Variational Bayes inference in high-dimensional time-varying parameter models
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Koop, Gary & Korobilis, Dimitris, 2018. "Variational Bayes inference in high-dimensional time-varying parameter models," MPRA Paper 87972, University Library of Munich, Germany.
- Korobilis, Dimitris & Koop, Gary, 2018. "Variational Bayes inference in high-dimensional time-varying parameter models," Essex Finance Centre Working Papers 22665, University of Essex, Essex Business School.
References listed on IDEAS
- Alexander H. Sarris, 1973. "A Bayesian Approach To Estimation Of Time-Varying Regression Coefficients," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 2, number 4, pages 501-523, National Bureau of Economic Research, Inc.
- Luc Bauwens & Gary Koop & Dimitris Korobilis & Jeroen V.K. Rombouts, 2015.
"The Contribution of Structural Break Models to Forecasting Macroeconomic Series,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 596-620, June.
- Luc Bauwens & Gary Koop & Dimitris Korobilis & Jeroen V.K. Rombouts, 2011. "The Contribution of Structural Break Models to Forecasting Macroeconomic Series," Working Paper series 38_11, Rimini Centre for Economic Analysis.
- BAUWENS, Luc & KOOP, Gary & KOROBILIS, Dimitris & ROMBOUTS, Jeroen, 2015. "The Contribution of Structural Break Models to Forecating Macroeconomic Series," LIDAM Reprints CORE 2651, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Giordani, Paolo & Kohn, Robert, 2008.
"Efficient Bayesian Inference for Multiple Change-Point and Mixture Innovation Models,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 66-77, January.
- Giordani, Paolo & Kohn, Robert, 2006. "Efficient Bayesian Inference for Multiple Change-Point and Mixture Innovation Models," Working Paper Series 196, Sveriges Riksbank (Central Bank of Sweden).
- Jan J. J. Groen & Richard Paap & Francesco Ravazzolo, 2013.
"Real-Time Inflation Forecasting in a Changing World,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 29-44, January.
- Groen, J.J.J. & Paap, R., 2009. "Real-time inflation forecasting in a changing world," Econometric Institute Research Papers EI 2009-19, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Jan J. J. Groen & Richard Paap & Francesco Ravazzolo, 2009. "Real-time inflation forecasting in a changing world," Staff Reports 388, Federal Reserve Bank of New York.
- Jan J. J. Groen & Richard Paap & Francesco Ravazzolo, 2009. "Real-Time Inflation Forecasting in a Changing World," Working Paper 2009/16, Norges Bank.
- Joshua C.C. Chan & Gary Koop & Roberto Leon-Gonzalez & Rodney W. Strachan, 2012.
"Time Varying Dimension Models,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 358-367, January.
- Chan, Joshua C C & Koop, Gary & Leon-Gonzalez, Roberto & Strachan, Rodney W, 2010. "Time Varying Dimension Models," SIRE Discussion Papers 2012-33, Scottish Institute for Research in Economics (SIRE).
- Joshua C C Chan & Gary Koop & Roberto Leon-Gonzales & Rodney W Strachan, 2011. "Time Varying Dimension Models," CAMA Working Papers 2011-28, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Joshua C.C. Chan & Gary Koop & Roberto Leon-Gonzalez & Rodney W. Strachan, 2010. "Time Varying Dimension Models," Working Paper series 44_10, Rimini Centre for Economic Analysis.
- Joshua Chan & Gary Koop & Roberto Leon-Gonzalez & Rodney Strachan, 2011. "Time Varying Dimension Models," Working Papers 1116, University of Strathclyde Business School, Department of Economics.
- Joshua C.C. Chan & Garry Koop & Roberto Leon Gonzales & Rodney W. Strachan, 2010. "Time Varying Dimension Models," ANU Working Papers in Economics and Econometrics 2010-523, Australian National University, College of Business and Economics, School of Economics.
- Miguel A.G. Belmonte & Gary Koop & Dimitris Korobilis, 2014.
"Hierarchical Shrinkage in Time‐Varying Parameter Models,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(1), pages 80-94, January.
- Belmonte, Miguel A & Koop, Gary & Korobilis, Dimitris, 2011. "Hierarchical Shrinkage in Time-Varying Parameter Models," SIRE Discussion Papers 2012-68, Scottish Institute for Research in Economics (SIRE).
- BELMONTE, Miguel A.G. & KOOP, Gary & KOROBILIS, Dimitris, 2011. "Hierarchical shrinkage in time-varying parameter models," LIDAM Discussion Papers CORE 2011036, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Miguel A. G. Belmonte & Gary Koop & Dimitris Korobilis, 2011. "Hierarchical Shrinkage in Time-Varying Parameter Models," Working Paper series 35_11, Rimini Centre for Economic Analysis.
- Miguel Belmonte & Gary Koop & Dimitris Korobilis, 2011. "Hierarchical Shrinkage in Time-Varying Parameter Models," Working Papers 1137, University of Strathclyde Business School, Department of Economics.
- Miguel, Belmonte & Gary, Koop & Dimitris, Korobilis, 2011. "Hierarchical shrinkage in time-varying parameter models," MPRA Paper 31827, University Library of Munich, Germany.
- R. H. Shumway & D. S. Stoffer, 1982. "An Approach To Time Series Smoothing And Forecasting Using The Em Algorithm," Journal of Time Series Analysis, Wiley Blackwell, vol. 3(4), pages 253-264, July.
- Luc Bauwens & Gary Koop & Dimitris Korobilis & Jeroen V.K. Rombouts, 2015.
"The Contribution of Structural Break Models to Forecasting Macroeconomic Series,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 596-620, June.
- BAUWENS, Luc & KOOP, Gary & KOROBILIS, Dimitris & ROMBOUTS, Jeroen V. K., 2011. "A comparison of forecasting procedures for macroeconomic series: the contribution of structural break models," LIDAM Discussion Papers CORE 2011003, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Luc Bauwens & Gary Koop & Dimitris Korobilis & Jeroen Rombouts, 2011. "A comparison of Forecasting Procedures for Macroeconomic Series: The Contribution of Structural Break Models," Working Papers 1113, University of Strathclyde Business School, Department of Economics.
- Luc Bauwens & Gary Koop & Dimitris Korobilis & Jeroen V.K. Rombouts, 2011. "A Comparison of Forecasting Procedures for Macroeconomic Series: the Contribution of Structural Break Models," Cahiers de recherche 1104, CIRPEE.
- Bauwens, Luc & Korobilis, Dimitris & Koop, Gary & Rombouts, Jeroen V.K., 2011. "A Comparison Of Forecasting Procedures For Macroeconomic Series: The Contribution Of Structural Break Models," SIRE Discussion Papers 2011-25, Scottish Institute for Research in Economics (SIRE).
- Luc Bauwens & Gary Koop & Dimitris Korobilis & Jeroen V.K. Rombouts, 2011. "The Contribution of Structural Break Models to Forecasting Macroeconomic Series," Working Paper series 38_11, Rimini Centre for Economic Analysis.
- Luc Bauwens & Gary Koop & Dimitris Korobilis & Jeroen Rombouts, 2011. "A Comparison of Forecasting Procedures For Macroeconomic Series: The Contribution of Structural Break Models," CIRANO Working Papers 2011s-13, CIRANO.
- Jouchi Nakajima & Mike West, 2013. "Bayesian Analysis of Latent Threshold Dynamic Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 151-164, April.
- Davide Pettenuzzo & Allan Timmermann, 2017.
"Forecasting Macroeconomic Variables Under Model Instability,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 183-201, April.
- Timmermann, Allan & Pettenuzzo, Davide, 2016. "Forecasting Macroeconomic Variables under Model Instability," CEPR Discussion Papers 11355, C.E.P.R. Discussion Papers.
- Gary Koop & Dimitris Korobilis, 2012.
"Forecasting Inflation Using Dynamic Model Averaging,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(3), pages 867-886, August.
- Gary Koop & Dimitris Korobilis, 2009. "Forecasting Inflation Using Dynamic Model Averaging," Working Paper series 34_09, Rimini Centre for Economic Analysis.
- Koop, Gary & Korobilis, Dimitris, 2011. "Forecasting Inflation Using Dynamic Model Averaging," SIRE Discussion Papers 2011-40, Scottish Institute for Research in Economics (SIRE).
- Koop, Gary & Korobilis, Dimitris, 2010. "Forecasting Inflation Using Dynamic Model Averaging," SIRE Discussion Papers 2010-113, Scottish Institute for Research in Economics (SIRE).
- Gary Koop & Dimitris Korobilis, 2011. "Forecasting Inflation Using Dynamic Model Averaging," Working Papers 1119, University of Strathclyde Business School, Department of Economics.
- James H. Stock & Mark W. Watson, 2007.
"Why Has U.S. Inflation Become Harder to Forecast?,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
- James H. Stock & Mark W. Watson, 2006. "Why Has U.S. Inflation Become Harder to Forecast?," NBER Working Papers 12324, National Bureau of Economic Research, Inc.
- Todd E. Clark & Francesco Ravazzolo, 2015. "Macroeconomic Forecasting Performance under Alternative Specifications of Time‐Varying Volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 551-575, June.
- Cooley, Thomas F & Prescott, Edward C, 1976. "Estimation in the Presence of Stochastic Parameter Variation," Econometrica, Econometric Society, vol. 44(1), pages 167-184, January.
- M. P. Wand, 2017. "Fast Approximate Inference for Arbitrarily Large Semiparametric Regression Models via Message Passing," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 137-168, January.
- David M. Blei & Alp Kucukelbir & Jon D. McAuliffe, 2017. "Variational Inference: A Review for Statisticians," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 859-877, April.
- Frühwirth-Schnatter, Sylvia & Wagner, Helga, 2010. "Stochastic model specification search for Gaussian and partial non-Gaussian state space models," Journal of Econometrics, Elsevier, vol. 154(1), pages 85-100, January.
- Gary Koop & Simon M. Potter, 2007. "Estimation and Forecasting in Models with Multiple Breaks," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 74(3), pages 763-789.
- Dangl, Thomas & Halling, Michael, 2012. "Predictive regressions with time-varying coefficients," Journal of Financial Economics, Elsevier, vol. 106(1), pages 157-181.
- James H. Stock & Mark W. Watson, 2007. "Erratum to "Why Has U.S. Inflation Become Harder to Forecast?"," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1849-1849, October.
- Kalli, Maria & Griffin, Jim E., 2014. "Time-varying sparsity in dynamic regression models," Journal of Econometrics, Elsevier, vol. 178(2), pages 779-793.
- Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
- Ormerod, J. T. & Wand, M. P., 2010. "Explaining Variational Approximations," The American Statistician, American Statistical Association, vol. 64(2), pages 140-153.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chan, Joshua C.C. & Yu, Xuewen, 2022.
"Fast and Accurate Variational Inference for Large Bayesian VARs with Stochastic Volatility,"
Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
- Joshua C.C. Chan & Xuewen Yu, 2020. "Fast and accurate variational inference for large Bayesian VARs with stochastic volatility," CAMA Working Papers 2020-108, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Joshua C. C. Chan & Xuewen Yu, 2022. "Fast and Accurate Variational Inference for Large Bayesian VARs with Stochastic Volatility," Papers 2206.08438, arXiv.org.
- Deborah Gefang & Gary Koop & Aubrey Poon, 2019.
"Variational Bayesian Inference in Large Vector Autoregressions with Hierarchical Shrinkage,"
Discussion Papers in Economics
19/05, Division of Economics, School of Business, University of Leicester.
- Deborah Gefang & Gary Koop & Aubrey Poon, 2019. "Variational Bayesian inference in large Vector Autoregressions with hierarchical shrinkage," CAMA Working Papers 2019-08, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Deborah Gefang & Gary Koop & Aubrey Poon, 2019. "Variational Bayesian Inference in Large Vector Autoregressions with Hierarchical Shrinkage," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2019-07, Economic Statistics Centre of Excellence (ESCoE).
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Gefang, Deborah & Koop, Gary & Poon, Aubrey, 2020.
"Computationally efficient inference in large Bayesian mixed frequency VARs,"
Economics Letters, Elsevier, vol. 191(C).
- Deborah Gefang & Gary Koop & Aubrey Poon, "undated". "Computationally Efficient Inference in Large Bayesian Mixed Frequency VARs," Discussion Papers in Economics 20/02, Division of Economics, School of Business, University of Leicester.
- Deborah Gefang & Gary Koop & Aubrey Poon, 2020. "Computationally Efficient Inference in Large Bayesian Mixed Frequency VARs," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2020-07, Economic Statistics Centre of Excellence (ESCoE).
- Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
- David T. Frazier & Ruben Loaiza-Maya & Gael M. Martin & Bonsoo Koo, 2021.
"Loss-Based Variational Bayes Prediction,"
Papers
2104.14054, arXiv.org, revised May 2022.
- David T. Frazier & Ruben Loaiza-Maya & Gael M. Martin & Bonsoo Koo, 2021. "Loss-Based Variational Bayes Prediction," Monash Econometrics and Business Statistics Working Papers 8/21, Monash University, Department of Econometrics and Business Statistics.
- Badi H. Baltagi & Georges Bresson & Jean-Michel Etienne, 2020.
"Growth Empirics: a Bayesian Semiparametric Model With Random Coefficients for a Panel of OECD Countries,"
Advances in Econometrics, in: Essays in Honor of Cheng Hsiao, volume 41, pages 217-253,
Emerald Group Publishing Limited.
- Badi Baltagi & Georges Bresson & Jean-Michel Etienne, 2020. "Growth Empirics: A Bayesian Semiparametric Model with Random Coefficients for a Panel of OECD Countries," Center for Policy Research Working Papers 229, Center for Policy Research, Maxwell School, Syracuse University.
- Reza Hajargasht, 2019. "Approximation Properties of Variational Bayes for Vector Autoregressions," Papers 1903.00617, arXiv.org.
- Korobilis, Dimitris, 2018.
"Machine Learning Macroeconometrics A Primer,"
Essex Finance Centre Working Papers
22666, University of Essex, Essex Business School.
- Dimitris Korobilis, 2018. "Machine Learning Macroeconometrics: A Primer," Working Paper series 18-30, Rimini Centre for Economic Analysis.
- Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024.
"Bayesian forecasting in economics and finance: A modern review,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
- Gael M. Martin & David T. Frazier & Worapree Maneesoonthorn & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2022. "Bayesian Forecasting in Economics and Finance: A Modern Review," Papers 2212.03471, arXiv.org, revised Jul 2023.
- Chaya Weerasinghe & Ruben Loaiza-Maya & Gael M. Martin & David T. Frazier, 2023. "ABC-based Forecasting in State Space Models," Monash Econometrics and Business Statistics Working Papers 12/23, Monash University, Department of Econometrics and Business Statistics.
- Florian Huber & Gary Koop & Michael Pfarrhofer, 2020. "Bayesian Inference in High-Dimensional Time-varying Parameter Models using Integrated Rotated Gaussian Approximations," Papers 2002.10274, arXiv.org.
- Barbara Rossi, 2019.
"Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them,"
Working Papers
1162, Barcelona School of Economics.
- Rossi, Barbara, 2020. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," CEPR Discussion Papers 14472, C.E.P.R. Discussion Papers.
- Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
- Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
- Rub'en Loaiza-Maya & Didier Nibbering, 2022. "Efficient variational approximations for state space models," Papers 2210.11010, arXiv.org, revised Jun 2023.
- Matteo Iacopini & Luca Rossini, 2019. "Bayesian nonparametric graphical models for time-varying parameters VAR," Papers 1906.02140, arXiv.org.
- Gael M. Martin & David T. Frazier & Christian P. Robert, 2021. "Approximating Bayes in the 21st Century," Monash Econometrics and Business Statistics Working Papers 24/21, Monash University, Department of Econometrics and Business Statistics.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gary Koop & Dimitris Korobilis, 2023.
"Bayesian Dynamic Variable Selection In High Dimensions,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 1047-1074, August.
- Gary Koop & Dimitris Korobilis, 2018. "Bayesian dynamic variable selection in high dimensions," Papers 1809.03031, arXiv.org, revised May 2020.
- Korobilis, Dimitris & Koop, Gary, 2020. "Bayesian dynamic variable selection in high dimensions," MPRA Paper 100164, University Library of Munich, Germany.
- Gary Koop & Dimitris Korobilis, 2020. "Bayesian dynamic variable selection in high dimensions," Working Papers 2020_11, Business School - Economics, University of Glasgow.
- Dimitris Korobilis, 2021.
"High-Dimensional Macroeconomic Forecasting Using Message Passing Algorithms,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 493-504, March.
- Korobilis, Dimitris, 2019. "High-dimensional macroeconomic forecasting using message passing algorithms," MPRA Paper 96079, University Library of Munich, Germany.
- Dimitris Korobilis, 2019. "High-dimensional macroeconomic forecasting using message passing algorithms," Working Papers 2019_07, Business School - Economics, University of Glasgow.
- Dimitris Korobilis, 2019. "High-dimensional macroeconomic forecasting using message passing algorithms," Working Paper series 19-17, Rimini Centre for Economic Analysis.
- Dimitris Korobilis, 2020. "High-dimensional macroeconomic forecasting using message passing algorithms," Papers 2004.11485, arXiv.org.
- Hauzenberger, Niko, 2021. "Flexible Mixture Priors for Large Time-varying Parameter Models," Econometrics and Statistics, Elsevier, vol. 20(C), pages 87-108.
- Niko Hauzenberger, 2020. "Flexible Mixture Priors for Large Time-varying Parameter Models," Papers 2006.10088, arXiv.org, revised Nov 2020.
- Korobilis, D, 2017.
"Forecasting with many predictors using message passing algorithms,"
Essex Finance Centre Working Papers
19565, University of Essex, Essex Business School.
- Dimitris Korobilis, 2019. "High-dimensional macroeconomic forecasting using message passing algorithms," Working Paper series 19-17, Rimini Centre for Economic Analysis.
- Korobilis, Dimitris, 2019. "High-dimensional macroeconomic forecasting using message passing algorithms," MPRA Paper 96079, University Library of Munich, Germany.
- Joshua C. C. Chan, 2018.
"Specification tests for time-varying parameter models with stochastic volatility,"
Econometric Reviews, Taylor & Francis Journals, vol. 37(8), pages 807-823, September.
- Joshua C.C. Chan, 2015. "Specification tests for time-varying parameter models with stochastic volatility," CAMA Working Papers 2015-42, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Dufays, Arnaud & Rombouts, Jeroen V.K., 2020. "Relevant parameter changes in structural break models," Journal of Econometrics, Elsevier, vol. 217(1), pages 46-78.
- Koop, Gary & Korobilis, Dimitris, 2011.
"UK macroeconomic forecasting with many predictors: Which models forecast best and when do they do so?,"
Economic Modelling, Elsevier, vol. 28(5), pages 2307-2318, September.
- Gary Koop & Dimitris Korompilis, 2009. "UK Macroeconomic Forecasting with Many Predictors: Which Models Forecast Best and When Do They Do So?," Working Papers 0917, University of Strathclyde Business School, Department of Economics.
- Gary Koop & Dimitris Korobilis, 2011. "UK Macroeconomic Forecasting with Many Predictors: Which Models Forecast Best and When Do They Do So?," Working Papers 1118, University of Strathclyde Business School, Department of Economics.
- Koop, Gary & Korobilis, Dimitris, 2009. "UK Macroeconomic Forecasting with Many Predictors: Which Models Forecast Best and When Do They Do So?," SIRE Discussion Papers 2009-40, Scottish Institute for Research in Economics (SIRE).
- Koop, Gary & Korobilis, Dimitris, 2011. "UK Macroeconomic Forecasting with Many Predictors: Which Models Forecast Best and When Do They Do So?," SIRE Discussion Papers 2011-39, Scottish Institute for Research in Economics (SIRE).
- Korobilis, Dimitris, 2019.
"High-dimensional macroeconomic forecasting using message passing algorithms,"
MPRA Paper
96079, University Library of Munich, Germany.
- Dimitris Korobilis, 2019. "High-dimensional macroeconomic forecasting using message passing algorithms," Working Papers 2019-07, Business School - Economics, University of Glasgow.
- Dimitris Korobilis, 2020. "High-dimensional macroeconomic forecasting using message passing algorithms," Papers 2004.11485, arXiv.org.
- Dimitris Korobilis, 2019. "High-dimensional macroeconomic forecasting using message passing algorithms," Working Paper series 19-17, Rimini Centre for Economic Analysis.
- Hauzenberger, Niko & Huber, Florian & Klieber, Karin, 2023.
"Real-time inflation forecasting using non-linear dimension reduction techniques,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 901-921.
- Niko Hauzenberger & Florian Huber & Karin Klieber, 2020. "Real-time Inflation Forecasting Using Non-linear Dimension Reduction Techniques," Papers 2012.08155, arXiv.org, revised Dec 2021.
- Joshua C.C. Chan & Rodney W. Strachan, 2023.
"Bayesian State Space Models In Macroeconometrics,"
Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 58-75, February.
- Joshua C.C. Chan & Rodney W. Strachan, 2020. "Bayesian state space models in macroeconometrics," CAMA Working Papers 2020-90, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Florian Huber & Gary Koop & Michael Pfarrhofer, 2020. "Bayesian Inference in High-Dimensional Time-varying Parameter Models using Integrated Rotated Gaussian Approximations," Papers 2002.10274, arXiv.org.
- Felix Abramovich & Vadim Grinshtein, 2013. "Estimation of a sparse group of sparse vectors," Biometrika, Biometrika Trust, vol. 100(2), pages 355-370.
- Rossi, Barbara, 2013.
"Advances in Forecasting under Instability,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324,
Elsevier.
- Barbara Rossi, 2011. "Advances in Forecasting Under Instability," Working Papers 11-20, Duke University, Department of Economics.
- Dimitris Korobilis & Kenichi Shimizu, 2022.
"Bayesian Approaches to Shrinkage and Sparse Estimation,"
Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
- Dimitris Korobilis & Kenichi Shimizu, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," Working Papers 2021_19, Business School - Economics, University of Glasgow.
- Dimitris Korobilis & Kenichi Shimizu, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," Papers 2112.11751, arXiv.org.
- Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Working Paper series 22-02, Rimini Centre for Economic Analysis.
- Korobilis, Dimitris & Shimizu, Kenichi, 2021. "Bayesian Approaches to Shrinkage and Sparse Estimation," MPRA Paper 111631, University Library of Munich, Germany.
- Martin, Gael M. & Frazier, David T. & Maneesoonthorn, Worapree & Loaiza-Maya, Rubén & Huber, Florian & Koop, Gary & Maheu, John & Nibbering, Didier & Panagiotelis, Anastasios, 2024.
"Bayesian forecasting in economics and finance: A modern review,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 811-839.
- Gael M. Martin & David T. Frazier & Worapree Maneesoonthorn & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2022. "Bayesian Forecasting in Economics and Finance: A Modern Review," Papers 2212.03471, arXiv.org, revised Jul 2023.
- Dimitris Korobilis, 2013.
"Var Forecasting Using Bayesian Variable Selection,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(2), pages 204-230, March.
- Korobilis, Dimitris, 2009. "VAR forecasting using Bayesian variable selection," MPRA Paper 21124, University Library of Munich, Germany.
- KOROBILIS, Dimitris, 2011. "VAR forecasting using Bayesian variable selection," LIDAM Discussion Papers CORE 2011022, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Dimitris Korobilis, 2010. "VAR Forecasting Using Bayesian Variable Selection," Working Paper series 51_10, Rimini Centre for Economic Analysis, revised Apr 2011.
- Dimitris Korobilis, 2018.
"Machine Learning Macroeconometrics: A Primer,"
Working Paper series
18-30, Rimini Centre for Economic Analysis.
- Korobilis, Dimitris, 2018. "Machine Learning Macroeconometrics A Primer," Essex Finance Centre Working Papers 22666, University of Essex, Essex Business School.
- Eraslan, Sercan & Schröder, Maximilian, 2023. "Nowcasting GDP with a pool of factor models and a fast estimation algorithm," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1460-1476.
- Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
More about this item
Keywords
dynamic linear model; approximate posterior inference; dynamic variable selection; forecasting;All these keywords.
JEL classification:
- C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
- C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ORE-2018-08-13 (Operations Research)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rim:rimwps:18-31. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marco Savioli (email available below). General contact details of provider: https://edirc.repec.org/data/rcfeait.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.