometric Analysis of Productivity: Theory and Implementation in R,"
Working Papers
18-008, Rice University, Department of Economics.
- Robin C. Sickles & Wonho Song & Valentin Zelenyuk, 2018. "Econometric Analysis of Productivity: Theory and Implementation in R," CEPA Working Papers Series WP082018, School of Economics, University of Queensland, Australia.
- Peng Shi & Wei Zhang, 2011. "A copula regression model for estimating firm efficiency in the insurance industry," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(10), pages 2271-2287.
- Roman Matkovskyy, 2016. "A comparison of pre- and post-crisis efficiency of OECD countries: evidence from a model with temporal heterogeneity in time and unobservable individual effect," European Journal of Comparative Economics, Cattaneo University (LIUC), vol. 13(2), pages 135-167, December.
- Helmut Lütkepohl, 2014.
"Structural Vector Autoregressive Analysis in a Data Rich Environment: A Survey,"
Discussion Papers of DIW Berlin
1351, DIW Berlin, German Institute for Economic Research.
- Lütkepohl, Helmut, 2014. "Structural vector autoregressive analysis in a data rich environment: A survey," SFB 649 Discussion Papers 2014-004, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Binlei Gong & Robin C. Sickles, 2020.
"Non-structural and structural models in productivity analysis: study of the British Isles during the 2007–2009 financial crisis,"
Journal of Productivity Analysis, Springer, vol. 53(2), pages 243-263, April.
- Gong, Binlei & Sickles, Robin C., 2016. "Non-structural and Structural Models in Productivity Analysis: Study of the British Isles during the 2007-2009 Financial Crisis," Working Papers 16-004, Rice University, Department of Economics.
- Tsay, Ruey S. & Ando, Tomohiro, 2012. "Bayesian panel data analysis for exploring the impact of subprime financial crisis on the US stock market," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3345-3365.
- repec:cte:wsrepe:23974 is not listed on IDEAS
- Jianqing Fan & Yuan Liao & Martina Mincheva, 2013.
"Large covariance estimation by thresholding principal orthogonal complements,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
- Fan, Jianqing & Liao, Yuan & Mincheva, Martina, 2011. "Large covariance estimation by thresholding principal orthogonal complements," MPRA Paper 38697, University Library of Munich, Germany.
- Fan, Jianqing & Ke, Yuan & Liao, Yuan, 2021.
"Augmented factor models with applications to validating market risk factors and forecasting bond risk premia,"
Journal of Econometrics, Elsevier, vol. 222(1), pages 269-294.
- Jianqing Fan & Yuan Ke & Yuan Liao, 2016. "Augmented Factor Models with Applications to Validating Market Risk Factors and Forecasting Bond Risk Premia," Papers 1603.07041, arXiv.org, revised Sep 2018.
- Sickles, Robin C. & Hao, Jiaqi & Shang, Chenjun, 2015. "Panel Data and Productivity Measurement," Working Papers 15-018, Rice University, Department of Economics.
- Lippi, Marco & Reichlin, Lucrezia & Forni, Mario, 2003. "Opening the Black Box: Structural Factor Models versus Structural VARs," CEPR Discussion Papers 4133, C.E.P.R. Discussion Papers.
- Matteo Barigozzi & Antonio M. Conti & Matteo Luciani, 2014.
"Do Euro Area Countries Respond Asymmetrically to the Common Monetary Policy?,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(5), pages 693-714, October.
- Barigozzi, Matteo & Conti, Antonio & Luciani, Matteo, 2012. "Do Euro area countries respond asymmetrically to the common monetary policy?," LSE Research Online Documents on Economics 43344, London School of Economics and Political Science, LSE Library.
- Matteo Luciani & Antoniomaria Conti & Matteo Barigozzi, 2013. "Do Euro Area Countries Respond Asymmetrically to the Common Monetary Policy?," ULB Institutional Repository 2013/153330, ULB -- Universite Libre de Bruxelles.
- Matteo Barigozzi & Antonio M. Conti & Matteo Luciani, 2013. "Do euro area countries respond asymmetrically to the common monetary policy?," Temi di discussione (Economic working papers) 923, Bank of Italy, Economic Research and International Relations Area.
- Matteo Barigozzi & Matteo Luciani, 2019.
"Quasi Maximum Likelihood Estimation and Inference of Large Approximate Dynamic Factor Models via the EM algorithm,"
Papers
1910.03821, arXiv.org, revised Sep 2024.
- Matteo Barigozzi & Matteo Luciani, 2024. "Quasi Maximum Likelihood Estimation and Inference of Large Approximate Dynamic Factor Models via the EM algorithm," Finance and Economics Discussion Series 2024-086, Board of Governors of the Federal Reserve System (U.S.).
- Norman R. Swanson & Nii Ayi Armah, 2011. "Diffusion Index Models and Index Proxies: Recent Results and New Directions," Departmental Working Papers 201114, Rutgers University, Department of Economics.
- Massacci, Daniele, 2017. "Least squares estimation of large dimensional threshold factor models," Journal of Econometrics, Elsevier, vol. 197(1), pages 101-129.
- Bai, Jushan & Ando, Tomohiro, 2013. "Multifactor asset pricing with a large number of observable risk factors and unobservable common and group-specific factors," MPRA Paper 52785, University Library of Munich, Germany, revised Dec 2013.
- Barigozzi, Matteo & Trapani, Lorenzo, 2020.
"Sequential testing for structural stability in approximate factor models,"
Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 5149-5187.
- Matteo Barigozzi & Lorenzo Trapani, 2017. "Sequential testing for structural stability in approximate factor models," Papers 1708.02786, arXiv.org, revised Mar 2020.
- Matteo Barigozzi & Lorenzo Trapani, 2018. "Sequential testing for structural stability in approximate factor models," Discussion Papers 18/04, University of Nottingham, Granger Centre for Time Series Econometrics.
- Ma, Tao & Zhou, Zhou & Antoniou, Constantinos, 2018. "Dynamic factor model for network traffic state forecast," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 281-317.
More about this item
Keywords
Time trends; panel models; principal component analysis; smoothing splines; banking efficiency;All these keywords.
JEL classification:
- G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
- C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
- C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
- C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:bonedp:12006. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/gsbonde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.