IDEAS home Printed from https://ideas.repec.org/p/tas/wpaper/10446.html
   My bibliography  Save this paper

From Trade-to-Trade in US Treasuries

Author

Abstract

The aim of this paper is to model the trading intensity of the US Treasury bond market which has a unique expandable limit order book which distinguishes its structure from other asset markets. An analysis of tick data from the eSpeed database suggests that the US bond market displays a greater degree of clustering in trade durations than is evident in other asset markets. Duration is affected by the presence of news particularly in the hour following the release of scheduled news to the markets. Finally, the length of time taken to complete a given transaction, or ‘workup’, has a measurable impact on the trade duration

Suggested Citation

  • Dungey, Mardi & Henry, Olan & McKenzie, Michael, 2010. "From Trade-to-Trade in US Treasuries," Working Papers 10446, University of Tasmania, Tasmanian School of Business and Economics, revised 01 May 2010.
  • Handle: RePEc:tas:wpaper:10446
    as

    Download full text from publisher

    File URL: https://eprints.utas.edu.au/10446/1/DP2010-02_Dungey_Henry_McKenzie_May2010.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eleanor Xu, Xiaoqing & Chen, Peter & Wu, Chunchi, 2006. "Time and dynamic volume-volatility relation," Journal of Banking & Finance, Elsevier, vol. 30(5), pages 1535-1558, May.
    2. Fernandes, Marcelo & Grammig, Joachim, 2006. "A family of autoregressive conditional duration models," Journal of Econometrics, Elsevier, vol. 130(1), pages 1-23, January.
    3. Foster, F Douglas & Viswanathan, S, 1990. "A Theory of the Interday Variations in Volume, Variance, and Trading Costs in Securities Markets," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 593-624.
    4. Bauwens, Luc & Veredas, David, 2004. "The stochastic conditional duration model: a latent variable model for the analysis of financial durations," Journal of Econometrics, Elsevier, vol. 119(2), pages 381-412, April.
    5. Boni, Leslie & Leach, Chris, 2004. "Expandable limit order markets," Journal of Financial Markets, Elsevier, vol. 7(2), pages 145-185, February.
    6. Kuttner, Kenneth N., 2001. "Monetary policy surprises and interest rates: Evidence from the Fed funds futures market," Journal of Monetary Economics, Elsevier, vol. 47(3), pages 523-544, June.
    7. Michael J. Fleming & Eli M. Remolona, 1997. "What moves the bond market?," Economic Policy Review, Federal Reserve Bank of New York, vol. 3(Dec), pages 31-50.
    8. Bauwens, Luc, 2006. "Econometric Analysis of Intra-daily Trading Activity on the Tokyo Stock Exchange," Monetary and Economic Studies, Institute for Monetary and Economic Studies, Bank of Japan, vol. 24(1), pages 1-23, March.
    9. Engle, Robert F. & Russell, Jeffrey R., 1997. "Forecasting the frequency of changes in quoted foreign exchange prices with the autoregressive conditional duration model," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 187-212, June.
    10. Robert F. Engle, 2000. "The Econometrics of Ultra-High Frequency Data," Econometrica, Econometric Society, vol. 68(1), pages 1-22, January.
    11. Luc Bauwens & Pierre Giot, 2000. "The Logarithmic ACD Model: An Application to the Bid-Ask Quote Process of Three NYSE Stocks," Annals of Economics and Statistics, GENES, issue 60, pages 117-149.
    12. Dungey, Mardi & McKenzie, Michael & Smith, L. Vanessa, 2009. "Empirical evidence on jumps in the term structure of the US Treasury Market," Journal of Empirical Finance, Elsevier, vol. 16(3), pages 430-445, June.
    13. repec:adr:anecst:y:2000:i:60:p:05 is not listed on IDEAS
    14. repec:bla:jfinan:v:59:y:2004:i:3:p:1201-1234 is not listed on IDEAS
    15. Joachim Grammig & Kai-Oliver Maurer, 2000. "Non-monotonic hazard functions and the autoregressive conditional duration model," Econometrics Journal, Royal Economic Society, vol. 3(1), pages 16-38.
    16. Luc, BAUWENS & Nikolaus, HAUTSCH, 2006. "Modelling Financial High Frequency Data Using Point Processes," Discussion Papers (ECON - Département des Sciences Economiques) 2006039, Université catholique de Louvain, Département des Sciences Economiques.
    17. Jiang, George J. & Lo, Ingrid & Verdelhan, Adrien, 2011. "Information Shocks, Liquidity Shocks, Jumps, and Price Discovery: Evidence from the U.S. Treasury Market," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 46(2), pages 527-551, April.
    18. Anat R. Admati, Paul Pfleiderer, 1988. "A Theory of Intraday Patterns: Volume and Price Variability," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 3-40.
    19. BAUWENS, Luc & VEREDAS, David, 1999. "The stochastic conditional duration model: a latent factor model for the analysis of financial durations," LIDAM Discussion Papers CORE 1999058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    20. Robert F. Engle & Jeffrey R. Russell, 1998. "Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data," Econometrica, Econometric Society, vol. 66(5), pages 1127-1162, September.
    21. Bruce Mizrach & Christopher J. Neely, 2006. "The transition to electronic communications networks in the secondary treasury market," Review, Federal Reserve Bank of St. Louis, vol. 88(Nov), pages 527-542.
    22. Balduzzi, Pierluigi & Elton, Edwin J. & Green, T. Clifton, 2001. "Economic News and Bond Prices: Evidence from the U.S. Treasury Market," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 36(4), pages 523-543, December.
    23. Goodhart, Charles A. E. & O'Hara, Maureen, 1997. "High frequency data in financial markets: Issues and applications," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 73-114, June.
    24. Zhang, Michael Yuanjie & Russell, Jeffrey R. & Tsay, Ruey S., 2001. "A nonlinear autoregressive conditional duration model with applications to financial transaction data," Journal of Econometrics, Elsevier, vol. 104(1), pages 179-207, August.
    25. Nikolaus Hautsch, 2006. "Testing the Conditional Mean Function of Autoregressive Conditional Duration Models," FRU Working Papers 2006/06, University of Copenhagen. Department of Economics. Finance Research Unit.
    26. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Vega, Clara, 2007. "Real-time price discovery in global stock, bond and foreign exchange markets," Journal of International Economics, Elsevier, vol. 73(2), pages 251-277, November.
    27. repec:bla:jfinan:v:59:y:2004:i:1:p:227-260 is not listed on IDEAS
    28. Easley, David & O'Hara, Maureen, 1992. "Time and the Process of Security Price Adjustment," Journal of Finance, American Finance Association, vol. 47(2), pages 576-605, June.
    29. Paolo Pasquariello & Clara Vega, 2007. "Informed and Strategic Order Flow in the Bond Markets," The Review of Financial Studies, Society for Financial Studies, vol. 20(6), pages 1975-2019, November.
    30. Michael J. Fleming & Eli M. Remolona, 1999. "Price Formation and Liquidity in the U.S. Treasury Market: The Response to Public Information," Journal of Finance, American Finance Association, vol. 54(5), pages 1901-1915, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dungey, Mardi & Hvozdyk, Lyudmyla, 2012. "Cojumping: Evidence from the US Treasury bond and futures markets," Journal of Banking & Finance, Elsevier, vol. 36(5), pages 1563-1575.
    2. Dungey, Mardi & Hvozdyk, Lyudmyla, 2010. "Cojumping: Evidence from the US Treasury Bond and Future Markets (Discussion Paper 2010-06)," Working Papers 10450, University of Tasmania, Tasmanian School of Business and Economics, revised 14 Jul 2010.
    3. Sylwia Nowak, 2008. "How Do Public Announcements Affect The Frequency Of Trading In U.S. Airline Stocks?," CAMA Working Papers 2008-38, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:bla:jecsur:v:22:y:2008:i:4:p:711-751 is not listed on IDEAS
    2. Fernandes, Marcelo & Grammig, Joachim, 2005. "Nonparametric specification tests for conditional duration models," Journal of Econometrics, Elsevier, vol. 127(1), pages 35-68, July.
    3. Roman Huptas, 2014. "Bayesian Estimation and Prediction for ACD Models in the Analysis of Trade Durations from the Polish Stock Market," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 6(4), pages 237-273, December.
    4. Dimitrakopoulos, Stefanos & Tsionas, Mike G. & Aknouche, Abdelhakim, 2020. "Ordinal-response models for irregularly spaced transactions: A forecasting exercise," MPRA Paper 103250, University Library of Munich, Germany, revised 01 Oct 2020.
    5. Xiufeng Yan, 2021. "Autoregressive conditional duration modelling of high frequency data," Papers 2111.02300, arXiv.org.
    6. Roman Huptas, 2016. "The UHF-GARCH-Type Model in the Analysis of Intraday Volatility and Price Durations – the Bayesian Approach," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 8(1), pages 1-20, March.
    7. Hautsch, Nikolaus, 2008. "Capturing common components in high-frequency financial time series: A multivariate stochastic multiplicative error model," Journal of Economic Dynamics and Control, Elsevier, vol. 32(12), pages 3978-4015, December.
    8. Roman Huptas, 2019. "Point forecasting of intraday volume using Bayesian autoregressive conditional volume models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(4), pages 293-310, July.
    9. Magdalena Osinska & Andrzej Dobrzynski & Yochanan Shachmurove, 2016. "Performance Of American And Russian Joint Stock Companies On Financial Market. A Microstructure Perspective," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 11(4), pages 819-851, December.
    10. Wei Sun & Svetlozar Rachev & Frank Fabozzi & Petko Kalev, 2008. "Fractals in trade duration: capturing long-range dependence and heavy tailedness in modeling trade duration," Annals of Finance, Springer, vol. 4(2), pages 217-241, March.
    11. Hautsch, Nikolaus & Jeleskovic, Vahidin, 2008. "Modelling high-frequency volatility and liquidity using multiplicative error models," SFB 649 Discussion Papers 2008-047, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    12. repec:hum:wpaper:sfb649dp2008-047 is not listed on IDEAS
    13. Jiang, Zhi-Qiang & Chen, Wei & Zhou, Wei-Xing, 2009. "Detrended fluctuation analysis of intertrade durations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(4), pages 433-440.
    14. Dungey, Mardi & McKenzie, Michael & Smith, L. Vanessa, 2009. "Empirical evidence on jumps in the term structure of the US Treasury Market," Journal of Empirical Finance, Elsevier, vol. 16(3), pages 430-445, June.
    15. Manganelli, Simone, 2005. "Duration, volume and volatility impact of trades," Journal of Financial Markets, Elsevier, vol. 8(4), pages 377-399, November.
    16. Jiang, George J. & Lo, Ingrid, 2014. "Private information flow and price discovery in the U.S. treasury market," Journal of Banking & Finance, Elsevier, vol. 47(C), pages 118-133.
    17. Dungey, Mardi & Jeyasreedharan, Nagaratnam & Li, Tuo, 2010. "Modelling the Time Between Trades in the After-Hours Electronic Equity Futures Market," Working Papers 10451, University of Tasmania, Tasmanian School of Business and Economics, revised 30 May 2012.
    18. Jorge Pérez-Rodríguez & Emilio Gómez-Déniza & Simón Sosvilla-Rivero, 2019. "“Testing for private information using trade duration models with unobserved market heterogeneity: The case of Banco Popular”," IREA Working Papers 201907, University of Barcelona, Research Institute of Applied Economics, revised Apr 2019.
    19. Luc, BAUWENS & Nikolaus, HAUTSCH, 2006. "Modelling Financial High Frequency Data Using Point Processes," Discussion Papers (ECON - Département des Sciences Economiques) 2006039, Université catholique de Louvain, Département des Sciences Economiques.
    20. Liu, Chun & Maheu, John M., 2012. "Intraday dynamics of volatility and duration: Evidence from Chinese stocks," Pacific-Basin Finance Journal, Elsevier, vol. 20(3), pages 329-348.
    21. Sylwia Nowak, 2008. "How Do Public Announcements Affect The Frequency Of Trading In U.S. Airline Stocks?," CAMA Working Papers 2008-38, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.

    More about this item

    Keywords

    US Treasuries; trade duration; workups; news;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tas:wpaper:10446. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oscar Pavlov (email available below). General contact details of provider: https://edirc.repec.org/data/dutasau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.